
Yale University Yale University 

EliScholar – A Digital Platform for Scholarly Publishing at Yale EliScholar – A Digital Platform for Scholarly Publishing at Yale 

Cowles Foundation Discussion Papers Cowles Foundation 

12-1-2018 

Efficient Counterfactual Learning from Bandit Feedback Efficient Counterfactual Learning from Bandit Feedback 

Yusuke Narita 

Shota Yasui 

Kohei Yata 

Follow this and additional works at: https://elischolar.library.yale.edu/cowles-discussion-paper-series 

 Part of the Economics Commons 

Recommended Citation Recommended Citation 
Narita, Yusuke; Yasui, Shota; and Yata, Kohei, "Efficient Counterfactual Learning from Bandit Feedback" 
(2018). Cowles Foundation Discussion Papers. 110. 
https://elischolar.library.yale.edu/cowles-discussion-paper-series/110 

This Discussion Paper is brought to you for free and open access by the Cowles Foundation at EliScholar – A 
Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Cowles Foundation 
Discussion Papers by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at 
Yale. For more information, please contact elischolar@yale.edu. 

https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/cowles-discussion-paper-series
https://elischolar.library.yale.edu/cowles
https://elischolar.library.yale.edu/cowles-discussion-paper-series?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/cowles-discussion-paper-series/110?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu


By 

COWLES FOUNDATION DISCUSSION PAPER NO.

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
YALE UNIVERSITY

Box 208281
New Haven, Connecticut 06520-8281

http://cowles.yale.edu/

EFFICIENT COUNTERFACTUAL LEARNING FROM BANDIT FEEDBACK

Yusuke Narita, Shota Yasui, and Kohei Yata

December 2018

2155



Efficient Counterfactual Learning from Bandit Feedback

Yusuke Narita
Yale University

yusuke.narita@yale.edu

Shota Yasui
CyberAgent Inc.

yasui shota@cyberagent.co.jp

Kohei Yata
Yale University

kohei.yata@yale.edu

Abstract

What is the most statistically efficient way to do off-policy
optimization with batch data from bandit feedback? For log
data generated by contextual bandit algorithms, we consider
offline estimators for the expected reward from a counterfac-
tual policy. Our estimators are shown to have lowest variance
in a wide class of estimators, achieving variance reduction
relative to standard estimators. We then apply our estimators
to improve advertisement design by a major advertisement
company. Consistent with the theoretical result, our estima-
tors allow us to improve on the existing bandit algorithm
with more statistical confidence compared to a state-of-the-
art benchmark.

1 Introduction
Interactive bandit systems (e.g. personalized education and
medicine, ad/news/recommendation/search platforms) pro-
duce log data valuable for evaluating and redesigning the
systems. For example, the logs of a news recommendation
system record which news article was presented and whether
the user read it, giving the system designer a chance to make
its recommendation more relevant. Exploiting log data is,
however, more difficult than conventional supervised ma-
chine learning: the result of each log is only observed for
the action chosen by the system (e.g. the presented news)
but not for all the other actions the system could have taken.
Moreover, the log entries are biased in that the logs over-
represent actions favored by the system.

A potential solution to this problem is an A/B test that
compares the performance of counterfactual systems. How-
ever, A/B testing counterfactual systems is often technically
or managerially infeasible, since deploying a new policy is
time- and money-consuming, and entails a risk of failure.

This leads us to the problem of counterfactual (off-
policy) evaluation and learning, where one aims to use
batch data collected by a logging policy to estimate
the value of a counterfactual policy or algorithm with-
out employing it (Li et al. 2010; Strehl et al. 2010;
Li et al. 2011; Li et al. 2012; Bottou et al. 2013;
Swaminathan and Joachims 2015a; Swaminathan and
Joachims 2015b; Wang, Agarwal, and Dudik 2017;
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Swaminathan et al. 2017). Such evaluation allows us to
compare the performance of counterfactual policies to
decide which policy should be deployed in the field. This
alternative approach thus solves the above problem with the
naive A/B test approach.

Method. For off-policy evaluation with log data of bandit
feedback, this paper develops and empirically implements
a variance minimization technique. Variance reduction and
statistical efficiency are important for minimizing the un-
certainty we face in decision making. Indeed, an important
open question raised by Li (2015) is how to achieve “statisti-
cally more efficient (even optimal) offline estimation” from
batch bandit data. This question motivates a set of studies
that bound and characterize the variances of particular esti-
mators (Dudı́k et al. 2014; Li, Munos, and Szepesvári 2015;
Thomas, Theocharous, and Ghavamzadeh 2015; Munos et
al. 2016; Thomas and Brunskill 2016; Agarwal et al. 2017).

We study this statistical efficiency question in the context
of offline policy value estimation with log data from a class
of contextual bandit algorithms. This class includes most
of the widely-used algorithms such as contextual ε-Greedy
and Thompson Sampling, as well as their non-contextual
analogs and random A/B testing. We allow the logging pol-
icy to be unknown, degenerate (non-stochastic), and time-
varying, all of which are salient in real-world bandit appli-
cations. We also allow the evaluation target policy to be de-
generate, again a key feature of real-life situations.

We consider offline estimators for the expected reward
from a counterfactual policy. Our estimators can also be used
for estimating the average treatment effect. Our estimators
are variations of well-known inverse probability weighting
estimators (Horvitz and Thompson (1952), Rosenbaum and
Rubin (1983), and modern studies cited above) except that
we use an estimated propensity score (logging policy) even
if we know the true propensity score. We show the follow-
ing result, building upon Bickel et al. (1993), Hirano, Im-
bens, and Ridder (2003), and Ackerberg et al. (2014) among
others:

Theoretical Result 1. Our estimators minimize the
variance among all reasonable estimators. More pre-
cisely, our estimators minimize the asymptotic variance
among all “asymptotically normal” estimators (in the
standard statistical sense defined in Section 3).



We also provide estimators for the asymptotic variances of
our estimators, thus allowing analysts to calculate the vari-
ance in practice. In contrast to Result 1, we also find:

Theoretical Result 2. Standard estimators using the
true propensity score (logging policy) have larger
asymptotic variances than our estimators.

Perhaps counterintuitively, therefore, the policy-maker
should use an estimated propensity score even when she
knows the true one.

Application. We empirically apply our estimators to eval-
uate and optimize the design of online advertisement for-
mats. Our application is based on proprietary data provided
by CyberAgent Inc., the second largest Japanese advertise-
ment company with about 6 billion USD market capitaliza-
tion (as of November 2018). This company uses a contextual
bandit algorithm to determine the visual design of advertise-
ments assigned to users. Their algorithm produces logged
bandit data.

We use this data and our estimators to optimize the ad-
vertisement design for maximizing the click through rates
(CTR). In particular, we estimate how much the CTR would
be improved by a counterfactual policy of choosing the best
action (advertisement) for each context (user characteris-
tics). We first obtain the following result:

Empirical Result A. Consistent with Theoretical Re-
sults 1-2, our estimators produce narrower confidence
intervals about the counterfactual policy’s CTR than a
benchmark using the known propensity score (Swami-
nathan and Joachims 2015b).

This result is reported in Figure 1, where the confidence
intervals using “True Propensity Score (Benchmark)” are
wider than other confidence intervals using propensity
scores estimated either by the Gradient Boosting, Random
Forest, or Ridge Logistic Regression.

Thanks to this variance reduction, we conclude that the
logging policy’s CTR is below the confidence interval of the
hypothetical policy of choosing the best advertisement for
each context. This leads us to obtain the following bottom-
line:

Empirical Result B. Unlike the benchmark estimator,
our estimator predicts the hypothetical policy to statis-
tically significantly improve the CTR by 10-15% (com-
pared to the logging policy).

Empirical Results A and B therefore show that our estimator
can substantially reduce uncertainty we face in real-world
policy-making.

2 Setup
2.1 Data Generating Process
We consider a general multi-armed contextual bandit set-
ting. There is a set of m + 1 actions (equivalently, arms or
treatments), A = {0, ...,m}, that the decision maker can
choose from. Let Y (·) : A → R denote a potential reward
function that maps actions into rewards or outcomes, where
Y (a) is the reward when action a is chosen (e.g., whether
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Figure 1: Improving Ad Design with Lower Uncertainty

Notes: This figure shows estimates of the expected CTRs of the log-
ging policy and a counterfactual policy of choosing the best action
for each context. CTRs are multiplied by a constant for confiden-
tiality reasons. We obtain these estimates by the “self-normalized
inverse probability weighting estimator” using the true propensity
score (benchmark thanks to Swaminathan and Joachims (2015b))
or estimated propensity scores (our proposal), both of which are
defined and analyzed in Section 3. Bars indicate 95% confidence
intervals based on our asymptotic variance estimators developed in
Section 4.

an advertisement as an action results in a click). Let X de-
note context or covariates (e.g., the user’s demographic pro-
file and browsing history) that the decision maker observes
when picking an action. We denote the set of contexts by
X . We think of (Y (·), X) as a random vector with unknown
distribution G.

We consider log data coming from the following data gen-
erating process (DGP), which is similar to those used in the
literature on the offline evaluation of contextual bandit al-
gorithms (Li et al. 2010; Strehl et al. 2010; Li et al. 2011;
Li et al. 2012; Swaminathan and Joachims 2015a; Swami-
nathan and Joachims 2015b; Swaminathan et al. 2017). We
observe data {(Yt, Xt, Dt)}Tt=1 with T observations. Dt ≡
(Dt0, ..., Dtm)′ where Dta is a binary variable indicating
whether action a is chosen in round t. Yt denotes the reward
observed in round t, i.e., Yt ≡

∑m
a=0DtaYt(a). Xt denotes

the context observed in round t.
A key feature of our DGP is that the data

{(Yt, Xt, Dt)}Tt=1 are divided into B batches, where
different batches may use different choice probabilities
(propensity scores). LetXb

t ∈ {1, 2, ..., B} denote a random
variable indicating the batch to which round t belongs. We
treat this batch number as one of context variables and write
Xt = (X̃t, X

b
t ), where X̃t is the vector of context variables

other than Xb
t .

Let pt = (pt0, ..., ptm)′ ∈ ∆(A) denote the potentially
unknown probability vector indicating the probability that
each action is chosen in round t. Here ∆(A) ≡ {(pa) ∈



Rm+1
+ |

∑
a pa = 1}with pa being the probability that action

a is chosen. A contextual bandit algorithm is a sequence
{Fb}Bb=1 of distribution functions of choice probabilities pt
conditional on X̃t, where Fb : X̃ → ∆(∆(A)) for b ∈
{1, 2, ..., B} and X̃ is the support of X̃ , where ∆(∆(A)) is
the set of distributions over ∆(A). Fb takes context X̃t as
input and returns a distribution of probability vector pt in
rounds of batch b. Fb can vary across batches but does not
change across rounds within batch b. We assume that the log
data are generated by a contextual bandit algorithm {Fb}Bb=1
as follows:

• In each round t = 1, ..., T , (Yt(·), Xt) is i.i.d. drawn from
distribution G. Re-order round numbers so that they are
monotonically increasing in their batch numbers Xb

t .
• In each round t within batch b ∈ {1, 2, ..., B} and given
X̃t, probability vector pt = (pt0, ..., ptm)′ is drawn from
Fb(·|X̃t). Action is randomly chosen based on probability
vector pt, creating the action choiceDt and the associated
reward Yt.

Here, the contextual bandit algorithm {Fb}Bb=1 and the
realized probability vectors {pt}Tt=1 may or may not be
known to the analyst. We also allow for the realization of pt
to be degenerate, i.e., a certain action may be chosen with
probability 1 at a point in time.

Examples. This DGP allows for many popular bandit al-
gorithms, as the following examples illustrate. In each of the
examples below, the contextual bandit algorithm Fb is de-
generate and produces a particular probability vector pt for
sure.
Example 1 (Random A/B testing). We always choose each
action uniformly at random: pta = 1

m+1 always holds for
any a ∈ A and any t = 1, ..., T .

In the remaining examples, at every batch b, the algorithm
uses the history of observations from the previous b − 1
batches to estimate the mean and the variance of the poten-
tial reward under each action conditional on each context:
µ(a|x) ≡ E[Y (a)|X̃ = x] and σ2(a|x) ≡ V[Y (a)|X̃ = x].
We denote the estimates using the history up to batch b − 1
by µ̂b−1(a|x) and σ̂2

b−1(a|x). See Li et al. (2012) and Di-
makopoulou, Athey, and Imbens (2017) for possible estima-
tors based on generalized linear models and generalized ran-
dom forest, respectively. The initial estimates, µ̂0(a|x) and
σ̂2

0(a|x), are set to any values.
Example 2 (ε-Greedy). In each round within batch b, we
choose the best action based on µ̂b−1(a|X̃t) with probability
1−εb and choose the other actions uniformly at random with
probability εb:

pta =

1− εb if a = argmax
a′∈A

µ̂b−1(a′|X̃t)

εb
m

otherwise.

Example 3 (Thompson Sampling using Gaussian priors).
In each round within batch b, we sample the potential re-
ward yt(a) from distribution N (µ̂b−1(a|X̃t), σ̂

2
b−1(a|X̃t))

for each action, and choose the action with the highest sam-
pled potential reward, argmax

a′∈A
yt(a

′). As a result, this algo-

rithm chooses actions with the following probabilities:

pta = Pr{a = argmax
a′∈A

yt(a
′)},

where (yt(0), ..., yt(m))′ ∼ N (µ̂b−1(X̃t), Σ̂b−1(X̃t)),
µ̂b−1(x) = (µ̂b−1(0|x), ..., µ̂b−1(m|x))′, and

Σ̂b−1(x) =

σ̂
2
b−1(0|x) 0 0

0
. . . 0

0 0 σ̂2
b−1(m|x)

 .

In Examples 2 and 3, pt depends on the random realiza-
tion of the estimates µ̂b−1(a|x) and σ̂2

b−1(a|x), and so does
the associated Fb. If the data are sufficiently large, the uncer-
tainty in the estimates vanishes: µ̂b−1(a|x) and σ̂2

b−1(a|x)

converge to µb−1(a|x) ≡ E[Y (a)|X̃ = x,Xb ≤ b− 1] and
σ2
b−1(a|x) ≡ V[Y (a)|X̃ = x,Xb ≤ b − 1], respectively.

In this case, Fb becomes nonrandom since it depends on the
fixed realizations µb−1(a|x) and σ2

b−1(a|x). In the following
analysis, we consider this large-sample scenario and assume
that Fb is nonrandom.

To make the notation simpler, we put {Fb}Bb=1 together
into a single distribution F : X → ∆(∆(A)) obtained by
F (·|X̃,Xb = b) = Fb(·|X̃) for each b ∈ {1, 2, ..., B}. We
use this to rewrite our DGP as follows:

• In each round t = 1, ..., T , (Yt(·), Xt) is i.i.d. drawn
from distribution G. Given Xt, probability vector pt =
(pt0, ..., ptm)′ is drawn from F (·|Xt). Action is randomly
chosen based on probability vector pt, creating the action
choice Dt and the associated reward Yt.

Define

p0a(x) ≡ Pr
D∼p, p∼F

(Da = 1|X = x)

for each a, and let p0(x) = (p00(x), ..., p0m(x))′. This is
the choice probability vector conditional on each context.
We call p0(·) the logging policy or the propensity score.
F is common for all rounds regardless of the batch to

which they belong. Thus pt and Dt are i.i.d. across rounds.
Because (Yt(·), Xt) is i.i.d. and Yt =

∑m
a=0DtaYt(a), each

observation (Yt, Xt, Dt) is i.i.d.. Note also that Dt is inde-
pendent of Yt(·) conditional onXt. We use p = (p0, ..., pm)′

to denote a random vector that has the same distribution as
pt.

2.2 Parameters of Interest
We are interested in using the log data to estimate the ex-
pected reward from any given counterfactual policy π :
X → ∆̄(A), which chooses a distribution of actions given
each context:

V π ≡ E(Y (·),X)∼G[

m∑
a=0

Y (a)π(a|X)]

= E(Y (·),X)∼G, D∼p0(X)[

m∑
a=0

Y (a)Da
π(a|X)

p0a(X)
], (1)



where the last equality uses the independence ofD and Y (·)
conditional on X and the definition of p0(·). Here, ∆̄(A) ≡
{(pa) ∈ Rm+1|

∑
a pa ≤ 1}. We allow the counterfactual

policy π to be degenerate, i.e., π may choose a particular
action with probability 1.

Depending on the choice of π, V π represents a variety of
parameters of interest. When we set π(a|x) = 1 for a par-
ticular action a and π(a′|x) = 0 for all a′ ∈ A\{a} for all
x ∈ X , V π equals E(Y (·),X)∼G[Y (a)], the expected reward
from action a. When we set π(a|x) = 1, π(0|x) = −1 and
π(a′|x) = 0 for all a′ ∈ A\{0, a} for all x ∈ X , V π equals
E(Y (·),X)∼G[Y (a) − Y (0)], the average treatment effect of
action a over action 0. Such treatment effects are of scientific
and policy interests in medical and social sciences. Business
and managerial interests also motivate treatment effect esti-
mation. For example, when a company implements a bandit
algorithm using a particular reward measure like an imme-
diate purchase, the company is often interested in treatment
effects on other outcomes like long-term user retention.

3 Efficient Value Estimation
We consider the efficient estimation of the expected reward
from a counterfactual policy, V π . We consider an estimator
consisting of two steps. In the first step, we nonparametri-
cally estimate the propensity score vector p0(·) by a con-
sistent estimator. Possible estimators include machine learn-
ing algorithms such as gradient boosting, as well as non-
parametric sieve estimators and kernel regression estimators,
as detailed in Section 3.2. In the second step, we plug the
estimated propensity p̂(·) into the sample analogue of ex-
pression (1) to estimate V π (in practice, some trimming or
thresholding may be desirable for numerical stability):

V̂ π =
1

T

T∑
t=1

m∑
a=0

YtDta
π(a|Xt)

p̂a(Xt)
.

Alternatively, one can use a “self-normalized” estima-
tor inspired by Swaminathan and Joachims (2015b) when∑m
a=0 π(a|x) = 1 for all x ∈ X :

V̂ πSN =

1
T

∑T
t=1

∑m
a=0 YtDta

π(a|Xt)
p̂a(Xt)

1
T

∑T
t=1

∑m
a=0Dta

π(a|Xt)
p̂a(Xt)

.

Swaminathan and Joachims (2015b) suggest that V̂ πSN tends
to be less biased than V̂ π in small sample. Unlike Swami-
nathan and Joachims (2015b), however, we use the estimated
propensity score rather than the true one.

The above estimators estimate a scalar parameter V π de-
fined as a function of the distribution of (Y (·), X), on which
we impose no parametric assumption. Our estimators there-
fore attempt to solve a semiparametric estimation problem,
i.e., a partly-parametric and partly-nonparametric estima-
tion problem. For this semiparametric estimation problem,
we first derive the semiparametric efficiency bound on how
efficient and precise the estimation of the parameter can
be, which is a semiparametric analog of the Cramer-Rao
bound (Bickel et al. 1993). The asymptotic variance of any

asymptotically normal estimator is no smaller than the semi-
parametric efficiency bound. Following the standard statis-
tics terminology, we say that estimator θ̂ for parameter θ is
asymptotically normal if

√
T (θ̂−θ) N (0,Σ) as T →∞,

where denotes convergence in distribution, and N (0,Σ)
denotes a normally distributed random variable with mean
0 and variance Σ. We call Σ the asymptotic variance of θ̂.
The semiparametric efficiency bound for θ is a lower bound
on the asymptotic variance of asymptotically normal estima-
tors; Appendix A provides a formal definition of the semi-
parametric efficiency bound.

We show the above estimators achieve the semiparametric
efficiency bound, i.e., they minimize the asymptotic variance
among all asymptotically normal estimators. Our analysis
uses a couple of regularity conditions. We first assume that
the logging policy p0(·) ex ante chooses every action with a
positive probability for every context.
Assumption 1. There exists some p such that 0 < p ≤
PrD∼p, p∼F (Da = 1|X = x) ≡ p0a(x) for any x ∈ X
and for a = 0, ...,m.
Note that Assumption 1 is consistent with the possibility that
the realization of pta takes on value 0 or 1 (as long as it takes
on positive values with a positive probability).

We also assume the existence of finite second moments of
potential rewards.
Assumption 2. E[Y (a)2] <∞ for a = 0, ...,m.

The following proposition provides the semiparametric
efficiency bound for V π . All the proofs are in Appendix B.
Lemma 1 (Semiparametric Efficiency Bound). Under As-
sumptions 1 and 2, the semiparametric efficiency bound for
V π , the expected reward from counterfactual policy π, is

E[

m∑
a=0

V[Y (a)|X]
π(a|X)2

p0a(X)
+ (θ(X)− V π)2],

where θ(X) =
∑m
a=0 E[Y (a)|X]π(a|X) is the expected re-

ward from policy π conditional on X .
Lemma 1 implies the semiparametric efficiency bounds

for the expected reward from each action and for the average
treatment effect, since they are special cases of V π .
Corollary 1. Suppose that Assumptions 1 and 2 hold. Then,
the semiparametric efficiency bound for the expected reward
from each action, E[Y (a)], is

E
[V[Y (a)|X]

p0a(X)
+ (E[Y (a)|X]− E[Y (a)])2

]
.

The semiparametric efficiency bound for the average treat-
ment effect, E[Y (a)− Y (0)], is

E
[V[Y (0)|X]

p00(X)
+

V[Y (a)|X]

p0a(X)

+ (E[Y (a)− Y (0)|X]− E[Y (a)− Y (0)])2
]
.

Our proposed estimators are two-step generalized-
method-of-moment estimators and are asymptotically nor-
mal under some regularity conditions, one of which requires



that the convergence rate of p̂(·) be faster than n1/4 (Newey
1994; Chen 2007). Given the asympotic normality of the es-
timators, we find that they achieve the semiparametric effi-
ciency bound, building upon Ackerberg et al. (2014) among
others.
Theorem 1 (Efficient Estimators). Suppose that Assump-
tions 1 and 2 hold and that p̂(·) is a consistent estimator for
p0(·). Then, the variance of V̂ π and V̂ πSN achieves the semi-
parametric efficiency bound for V π (provided in Lemma 1).

3.1 Inefficient Value Estimation
In some environments, we know the true p0(·) or observe the
realization of the probability vectors {pt}Tt=1. In this case,
an alternative way to estimate V π is to use the sample ana-
logue of the expression (1) without estimating the propensity
score. If we know p0(·), a possible estimator is

Ṽ π =
1

T

T∑
t=1

m∑
a=0

YtDta
π(a|Xt)

p0a(Xt)
.

If we observe the realization of {pt}Tt=1, we may use

V̈ π =
1

T

T∑
t=1

m∑
a=0

YtDta
π(a|Xt)

pta
.

When
∑m
a=0 π(a|x) = 1 for all x ∈ X , it is again possible

to use their self-normalized versions:

Ṽ πSN =

1
T

∑T
t=1

∑m
a=0 YtDta

π(a|Xt)
p0a(Xt)

1
T

∑T
t=1

∑m
a=0Dta

π(a|Xt)
p0a(Xt)

.

V̈ πSN =

1
T

∑T
t=1

∑m
a=0 YtDta

π(a|Xt)
pta

1
T

∑T
t=1

∑m
a=0Dta

π(a|Xt)
pta

.

These intuitive estimators turn out to be less efficient than
the estimators with the estimated propensity score, as the
following result shows.
Theorem 2 (Inefficient Estimators). Suppose that the
propensity score p0(·) is known and we observe the real-
ization of {pt}Tt=1. Suppose also that Assumptions 1 and
2 hold and that p̂(·) is a consistent estimator for p0(·).
Then, the asymptotic variances of Ṽ π, V̈ π, Ṽ πSN , and V̈ πSN
are no smaller than that of V̂ π and V̂ πSN . Generically,
Ṽ π, V̈ π, Ṽ πSN , and V̈ πSN are strictly less efficient than V̂ π

and V̂ πSN in the following sense.

1. If Pr(E[Y (a)|X]π(a|X)
p0a(X) 6= θ(X) for some a) > 0, then

the asymptotic variances of Ṽ π , V̈ π , Ṽ πSN and V̈ πSN are
strictly larger than that of V̂ π and V̂ πSN .

2. If Pr(E[Y (a)2|X]π(a|X)2(E[ 1
pa
|X] − 1

p0a(X) ) 6=
0 for some a) > 0, then the asymptotic variance of V̈ π

and V̈ πSN is strictly larger than that of V̂ π and V̂ πSN .

The condition in Part 1 of Theorem 2 is about the dom-
inating term in the difference between V̂ π and Ṽ π . The
proofs of Theorems 1 and 2 show that the asymptotic

variance of V̂ π is the asymptotic variance of Ṽ π −
1
T

∑T
t=1

[∑m
a=0 E[Y (a)|Xt]

π(a|Xt)
p0a(Xt)

Dta− θ(Xt)
]
. Part 1 of

Theorem 2 requires that the second term be not always zero
so that the asymptotic variance of V̂ π is different from that
of Ṽ π . As long as the two variances are not the same, V̂ π
achieves variance reduction.

Part 2 of Theorem 2 requires that E[ 1
pta
|Xt]− 1

E[pta|Xt] (=

E[ 1
pta
|Xt] − 1

p0a(Xt)
) 6= 0 with a positive probability. This

means that pt is not always the same as the true propensity
score p0(Xt), i.e., F (·|Xt) is not degenerate (recall that pt is
drawn from F (·|Xt) whose expected value is p0(Xt)). Un-
der this condition, V̈ π has a strictly larger asymptotic vari-
ance than Ṽ π and V̂ π .

Theorems 1 and 2 suggest that we should use an estimated
score regardless of whether the propensity score is known.
To develop some intuition for this result, consider a simple
situation where the context Xt always takes some constant
value x. Suppose that we are interested in estimation of the
expected reward from action a, E[Y (a)]. Since X is con-
stant across rounds, a natural nonparametric estimator for
p0a(x) is the proportion of rounds in which action a was

chosen: p̂a(x) =
∑T
t=1Dta
T . The estimator using the esti-

mated propensity score is

V̂ π =
1

T

T∑
t=1

Yt
Dta

p̂a(x)
=

1∑T
t=1Dta

T∑
t=1

YtDta.

The estimator using the true propensity score is

Ṽ π =
1

T

T∑
t=1

Yt
Dta

p0a(x)
=

1

Tp0a(x)

T∑
t=1

YtDta.

When action a happens to be chosen frequently in a sam-
ple so that

∑T
t=1Dta is larger, the absolute value of∑T

t=1 YtDta tends to be larger in the sample. Because of
this positive correlation between

∑T
t=1Dta and the absolute

value of
∑T
t=1 YtDta, V̂ π has a smaller variance than Ṽ π ,

which produces no correlation between the numerator and
the denominator. Similar intuition applies to the comparison
between V̈ π and V̂ π .

3.2 How to Estimate Propensity Scores?
There are several options for the first step estimation of the
propensity score.

1. A sieve Least Squares (LS) estimator:

p̂a(·) = argmin
pa(·)∈HaT

1

T

T∑
t=1

(Dta − pa(Xt))
2,

where HaT = {pa(x) =
∑kaT
j=1 qaj(x)λaj =

qkaT (x)′λa} and kaT →∞ as T →∞. Here {qaj}∞j=1 is
some known basis functions defined on X and qkaT (·) =
(qa1(·), ..., qakaT (·))′.



2. A sieve Logit Maximum Likelihood estimator:

p̂(·) = argmax
p(·)∈HT

1

T

T∑
t=1

m∑
a=0

Dat log pa(Xt),

where HT = {p : X → (0, 1)m+1 : pa(x) =
exp(RkT (x)′λa)

1+
∑m
a=1 exp(RkT (x)′λa)

for a = 1, ...,m, p0(x) = 1 −∑m
a=1 pa(x)}. Here RkT (·) = (R1(·), ..., RkT (·))′ and

{Rj}∞j=1 is the set of some basis functions.
3. Prediction of Dta by Xt using a modern machine learn-

ing algorithm like random forest, ridge logistic regression,
and gradient boosting.
The above estimators are known to satisfy consistency

with a convergence rate faster than n1/4 under regularity
conditions (Newey 1997; Cattaneo 2010; Knight and Fu
2000; Blanchard, Lugosi, and Vayatis 2003; Bühlmann and
Van De Geer 2011; Wager and Athey 2018).

How should one choose a propensity score estimator? We
prefer an estimated score to the true one because it corrects
the discrepancy between the realized action assignment in
the data and the assignment predicted by the true score. To
achieve this goal, a good propensity score estimator should
fit the data better than the true one, which means that the
estimator should overfit to some extent. As a concrete ex-
ample, in our empirical analysis, random forest produces a
larger (worse) variance than gradient boosting and ridge lo-
gistic regression (see Figure 1 and Table 1). This is because
random forest fits the data worse, which is due to its bagging
aspect preventing random forest from overfitting. In general,
however, we do not know which propensity score estimator
achieves the best degree of overfitting. We would therefore
suggest that the analyst try different estimators to determine
which one is most efficient.

4 Estimating Asymptotic Variance
We often need to estimate the asymptotic variance of the
above estimators. For example, variance estimation is cru-
cial for determining whether a counterfactual policy is sta-
tistically significantly better than the logging policy. We
propose an estimator that uses the sample analogue of an
expression of the asymptotic variance. As shown in the
proof of Theorem 1, the asymptotic variance of V̂ π and
V̂ πSN is E[(g(Y,X,D, V π, p0) + α(X,D, p0, µ0))2], where
µ0 : X → Rm+1 such that µ0(a|x) = E[Y (a)|X = x] for
each a and x,

g(Y,X,D, θ, p) =

m∑
a=0

Y Da
π(a|X)

pa(X)
− θ,

and

α(X,D, p, µ) = −
m∑
a=0

µ(a|X)
π(a|X)

pa(X)
(Da − pa(X)).

We estimate this asymptotic variance in two steps. In the
first step, we obtain estimates of V π and p0 using the method
in Section 3. In addition, we estimate µ0(a|x) by nonpara-
metric regression of Yt on Xt using the subsample with

Dta = 1 for each a. Denote the estimate by µ̂. For this re-
gression, one may use a sieve Least Squares estimator and
machine learning algorithms. In the empirical application
below, we use ridge logistic regression.

In the second step, we plug the estimates of V π , p0 and
µ0 into the sample analogue of E[(g(Y,X,D, V π, p0) +
α(X,D, p0, µ0))2] to estimate the asymptotic variance:
when we use V̂ π:

ÂV ar(V̂ π)

=
1

T

T∑
t=1

(g(Yt, Xt, Dt, V̂
π, p̂) + α(Xt, Dt, p̂, µ̂))2.

When we use V̂ πSN , its asymptotic variance estimator is ob-
tained by replacing V̂ π with V̂ πSN in the above expression.

This asymptotic variance estimator is a two-step
generalized-method-of-moment estimator, and is shown to
be a consistent estimator under the condition that the first
step estimator of (V π, p0, µ0) is consistent and some regu-
larity conditions (Newey 1994).

It is easier to estimate the asymptotic variance of Ṽ π and
Ṽ πSN with the true propensity score. Their asymptotic vari-
ance is E[g(Y,X,D, V π, p0)2] by the standard central limit
theorem. When we use Ṽ π , we estimate this asymptotic vari-
ance by

ÂV ar(Ṽ π) =
1

T

T∑
t=1

g(Yt, Xt, Dt, Ṽ
π, p0)2

When we use Ṽ πSN , its asymptotic variance estimator is ob-
tained by replacing Ṽ π with Ṽ πSN in the above expression.

5 Real-World Application
We apply our estimators described in Sections 3 and 4 to em-
pirically evaluate and optimize the design of online adver-
tisements. This application uses proprietary data provided
by CyberAgent Inc., which we described in the introduction.
This company uses a contextual bandit algorithm to deter-
mine the visual design of advertisements assigned to user
impressions (there are four design choices). This algorithm
produces logged bandit data. We use this logged bandit data
and our estimators to improve their advertisement design for
maximizing the click through rates (CTR). In the notation
of our theoretical framework, reward Y is a click, action a
is one of the four possible individual advertisement designs,
and contextX is user and ad characteristics used by the com-
pany’s logging policy.

The logging policy (the company’s existing contextual
bandit algorithm) works as follows. For each round, the log-
ging policy first randomly samples each action’s predicted
reward from a beta distribution. This beta distribution is
parametrized by the predicted CTR for each context, where
the CTR prediction is based on a Factorization Machine
(Rendle 2010). The logging policy then chooses the action
(advertisement) with the largest sampled reward prediction.
The logging policy and the underlying CTR prediction stay



Existing Logging Policy Policy of Choosing Best Action by Context

Propensity Score Estimator CI for Expected Reward Shrinkage in CI CI Shrinkage in CI

True Score (Benchmark) 1.036± 0.083 0 1.140± 0.171 0

Gradient Boosting Machine 1.047± 0.064 −22.5% 1.197± 0.131 −23.4%

Ridge Logistic Regression 0.987± 0.058 −30.2% 1.108± 0.113 −34.1%

Random Forest 1.036± 0.077 −6.62% 1.194± 0.159 −7.41%

Sample Size 57, 619

Table 1: Improving Ad Design with Lower Uncertainty

Notes: The first and third columns of this table show 95% confidence intervals of the expected CTRs V π of the logging policy and a hypo-
thetical policy of choosing the best action (ad) for each context. CTRs are multiplied by a constant for confidentiality reasons. We obtain
the CTR estimates by the self-normalized inverse probability weighting estimator Ṽ πSN using the true propensity score (Swaminathan and
Joachims 2015b) or the estimated propensity score (V̂ πSN in Section 3). We estimate standard errors and confidence intervals based on
the method described in Section 4. The second and fourth columns show the size of reductions in confidence interval length, i.e., value
α such that the length of the confidence interval is equal to 100−α% of the length of the confidence interval using the true propensity score.

the same for all rounds in each day. Each day therefore per-
forms the role of a batch in the model in Section 2. This
somewhat nonstandard logging policy and the resulting log
data are an example of our DGP in Section 2.

This logging policy may have room for improvement for
several reasons. First, the logging policy randomly samples
advertisements and does not necessarily choose the adver-
tisement with the best predicted CTR. Also, the logging pol-
icy uses a predictive Factorization Machine for its CTR pre-
diction, which may be different from the causal CTR (the
causal effect of each advertisement on the probability of a
click).

To improve on the logging policy, we first estimate the
propensity score by random forest, ridge logistic regression,
or gradient boosting (implemented by XGBoost). These es-
timators are known to satisfy the regularity conditions (e.g.
consistency) required for our theoretical results, as explained
in Section 3.2.

With the estimated propensity score, we then use our es-
timator V̂ πSN to estimate the expected reward from two pos-
sible policies: (1) the logging policy and (2) a counterfac-
tual policy that chooses the best action (advertisement) that
is predicted to maximize the CTR conditional on each con-
text. To implement this counterfactual policy, we estimate
E[Y (a)|X] by ridge logistic regression for each action a and
context X used by the logging policy (we apply one-hot en-
coding to categorical variables in X). Given each context
X , the counterfactual policy then chooses the action with
the highest estimated value of E[Y (a)|X].

Importantly, we use separate data sets for the two esti-
mation tasks (one for the best actions and the other for the
expected reward from the hypothetical policy). Specifically,
we use data logged during April 20-26, 2018 for estimating
the best actions and data during April 27-29 for estimating
the expected reward. This data separation allows us to avoid
overfitting and overestimation of the CTR gains from the
counterfactual policy.

As a benchmark, we also estimate the same expected re-
wards based on Swaminathan and Joachims (2015b)’s self-
normalized estimator Ṽ πSN , which uses the true propensity
score. The resulting estimates show the following result:

Empirical Result A. Consistent with Theorems 1-2,
our estimator V̂ πSN with the estimated score is statisti-
cally more efficient than the benchmark Ṽ πSN with the
true score.

This result is reported in Figure 1 and Table 1, where the
confidence intervals about the predicted CTR using “True
Propensity Score (Benchmark)” are less precise (wider) than
those using estimated propensity scores (regardless of which
one of the three score estimators to use). The magnitude of
this shrinkage in the confidence intervals and standard er-
rors is 6-34%, depending on how to estimate the propensity
score.

This variance reduction allows us to conclude that the log-
ging policy is below the lower bound of the confidence in-
terval of the hypothetical policy, giving us confidence in the
following implication:

Empirical Result B. Compared to the logging policy,
the hypothetical policy (choosing the best advertise-
ment given each context) improves the CTR by 10-15%
statistically significantly at the 5% significance level.

6 Conclusion
We have investigated the most statistically efficient use of
batch bandit data for estimating the expected reward from a
counterfactual policy. Our estimators minimize the asymp-
totic variance among all asymptotically normal estimators
(Theorem 1). By contrast, standard estimators have larger
asymptotic variances (Theorem 2).

We have also applied our estimators to improve online
advertisement design. Compared to the frontier benchmark
Ṽ πSN , our reward estimator V̂ πSN provides the company



with more statistical confidence in how to improve on its
existing bandit algorithm (Empirical Results A and B).
The hypothetical policy of choosing the best advertisement
given user characteristics would improve the click through
rate by 10-15% at the 5% significance level. These empirical
results thus highlight the practical values of Theorems 1-2.
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Appendices
A Defining Semiparametric Efficiency

Bound
We present the definition of semiparametric efficiency
bound based on Bickel et al. (1993). Let X1, ..., Xn be an
i.i.d. sample from the probability distribution P0 on (X,B),
where X is some Euclidean sample space and B is its Borel
σ-field. Let µ be a fixed σ-finite measure on (X,B), and let
M be the collection of all probability measures dominated
by µ. Consider a subset P of M such that P0 ∈ P, and a
parameter v : P→ R.

We first define a regular parametric model. Consider a
subset Q of P that has a parametrization θ → Pθ such that

Q = {Pθ : θ ∈ Θ},

where Θ is a subset of Rk. Let p(θ) = dPθ
dµ , a density of Pθ,

and s(θ) =
√
p(θ). In the following, L2(µ) is the Hilbert

space of µ-square integrable functions, | · | is the Euclidean
norm, and ‖ ·‖ is the Hilbert norm in L2(µ): ‖f‖ ≡

∫
f2dµ.

Definition 1 (Definition 2.1.1 in Bickel et al. (1993)). θ0 is
a regular point of the parametrization θ → Pθ if θ0 is an
interior point of Θ, and

(i) The map θ → s(θ) from Θ to L2(µ) is Fréchet
differentiable at θ0: there exists a vector ṡ(θ0) =
(ṡ1(θ0), ..., ṡk(θ0))′ such that

‖s(θ0 + h)− s(θ0)− ṡ(θ0)′h‖ = o(|h|) as h→ 0.

(ii) The k × k matrix
∫
ṡ(θ0)ṡ(θ0)′dµ is nonsingular.

Definition 2 (Definition 2.1.2 in Bickel et al. (1993)). A
parametrization θ → Pθ is regular if:

(i) Every point of Θ is regular.
(ii) The map θ → ṡi(θ) is continuous from Θ to L2(µ) for
i = 1, ..., k.

We call Q a regular parametric model if it has a regular
parametrization.

Now let q(θ) = v(Pθ). Fix P = Pθ ∈ Q and suppose q
has a 1× k total differential vector q̇ at θ. Define

I−1(P |v,Q) = q̇(θ)I−1(θ)q̇(θ)′,

where
I(θ) = 4

∫
ṡ(θ)ṡ(θ)′dµ.

Suppose that there exists a regular parametric model Q ⊂ P
that contains P0.

Definition 3. The semiparametric efficiency bound for v is
defined by

I−1(P0|v,P) ≡ sup{I−1(P0|v,Q) : Q ⊂ P and Q is a
regular parametric model that contains P0}.

B Proofs
Proof of Lemma 1. The derivation of the semiparametric ef-
ficiency bound follows the approach of Hahn (1998), Hi-
rano, Imbens, and Ridder (2003), Chen, Hong, and Tarozzi
(2008), Cattaneo (2010) and Newey (1990). The proof pro-
ceeds in four steps: (i) characterize the tangent set for all
regular parametric submodels, (ii) verify that the parame-
ter of interest is pathwise differentiable, (iii) verify that the
efficient influence function lies in the tangent set, and (iv)
calculate the expected square of the influence function.

Consider a regular parametric submodel of the joint dis-
tribution of (Y,D,X) with parameter β and the likelihood
given by

f(y, d, x;β) =
{

Πm
a=0[fa(y|x;β)pa(x;β)]da

}
fX(x;β),

where fa(y|x;β) is the conditional density of Y (a) givenX ,
pa(x;β) = Pr{Da = 1|X;β}, and fX(x;β) is the density
of X . The log-likelihood function is

log f(y, d, x;β)

=

m∑
a=0

da[log fa(y|x;β) + log pa(x;β)] + log fX(x;β).

The corresponding score is

S(y, d, x;β) =
d

dβ
log f(y, d, x;β)

=

m∑
a=0

da[sa(y|x;β) +
ṗa(x;β)

pa(x;β)
] + t(x;β),

where sa(y|x;β) = d
dβ log fa(y|x;β), ṗa(x;β) =

d
dβ pa(x;β), and t(x;β) = d

dβ log fX(x;β). The tangent set
of this model is therefore given by

T = {
m∑
a=0

da[sa(y|x;β0) +
ṗa(x;β0)

pa(x;β0)
] + t(x;β0)},

where
∫
sa(y|x;β0)fa(y|x;β0)dy = 0 for all x and a,∑m

a=0 ṗa(x;β0) = 0 for all x, and
∫
t(x;β0)fX(x;β0)dx =

0.
Now let V π(β) be our parameter of interest as a function

of β:

V π(β) = Eβ [

m∑
a=0

Y (a)π(a|X)]

=

m∑
a=0

∫ ∫
yπ(a|x)fa(y|x;β)fX(x;β)dydx.



Differentiation of this under the integral gives

∂V π(β)

∂β

=

m∑
a=0

∫ ∫
yπ(a|x)

∂

∂β
fa(y|x;β)fX(x;β)dydx

+

m∑
a=0

∫ ∫
yπ(a|x)fa(y|x;β)

∂

∂β
fX(x;β)dydx

=

m∑
a=0

∫ ∫
yπ(a|x)sa(y|x;β)fa(y|x;β)fX(x;β)dydx

+

m∑
a=0

∫ ∫
yπ(a|x)fa(y|x;β)t(x;β)fX(x;β)dydx

=

m∑
a=0

Eβ [Y (a)π(a|X)sa(Y (a)|X;β)]

+

m∑
a=0

Eβ [Eβ [Y (a)|X]π(a|X)t(X;β)]

=Eβ
[ m∑
a=0

Y (a)π(a|X)sa(Y (a)|X;β) + θ(X;β)t(X;β)
]
,

where θ(X;β) =
∑m
a=0 Eβ [Y (a)|X]π(a|X).

V π is pathwise differentiable if there exists a function
Ψ(y, d, x) such that E[Ψ(Y,D,X)2] < ∞ and for all regu-
lar parametric submodels

∂V π(β0)

∂β
= E[Ψ(Y,D,X)S(Y,D,X;β0)]. (2)

Let

Ψ(Y,D,X)

=

m∑
a=0

(Y − E[Y (a)|X])Da
π(a|X)

p0a(X)
+ θ(X)− V π.

We first verify that E[Ψ(Y,D,X)2] < ∞. Since
E[(Y − E[Y (a)|X])Da

π(a|X)
p0a(X) |X] = 0 by the inde-

pendence of D and Y (·) conditional on X , we have
that E[(Y − E[Y (a)|X])Da

π(a|X)
p0a(X) (θ(X) − V π)] =

0 for all a. Also, E[(Y − E[Y (a)|X])Da
π(a|X)
p0a(X) (Y −

E[Y (a′)|X])Da′
π(a′|X)
p0a′ (X) ] = 0 because DaDa′ = 0 for any

a 6= a′. It then follows that

E[Ψ(Y,D,X)2]

=E[

m∑
a=0

(Y − E[Y (a)|X])2Da
π(a|X)2

p0a(X)2
+ (θ(X)− V π)2]

=E[

m∑
a=0

V[Y (a)|X]
π(a|X)2

p0a(X)
+ (θ(X)− V π)2],

where for the last equality, we use the independence of D
and Y (·) conditional on X . Under Assumptions 1 and 2,
E[Ψ(Y,D,X)2] <∞.

We next verify that equation (2) holds. The RHS is

E
[{ m∑
a=0

(Y − E[Y (a)|X])Da
π(a|X)

p0a(X)
+ θ(X)− V π

}
×
{ m∑
a=0

Da[sa(Y |X;β0) +
ṗa(X;β0)

pa(X;β0)
] + t(X;β0)

}]
=E
[ m∑
a=0

(Y − E[Y (a)|X])Da
π(a|X)

p0a(X)
sa(Y |X;β0)

+

m∑
a=0

(Y − E[Y (a)|X])Da
π(a|X)

p0a(X)
[
ṗa(X;β0)

pa(X;β0)
+ t(X;β0)]

+θ(X)t(X;β0)
]

=E
[ m∑
a=0

Y (a)π(a|X)sa(Y (a)|X;β0) + θ(X)t(X;β0)
]

=
∂V π(β0)

∂β
,

where the first equality holds because DaDa′ = 0 for
a 6= a′, E[

∑m
a=0Da[sa(Y |X;β0) + ṗa(X;β0)

pa(X;β0) ]|X] =∑m
a=0{p0a(X)E[sa(Y (a)|X;β0)|X] + ṗa(X;β0)} = 0,

and E[V πS(Y,D,X;β0)] = 0, the second
equality holds because E[Dasa(Y |X;β0)|X] =
p0a(X)E[sa(Y (a)|X;β0)|X] = 0, and E[(Y −
E[Y (a)|X])Da|X] = (E[Y (a)|X]−E[Y (a)|X])p0a(X) =
0, and the last equality holds because Eβ0 [·] = E[·] and
θ(X;β0) = θ(X). We therefore conclude that V π is
pathwise differentiable.

Finally, we can verify that Ψ ∈ T , since Ψ is the score
of a parametric submodel such that sa(y|x;β0) = (y −
E[Y (a)|X = x])π(a|x)

p0a(x) , ṗa(x;β0) = 0, and t(x;β0) =

θ(x)− V π for all x and a.
By Theorem 3.1 of Newey (1990), the semiparametric ef-

ficiency bound is the expected square of the projection of Ψ
on T . Since Ψ ∈ T , the projection on T is itself, and the
semiparametric efficiency bound is E[Ψ(Y,D,X)2].

Proof of Theorem 1. We first show that V̂ π

achieves the semiparametric efficiency bound. Let
p(·) = (p0(·), ..., pm(·))′ denote a candidate propen-
sity vector, and let p̃(·) = (p1(·), ..., pm(·))′. Let g(·) and
ρ(·) be the following scalar valued function and m × 1
vector valued function:

g(Z, θ, p̃)

=Y D0
π(0|X)

1−
∑m
a=1 pa(X)

+

m∑
a=1

Y Da
π(a|X)

pa(X)
− θ,

and

ρ(Z, p̃(X)) =

 D1 − p1(X)
...

Dm − pm(X)

 ,

where Z = (Y,X,D). Then, V π is identified by the uncon-
ditional moment restriction

E[g(Z, V π, p̃0)] = 0, (3)



and p̃0(·) is identified by the conditional moment restriction

E[ρ(Z, p̃0(X))|X] = 0 a.s. X. (4)

In addition, V̂ π is characterized by the solution to

1

T

T∑
t=1

g(Zt, V̂
π, ˆ̃p) = 0,

where ˆ̃p(·) = (p̂1(·), ..., p̂m(·)) is a nonparametric consis-
tent estimator. We have that

√
T (V̂ π − V π) =

1√
T

T∑
t=1

g(Zt, V
π, ˆ̃p).

We use Ackerberg et al. (2014)’s results to show that the
asymptotic variance of

√
T (V̂ π − V π) is equal to the semi-

parametric efficiency bound given by Lemma 1. Let

D(X,V π, p̃0) ≡ ∂E[g(Z, V π, p̃0)|X]

∂p̃′
.

Here, the a-th element of D(X, θ0, p̃0) is given by

Da(X,V π, p̃0)

=E[Y D0|X]
π(0|X)

p00(X)2
− E[Y Da|X]

π(a|X)

p0a(X)2

=E[Y (0)|X]
π(0|X)

p00(X)
− E[Y (a)|X]

π(a|X)

p0a(X)

for a = 1, ...,m, where p00(X) = 1 −
∑m
a=1 p0a(X),

and the second equality follows from the fact that D and
Y (·) are independent conditional on X . Let m(X, p̃(X)) ≡
E[ρ(Z, p̃(X))|X] = E[D̃|X] − p̃(X), where D̃ =

(D1, ..., Dm)′. We have that ∂m(X,p̃0(X))
∂p̃′ = −Im, where

Im is an m×m identity matrix.
Condition 1.(i)-(iii) of Ackerberg et al. (2014) trivially

hold. To see that Condition 1.(iv) holds, note that

∂E[g(Z, V π, p̃0)]

∂p̃
[v]

=E[D(X,V π, p̃0)v(X)]

=E[

m∑
a=1

(E[Y (0)|X]
π(0|X)

p00(X)
− E[Y (a)|X]

π(a|X)

p0a(X)
)va(X)]

for v ∈ V , where V is a linear subspace of the space of m-
dimensional square integrable functions with respect to X .
∂E[g(Z,V π,p̃0)]

∂p̃ [·] is a linear functional on V . We have

sup
v 6=0,v∈V

∣∣∣∂E[g(Z,V π,p̃0)]
∂p̃ [v]

∣∣∣2
E[v(X)′v(X)]

= sup
v 6=0,v∈V

∣∣∣∣∂E[g(Z, V π, p̃0)]

∂p̃
[

v

E[v(X)′v(X)]1/2
]

∣∣∣∣2
= sup
v∈V̄

∣∣∣∣∂E[g(Z, V π, p̃0)]

∂p̃
[v]

∣∣∣∣2

= sup
v∈V̄

∣∣∣∣∣
m∑
a=1

E[Da(X,V π, p̃0)va(X)]

∣∣∣∣∣
2

≤ sup
v∈V̄

m∑
a=1

m∑
a′=1

|E[Da(X,V π, p̃0)va(X)]|

× |E[Da′(X,V
π, p̃0)va′(X)]|

≤ sup
v∈V̄

m∑
a=1

m∑
a′=1

E[Da(X,V π, p̃0)2]1/2E[va(X)2]1/2

× E[Da′(X,V
π, p̃0)2]1/2E[va′(X)2]1/2

≤
m∑
a=1

m∑
a′=1

E[Da(X,V π, p̃0)2]1/2E[Da′(X,V
π, p̃0)2]1/2

where V̄ = {v′ = v/E[v(X)′v(X)]1/2 : v 6= 0, v ∈
V} = {v ∈ V : E[v(X)′v(X)] = 1}, the first equal-
ity uses the linearity of ∂E[g(Z,V π,p̃0)]

∂p̃ [·], the second equal-
ity uses the definition of V̄ , the first inequality uses the
triangle inequality, the second inequality uses the Cauchy-
Schwarz inequality, and the last inequality holds because
E[va(X)2] ≤ E[v(X)′v(X)] = 1 for all a and all v ∈ V̄ .
Under Assumptions 1 and 2, E[Da(X,V π, p̃0)2] < ∞ for
all a, and thus ∂E[g(Z,V π,p̃0)]

∂p̃ [·] is a bounded linear func-
tional.

Now note that the function g depends on p̃(·) only through
p̃(X). By Lemma 2 and Proposition 1 of Ackerberg et al.
(2014), the asymptotic variance of

√
T (V̂ π − V π) is equal

to V[g̃(Z, V π, p̃0)], where

g̃(Z, V π, p̃0)

≡g(Z, V π, p̃0)−D(X,V π, p̃0)(∂m(X, p̃0(X))

∂p̃′
)−1

ρ(Z, p̃0(X))

=

m∑
a=0

Y Da
π(a|X)

p0a(X)
− V π +

m∑
a=1

{E[Y (0)|X]
π(0|X)

p00(X)

− E[Y (a)|X]
π(a|X)

p0a(X)
}(Da − p0a(X))

=

m∑
a=0

Y Da
π(a|X)

p0a(X)
− V π

+ E[Y (0)|X]
π(0|X)

p00(X)

m∑
a=1

(Da − p0a(X))

−
m∑
a=1

E[Y (a)|X]
π(a|X)

p0a(X)
(Da − p0a(X))

=

m∑
a=0

Y Da
π(a|X)

p0a(X)
− V π

+ E[Y (0)|X]
π(0|X)

p00(X)
(1−D0 − (1− p00(X)))

−
m∑
a=1

E[Y (a)|X]
π(a|X)

p0a(X)
(Da − p0a(X))



=

m∑
a=0

Y Da
π(a|X)

p0a(X)
− V π

−
m∑
a=0

E[Y (a)|X]
π(a|X)

p0a(X)
(Da − p0a(X))

=

m∑
a=0

(Y − E[Y (a)|X])Da
π(a|X)

p0a(X)

+

m∑
a=0

E[Y (a)|X]π(a|X)− V π

=

m∑
a=0

(Y − E[Y (a)|X])Da
π(a|X)

p0a(X)
+ θ(X)− V π.

By the moment restrictions (3) and (4), E[g̃(Z, V π, p̃0)] =
0. It then follows that

V[g̃(Z, V π, p̃0)]

=E[g̃(Z, V π, p̃0)2]

=E[

m∑
a=0

V[Y (a)|X]
π(a|X)2

p0a(X)
+ (θ(X)− V π)2],

where we have shown the last equality in the proof of
Lemma 1.

To show that V̂ πSN has the same asymptotic variance
as V̂ π , it suffices to show that the denominator of V̂ πSN ,
1
T

∑T
t=1

∑m
a=0Dta

π(a|Xt)
p̂a(Xt)

, converges in probability to one.

Denote this denominator by β̂. Let h(·) be the following
scalar valued function:

h(Z, β, p) =

m∑
a=0

Da
π(a|X)

pa(X)
− β.

Also, let β0 be the solution to the following moment condi-
tion:

E[h(Z, β, p0)] = 0,

i.e., β0 = E[
∑m
a=0Da

π(a|X)
p0a(X) ]. β̂ is characterized by the so-

lution to
1

T

T∑
t=1

h(Zt, β, p̂) = 0.

β̂ is a semiparametric two-step GMM estimator, and it is
shown that β̂ is consistent for β0 under the condition that
p̂(·) is a consistent estimator for p0(·) and regularity con-
ditions (Newey 1994). Since β0 = E[

∑m
a=0Da

π(a|X)
p0a(X) ] =

E[
∑m
a=0 π(a|X)] = 1, β̂ converges in probability to

one.
Proof of Theorem 2. We use the same notations as those in
the proof of Theorem 1. We first compare Ṽ π to V̂ π . We
have that

√
T (Ṽ π − V π) =

1√
T

T∑
t=1

g(Zt, V
π, p̃0).

By the central limit theorem, the asymptotic variance of√
T (Ṽ π − V π) is V[g(Z, V π, p̃0)]. We compare this to

V[g̃(Z, V π, p̃0)]. From the proof of Theorem 1, we can
write:

g̃(Z, V π, p̃0)

=g(Z, V π, p̃0)−
m∑
a=0

E[Y (a)|X]
π(a|X)

p0a(X)
(Da − p0a(X)).

It follows that

V[g(Z, V π, p̃0)]− V[g̃(Z, V π, p̃0)]

=E[g(Z, V π, p̃0)2]− E[g̃(Z, V π, p̃0)2]

=2E
[
g(Z, V π, p̃0)

m∑
a=0

E[Y (a)|X]
π(a|X)

p0a(X)
(Da − p0a(X))

]
− E

[( m∑
a=0

E[Y (a)|X]
π(a|X)

p0a(X)
(Da − p0a(X))

)2]
.

The first term equals

2E
[
(

m∑
a=0

Y Da
π(a|X)

p0a(X)
− V π)

m∑
a=0

E[Y (a)|X]
π(a|X)

p0a(X)
(Da − p0a(X))

]
=2E

[
(

m∑
a=0

Y Da
π(a|X)

p0a(X)
)

m∑
a=0

E[Y (a)|X]
π(a|X)

p0a(X)
(Da − p0a(X))

]
=2E

[ m∑
a=0

Y Da
π(a|X)

p0a(X)
E[Y (a)|X]

π(a|X)

p0a(X)
(Da − p0a(X))

+

m∑
a=0

∑
a′ 6=a

Y Da
π(a|X)

p0a(X)
E[Y (a′)|X]

π(a′|X)

p0a′(X)
(Da′ − p0a′(X))

]
=2E

[ m∑
a=0

Y Da(1− p0a(X))E[Y (a)|X]
π(a|X)2

p0a(X)2

−
m∑
a=0

∑
a′ 6=a

Y Dap0a′(X)E[Y (a′)|X]
π(a|X)π(a′|X)

p0a(X)p0a′(X)

]
=2E

[ m∑
a=0

(1− p0a(X))E[Y (a)|X]2
π(a|X)2

p0a(X)

−
m∑
a=0

∑
a′ 6=a

E[Y (a)|X]E[Y (a′)|X]π(a|X)π(a′|X)
]
.

The second term equals

− E
[ m∑
a=0

E[Y (a)|X]2
π(a|X)2

p0a(X)2
(Da − p0a(X))2

+

m∑
a=0

∑
a′ 6=a

E[Y (a)|X]E[Y (a′)|X]
π(a|X)π(a′|X)

p0a(X)p0a′(X)



(Da − p0a(X))(Da′ − p0a′(X))
]

=− E
[ m∑
a=0

(1− p0a(X))E[Y (a)|X]2
π(a|X)2

p0a(X)

−
m∑
a=0

∑
a′ 6=a

E[Y (a)|X]E[Y (a′)|X]π(a|X)π(a′|X)
]
,

where the last equality uses the facts that E[(Da −
p0a(X))2|X] = p0a(X)(1 − p0a(X)) and that E[(Da −
p0a(X))(Da′ − p0a′(X))|X] = −p0a(X)p0a′(X). There-
fore,

V[g(Z, V π, p̃0)]− V[g̃(Z, V π, p̃0)]

=E
[( m∑
a=0

E[Y (a)|X]
π(a|X)

p0a(X)
(Da − p0a(X))

)2]
,

which is nonnegative.
Since θ(X) =

∑m
a=0 E[Y (a)|X]π(a|X), this is equal to

E
[( m∑
a=0

E[Y (a)|X]
π(a|X)

p0a(X)
Da − θ(X)

)2]
=E
[
E
[
(

m∑
a=0

E[Y (a)|X]
π(a|X)

p0a(X)
Da − θ(X))2

∣∣X]
]

=E
[ m∑
a=0

p0a(X)
(
E[Y (a)|X]

π(a|X)

p0a(X)
− θ(X)

)2]
,

where we use the definition of expectation for the last
equality. Under Assumption 1, this is greater than zero if
Pr(E[Y (a)|X]π(a|X)

p0a(X) 6= θ(X) for some a) > 0.

We next compare V̈ π to Ṽ π . Recall that pt =
(pt0, ..., ptm)′ is the probability vector indicating the prob-
ability that each action is chosen in round t and that p =
(p0, ..., pm)′ is a probability vector that has the same distri-
bution as pt. We have that

√
T (V̈ π − V π)

=
1√
T

T∑
t=1

( m∑
a=0

YtDtaπ(a|Xt)(
1

pta
− 1

p0a(Xt)
)

+

m∑
a=0

YtDta
π(a|Xt)

p0a(Xt)
− V π

)
=

1√
T

T∑
t=1

( m∑
a=0

YtDtaπ(a|Xt)(
1

pta
− 1

p0a(Xt)
)

+ g(Zt, V
π, p̃0)

)
.

It follows that

E[

m∑
a=0

Y Daπ(a|X)(
1

pa
− 1

p0a(X)
)]

=E[E[

m∑
a=0

Y Daπ(a|X)(
1

pa
− 1

p0a(X)
)|X, p]]

=E[

m∑
a=0

E[Y (a)|X]E[Da|X, p]π(a|X)(
1

pa
− 1

p0a(X)
)]

=E[

m∑
a=0

E[Y (a)|X]π(a|X)(1− pa
p0a(X)

)]

=E[E[

m∑
a=0

E[Y (a)|X]π(a|X)(1− pa
p0a(X)

)|X]]

=E[

m∑
a=0

E[Y (a)|X]π(a|X)(1− E[pa|X]

p0a(X)
)]

=0,

where the second equality uses Y (·)⊥⊥D|(X, p) and
Y (·)⊥⊥ p|X , the third equality uses E[Da|X, p] = pa, and
the last equality uses p0a(X) = E[pa|X]. By the central
limit theorem, the asymptotic variance of

√
T (V̈ π − V π) is

E
[( m∑
a=0

Y Daπ(a|X)(
1

pa
− 1

p0a(X)
) + g(Z, V π, p̃0)

)2]
.

The difference between the asymptotic variance of√
T (V̈ π − V π) and that of

√
T (Ṽ π − V π) is

E
[( m∑
a=0

Y Daπ(a|X)(
1

pa
− 1

p0a(X)
)
)2

+ 2
( m∑
a=0

Y Daπ(a|X)(
1

pa
− 1

p0a(X)
)
)
g(Z, V π, p̃0)

]
.

The second term equals

2E
[( m∑
a=0

Y Daπ(a|X)(
1

pa
− 1

p0a(X)
)
)
g(Z, V π, p̃0)

]
=2E

[( m∑
a=0

Y Daπ(a|X)(
1

pa
− 1

p0a(X)
)
)

( m∑
a=0

Y Da
π(a|X)

p0a(X)

)]
=2E

[ m∑
a=0

Y 2Da
π(a|X)2

p0a(X)
(

1

pa
− 1

p0a(X)
)
]

=2E
[ m∑
a=0

E[Y (a)2|X]E[Da|X, p]
π(a|X)2

p0a(X)

(
1

pa
− 1

p0a(X)
)
]

=2E
[ m∑
a=0

E[Y (a)2|X]
π(a|X)2

p0a(X)
(1− pa

p0a(X)
)
]

=2E
[ m∑
a=0

E[Y (a)2|X]
π(a|X)2

p0a(X)
(1− E[pa|X]

p0a(X)
)
]

=0,

where the second equality uses DaDa′ = 0 for a′ 6= a, the
third equality uses Y (·)⊥⊥D|(X, p) and Y (·)⊥⊥ p|X , and
the last equality uses p0a(X) = E[pa|X]. The first term is
nonnegative, and equals

E
[ m∑
a=0

Y 2Daπ(a|X)2(
1

p2
a

− 2

pap0a(X)
+

1

p0a(X)2
)
]



=E
[ m∑
a=0

E[Y (a)2|X]π(a|X)2

(
1

pa
− 2

p0a(X)
+

pa
p0a(X)2

)
]

=E
[ m∑
a=0

E[Y (a)2|X]π(a|X)2

× (E[
1

pa
|X]− 2

p0a(X)
+

E[pa|X]

p0a(X)2
)
]

=E
[ m∑
a=0

E[Y (a)2|X]π(a|X)2(E[
1

pa
|X]− 1

p0a(X)
)
]

(5)

where the first line uses DaDa′ = 0 for a′ 6= a, the
first equality uses Y (·)⊥⊥D|(X, p) and Y (·)⊥⊥ p|X , and
the last equality uses p0a(X) = E[pa|X]. By Jensen’s in-
equality, E[ 1

pa
|X] − 1

p0a(X) ≥ 0. Expression (5) is greater
than zero if Pr(E[Y (a)2|X]π(a|X)2(E[ 1

pa
|X]− 1

p0a(X) ) 6=
0 for some a) > 0.

To show that Ṽ πSN and V̈ πSN have the same asymptotic
variance as Ṽ π and V̈ π , respectively, it suffices to show that
the denominators of Ṽ πSN and V̈ πSN converge in probability
to one. We have that

E[

m∑
a=0

Da
π(a|X)

p0a(X)
] = E[

m∑
a=0

E[Da|X]
π(a|X)

p0a(X)
]

= E[

m∑
a=0

π(a|X)]

= 1,

and that

E[

m∑
a=0

Da
π(a|X)

pa
] = E[

m∑
a=0

E[Da|X, p]
π(a|X)

pa
]

= E[

m∑
a=0

π(a|X)]

= 1.

The law of large numbers implies the convergence
in probability of 1

T

∑T
t=1

∑m
a=0Dta

π(a|Xt)
p0a(Xt)

and
1
T

∑T
t=1

∑m
a=0Dta

π(a|Xt)
pta

to one.
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