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Analytical solutions for the ACC and its
overturning circulation

by Timour Radko'

ABSTRACT

An explicit analytical model of the Antarctic Circumpolar Current (ACC) is presented in which the
key feature is the balance between the Eulerian circulation acting to overturn the isopycnals and
geostrophic eddies which tend to flatten them. Solutions for the stratification and overturning
circulation are obtained by expanding the governing residual mean equations of motion in a small
parameter (€) which measures the relative strength of the surface buoyancy flux and mechanical
forcing by winds. Our balanced asymptotic model extends and reconciles the earlier views on the
dynamics of the (streamwise-averaged) ACC by demonstrating that the zero order balance between
the eddy-induced circulation and the mean flow determines gross features of the buoyancy
distribution in the interior of the ACC. The diabatic buoyancy fluxes are essential in driving the
secondary (residual) circulation which is, however, largely steered along the pathways set by the
dominant adiabatic balance. Model assumptions are supported by a close agreement of the analytical
solutions and fully nonlinear numerical calculations.

1. Introduction

Much of the modern perception of the dynamics of the Antarctic Circumpolar Current
system (ACC) is based on the idea of a competition between the two mechanisms of
meridional transport — the Eulerian circulation and eddy-induced transfer. The schematic
diagram in Figure 1 (from Marshall and Radko, 2003, MR hereafter) illustrates the
tendency of the time mean flow (V) to overturn the isopycnal surfaces (b) and geostrophic
eddies (W*) tending to flatten them out. The approximate cancellation of the eddy-induced
and Eulerian circulation, often referred to as vanishing of the Deacon cell, is a prominent
feature of numerical simulations (e.g. Danabasoglu ez al., 1994). The relatively weak
residual flow is represented by a streamfunction

v, =T + U (1)

res

which advects buoyancy and passive tracers in the meridional plane to offset the diabatic
sources and sinks.
The assumed balance between W, which is set by the wind stress, and W* (set by eddies)
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Figure 1. Schematic diagram of the Eulerian mean circulation (¥), which tends to overturn the
isopycnal surfaces, and the eddy-induced transport (W*) acting in the opposite sense (from MR).

combined with a closure for the eddy buoyancy transfer (v'b'), made it possible to
formulate a theory for the zonal transport of the ACC (Johnson and Bryden, 1989). MR
went further and argued that the competition between eddies and the mean flow is also
essential to understanding the stratification and meridional overturning of the ACC. The
general view of the importance of mesoscale eddies in the (quasi)-zonal flows finds support
in the numerical (Karsten et al., 2002) and laboratory (Cenedese et al., 2004) studies.
However, specific mechanisms of interaction between the wind forcing, air-sea fluxes and
eddy transport in the interior, and their respective roles in controlling the patterns of
buoyancy and residual circulation, are still poorly understood (Bryden and Cunningham,
2003). For instance, upwelling of the upper circumpolar deep water and equatorward flow
at the surface apparently requires buoyancy gain; Speer et al. (2000) examined the air-sea
fluxes and concluded that the air-sea fluxes are compatible with the mass transports in the
Southern Ocean. However the question remains (e.g., Hallberg and Gnanadesikan, 2001)
whether the surface buoyancy fluxes and/or small-scale mixing processes play largely
passive roles in maintaining the overturning circulation of the ACC, or whether they can
actively participate in setting up its density structure. While these fundamentally diabatic
effects (and hence the associated residual circulation) are often neglected in the extant
theories for the structure and transport of the ACC, their a priori exclusion lacks physical
grounds (Olbers et al., 2004).

Although a considerable effort has gone into the realistic modeling studies of the ACC,
these simulations still do not provide definite answers as to the roles of the mechanical and
thermodynamic forcing in shaping up the ACC. Numerical results are known to be
sensitive to the model formulations; for instance, values of the zonal transport in models
are spread over a range from well under 100 Sv to well over 200 Sv (Olbers et al., 2004).
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While most studies reveal the critical role of the wind stress in controlling the stratification
and transport of the ACC, significance of the buoyancy forcing is much less certain. Doos
(1994) modeled the meridional circulation without any buoyancy forcing and found results
similar to the numerical simulations of Doos and Webb (1994), whereas Gnanadesikan and
Hallberg (2000) argued that the buoyancy forcing could play a role in setting up the density
structure. Furthermore, the complexity of the realistic numerical models makes the
dynamical interpretation of results extremely difficult, particularly with regard to the
“higher order” diabatic effects discussed in this note.

Our goal is to help unravel the details of interplay between the distinct dynamical
components of the ACC by developing the analytical weak residual circulation theory of
the ACC based on the asymptotic limit

e=—=—<1, 2)

where (W,,,) is the scale of the residual circulation averaged along the path of the ACC,
and (V) is the scale of the mean streamfunction — the Ekman circulation in the meridional
plane. We argue that this limit adequately represents the parameter range of the real
circumpolar current. The leading order balance of the governing residual mean equations
of motion therefore reduces (1) to the balance between the mean circulation and eddy-
induced flow — vanishing of the Deacon cell — whereas the second order balance explicitly
describes the dynamics of the residual circulation and its relation to the surface buoyancy
fluxes. Basic physics and dynamics at play are illustrated by constructing explicit
analytical solutions of the model equations and comparing them with the fully nonlinear
results.

2. Theoretical framework

Following MR, we consider the model of the ACC in which we reference our
along-stream coordinate x to a mean surface geostrophic contour; y is the coordinate
normal to the stream. Eddy fluxes normal to these contours are then by construction due to
transient rather than standing eddies.

It has been long recognized (Andrews and Mclntyre, 1976) that the distribution of
buoyancy and tracers in the eddying flows cannot be accounted for by the Eulerian mean
circulation, but also involves the eddy—induced advection, a process similar to the Stokes
drift. It is assumed that the eddy transport is largely directed along the time mean buoyancy
surfaces (the limit of “adiabatic eddies”), and therefore

w'b’ Ey 3
v,b, 519 (

where (v'b’, w'b") are the eddy buoyancy flux components; averages are taken in time and
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along the streamlines. The eddy streamfunction in this case can be defined (Held and
Schneider, 1999) as

Pt = — —— =

b

w'b" Vv'b' A
b “4)

,
Introducing the eddy streamfunction (4) greatly simplifies the time-mean streamline
averaged buoyancy equation

_aE+_aB_J\P L N .

Vay W= (W, b) = ay(v ) =5, WD+ o
where buoyancy forcing from the air-sea interaction and small-scale mixing processes are

expressed as the divergence of a buoyancy flux B, and J(a,b) = a,b, — a_b,. For adiabatic
eddies satisfying (3), buoyancy equation reduces to

B

J(q,re.s7 l_)) = aiz ’

®)
where V¥, is the residual streamfunction in Eq. (1). Eq. (5) can be interpreted as a
statement that the advection of buoyancy (and other tracers) on long time scales in the
eddying field is accomplished by the residual, rather than mean, circulation.

If we assume that the eddies transfer properties down the large-scale gradient, the lateral
eddy buoyancy flux can be (conventionally) expressed thus

v'b' = —Kb, (©6)

where the eddy transfer coefficient K is not necessarily uniform but rather depends on the
local characteristics of the flow. MR used a model in which K is itself proportional to the

. b,
isopycnal slope | s = 5 :

K = kols]. %

This relation was suggested by the numerical simulations in Visbeck et al. (1997) and by
the simple scaling arguments (MR); it also finds qualitative support in studies of the
laboratory analogue of the ACC by Cenedese et al. (2004). One can question the specific
form of the eddy closure assumed, and so we describe and analyze an alternative
parameterization in the Appendix. Differences and similarities between the two models can
be used to separate the relatively robust features of the resulting solutions from the
closure-dependent ones.

Our governing equations consist of the buoyancy equation (5), the time-mean Ekman
transport below the Ekman layer:

="

T —
Fooms 7/po ®)
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and the eddy parameterization (6), (7), which reduce the eddy streamfunction to

v'b'

b,

4

Pk = = Ks = —kys”. ®
Following MR, the problem is solved separately in a thin, vertically homogeneous mixed
layer (—h,, < z < 0) and in the stratified interior (z < —#,,). Integration of the buoyancy
equation (5) over depth of the upper vertically homogeneous layer results in

v h P _ 10

res(y s m) ay - b ( )

In the interior, we assume that the explicit buoyancy forcing (B) vanishes, and the
buoyancy equation (5) reduces there to

J(W,,b)=0 for z<—h, (11)

Using (1) and (8), we rewrite the momentum balance in terms of W, as follows:

L (12)
res f M

In order to determine, for given surface boundary conditions, patterns of the buoyancy and
residual circulation in the interior, MR numerically integrated the model equations (8), (9),
(11) using the method of characteristics. However, we now show that the problem can be
treated analytically and reduced to explicit expressions for b and ¥, ,,. The new technique
reveals the dominant balances and brings more physical insight into the equilibrium
dynamics of the ACC.

3. Asymptotic analysis

The analytical tractability is achieved by exploiting the asymptotic limit in which the
residual circulation is weak relative to the time mean. Using (8) and (10), we estimate the
scale (€) for the ratio of the two streamfunctions as

"IITFS Bf
Ty bysr,’

(13)

which thus can be thought of as a measure of the amplitude of the thermodynamic forcing
relative to the mechanical forcing by winds. For the parameters representative of the
Southern Ocean (B ~ 2+ 10 °m3%s 3 - equivalent to the heat flux of the order of 10 W/m>2,
T, 2 10" *m?s™2, Ab ~ 10 2ms ™2, L, ~ 2000 km), € ~ 0.2, and therefore it is sensible
to regard € as a small parameter. The solution is then obtained by expanding the interior
buoyancy and residual circulation in powers of €. To satisfy (10), the buoyancy forcing
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should appear at the first order (B = €B,), and the wind stress 7, is set at the zero order.
Noting that the mean streamfunction is determined by the wind stress and therefore is
independent of €, we obtain

{\Ifmztif+\lf* =¥+ Ui+ eVt + 0(e?)

b=by+eb, + O(e?), (14

where the subscript 0 (1) denotes the zero (first) order quantities. In our model the surface
buoyancy is prescribed and therefore b,, (y) = b(y,0) is independent of the magnitude of
buoyancy forcing, implying that

by(y, 0) = 0. (15)

Next, we go on to compute the individual terms of the asymptotics in (14), thereby
constructing the solution for b(y, z) and ¥, (y,2).

According to (13), the expansion of V¥, starts at O(g). Therefore, the leading order
(e — 0) balance of (14) requires that W} = W, regardless of a chosen eddy parameteriza-
tion. This scaling argument provides a formal justification for the balance between the
Eulerian and eddy-induced circulation — the key assumption of the Johnson and Bryden’s
(1989) model of the ACC. The buoyancy equation (11) is then trivially satisfied at zero
order, whereas the eddy closure (9) reduces to

W= —kos2 = —ko| —| = ¥ = (16)

Eq. (16) enables us to determine, for a given surface buoyancy distribution, the zero order
interior buoyancy field as follows. Since the zero order slope

_ o
0= Tkl f] (17)

depends only on y, the depth of an isopycnal surface is given by an integral

z=f so(y")dy’, (18)

Yo

where y, is the location of the outcrop of this isopycnal. The derivation is simplified by
introducing the indefinite integral of the slope,

S(y) = f so(y)dy (19)
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which is a function only of the given wind stress. Using (19), we rephrase a statement that
the zero order buoyancy is constant along the curves defined by (18) as follows:

by = F[z — S(y)] (20

where F, at this point, is an arbitrary function. To determine F, the interior buoyancy b is
matched, at z — 0, with the surface buoyancy b,,(y), which is assumed to be known:

F[=S(y)1=b,(y) = F(r)=b,[S"' (=1, 21

an expression valid for any 7 in the interval 0 < r < max (—S). We emphasize that none of
the zero order considerations here involved the buoyancy forcing.

dJ
Differentiation of (20) in z shows that 9z b, is constant along the zero order isopycnal

surfaces (18). This is an expected (for our f-plane model) manifestation of the tendency for
expulsion of the isentropic potential vorticity (PV) gradients by mesoscale eddies (Rhines
and Young, 1982) which controls the structure of the leading order buoyancy field. The
relatively weak (~ ¢€) thermodynamic forcing in our model perturbs the uniformity of the
PV on the buoyancy surfaces. It is often assumed (Rhines and Young, 1982) that eddies
generally flux PV down the large-scale gradient and along the isopycnals — these dynamics
are represented by our model as well. Thus, inevitably, weak isentropic potential vorticity
gradients result in the isopycnal fluxes of potential vorticity and other tracers. These fluxes,
in turn, require presence of the residual circulation directed along the buoyancy surfaces,
an effect which will appear at the next order in our expansion.

We now turn to the O(g) balance of the governing equations, which makes it possible
to explicitly describe weak diabatic effects. The leading order residual streamfunction
G W¥) is computed using the buoyancy equation (11), whose order O(g) component
is given by:

J(¥% by) = 0. (22)
Eq. (22) implies that U* and b, are functionally related and, by virtue of (20), that
V= Gz - SO)] (23)

where G is as yet an arbitrary function. Matching the interior residual streamfunction with
that at the bottom of the mixed layer (10) yields:

B,
GI-S0)] =5

(24)

dy

which determines the function G in (23).
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Computing the modification of the interior buoyancy distribution (b;) due to the
buoyancy forcing requires expanding the eddy closure (9) in powers of €:

8 2
byt eb, + -
{ay(" | )] Ty
s = kst 1422+ 0@, (25)
:| 0yY0z

9
[az(bo+eb1+-~)

and the O(¢) component of (25) is readily isolated thus

* & ‘I(bl, bO)
W= 2k (26)

Eq. (26) is greatly simplified by rewriting it with b, (rather then z) as a vertical coordinate,
](bl,b()) d

bOz B @
isentropic gradients, we introduce the following notation:

in which case 1bo_woe- 1O stress that this expression pertains to the

9 N d
g O=5 O+ 5050
and rewrite (26) as:
wi =2k, 20 Ly 27
1 0 boz dl 1+ ( )

Recalling that both W% and b, are constant at any zero order buoyancy surface, we
integrate (27) in y, along a zero order isopycnal, from an arbitrary point in the interior (y, z)
to the location (y,, 0) where this isopycnal outcrops at the surface. Since, according to (15),
b; = 0 at the surface, the integral of (27) reduces to:

V(bbb ¥ 1
WHb)bo )f o8)

bl(y» bO) - 2k0 So(y’) dy .

Yo

The zero order buoyancy is known from (20) and (21), and therefore it is now straightfor-
ward to revert to the original (y, z) coordinates by substituting b(y, z) in (28).

4. Explicit solutions

To demonstrate how the foregoing balanced model can yield explicit analytical solu-
tions, we now assume simple, easily integrable, surface conditions (b,,, 7,, B), and compute
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the resulting interior fields. The estimates in MR (see their Table 1) suggest that the surface
forcing fields? can be represented by

(

Ab
b,(y) = Ly, Ab = 0.01 m/s?, L, = 2000 km
y
5o [TV A — -9 2 -3
= — B=2-1
B Bsm(Lv), 07 m”s 29)
) e
T, = TOO<O.6 + L) , Too = 0.0001 m?* s 2
y
\ f=const=—10""s"!, ky=5-10m?s"!
. > 1 Too .
Eqgs. (17),(19) yield S(y) = -A(y + 0.6L,)" where A = 3L _ﬂT' Inverting (21), we
) . )

arrive at the expression for the zero order buoyancy:
Ab [+ A+ 0.6L,)
by, D) = ( | 4 —0.6L, . (30)

The procedure for computing the leading order residual circulation ¥, ~ W is similar.
Using (24) we determine the function G in (23), and thus the (leading order) residual
streamfunction:

. BL,  [m( [z+A(y+06L)
‘me = 8\1,1 - E Sin f f - 06L‘ . (31)
y

Finally, we estimate the changes in the interior buoyancy distribution brought by the
air-sea buoyancy flux. For the wind stress given by (29), we use (30) to compute b, (17)
for sy, (31) for W,,,, and finally reduce (28) to an explicit expression

0.6L, +y
n|— =|. (32)
VZ/A + (y + 0.6L,)

y

res?

w
5 sin [Ly(\’/Z/A + (y +0.6L,)* — 0.6Ly)]

kA’ VA + (y + 0.6L,)?

eb, =

Analytical solutions for b = b, + €b,, 'V, and €b, given by Egs. (30)-(32) are plotted
on the right panel of Figure 2. The corresponding numerical solutions (computed as in MR)
are shown on the left. Agreement between the analytical and numerical results is
remarkable, especially with regard to the ability of our theory to represent the weak higher
order (eb,) effects. These results demonstrate that the dynamics of the ACC and its
associated overturning circulation can be viewed as a leading order balance between the
eddy advection and the Eulerian circulation. The diabatic buoyancy fluxes are essential in

2. It should be noted that there is a significant uncertainty in the observations, particularly with regard to
air-sea fluxes; the estimates of the surface buoyancy flux from various datasets (e.g. NCEP, COADS, SOC) differ
by as much as a factor of two, which is comparable to the error of the following analytical approximations.
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Figure 2. Comparison of the analytical solution (left) in Egs. (30)-(32) with the corresponding
numerical solution (right).

driving the secondary (residual) circulation, which is, however, steered along the pathways
set by the dominant adiabatic balance.

5. Discussion and conclusions

This note attempts to explain the dynamics of the Antarctic Circumpolar Current by
developing a balanced model based on the “weak residual circulation” approximation (2)
and constructing explicit analytical solutions for the buoyancy distribution and meridional
overturning circulation of the ACC. The limit considered in this study represents a regime
in which the strength of the mechanical forcing by winds exceeds the strength of the
buoyancy forcing. At the lowest order our expansion reflects a balance between the
adiabatic eddy-induced circulation and the mean flow, a notion that is commonly used in
theorizing about the dynamics of the ACC (Olbers et al., 2004). We find that this zero order
balance determines gross features of the buoyancy distribution in the interior of the ACC.

At higher orders, the governing equations cannot be balanced without explicitly
considering the fundamentally diabatic effects related, in our model, to the air-sea
buoyancy fluxes. Making use of the dominant balance between eddies and the mean flow,
we obtained closed solutions at the second order and then derived explicit expressions for
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the buoyancy and residual circulation for the idealized (but consistent with observations)

forcing fields. These solutions reflect the following key characteristics of the dynamics of
ACC:

i) Modification of the hydrography by the vertical mixing and air-sea fluxes (eb,) is
weak (Fig. 2), slightly reducing the buoyancy in the interior;

ii) Surface buoyancy flux is proportional to the strength of the residual flow, which is
largely directed along the (zero order) isopycnals set up by the wind stress;

iii) Mechanics of the communication between the surface buoyancy flux and the
residual circulation in the interior is related to the isentropic potential vorticity (IPV)
gradients. IPV is homogeneous in the adiabatic limit (B = 0), but becomes slightly
(~¢) non-uniform in the presence of buoyancy forcing, causing the down gradient
eddy flux of the potential vorticity and other tracers, and thus forcing the residual
flow.

It is interesting to note that while our solutions are based on the same governing equations
as the fully nonlinear model in MR, their solution technique simultaneously determines
both buoyancy distribution in the interior and the residual circulation, creating an
impression of a strong coupling between the two. The formal asymptotic expansion,
however, clarifies this issue by unambiguously separating the effects of mechanical and
thermodynamic forcing (grouped together in MR). The new framework explicitly connects
and reconciles the diabatic views of the Southern ocean (e.g., Speer, 2000), which
emphasize the role of water mass transformation, and purely adiabatic models (e.g.,
Johnson and Bryden, 1989).

The finite air-sea fluxes and small-scale mixing are clearly essential for closing the
buoyancy budget of the upper cell of the meridional overturning circulation in the Southern
Ocean. However, it is not clear whether the role of diabatic processes in the ACC is limited
to transforming the Upper Circumpolar Deep Water into the lighter Antarctic Intermediate
Water, or whether they actively control the density distribution and pathways of water
masses in the Southern Ocean. Our asymptotic results seem to be suggestive in this regard.
The existence of closed analytical solutions in which the buoyancy fluxes (B) and residual
circulation (W,
of our e-expansion to the fully nonlinear solutions of the governing equations, is indicative
of a largely passive role of diabatic processes for the dynamics of the Antarctic Circumpo-
lar Current.

) only appear at the second order, combined with an apparent convergence

Of course, the simplicity of our formulation, which includes purely two-dimensional
dynamics, prescribed surface buoyancy and air-sea fluxes, and exclusion of beta-effect,
requires reevaluation of our ideas in more complex and realistic settings. Such studies are
underway and will be reported in subsequent publications (Radko and Marshall, 2005). We
note here, however, that the solutions obtained using Visbeck et al.’s (1997) closure in
Section 4 and constant eddy diffusivity in the Appendix are qualitatively similar, indicating
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Figure 3. Comparison of the analytical solution in Egs. (A7)-(A9) with the corresponding numerical

solution.

that our theoretical results are not sensitive to a specific eddy parameterization. In both
cases (Figs. 2, 3) we find a very close agreement between the asymptotic and the
corresponding exact solutions for realistic values of the model parameters, which suggests
that the real circumpolar current operates in the adiabatically-dominated regime and the
equilibrium balances revealed by the perturbation expansion capture the essence of its
dynamics.

Acknowledgments. Support of the National Science Foundation is gratefully acknowledged. The
author thanks John Marshall and two reviewers for helpful comments.

APPENDIX

Solutions with uniform eddy diffusivity

Although foregoing solutions obtained using the non-uniform lateral eddy transfer
coefficient K are internally consistent, it is desirable to examine to what extent the results
depend on the choice of a particular eddy parameterization scheme. In this appendix we
consider a closure in which K is set to a constant, which is widely assumed in large-scale
ocean models (Gent and McWilliams, 1990). As before, we expand the residual-mean
equations of motion (1), (5),(6) and (8) in powers of a small parameter € which measures
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the amplitude of the thermodynamic forcing relative to the (fixed) mechanical forcing by
winds, but now the eddy-induced streamfunction is a linear function of the slope:

P = T = Ks. (Al)

The leading order balance of the first equation in (14) — vanishing of the Deacon cell — then
requires

T
Y= Ks,= -V =-—", (A2)
f
which determines the zero order isopycnal slope
= A3
So = fK . ( )

The expression for the residual streamfunction is also modified. First we expand (A1) in
powers of €:

d
—(byt+€b, +---
ay( ’ 1 ) J(b,, by)
P* = Ks = —K =Ksy|1 + ¢

bOybOZ

] +mﬂ,(M)
5o ot ebi )

and then isolate the O(€) component:

K J(b, b K db
7(1 0)__771 (AS5)

*: — =
\Ijl b()z bOz bOz dl -

Since W¥ and b, are constant at any zero order isopycnal, integration of (A5) from the
interior to the surface along isopycnals yields an expression for the modification of
buoyancy distribution due to the air-sea fluxes:

\IplkbO”

bi(y,z) = — K O = yo)- (A6)

We now go on to derive explicit solutions for buoyancy and residual circulation for the
same forcing functions (29) as we used in Section 4. Based on the estimates in Karsten and
Marshall (2002), we use K = 2000m> / s, which is comparable to the values of K in the
foregoing (Sec. 4) solutions, but larger than the canonical 1000m? / s used in coarse-
resolution numerical models. For the zero order slope given by (A3), Eq. (19) yields

TooLy
S(y) = ;)(}(f (0.6 + l}j) Thus, inverting (21), we determine the zero order buoyancy:
3 v\ 3Kfz
bo(y, z) = Abm, where m= /(0.6 + —| — - 0.6 (A7)
L, TooLy
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Similarly, using Eqgs. (23), (24), we compute the (leading order) residual streamfunction:

e
v, ~eVi= Ap Sin (rm), (A8)

and (A6) reduces to an expression for €b,:

B fB sin (1tm)

&b, = Toom + 0.6

L,m). (A9)

These analytical solutions are plotted in Figure 3 on the right, along with their numerical
counterparts (computed using the technique developed in MR) on the left. As previously
(Sec. 4), we find a very close agreement between the asymptotic and exact solutions for
realistic values of the model parameters, which is indicative of a robust and closure-
independent character of the balanced weak residual circulation theory developed herein.
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