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Abstract

While each financial crisis has its own characteristics there is now
widespread recognition that crises arising from sources such as finan-
cial speculation and excessive credit creation do inflict harm on the
real economy. Detecting speculative market conditions and ballooning
credit risk in real time is therefore of prime importance in the complex
exercises of market surveillance, risk management, and policy action.
This chapter provides an R implementation of the popular real-time
monitoring strategy proposed by Phillips, Shi and Yu (2015a,b;PSY),
along with a new bootstrap procedure designed to mitigate the poten-
tial impact of heteroskedasticity and to effect family-wise size control
in recursive testing algorithms. This methodology has been shown ef-
fective for bubble and crisis detection (PSY, 2015a,b; Phillips and Shi,
2017) and is now widely used by academic researchers, central bank
economists, and fiscal regulators. We illustrate the effectiveness of
this procedure with applications to the S&P financial market and the
European sovereign debt sector. These applications are implemented
using the psymonitor R package (Phillips et al., 2018) developed in
conjunction with this chapter.
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1 Introduction

Speculative behavior and crises in the financial system can inflict serious
harm on the real economy. Central banks, regulators, and policy makers
therefore seek effective early warning devices of such episodes to assist in
maintaining economic and financial stability. To meet the need for ongoing
market surveillance, the recent literature on bubble detection has focused
on real-time monitoring techniques rather than ex-post identification strate-
gies which were emphasized in earlier research (see Gürkaynak (2008) for a
review).

A practical real-time bubble detection method was proposed by Phillips,
Shi and Yu (2015a,b; PSY hereafter) and has now been successfully em-
ployed as an early warning alert system for exuberance in a wide variety of
financial, commodity, and real estate markets. For many of these diverse
applications readers may usefully refer to the following papers: Bohl (2003);
Etienne et al. (2014a,b); Gutierrez (2012); Pavlidis et al. (2016); Adämmer
and Bohl (2015); Figuerola-Ferretti et al. (2015, 2016); Caspi et al. (2015);
Caspi (2016); Shi et al. (2016); Phillips and Yu (2011, 2013); Greenaway-
McGrevy and Phillips (2016); Hu and Oxley (2017a,b,c, 2018a,b). The po-
tential of the PSY method has been recognised by central bank economists
and fiscal regulators, as well as more widely in the financial industry and
financial press. It is now employed by the Federal Reserve Bank of Dallas,
providing an exuberance indicator for 23 international housing markets.1

Researchers from many central banks, including the Hong Kong Monetary
Authority (Yiu and Jin, 2013), the Central Bank of Colombia (Amador-
Torres et al., 2018; Gomez-Gonzalez et al., 2018), and Bank of Israel (Caspi,
2016), have applied the PSY test to study real estate bubbles in their re-
spective economies.

The PSY procedure serves as an early warning device for crises, as in-
dicated in Phillips and Shi (2017). This capability has been noted in the
many recent studies considering stock prices and exchange rates and other
financial time series. See, Phillips et al. (2015a); Phillips and Shi (2017,
2018); Shi (2017); Deng et al. (2017); Yiu and Jin (2013); Fantazzini (2016);
Hu and Oxley (2017b), among others.

The PSY procedure employs the augmented Dickey-Fuller (ADF) model
specification and a recursive evolving algorithm. The recursive evolving
algorithm relies only on historical information and permits a time-varying
model structure. The method has general applications in regression. When

1See https://www.dallasfed.org/institute/houseprice.
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applied to ADF regressions, the recursive evolving algorithm fixes the end
point on the observation of interest and searches for the optimal starting
point. As such, it minimizes the impact of previous episodes on the current
identification and is less sensitive to the random choice of sample starting
point. In effect, the method selects the most appropriate initialization for
conducting a regression fit with given data, as considered in early work on
econometric model determination (Phillips, 1996).

In detecting change and for bubble identification the recursive evolv-
ing algorithm has been shown to outperform the forward recursive algo-
rithm (Phillips et al., 2011), the rolling window approach (Shi, 2007; Chong
and Hurn, 2017), and the cusum monitoring strategy (Homm and Breitung,
2012). Unlike regime switching methods (Hall et al., 1999; Shi et al., 2016),
it is a real-time procedure and easy to implement in practical work.

The identification of bubbles is based on their defining time series char-
acteristics. During the expansionary phase of a bubble, asset prices follow
a mildly explosive process as opposed to the martingale behavior that is
typical during normal market conditions. In the event of a crisis or rapidly
escalating credit risk, asset price (and hence bond yield) dynamics typically
switch to a random drift martingale often accompanied by a large negative
shock or a sequence of negative shocks. The PSY procedure which provides
a joint test for the drift and the autoregressive coefficients of the ADF model
is capable of detecting both bubbles and crises. The approach also delivers
a mechanism for date stamping the origination and termination of bubbles.
Consistency of the estimated bubble origination and termination dates was
established in PSY (2015b) and Phillips and Shi (2018) under various data
generating processes; and Phillips and Shi (2017)) proved consistency of the
estimated switch date for crises.

Harvey et al. (2016) showed that the presence of heteroscedasticity can
affect the performance of the forward recursive method of Phillips et al.
(2011) and can lead to severe size distortions in testing. The same fragility
to heteroskedasticity is expected for the PSY procedure. Several methods
have been proposed to overcome this problem (Harvey et al., 2016, forth-
coming, 2018). The wild bootstrap approach proposed by Harvey et al.
(2016) has been found to have satisfactory asymptotic and finite sample
performance. But an additional issue arises from the sequential nature of
recursive hypothesis testing. It is well known that the probability of mak-
ing false positive conclusions rises with the number of hypotheses tested, a
phenomenon that is sometimes referred to as the multiplicity or family-wise
size control issue in testing. This problem is common to all recursive test-
ing procedures. In this chapter we propose a new bootstrap procedure that
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simultaneously addresses both heteroskedasticity and multiplicity issues in
testing.

The PSY procedure is now a standard item in the econometric toolkit.
Matlab, Eviews, and R software programs are available for practical im-
plementation.2 This chapter illustrates implementation of the methodology
with a new R package that incorporate the bootstrap procedure for deal-
ing with heteroskedasticity and multiplicity in recursive testing. With this
software we apply the procedure to S&P 500 stock market data to detect
both bubble and crisis episodes in the stock market and to the European
sovereign debt market to detect episodes of escalating credit risk. The new
R package (Phillips et al., 2018) is named psymonitor and can be installed
with the following command sequence:

install.packages("psymonitor")

library(psymonitor)

The rest of the chapter is organized as follows. Section 2 introduces the
PSY procedure. The rationale and limiting properties of the PSY procedure
for bubble identification (crisis detection) are described and illustrated in
Section 3 (Section 4). Section 5 introduces the new bootstrap procedure for
accommodating heteroskedasticity and addressing multiplicity issues. Em-
pirical applications to the S&P 500 market and the European sovereign
market are given in Sections 6 and 7. Section 8 concludes.

2 The PSY Procedure

The PSY procedure was originally designed to identify and date stamp ex-
plosive periods in asset prices. Subsequent research (Phillips and Shi, 2017)
has shown that the method has detective power against both speculative
bubbles and market collapses, including flash crashes. The method is based
on an ADF model specification for the fitted regression equation but uses
flexible window widths in its implementation to take time-varying dynamics
and structural breaks into consideration.

2.1 The Augmented Dickey-Fuller test

It is well known in the unit root literature that the limit distribution of the
ADF statistic depends on both the null hypothesis and the precise regression

2See the website https://sites.google.com/site/shupingshi/home/codes for the
Matlab codes, the Rtadf Eviews Addin (Caspi, 2017), and the MultipleBubbles (Araujo
et al., 2018) and exuber (Vasilopoulos et al., 2018) packages in R.
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model specification.3 Appropriate choices of both therefore have a material
impact in practical implementation.

The null hypothesis (H0) of the PSY test captures normal market be-
haviors and states that asset prices follow a martingale process with a mild
drift function such that (Phillips et al., 2014)

yt = gT + yt−1 + ut, (1)

where gT = kT−γ (with constant k, γ > 1/2, and sample size T ) captures
any mild drift that may be present in prices but which is of smaller order
than the martingale component and is therefore asymptotically negligible.

The regression model chosen for the PSY procedure is

∆yt = µ+ ρyt−1 +

p∑
j=1

φj∆yt−j + vt, (2)

where for implementation purposes the regression error vt is assumed to

satisfy vt
i.i.d∼ (0, σ2). The p lag terms of ∆yt are included to take care of

potential serial correlation. The lag order p is often selected by information
criteria. The regression model includes an intercept but no time trend and
nests the null hypothesis as a special case with µ = gT and ρ = 0. The ADF
statistic is simply the t-ratio of the least squares estimate of the coefficient
ρ.

The i.i.d error condition may be replaced with a martingale difference
sequence (mds) condition in (2). More general specifications on the error ut
in the generating mechanism (1), such as those in Assumption 1 below, may
be employed and are accommodated by allowing the regression lag order
p→∞ as T →∞ in (2). Nonparametric adjustments for serial correlation
may also be used, such as those developed in Phillips (1987) and Phillips
and Perron (1988).

Assumption 1 The error term ut is allowed to be serial correlated such
that

ut = ψ(L)εt =
∞∑
j=0

ϕjεt−j ,

where
∑∞

j=0 j|ϕj | <∞ and εt is an mds satisfying:

(i) εt is strongly uniformly integrable with a dominating random variable
η that satisifies E

(
η2 ln+ |η|

)
<∞;

3See Hamilton (1994) for a textbook discussion and Phillips et al. (2014) for details in
the context of bubble testing with localized drift specifications.
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(ii) T−1
∑T

t=1 E
(
ε2t |Ft−1

)
→a.s. σ

2, where Ft = σ {εt, εt−1...} is the natu-
ral filtration.

Under Assumption 1 εt is potentially conditionally heteroskedastic, as for
instance under stable ARCH or GARCH errors. The partial sums of εt
satisfy the functional law (Phillips and Solo, 1992)

T−1/2
bTrc∑
t=1

εt ⇒ σW (r) , (3)

where W is standard Brownian motion,⇒ signifies weak convergence on the
Skorohod space D[0, 1], and b.c signifies the integer part of the argument.

Under the null hypothesis (1), Assumption 1, and regression (2) with side
conditions that ensure p → ∞, the ADF statistic has a limit distribution
given by (Phillips et al., 2014)

ADF =⇒
1
2

[
W (1)2 − 1

]
−W (1)

∫ 1
0 W (s)ds[∫ 1

0 W (s)2ds−
(∫ 1

0 W (s)ds
)2]1/2 ,

where =⇒ denotes convergence in distribution on R.

2.2 The Recursive Evolving Algorithm

The recursive evolving algorithm of PSY enables real-time identification of
bubbles and crises while allowing for the presence of multiple structural
breaks within the sample period. PSY (2015a,b) show that this algorithm is
superior to the forward expanding and rolling window algorithms in bubble
identification, especially when the sample period contains multiple bubbles.

For the convenience of exposition, we use the standard ‘fraction of the
total sample’ notation for observations. Thus if t = bTrc is the integer part
of Tr, then observation t is represented fractionally as observation r and then
the total sample runs over values of r from 0 to 1. Suppose the observation of
interest is r†. The PSY procedure calculates the ADF statistic recursively
from a backward expanding sample sequence. Let r1 and r2 be the start
and end points of the regression sample. The ADF statistic calculated from
this sample is denoted by ADF r2r1 . We fix the end point of all samples on
the observation of interest such that r2 = r† and allow the start point r1
to vary within its feasible range, i.e. [0, r† − r0], where r0 is the minimum
window required to initiate the regression. The recommended setting of r0
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for practical implementation is r0 = 0.01 + 1.8/
√
T . The PSY statistic is

the supremum taken over the values of all the ADF statistics in the entire
recursion, which is represented mathematically as

PSYr†(r0) = sup
r1∈[0,r†−r0],r2=r†

{
ADF r2r1

}
.

The supremum enables the selection of the ‘optimal’ starting point of the
regression in the sense of providing the largest ADF statistic.

The PSY test can be conducted for each individual observation of in-
terest ranging from r0 to 1, i.e. for r† ∈ [r0, 1]. The recursive calculation
evolves as the observation of interest moves forward and therefore the pro-
cedure is called a recursive evolving algorithm. See Figure 1 for a graphical
illustration of the algorithm. The corresponding PSY statistic sequence is
{PSYr†(r0)}r†∈[r0,1].

Figure 1: The recursive evolving algorithm with r1 ∈ [0, r†−r0] and r2 = r†.

Calculation of the PSY statistic sequence can be achieved with the com-
mand PSY contained in the psymonitor R package. This routine requires
the input of data (y), a minimum window size (swindow0 ), and a choice
of information criterion for the lag order selection (IC and adflag). The
syntax of the call is

PSY(y,swindow0,IC,adflag).

IC has value 0 when a fixed lag order of adflag is used, 1 for use of an AIC
lag order selector, and 2 for a BIC order selector. In the latter two cases, a
maximum lag order adflag is employed in the information criteria.
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Under the null hypothesis of normal market conditions and the condi-
tions described earlier, the PSY statistic has the following limit distribution
(PSY, 2015a)

sup
r1∈[0,r†−r0],r2=r†


1
2rw

[
W (r2)

2 −W (r1)
2 − rw

]
−
∫ r2
r1
W (s)ds [W (r2)−W (r1)]

r
1/2
w

[
rw
∫ r2
r1
W (s)2ds−

(∫ r2
r1
W (s)ds

)2]1/2
 ,

(4)
where rw = r2 − r1.

The origination of a bubble or crisis episode is taken to be where the PSY
test statistic first exceeds its critical value – a first stopping time for this
episode. Likewise, the termination date is taken to be where the supremum
test statistic subsequently falls below its critical value – a second stopping
time for this episode. Suppose the sample contains only one episode origi-
nating at re and finishing at rf . The estimated origination and termination
dates (denoted by r̂e and r̂f ) are then given by the stopping times

r̂e = inf
r†∈[r0,1]

{
r† : PSYr†(r0) > cvr†(βT )

}
, (5)

r̂f = inf
r†∈[r̂e,1]

{
r† : PSYr†(r0) < cvr†(βT )

}
, (6)

where cvr†(βT ) is the 100 (1− βT ) critical value (quantile of the distribution)
of the PSYr†(r0) statistic. The notation for test size βT being sample size
dependent allows for the property that βT → 0 as T → ∞. This property
in turn leads to cvr†(βT ) → ∞ under the null hypothesis, thereby ensuring
that the probability of falsely detecting the presence of a bubble under the
null passes to zero in large samples.

Estimation of the origination and termination dates are achieved by the
locate function in the R package

locate(ind,date),

where ind is the vector of PSY indicators taking value one when the test
statistic is above the critical value and zero otherwise and date is the vector
of calendar dates associated with the observation.
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3 The PSY Test for Bubble Identification

3.1 The Rationale

To illustrate the idea of bubble identification, consider the present value
asset price formula

Pt =
∞∑
i=0

(
1

1 + rf

)i
Et (Dt+i) +Bt, (7)

where Pt is the price of the asset, Dt is the payoff received from the asset,
rf is the risk-free interest rate, Et(·) is the conditional expectation operator
given information to time t, and Bt is the bubble component. The bubble
component satisfies the submartingale property (Diba and Grossman, 1988)

Et (Bt+1) = (1 + rf )Bt. (8)

In the absence of a bubble, the degree of nonstationarity of the asset price
is controlled entirely by the dividend series and hence is believed from em-
pirical evidence to be at most I(1). On the other hand, asset prices will be
explosive in the presence of a bubble component in formula (7) whenever
the initialization B0 > 0 in (8).

Asset price dynamics over the expansionary phase of a bubble period
may be modelled in terms of a mildly explosive process (Phillips and Yu,
2009; Phillips et al., 2011; Phillips and Magdalinos, 2007) of the form

logPt = δT logPt−1 + ut, (9)

where the autoregressive coefficient δT = 1 + cT−η mildly exceeds unity
(with c > 0 and η ∈ (0, 1)) and yet still lies in its general vicinity. Detection
of a bubble process in the data is therefore equivalent to distinguishing a
martingale process of asset prices from a mildly explosive process. This
can be achieved by the PSY procedure with null and alternative hypotheses
specified as

H0 : µ = gT and ρ = 0,

HA : µ = 0 and ρ > 0.

3.2 Consistency

The data generating process (9) assumes the presence of an expansionary
bubble over the entire sample period. In practice, bubbles exist only over
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subperiods and involve periods of collapse or contraction as well as expan-
sion, thereby justifying the terminology. A given sample of data may include
only martingale behavior, a single bubble episode set amidst martingale be-
havior on either side, or a sequence multiple bubble episodes interspersed
amidst normal martingale behavior. An important task in the real-time
dating literature is to demonstrate consistency of the estimated origination
and termination dates of such bubble episodes.

The simplest example is a sample which contains a single bubble ex-
pansionary episode which does not terminate or collapse within the sample
period. Specifically, asset prices follow a small drift martingale as in (1)
before period τe = breT c and then switch to a mildly explosive process as in
(9), viz.,

logPt =

{
gT + logPt−1 + ut if t < τe
δT logPt−1 + ut if t ≥ τe

. (10)

This DGP can be extended to include the bubble collapse dynamics.
Various patterns of collapse have been considered in the literature. Suppose
the end date of the bubble episode is τf = brfT c. Phillips et al. (2011)
proposed an abrupt bubble collapse pattern where asset prices return imme-
diately to the level before the bubble origination allowing for a stationary
perturbation, so that

logPτf = logPτe−1 +Op(1). (11)

Phillips and Shi (2018) recommended a mildly integrated reversion pattern
for observations in the collapsing regime in which prices follow the mecha-
nism

logPt = γT logPt−1 + ut, (12)

where the autoregressive coefficient γT = 1 − c1T−β is smaller than unity
(c1 < 0 and β ∈ (0, 1)). By varying the value of β, this process can generate
abrupt, randomly disturbed, or smooth patterns of collapse behavior.

Under the data generating process (10), PSY (2015b) show that the
PSY test statistic has order of magnitude Op(1) if the observation of in-
terest r† falls in the normal regime and diverges to positive infinity at the

rate Op(T
1/2δτ

†−τe
T ) with τ † = br†T c if the observation lies in the bubble

regime. For observations in the collapse regime, the PSY statistic diverges
to negative infinity at the rate Op(T

(1−η)/2) when the bubble collapses in
the fashion of (11) or Op

(
Tω(η,β)

)
4 when the collapse process is (12). It

4ω(.) is a linear function of the arguments.
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transpires that under the condition that test size βT → 0 as T →∞ and

1

cvr†(βT )
+

cvr†(βT )

T 1/2δτ
†−τe
T

→ 0,

we have the consistency of the estimated bubble origination and termination
dates, i.e., r̂e → re and r̂f → rf .

The process can be generalized to allow for the presence of multiple
bubbles. Consistency of the estimated bubble origination and termination
dates in the presence of multiple bubbles was shown by PSY (2015b) for the
DGP with the abrupt collapsing pattern (11) and by Phillips and Shi (2018)
with the mildly integrated reverting pattern (12).

4 The PSY Test for Crisis Identification

4.1 The Rationale

Market crashes are defined as a discontinuity in asset prices that is charac-
terized by large downward movements (Gennotte and Leland, 1990; Barlevy
and Veronesi, 2003). The dynamics of asset prices during crisis periods may
be modeled as a random drift martingale process (Phillips and Shi, 2018)

logPt = −Lt + logPt−1 + ut, (13)

in which Lt is a random sequence independent of ut. The sequence Lt
produces a random drift in the observed price process and Lt may take
various forms, which lead to a corresponding variety of collapse mechanism.
The simple process used in Phillips and Shi (2018) follows an asymmetric
scaled uniform distribution such that

Lt = Lbt, bt
iid∼ U [−ε, 1], 0 < ε < 1.

where L is a positive scale quantity measuring shock intensity and bt is
uniform on an interval ranging from a (usually small) negative value −ε to
unity. The mean of the drift term takes a negative value (i.e., − (1− ε)L/2)
and hence the process exhibits an overall downward trend. The magnitude
of this downward trend depends on the values of the scalar parameters L
and ε.

Suppose Pt is the price of a stock and the logarithmic dividend is a
martingale with drift generated as

logDt = α+ logDt−1 + vt, (14)
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where α is a constant and the vt are mds innovations. Under the price
process (13), the logarithmic price-dividend ratio also follows a random drift
martingale process of the form

logPt/Dt = −L∗t + logPt−1/Dt−1 + ε∗t , (15)

where L∗t = Lb∗t with b∗t ∼iid U [−ε+ α/L, 1 + α/L] and ε∗t = εt − vt.
Suppose Pt is the price of a τ -period discount bond. The relationship be-

tween the continuously compounded zero-coupon nominal yield to maturity
(zt) and the bond price is

zt = − logPt
τ

.

Bond yields often serve as a proxy for credit risk. A loan default or other
credit events may trigger a sharp decline in bond prices and hence a fast
expansion in bond yields. Under the assumption of a bond price crash (13),
bond yields follow

zt =
1

τ
Lt + zt−1 −

ut
τ
. (16)

The drift term has a positive mean of (1− ε)L/ (2τ), implying an overall
upward trend in the dynamics.

In the setting of this model detecting financial crises or ballooning credit
risk is equivalent to distinguishing a martingale process with a small drift
(null) from a random-drift martingale process (alternative). The null and
alternative hypotheses of the PSY test for crises may now be formulated in
terms of the fitted ADF regression equation (2) as follows

H0 : µ = gT and ρ = 0

H1,crash : µ = K and ρ = 0.

where K is the expected value of the random drift process Lt and gT is an
asymptotically negligible deterministic drift as in (1).

4.2 Consistency

The specification (13) can be modified to switch on or off depending on the
financial environment. The data generating process for asset prices consid-
ered in Phillips and Shi (2017) is

logPt =

{
gT + logPt−1 + ut if t < τe
−Lt + logPt−1 + ut if t ≥ τe

. (17)
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The origination of the event is denoted again by τe. Suppose that Pt is the
price of a discount bond. It is straightforward to show that the bond yield
zt follows a stochastic process that switches between a martingale with a
small deterministic drift and a martingale with a positively scaled random
drift

zt =

{
− 1
τ gT + zt−1 − ut

τ if t < τe
1
τLt + zt−1 − ut

τ if t ≥ τe
. (18)

Phillips and Shi (2017) show that under the DGP (17), the PSY test
statistic diverges to positive infinity at the rate Op(T

1/2) as the test pro-
ceeds from the normal regime to the crash regime. It follows that the PSY
procedure can consistently estimate the break date τe when

1

cvr†(βT )
+
cvr†(βT )

T 1/2
→ 0.

5 A New Composite Bootstrap

The bootstrap procedure described here combines the two procedures of
Harvey et al. (2016) and Shi et al. (2018). It is designed to mitigate the
potential influence of unconditional heteroskedasticity and to address the
multiplicity issue in recursive testing. Let τ0 = bTr0c and τb be the number
of observations in the window over which size is to be controlled.

Step 1: Using the full sample period, estimate the regression model (2)
under the imposition of the null hypothesis of ρ = 0 and obtain the
estimated residual et.

Step 2: For a sample size τ0 + τb− 1, generate a bootstrap sample given by

∆ybt =

p∑
j=1

φ̂j∆y
b
t−j + ebt (19)

with initial values ybi = yi with i = 1, . . . , j + 1, and where the φ̂j are
the OLS estimates obtained in the fitted regression from Step 1. The
residuals ebt = wtel where wt is randomly drawn from the standard
normal distribution and el is randomly drawn with replacement from
the estimated residuals et.

Step 3: Using the bootstrapped series, compute the PSY test statistic se-
quence {PSY b

t }
τ0+τb−1
t=τ0

and the maximum value of this test statistic
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sequence, giving

Mb
t = max

t∈[τ0,τ0+τb−1]

(
PSY b

t

)
.

Step 4: Repeat Steps 2-3 for B = 999 times.

Step 5: The critical value of the PSY procedure is now given by the 95%

percentiles of the
{
Mb

t

}B
b=1

sequence.

Step 2 of this iteration implements a wild bootstrap to address het-
eroskedasticity; and Steps 3-5 of the iteration replicate the PSY recursive
test sequence and create critical values that account for multiplicity in the
test sequence recursion.

The bootstrap procedure can be implemented with the following call
syntax in R with the package

cvPSYwmboot(y,swindow0,IC,adflag,Tb,nboot,nCores),

where the argument Tb corresponds to τb, nboot is the number of bootstrap
repetitions, and nCores is the number of cores used for the calculation. The
other arguments are the same as those described earlier.

6 Empirical Applications with R

6.1 Example 1: The S&P 500 Market

The S&P 500 stock market has been a central focus of attention in global
financial markets due to the size of this market and its impact on other
financial markets. As an illustration of the methods discussed in this chapter,
we conduct a pseudo real-time monitoring exercise for bubbles and crises in
this market with the PSY strategy. The sample period runs from January
1973 to July 2018, downloaded monthly from Datastream International. The
price-dividend ratios are computed as the inverse of dividend yields. The
first step is to import the data to R, using the following code:

sp500 <- read.csv("sp500.csv")

date <- as.Date(sp500[,1],"%d/%m/%Y")

dy <- sp500[,2]

pd <- 1/dy
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In the presence of a speculative bubble, asset prices characteristically
deviate in an explosive way from fundamentals, representing exuberance
in the speculative behavior driving the market. In the present case, this
deviation implies that the log price-dividend ratio is expected to follow an
explosive process over the expansive phase of the bubble. But during crisis
periods, the price-dividend ratio is expected to follow a random (downward)
drift martingale process, in contrast to a small (local to zero) constant drift
martingale process that typically applies under normal market conditions.
According to the theory detailed in Section 3 and 4, we expect to witness
rejection of the null hypothesis in the PSY test empirical outcomes during
both bubble and crisis periods.

Figure 2 plots the price-to-dividend ratio of the S&P 500 index. We
observe a dramatic increase in the data series in the late 1990s, followed by
a rapid fall in the early 2000s. The market experienced another episode of
slump in late 2008. With a training period of 47 observations, we start the
pseudo real-time monitoring exercise from November 1976 onwards. The
PSY test statistics are compared with the 95% bootstrapped critical value.
The empirical size is controlled over a two-year period, i.e., by taking τb = 24.
The lag order is selected by BIC with a maximum lag order of 6, applied to
each subsample. The PSY statistic sequence and the corresponding boot-
strap critical values can be calculated as follows in R.

y<-pd

obs<-length(y)

r0<-0.01+1.8/sqrt(obs)

swindow0<-floor(r0*obs)

dim<-obs-swindow0+1

IC<-2

adflag<-6

yr<-2

Tb<-12*yr+swindow0-1

nboot<-999

nCore<-2

bsadf<-PSY(y,swindow0,IC,adflag)

quantilesBsadf<-cvPSYwmboot(y,swindow0,IC,adflag,Tb,nboot,nCore)

The identified origination and termination dates can be calculated and
viewed with the following commands.
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date<-date[swindow0:obs]

quantile95<-quantilesBsadf%*%matrix(1,nrow=1,ncol=dim)

ind95<-(bsadf>t(quantile95[2,]))*1

OT <-locate(ind95,date)

BCdates<-disp(OT,obs)

print(BCdates)

where the last two command syntax print the dates on the screen with the
first (second) column being the origination (termination) date. The outputs
are

start end

1 1986-05-30 1986-06-30

2 1987-07-31 1987-08-31

3 1996-01-31 1996-01-31

4 1996-05-31 1996-05-31

5 1996-11-29 1997-02-28

6 1997-04-30 1998-07-31

7 1998-09-30 2000-10-31

8 2000-12-29 2001-01-31

9 2008-10-31 2009-02-27

The identified periods are shaded in green in Figure 2. As is evident in
the figure, the procedure detects two bubble episode and one crisis episode.
The first bubble episode only lasts for three months (1986M05-M06 and
1987M08) and occurred before the Black Monday crash on October 1987.
The second bubble episode is the well-known dot-com bubble, starting from
January 1996 and terminating in October 2000 (with several breaks in be-
tween). For the dot-com bubble episode the identified starting date for
market exuberance occurs well before the speech of the former chairman
of the Federal Reserve Bank Alan Greenspan in December 1996 where the
now famous question ‘how do we know when irrational exuberance has un-
duly escalated asset values’ was posed to the audience and financial world.
The identified subprime mortgage crisis starts in October 2008, which is one
month after the collapse of Lehman Brothers, and terminates in February
2009.

The codes for generating the plot and shaded overlays in the figure are
as follows.

plot(date,y[swindow0:obs],xlim=c(min(date),max(date)),ylim=c(0.1,1),

xlab='',ylab='',type='l',lwd=3)
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for(i in 1:length(date)){

if (ind95[i]==1){abline(v=date[i],col=3)}}

points(date,y[swindow0:obs],type='l')

box(lty=1)

dev.off()

Figure 2: Bubble and crisis periods in the S&P 500 stock market. The solid
line is the price-to-dividend ratio and the shaded areas are the periods where
the PSY statistic exceeds its 95% bootstrapped critical value.
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6.2 Example 2: Credit Risk in the European Sovereign Sec-
tor

The European sovereign debt sector experienced an extremely turbulent pe-
riod over the last decade, which caused significant harm to the real economy
(Acharya et al., 2018) and led to an unprecedented level of unemployment
(Karafolas and Alexandrakis, 2015). The PSY detection algorithm can serve
as a useful early warning mechanism for escalating credit risk, which is
acknowledged as a leading indicator of financial and economic crises, and
thereby enable timely policy action and effective risk management to avert
more serious economic damage. To show the potential efficacy of this early
warning system, we conduct a pseudo monitoring exercise of credit risk in
the European sovereign sector.

Credit risk in the European sovereign sector is proxied by an index con-
structed as a GDP weighted 10-year government bond yield of the GIIPS
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(Greece, Ireland, Italy, Portugal, and Spain) countries.5 The PSY strategy
is applied to the spread between the GIIPS bond yield index and the 10-year
government bond yield of Germany (used as a proxy for a prevailing bench-
mark of economic fundamentals). The sample data runs from June 1997 to
June 2016 and was downloaded from Datastream International. The GDP
data are downloaded quarterly and converted to a monthly frequency by
assuming a constant value within each quarter.

data <- read.csv("spread.csv")

date <- as.Date(data[,1],"%d/%m/%Y")

spread <- data[,2]

y<-spread

Figure 3 plots the bond yield spread over the sample period. The bond
yield index experienced a rapid and substantial rise between 2008-2009. It
continued to mount to historical highs from 2010 onwards and peaked in
June 2012. The bond yield index has dropped since then and becomes
relatively stable over the last two years. The codes for implementing the
PSY procedure are identical to those for Example 1. The estimated start
and end dates of the crisis episodes are displayed below.

start end

1 2008-03-23 2008-03-23

2 2008-10-23 2009-03-23

3 2010-05-23 2012-08-23

The shaded areas in Figure 3 are the identified periods of crisis obtained
using the 95% bootstrap critical values. The first alarm signal of risk ap-
peared in March 2008 and lasts for one month. The alarm was triggered
again after the collapse of Lehman Brothers in October 2008 and turns off
in March 2009. The stress indicator switched on again in May 2010 and
lasted until August 2012.

7 Conclusion

The recursive evolving test algorithm proposed by Phillips, Shi and Yu
(2015a,b) provides a real-time empirical device for detecting speculative
bubbles, crises, and ballooning credit risks that can foreshadow impend-
ing damage to the real economy. The multi-functionality and the real-time

5These are the five EU countries that were unable to refinance their government debt
or to bail out banks on their own during the debt crisis.
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Figure 3: Crisis episodes in the European sovereign sector. The solid line
is the 10-year government bond yield spread between the GIIPS countries
and Germany and the shaded areas are the periods where the PSY statistic
exceeds its 95% bootstrap critical value.
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features of this algorithm assist policymakers in market surveillance and in-
vestors in risk management. The approach has enjoyed widespread use in
academic circles and among central bank economists.

This chapter overviews the main features of the PSY approach and
details a new combined bootstrap procedure for dealing with both het-
eroskedasticity and multiplicity issues in recursive inference methods. A new
R package psymonitor (complete with the combined bootstrap procedure)
is provided for convenient implementation of the methods. For empirical
illustration of the use of the R codes, the procedures are applied to the S&P
500 stock market for the detection of bubbles and crises and to the European
sovereign debt sector for detection of ballooning credit risks. We hope that
the R package and these illustrations6 will assist in making these methods
widely available to empirical researchers, industry economists, and policy
makers.

6For more illustrations, see https://itamarcaspi.github.io/psymonitor/.

19

https://itamarcaspi.github.io/psymonitor/


References

Acharya, V.V., Eisert, T., Eufinger, C., Hirsch, C., 2018. Real effects of
the sovereign debt crisis in Europe: Evidence from syndicated loans. The
Review of Financial Studies 31, 2855–2896.

Adämmer, P., Bohl, M.T., 2015. Speculative bubbles in agricultural prices.
The Quarterly Review of Economics and Finance 55, 67–76.

Amador-Torres, J.S., Gomez-Gonzalez, J.E., Sanin-Restrepo, S., 2018. De-
terminants of housing bubbles’ duration in OECD countries. International
Finance .

Araujo, P., Lacerda, G., Phillips, P.C., Shi, S., 2018. Test and Detec-
tion of Explosive Behaviors for Time Series. R Foundation for Statistical
Computing. Vienna, Austria. URL: https://cran.r-project.org/web/
packages/MultipleBubbles/.

Barlevy, G., Veronesi, P., 2003. Rational panics and stock market crashes.
Journal of Economic Theory 110, 234–263.

Bohl, M.T., 2003. Periodically collapsing bubbles in the US stock market?
International Review of Economics & Finance 12, 385–397.

Caspi, I., 2016. Testing for a housing bubble at the national and regional
level: The case of Israel. Empirical Economics 51, 483–516.

Caspi, I., 2017. Rtadf: Testing for bubbles with EViews. Journal of Statis-
tical Software 81, 1–16.

Caspi, I., Katzke, N., Gupta, R., 2015. Date stamping historical periods of
oil price explosivity: 1876–2014. Energy Economics .

Chong, J., Hurn, S., 2017. Testing for speculative bubbles: Revisiting the
rolling window. Queensland University of Technology, Working paper .

Deng, Y., Girardin, E., Joyeux, R., Shi, S., 2017. Did bubbles migrate from
the stock to the housing market in China between 2005 and 2010? Pacific
Economic Review 22, 276–292.

Diba, B.T., Grossman, H.I., 1988. Explosive rational bubbles in stock prices?
The American Economic Review 78, 520–530.

20

https://cran.r-project.org/web/packages/MultipleBubbles/
https://cran.r-project.org/web/packages/MultipleBubbles/


Etienne, X.L., Irwin, S.H., Garcia, P., 2014a. Bubbles in food commodity
markets: Four decades of evidence. Journal of International Money and
Finance 42, 129–155.

Etienne, X.L., Irwin, S.H., Garcia, P., 2014b. Price explosiveness, specu-
lation, and grain futures prices. American Journal of Agricultural Eco-
nomics 97, 65–87.

Fantazzini, D., 2016. The oil price crash in 2014/15: Was there a (negative)
financial bubble? Energy Policy 96, 383–396.

Figuerola-Ferretti, I., Gilbert, C.L., McCrorie, J.R., 2015. Testing for mild
explosivity and bubbles in LME non-ferrous metals prices. Journal of
Time Series Analysis 36, 763–782.

Figuerola-Ferretti, I.C., McCrorie, R., Paraskevopoulos, I., 2016. Mild ex-
plosivity in recent crude oil prices .

Gennotte, G., Leland, H., 1990. Market liquidity, hedging, and crashes. The
American Economic Review 80, 999–1021.

Gomez-Gonzalez, J.E., Gamboa-Arbeláez, J., Hirs-Garzón, J., Pinchao-
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