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Abstract

We consider inference in models defined by approximate moment conditions. We

show that near-optimal confidence intervals (CIs) can be formed by taking a general-

ized method of moments (GMM) estimator, and adding and subtracting the standard

error times a critical value that takes into account the potential bias from misspeci-

fication of the moment conditions. In order to optimize performance under potential

misspecification, the weighting matrix for this GMM estimator takes into account this

potential bias, and therefore differs from the one that is optimal under correct spec-

ification. To formally show the near-optimality of these CIs, we develop asymptotic

efficiency bounds for inference in the locally misspecified GMM setting. These bounds

may be of independent interest, due to their implications for the possibility of using

moment selection procedures when conducting inference in moment condition models.

We apply our methods in an empirical application to automobile demand, and show

that adjusting the weighting matrix can shrink the CIs by a factor of 3 or more.
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1 Introduction

Economic models are typically viewed as approximations of reality. However, conventional

approaches to estimation and inference assume that a model holds exactly. In this paper,

we weaken this assumption, and consider inference in a class of models characterized by

moment conditions which are only required to hold in an approximate sense. The failure of

the moment conditions to hold exactly may come from failure of exclusion restrictions (e.g.

through omitted variable bias or because instruments enter the structural equation directly

in an IV model), functional form misspecification, or other sources such as measurement

error, or data contamination.

We assume that we have a model characterized by a set of population moment condi-

tions g(θ). In the generalized method of moments (GMM) framework, for instance, g(θ) =

E[g(wi, θ)], which can be estimated by the sample analog 1
n

∑n
i=1 g(wi, θ), based on the

sample {wi}ni=1. When evaluated at the true parameter value θ0, the population moment

condition lies in a known set specified by the researcher,

g(θ0) = c/
√
n, c ∈ C.

The set C formalizes the way in which the moment conditions may fail, and it can then be

varied as a form of sensitivity analysis, with C = {0} reducing to the correctly specified case.

We focus on local misspecification: the scaling of the set by the square root of the sam-

ple size n implies that the specification error and sampling error are of the same order of

magnitude. This allows us to keep the analysis tractable, yielding a simple method for infer-

ence on a structural parameter of interest, h(θ0), rather than a pseudo-true parameter. The

tractability of the local misspecification framework has made it a popular tool for sensitivity

analysis in applied work, especially following the recent influential paper by Andrews et al.

(2017).1 As with any asymptotic device, our modeling of misspecification as local should

not be taken to mean that we literally believe that the model would be closer to correct if

we had more data. Rather, its usefulness should be judged by whether it yields accurate

approximations to the finite-sample behavior of estimators and confidence intervals, which

in our case requires that the set C/√n be small relative to sampling uncertainty, given the

sample size at hand.

We propose a simple method for constructing asymptotically valid confidence intervals

(CIs) under this setup: one takes a standard estimator, such as the GMM estimator, and adds

and subtracts its standard error times a critical value that takes into account the potential

1For recent empirical examples using local sensitivity analysis, see Gayle and Shephard (2019), or Duflo
et al. (2018).
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asymptotic bias of the estimator, in addition to its variance. A key insight of this paper is

that because the CIs must be widened to take into account the potential bias, the optimal

weighting matrix for the correctly specified case (the inverse of the variance matrix of the

moments) is generally no longer optimal under local misspecification. Rather, the optimal

weighting matrix takes into account potential misspecification in the moments in addition

to the variance of their estimates: it places less weight on moments that are allowed to be

further from zero according the researcher’s specification of the set C. We also show that

an analogous result holds for other performance criteria, such as estimation under the mean-

squared error: the optimal weighting matrix again trades off the potential misspecification

of the moments against their precision, although the optimal tradeoff is different.

To illustrate the practical importance of this result, we apply our methods to form

misspecification-robust CIs in an empirical model of automobile demand based on Berry

et al. (1995). We consider sets C motivated by the forms of local misspecification considered

in Andrews et al. (2017), who calculate the asymptotic bias of the usual GMM estimator in

this model. We find that adjusting the weighting matrix to account for potential misspec-

ification substantially reduces the potential bias of the estimator and, as a result, leads to

large efficiency improvements of the optimal CI relative to a CI based on the GMM estimator

that is optimal under correct specification: it shrinks the CI by up to a factor of 3 or more

in our main specifications. As a result, we obtain informative CIs in this model even under

moderate amounts of misspecification.

When the set C is convex, the misspecification-optimal weighting and the critical value

are easy to compute. In general, they can be computed by solving a convex optimization

problem, which may simplify further in particular cases, yielding closed-form expressions.

We show that when the set C is characterized by `p constraints, this leads to weightings that

are analogous to penalized regression estimators, such as ridge or LASSO regression. By

exploiting this analogy, we develop a simple algorithm for computing the optimal weighting

under `1 and `∞ constraints that is similar to the LASSO/LAR algorithm (Efron et al., 2004;

Rosset and Zhu, 2007); under `2 constraints, the optimal weighting admits a closed form.2 To

avoid having to reoptimize the objective function with respect to the new weighting matrix,

one can also form the CIs by adding and subtracting this critical value from a one-step

estimator (see Newey and McFadden, 1994, Section 3.4) based on any initial estimate that

is
√
n-consistent under correct specification. This approach is particularly attractive when

performing sensitivity analysis: starting with an initial GMM estimate that assumes C = {0},
one can relax the moment conditions to form larger sets C and compute the corresponding

2An R package implementing our CIs under `p constraints is available at https://github.com/kolesarm/
GMMSensitivity.
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CIs. This allows one to easily assess how severely misspecified a given model has to be before

a result of interest breaks down.

We show that the CIs we propose are near-optimal when the set C is convex and cen-

trosymmetric (c ∈ C implies −c ∈ C). To this end, we argue that the relevant “limiting

experiment” for the locally misspecified GMM model is isomorphic to an approximately

linear model of Sacks and Ylvisaker (1978), which falls under a general framework studied

by, among others, Donoho (1994), Cai and Low (2004) and Armstrong and Kolesár (2018).

We derive asymptotic efficiency bounds for CIs in the locally misspecified GMM model that

formally translate bounds from the approximately linear limiting experiment to the locally

misspecified GMM setting. In particular, these bounds imply that our CIs are highly efficient

relative to CIs that optimize their performance at a particular value of θ0 and c = 0 subject

to maintaining coverage over the whole parameter space for θ and C.
These efficiency bounds have two important implications. First, they address an impor-

tant potential criticism of our CIs: the estimator used to construct the CI as well as the CI

width reflect the a priori worst possible misspecification in C through the optimal weighting

matrix and the critical value. For example, when C = {c : ‖c‖ ≤ M} for some norm ‖ · ‖,
the width of the CI depends on M , so that the CI will be wide even if it turns out that ‖c‖
is in fact much smaller than M . To address this problem, one may attempt to form a CI

that implicitly or explicitly estimates M , by, for example, using a statistic in a specification

test such as the J statistic. One then uses the estimate to adjust the width of the resulting

CI, “letting the data speak” about the amount of misspecification, rather than depending

on the researcher’s a priori bound M . Unfortunately, our efficiency bounds show that such

a goal cannot be achieved: any CI that substantially improves upon the width of our CI

when ‖c‖ is small must necessarily undercover for some other c ∈ C. Rather than using the

data to estimate M , we therefore instead recommend reporting the results for a range of M

as a form of sensitivity analysis. We illustrate this approach in our empirical application in

Section 6.

Second, similar to these implications about the impossibility of using the data to estimate

the magnitude of misspecification, our results also imply that one cannot use the data to

decide which moments are misspecified when forming CIs. As an example, consider the case

where the researcher has a set of moments that are known to be correct, along with an

additional set of moments which may be misspecified. We can put this in our framework

using the set C = {0}×{c̃ : ‖c̃‖ ≤M}, where M is some conservative a priori bound for the

misspecified moments, which may be taken to be infinite. When M =∞, our CI reduces to

the usual CI based on the GMM estimator that uses the correctly specified moments only.

When M is smaller, our CI uses the misspecified moments and takes into account the worst-
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possible misspecification by widening the CI. The weight on the misspecified moments and

the width of the CI depend on c̃ only through the a priori bound M . One may attempt to

improve upon this by using a first-stage test or estimate of c̃ to choose the weights. As shown

by Leeb and Pötscher (2006), c̃ cannot be consistently estimated in this setting, and any

such procedure must adjust the resulting CI for the uncertainty in the estimate if coverage

is to be maintained. Nevertheless, several papers have proposed adjustments along these

lines and have shown formally that the resulting CI has correct coverage, focusing on the

case where M = ∞ (Andrews and Guggenberger, 2009; DiTraglia, 2016; McCloskey, 2017).

Our results show that such CIs cannot substantially improve upon a CI that always assumes

the worst possible misspecification, even when it turns out that c = 0. In particular, our

results imply that when M = ∞, the usual one- and two-sided 95% CIs based on only the

correctly specified moments are 100% and 84.99% efficient, respectively, uniformly over θ0

and c, which is the same efficiency as that of the usual CI under correct specification. More

generally, the scope for improvement from such procedures is severely limited whenever C
is convex and centrosymmetric. This contrasts sharply with point estimation, for which

significant improvements in the mean squared error are possible when ‖c̃‖ is small (Liao,

2013; Cheng and Liao, 2015; DiTraglia, 2016).

Our paper is related to several strands of literature. Our efficiency results are related

to those in Chamberlain (1987) for point estimation in the correctly specified setting (see

also Hansen, 1985) and, more broadly, semiparametric efficiency theory in correctly specified

settings (see, e.g., Chapter 25 in van der Vaart, 1998). As we discuss in Section 3.3, some of

our efficiency results are novel even in the correctly specified case, and may be of independent

interest. Kitamura et al. (2013) consider efficiency of point estimators satisfying certain

regularity conditions when the misspecification is bounded by the Hellinger distance. As we

discuss in more detail in Section 4.3, our results imply that under this form of misspecification,

the optimal weighting matrix remains the same as under correct specification; both the usual

GMM estimator and the estimator proposed by Kitamura et al. (2013) can thus be used

to form near-optimal CIs, and both estimators have the same local asymptotic minimax

properties.

Local misspecification has been used in a number of papers, which include, among others,

Newey (1985), Berkowitz et al. (2012), Conley et al. (2012), Guggenberger (2012), Kitamura

et al. (2013) and Bugni and Ura (2018). Andrews et al. (2017) consider this setting and

note that asymptotic bias of a regular estimator can be calculated using influence function

weights, which they call the sensitivity, and show how such calculations can be used for sen-

sitivity analysis in applications (see also extensions of these ideas in Andrews et al. 2018 and

Mukhin 2018). Our results imply that, if one is interested in inference, conclusions of such
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sensitivity analysis may be substantially sharpened by using the misspecification-optimal

weighting matrix, or, equivalently, the misspecification-optimal sensitivity. In independent

work, Bonhomme and Weidner (2018) consider inference and optimal estimation under local

misspecification defined relative to a reference model within a larger class of models.

The use of local neighborhoods to model misspecification has antecedents in the literature

on robust statistics (see Huber and Ronchetti, 2009, and references therein). More broadly,

our paper relates to the general literature on sensitivity analysis and misspecification, includ-

ing, among many others, Leamer (1983), Altonji et al. (2005), Hahn and Hausman (2005),

Small (2007), Nevo and Rosen (2010) and Chen et al. (2011). Finally, we note that the

settings considered here, as well as most of the papers cited above, differ from the approach

of redefining the parameter of interest so that a conventional estimator is asymptotically

unbiased, as with the best linear predictor interpretation of the least squares estimator.

The rest of this paper is organized as follows. Section 2 presents our misspecification

robust CIs and gives step-by-step instructions for computing them. Section 3 presents effi-

ciency bounds for CIs in locally misspecified models; it can be skipped by readers interested

only in implementing the methods. Section 4 discusses solutions for particular choices of the

set C. Section 5 discusses applications to particular moment condition models. Section 6

presents an empirical application. Additional results and proofs are collected in appendices

and an online supplement.

2 Misspecification-robust CIs

We have a model that maps a vector of parameters θ ∈ Θ ⊆ Rdθ to a dg-dimensional popula-

tion moment condition g(θ) that restricts the distribution of the observed data {wi}ni=1. We

allow the moment condition model to be locally misspecified, so that at the true value θ0, the

population moment condition is not necessarily zero, but instead lies in a
√
n-neighborhood

of 0:

g(θ0) = c/
√
n, c ∈ C, (1)

where C ⊆ Rdg is a known set. Because the misspecification is local, the set C may allow for

misspecification in potentially all moment conditions; we do not require that some elements

of c are zero. Our goal is to construct a CI for a scalar h(θ0), where h : Rdθ → R is a known

function. For example, if we are interested in one of the elements θj of θ, we would take

h(θ) = θj. More generally, the function h will be nonlinear, as is, for example, generally

the case when θ is a vector of supply or demand parameters, and h(θ) is an elasticity, or

some counterfactual. Note that this setup allows (but does not require) both θ0 and h(θ0)
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to have the same interpretation as in the correctly specified case, so that our CIs may still

be interpreted as CIs for the structural parameter, elasticity, or counterfactual of interest.

For this interpretation, one typically needs rule out forms of misspecification that affect the

mapping θ 7→ h(θ). While we do not formally consider cases in which this mapping itself is

misspecified, such cases are covered under a mild generalization of our framework, in which

h is a function of both θ and c.

To formalize the notion of asymptotic validity and efficiency of CIs, we will need to allow

the true parameter value θ0 as well as the vector c and the data generating process (and

hence the map θ 7→ g(θ)) to vary with the sample size. For clarity of exposition, we focus

here on the case in which these parameters are fixed. See Section 3.1 and Appendix C for the

general case. Under some forms of misspecification, such as functional form misspecification,

there may be additional higher-order terms on the right-hand side of (1); our results remain

unchanged if this is the case. Again, for clarity of exposition, we focus on the case in which (1)

holds exactly.

We assume that the sample moment condition ĝ(θ), constructed using the data {wi}ni=1,

satisfies √
n(ĝ(θ0)− g(θ0))

d→ N (0,Σ), (2)

where
d→ denotes convergence in distribution as n→∞. In the GMM model, the population

and sample moment conditions are given by g(θ) = E[g(wi, θ)] and ĝ(θ) = 1
n

∑n
i=1 g(wi, θ),

respectively, where g(·, ·) is a known function. However, to cover other minimum distance

problems, we do not require that the moment conditions necessarily take this form. We

further assume that the moment condition is smooth enough so that

for any θn = θ0 +OP (1/
√
n), ĝ(θn)− ĝ(θ0) = Γ(θn − θ0) + oP (1/

√
n), (3)

where Γ is the dg × dθ derivative matrix of g at θ0. Conditions (2) and (3) are standard

regularity conditions in the literature on linear and nonlinear estimating equations; see Newey

and McFadden (1994) for primitive conditions. Finally, we also assume that h is continuously

differentiable with the 1× dθ derivative matrix at θ0 given by H.

2.1 CIs based on asymptotically linear estimators

Under correct specification, when C = {0}, standard estimators ĥ of h(θ) are asymptotically

linear in ĝ(θ0). This will typically extend to our locally misspecified case, so that for some

vector k ∈ Rdg ,

√
n(ĥ− h(θ0)) = k′

√
nĝ(θ0) + oP (1)

d→ N (k′c, k′Σk), (4)
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where the convergence in distribution follows by (1) and (2). For example, in a GMM model,

if we take ĥ = h(θ̂W ) where

θ̂W = argmin
θ

ĝ(θ)′Wĝ(θ), (5)

is the GMM estimator with weighting matrix W , (4) will hold with k′ = −H(Γ′WΓ)−1Γ′W

(see Newey, 1985). Because the weights k determine the local asymptotic bias of the estima-

tor, Andrews et al. (2017) suggest referring to k as the sensitivity of ĥ.

Let k̂ and Σ̂ be consistent estimates of k and Σ. Then by Slutsky’s theorem,

√
n(ĥ− h(θ0))√

k̂′Σ̂k̂

d→ N
(

k′c√
k′Σk

, 1

)
.

Under correct specification, the right-hand side corresponds to a standard normal distribu-

tion, and we can form a CI with asymptotic coverage 100 · (1− α)% as ĥ± z1−α/2

√
k̂′Σ̂k̂/n,

where z1−α/2 is the 1− α/2 quantile of a N (0, 1) distribution; this is the usual Wald CI.

When we allow for misspecification, this will no longer lead to a valid CI. However,

note that the asymptotic bias k′c/
√
k′Σk is bounded in absolute value by biasC(k)/

√
k′Σk

where biasC(k) ≡ supc∈C|k′c|. Therefore, given c, the z-statistic in the preceding display is

asymptotically N (t, 1) where |t| ≤ biasC(k)/
√
k′Σk. This leads to the CI

ĥ± cvα

(
biasC(k̂)√
k̂′Σ̂k̂

)
·
√
k̂′Σ̂k̂/

√
n, (6)

where cvα(t) is the 1 − α quantile of |Z|, with Z ∼ N (t, 1). In particular, cvα(0) = z1−α/2,

so that in the correctly specified case, (6) reduces to the usual Wald CI. As we discuss in

Section 3, the scaled length of this CI converges to a constant that does not depend on the

local misspecification vector c. Following the terminology of Donoho (1994), we refer to (6)

as an (asymptotically) fixed length confidence interval (FLCI).

To form a one-sided CI based on an estimator ĥ with sensitivity k, one can simply subtract

its maximum bias, in addition to the standard error:

[ĥ− biasC(k̂)− z1−α

√
k̂′Σ̂k̂,∞). (7)

One could also form a valid two-sided CI by adding and subtracting the worst-case bias

biasC(k̂) from ĥ, in addition to adding and subtracting z1−α/2

√
k̂′Σ̂k̂/n; however, since ĥ

cannot simultaneously have a large positive and a large negative bias, such CI will be con-

servative, and longer than the CI in (6).
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2.2 Optimal CIs

We can implement an estimator with a desired sensitivity k as a one-step estimator. In

particular, let θ̂initial be an initial
√
n-consistent estimator of θ0, let k̂ = k + oP (1) be a

consistent estimator of the desired sensitivity, and consider the one-step estimator

ĥ = h(θ̂initial) + k̂′ĝ(θ̂initial).

A Taylor expansion then gives

√
n(ĥ− h(θ0)) = H

√
n(θ̂initial − θ0) + k̂′

√
nĝ(θ̂initial) + oP (1)

= (H + k̂′Γ)
√
n(θ̂initial − θ0) + k̂′

√
nĝ(θ0) + oP (1),

where the second line follows from (3). Assuming that the sensitivity is chosen so that

H = −k′Γ, (8)

the first term converges in probability to zero, and ĥ satisfies (4). The condition (8) ensures

that the one-step estimator is asymptotically linear, and that its asymptotic distribution

doesn’t depend on the initial estimate θ̂initial. Thus, we can form an asymptotically linear

estimator with limiting distribution N (k′c, k′Σk) for any k satisfying H = −k′Γ.

To derive the optimal sensitivity, observe that the asymptotic width of the CI in Equa-

tion (6) is given by

2 · cvα

(
biasC(k)/

√
k′Σk

)
·
√
k′Σk/

√
n. (9)

The length thus doesn’t depend on the particular value of c, and it depends on θ only through

Σ. Furthermore, it depends on the sensitivity only through the maximum bias, biasC(k), and

the variance k′Σk. Therefore, as an alternative to minimizing (9) directly over all sensitivities

k, one can first minimize the variance subject to a bound B on the worst-case bias,

min
k
k′Σk s.t. H = −k′Γ and sup

c∈C
|k′c| ≤ B, (10)

and then vary the bound B to find the bias-variance trade-off that leads to the shortest CI.

A feasible version of the solution can be implemented as a one-step estimator with plug-in

estimates of the quantities Σ, Γ and H. The length of the one-sided CI (7) is infinite by

definition, so minimizing length of this CI does not make sense. For the one-sided case, we

consider quantiles of excess length as the criterion for choosing a CI. We provide details in

Appendix C.
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As we discuss in Section 4 and Appendix A, when the set C is characterized by `p-

constraints, then a closed-form expression for the worst-case bias supc∈C|k′c| is available, and

it is computationally trivial to trace out the whole solution path for (10) as a function of B.

More generally, the optimization problem remains tractable if the set C is convex. Following

the usual definition, a set C is convex if c, d ∈ C and λ ∈ [0, 1] implies λc+ (1− λ)d ∈ C. It

follows from Low (1995) that under convexity, the optimization problem (10) can be posed

as a convex optimization problem, which is easily solved numerically using convex optimizers

(we explain the connection in more detail in Section 3). To describe the mapping, we also

for simplicity assume that the set C is centrosymmetric (i.e. c ∈ C implies −c ∈ C); we

show how our CIs can be implemented when C is asymmetric, such as when one imposes

sign restrictions on elements of c, in Appendix C. Given δ > 0, let cδ, θδ be solutions to the

convex optimization problem

sup
θ,c

Hθ s.t. c ∈ C, (c− Γθ)′Σ−1(c− Γθ) ≤ δ2/4. (11)

Let

k′δ = k′δ,Σ,Γ,H,C =
−(cδ − Γθδ)

′Σ−1

(cδ − Γθδ)′Σ−1ΓH ′/HH ′
. (12)

Then the estimator with sensitivity kδ achieves the lowest variance among all linear es-

timators with bias upper-bounded by biasC(kδ) = −k′δcδ. In other words, kδ solves the

problem (10) with B = −k′δcδ. One then simply varies δ, which indexes the relative weight

on variance in the tradeoff between the bias and variance, to find the tradeoff leading to the

shortest CI length (9).

2.3 Implementation and practical issues

We now summarize the construction of the optimal CIs and discuss some practical imple-

mentation issues.

For brevity, we summarize the construction of the optimal CI in terms of the optimiza-

tion problem (11); if the bias-variance tradeoff (10) can be solved directly, one can use an

analogous construction in terms of the sensitivity that minimizes (10) at the optimal bias

bound. Given that a researcher has formalized concerns about potential misspecification by

forming a set C, the optimal misspecification-robust CI can be constructed as follows:

1. Obtain an initial estimate θ̂initial and estimates Ĥ, Γ̂ and Σ̂ of H, Γ and Σ.

2. For a given δ, compute k̂δ = kδ,Σ̂,Γ̂,Ĥ,C and biasC(k̂δ) by solving the optimization problem

10



(11) with Σ̂ in place of Σ, etc., as described above. Let δ∗ minimize the CI length3

2 cvα(biasC(k̂δ)/
√
k̂′δΣ̂k̂δ) ·

√
k̂′δΣ̂k̂δ over δ.

3. Let ĥδ = h(θ̂initial) + k̂′δĝ(θ̂initial). The misspecification-robust CI is given by

ĥδ∗ ± χ̂∗δ∗ , χ̂∗δ∗ = cvα

(
biasC(k̂δ∗)/

√
k̂′δ∗Σ̂k̂δ∗

)
·
√
k̂′δ∗Σ̂k̂δ∗/n, (13)

and the optimal sensitivity is given by k̂δ∗ .

Remark 2.1. The above algorithm gives a generic procedure based on one-step estimators

ĥδ that gives an asymptotically valid and optimal CI. Due to concerns about finite-sample

behavior (analogous to concerns about finite sample behavior of one-step estimators in the

correctly specified case), one may prefer using a different estimator that is asymptotically

equivalent to ĥδ. In general, one can implement an estimator with sensitivity k as a GMM

or minimum distance estimator by using an appropriate weighting matrix, so that one can in

particular replace ĥδ by h(θ̂W ), with the weighting matrix W appropriately chosen. To give

the formula for the weighting matrix, let Γ⊥ denote a dg× (dg−dθ) matrix that’s orthogonal

to Γ, so that Γ′⊥Γ = 0, and let Γ̂⊥ denote a consistent estimate. Let S denote a dg × dθ

matrix that satisfies S ′Γ̂ = −I and k̂δ = SĤ ′. Then we can set W = SW1S
′ + Γ̂⊥W2Γ̂′⊥ for

some non-singular matrix W1, and an arbitrary conformable matrix W2. It can be verified by

simple algebra that θ̂W will have sensitivity kδ,Σ,Γ,H,C. We discuss this GMM implementation

of the optimal sensitivity in the context of some of our specific applications in Section 5.

In many cases, a researcher may be interested in multiple sets C, or they may not know

which set C they are ex ante interested in. This issue may manifest itself in two different

ways, as we discuss in the next two remarks.

Remark 2.2 (Known form but unknown magnitude of misspecification). If a researcher has

a particular form of misspecification in mind, this determines the shape of the set C, but

not necessarily the magnitude of the potential misspecification. For concreteness, suppose

that we wish to examine sensitivity to the failure of the first moment while assuming correct

specification of the remaining moments. In this case, one would set C = C(M) = [−M,M ]×
{0} × · · · × {0}. It would be desirable to use a data-driven procedure to determine M .

Unfortunately, as we discuss in Section 3, our results show that this is impossible when

constructing CIs: one has to specify M a priori. In light of this result, we recommend

computing the optimal CI for each M and plotting it as a function of M . The resulting

3The critical value cvα(b) can easily be computed in statistical software as the square root of the 1 − α
quantile of a non-central χ2 distribution with 1 degree of freedom and non-centrality parameter b2.
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plot can be used for sensitivity analysis to see how large M needs to be before a given result

breaks down. We construct such a plot in Figure 3 in the context of our empirical application

in Section 6. Section 4 discusses different ways of constructing of the sets C(M), indexed by

the magnitude of misspecification M , when misspecification affects multiple moments, and

Section 5 gives suggestions for the form of this set in particular applications.

To aid with the interpretation of such graphs, it is helpful to present a discussion of

which values of M one may deem plausible. This will typically depend on the economic

interpretation of misspecification in the model at hand, and will require analysis on a case

by case basis. We discuss plausible values of M in our application in Section 6, and we

refer the reader to Conley et al. (2012) and Andrews et al. (2017) for additional examples

and discussion. One can also use measures of statistical distance such as the probability of

detecting that the model is misspecified to aid with interpretation of M , as suggested in

Hansen and Sargent (2008) or Bonhomme and Weidner (2018).

While it is not possible to determine M automatically, it is possible to use specification

tests to obtain a lower CI [Mmin,∞] that contains M with a prespecified probability. We

develop such tests by generalizing the J-test of overidentifying restrictions in Appendix B.

The lower bound for M can then be reported along with the plot of the optimal CI as a

function of M .

Remark 2.3 (Multiple forms of misspecification). If the researcher is unsure about the form

of misspecification they are most concerned about, it is useful to consider multiple forms

of misspecification to determine which forms of misspecification the results are the most

sensitive to. We give such comparison in Figure 2 in the context of our empirical application

in Section 6. In addition, given that the CI in Equation (13) can easily be computed for any

set C using the initial estimate θ̂initial along with Σ̂, Γ̂ and Ĥ, we recommend that researchers

report the estimates Ĥ, Γ̂ and Σ̂ along with estimates θ̂ of the parameter vector θ and

ĥ = h(θ̂) of the object of interest (if the number of moments is large, this can be done in a

supplementary appendix or as an easily accessible part of the replication code). This allows

the reader to easily compute CIs under the forms and magnitude of misspecification that

the reader is most concerned about.

Andrews et al. (2017) recommend reporting the sensitivity k̂ of an estimator ĥ along

with point estimates and standard errors, as this allows the reader to estimate the local

asymptotic bias k̂′c of the estimator under different misspecification vectors c. Given the

sensitivity estimate, it is also straightforward for the reader to compute the misspecification

robust CI (6) based on ĥ and assess the effect of misspecification on inference. However, as

we demonstrate in the empirical application in Section 6, adjusting the estimator so that
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its sensitivity is optimal under local misspecification may lead to substantially tighter CIs.

Reporting the objects Σ̂, Γ̂ and Ĥ, as suggested by Remark 2.3, allows the reader to directly

report these optimal CIs and draw potentially much sharper conclusions. Given that plug-

in estimates of k̂ typically require calculating these objects anyway (recall that for GMM

estimators, the sensitivity takes the form −Ĥ(Γ̂′W Γ̂)−1Γ̂′W for some weighting matrix W ,

with W = Σ̂−1 corresponding to the weighting that’s optimal under correct specification),

reporting these objects is no harder than reporting the sensitivity k̂.

Remark 2.4 (Other performance criteria). In addition to constructing a CI, one may be

interested in a point estimate of h(θ0), using mean squared error (MSE) as the criterion. The

steps to forming the MSE optimal point estimate are exactly the same as above, except that,

rather than minimizing CI length in Step 2, one chooses δ to minimize biasC(k̂δ)
2 + k̂′δΣ̂k̂δ.

Similar ideas apply to other criteria, such as mean absolute deviation or quantiles of excess

length of one-sided CIs (discussed in Appendix C). If δ is chosen differently in Step 2, the CI

computed in Step 3 will be longer than the one computed at δ∗, but it will still have correct

coverage.

3 Efficiency bounds and near optimality

The CI given in (13) has the apparent defect that the local misspecification vector c is

reflected in the length of the CI only through the a priori restriction C imposed by the

researcher. Thus, if the researcher is conservative about misspecification, the CI will be

wide, even if it “turns out” that c is in fact much smaller than the a priori bounds defined by

C. Moreover, this approach requires the researcher to explicitly specify the set C, including

any tuning parameters such as the parameter M in Remark 2.2. One may therefore seek

to improve upon this CI by forming a random-length CI, the length of which would depend

on the data via an estimate of the magnitude of c, or estimates of the tuning parameters.

Similarly, it may be restrictive to require that the CI be centered at an asymptotically linear

estimator: the vector k̂ must converge in probability to a vector that does not depend on c,

which rules out, for example, using a J-test to decide which moments to use.

The main result of this section shows that, when C is convex and centrosymmetric, the

scope for improving on the CI in (13) is nonetheless severely limited: no sequence of CIs

that maintain coverage under all local misspecification vectors c ∈ C can be substantially

tighter, even under correct specification. This result can be interpreted as translating results

from a “limiting experiment” that is an extension of the linear regression model. We first

give a heuristic derivation of this limiting experiment and explain our result in the context

of this limiting experiment. We then present the formal asymptotic result, and discuss its
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implications in some familiar settings. Readers who are interested only in implementing the

methods, rather than efficiency results, can skip this section.

We restrict attention in this section to the GMM model, in which ĝ(θ) = 1
n

∑n
i=1 g(wi, θ),

and we further restrict the data {wi}ni=1 to be independent and identically distributed (iid).

Similar to semiparametric efficiency theory in the standard, correctly specified case, this

facilitates parts of the formal statements and proofs, such as the definition of the set of dis-

tributions under which coverage is required and the construction of least favorable submodels.

We expect that analogous results could be obtained in other settings.

3.1 Limiting experiment

As discussed in Section 2.2, we can form estimators with asymptotic distributionN (k′c, k′Σk)

for any k satisfying (8). This suggests that the problem of constructing an asymptotically

valid CI for h(θ) in the model (1) is asymptotically equivalent to the problem of constructing

a CI for the parameter Hθ in the approximately linear model

Y = −Γθ + c+ Σ1/2ε, c ∈ C, ε ∼ N (0, I), (14)

where Γ, H and Σ1/2 are known, and we observe Y . One can think of this model as an

“approximately” linear regression model, with −Γ playing the role of the design matrix of

the (fixed) regressors, and c giving the approximation error. The analog of the asymptotically

linear estimator ĥ in (4) is the linear estimator k′Y . To see the analogy, note that k′Y −Hθ
is distributed N ((−k′Γ − H)θ + k′c, k′Σk), and restricting ourselves to estimators that do

not have infinite worst-case bias when θ is unrestricted gives the condition H = −k′Γ. This

model dates back at least to Sacks and Ylvisaker (1978), who considered estimation in this

model when C is a rectangular set and Σ is diagonal.

In the limiting experiment, the analog of the CI (6) is given by the linear FLCI k′Y ±
cvα(biasC(k)/

√
k′Σk) ·

√
k′Σk. The problem of constructing the shortest linear FLCI in the

limiting experiment is a special case of a problem considered by Donoho (1994), whose results

imply that the optimal CI has the form

k′δ∗Y ± cvα(biasC(kδ∗)/

√
k′δ∗Σ̂kδ∗) ·

√
k′δ∗Σkδ∗ , (15)

where kδ is given by (12), and δ∗ = argminδ>0 2 cvα(biasC(kδ)/
√
k′δΣkδ) ·

√
k′δΣkδ is chosen

to minimize the CI length. The FLCI given in (13) is an analog of this CI, and the con-

nection between the bias-variance optimization problem (10), and the convex optimization

problem (11) in Section 2.2 follows from Low (1995).
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The CI in (15) takes a familiar form in the special case in which C is a linear subspace of

Rdg , so that for some dg × dγ full-rank matrix B with dγ ≤ dg − dθ, C = {Bγ : γ ∈ Rdγ}. Let

B⊥ denote a dg × (dg − dγ) matrix that’s orthogonal to B. Then for any δ > 0, k′δ = k′LS,B,

where

k′LS,B = −H(Γ′B⊥(B′⊥ΣB⊥)−1B′⊥Γ)−1Γ′B⊥(B′⊥ΣB⊥)−1B′⊥ (16)

is the sensitivity of the GLS estimator after pre-multiplying (14) by B′⊥, (which effectively

picks out the observations with zero misspecification). Since this estimator is unbiased, the

CI in (15) becomes k′LS,BY ± z1−α/2

√
k′LS,BΣkLS,B.

Like the asymptotic FLCI (13), the CI in (15) has the potential drawback that its length

is determined by the worst possible misspecification in C. Thus, one may suspect that one

could improve upon this CI substantially, particularly when C is large and c turns out to be

close to zero. As the best-case scenario for such improvements, suppose that the researcher

guesses correctly that the model is correctly specified, but to ensure validity of the CI if the

guess is wrong, the researcher must still form a CI that is valid under all misspecification

vectors in C. To make the problem even easier, suppose the researcher also guesses correctly

that θ is equal to a particular value θ∗. That is, consider the problem: among confidence

sets with coverage at least 1− α for all θ ∈ Rdθ and c ∈ C, minimize expected length when

θ = θ∗ and c = 0. We allow for confidence sets that are not intervals, in which case length

is defined as Lebesgue measure (which makes such an approach even more favorable relative

to the linear FLCI, the latter being constrained to be an interval). Let κ∗(H,Γ,Σ, C) denote

the ratio of this optimized expected length relative to the length of the FLCI in (15) (it can

be shown that this ratio does not depend on θ∗).

If C is convex, a formula for κ∗(H,Γ,Σ, C) follows from applying the general results in

Corollary 3.3 in Armstrong and Kolesár (2018) to the limiting model. If C is also centrosym-

metric, this formula is given by

κ∗(H,Γ,Σ, C) =
(1− α)E [ω(2(z1−α − Z))|Z ≤ z1−α]

2 minδ cvα

(
ω(δ)

2ω′(δ)
− δ

2

)
ω′(δ)

, (17)

where Z ∼ N (0, 1) and ω(δ) is two times the optimized value of (11). Furthermore, we

show in Theorem C.7 that the right-hand side is lower-bounded by (z1−α(1−α)− z̃αΦ(z̃α) +

φ(z1−α)−φ(z̃α))/z1−α/2, where z̃α = z1−α−z1−α/2 for any H, Γ, Σ and C, where φ(·) denotes

the standard normal density. For α = 0.05, this universal lower bound evaluates to 71.7%.

Evaluating κ∗ for particular choices of H, Γ, Σ, and C often yields even higher efficiency.
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If C is a linear subspace, then ω(δ) is linear, and

κ∗(H,Γ,Σ, C) =
(1− α)z1−α + φ(z1−α)

z1−α/2
≥ z1−α

z1−α/2
, (18)

where the lower bound follows since φ(z1−α) ≥ αz1−α by the Gaussian tail bound 1−Φ(x) ≤
φ(x)/x for x > 0. This bound corresponds to the bound derived by Pratt (1961) for the

case of a univariate normal mean, and at α = 0.05, it evaluates to 84.99%. The CI with the

shortest expected length at a given θ∗ is obtained by inverting uniformly most powerful tests

of the null Hθ = h0 against the alternative Hθ = Hθ∗ (which doesn’t vary with the null),

and these tests are given by one-sided z-tests based on k′LS,BY . Intuitively, the maximum

gain from directing power in this way over the usual procedure is that it turns a two-sided

testing problem into a one-sided problem, which is why the ratio of a one-sided to a two-

sided critical value gives a lower bound. Furthermore, it follows from Joshi (1969) that the

CI k′LS,BY ± z1−α/2

√
k′LS,BΣkLS,B is the unique CI that achieves minimax expected length.

Thus, not only is the scope for improvement at a particular θ∗ bounded by (18), any CI

with shorter expected length at some θ∗ must necessarily perform worse elsewhere in the

parameter space.

For the one-sided CI (7), the analogous CI in the limiting experiment is [k′Y −biasC(k)−
z1−α
√
k′Σk,∞), and, as we discuss in Appendix C, to choose the optimal sensitivity k, one

can consider optimizing a given quantile of its worst-case excess length. Since this approach is

based on optimizing the worst-case quantile over C, one may try to use a different CI in order

to improve performance for small c by instead optimizing quantiles of excess length under

correctly specified models (i.e. when c = 0). The best-case scenario for such improvements is

to optimize the CI at c = 0 and at a particular θ∗. When C is convex and centrosymmetric,

the results in Armstrong and Kolesár (2018) show that the scope for such improvement is

severely limited in the one-sided case as well. See Appendix C for details and an analog of

the efficiency bound in (17). If C is a linear subspace, then optimizing quantiles of worst-case

excess length yields the CI [k′LS,BY − z1−α

√
k′LS,BΣkLS,B,∞), independently of the quantile

one is optimizing. Furthermore, the efficiency bound implies that this one-sided CI is in fact

fully optimal over all quantiles of excess length and all values of θ, c in the local parameter

space.

The high efficiency for the FLCI (15) in the limiting experiment (even in the case that

seems most favorable for improving on this CI) suggests that the CI in (13) should be highly

efficient in an asymptotic sense. Theorem 3.1, stated in the next section, uses the analogy

with the approximately linear model (14) along with Le Cam-style arguments involving least

favorable submodels to show that this bound indeed translates to the locally misspecified
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GMM model. For one-sided CIs, we state an analogous result in Appendix C. We discuss

the implications of these results in Section 3.3.

3.2 Asymptotic efficiency bound

To make precise our statements about coverage and efficiency, we need the notion of uniform

(in the underlying distribution) coverage of a confidence interval. This requires additional

notation, which we now introduce. Let P denote a set of distributions P of the data {wi}ni=1,

and let Θn ⊆ Rdθ denote the parameter space for θ. We require coverage for all pairs

(θ, P ) ∈ Θn × P such that
√
ngP (θ) ∈ C, where the subscript P on the population moment

condition makes it explicit that it depends on the distribution of the data.4 Letting Sn =

{(θ, P ) ∈ Θn × P :
√
ngP (θ) ∈ C} denote this set, the condition for coverage at confidence

level 1− α can be written

lim inf
n→∞

inf
(θ,P )∈Sn

P (h(θ) ∈ In) ≥ 1− α. (19)

We say that a confidence set In is asymptotically valid (uniformly over Sn) at confidence

level 1− α if this condition holds.5

Among two-sided CIs of the form ĥ ± χ̂ that are asymptotically valid, we prefer CIs

that achieve better expected length. To avoid issues with convergence of moments, we use

truncated expected length, and define the asymptotic expected length of a two-sided CI at

Pn ∈ P as lim infT→∞ lim infn→∞EPn min{√n · 2χ̂, T}, where EP denotes expectation under

P .

We are now ready to state the main efficiency result.

Theorem 3.1. Suppose that C is convex and centrosymmetric. Let ĥδ∗ and χ̂∗δ∗ be formed as

in Section 2.3. Suppose that Assumptions C.2, C.3, C.5, C.6 and C.7 in Appendix C hold.

Suppose that the data {wi}ni=1 are iid under all P ∈ P. Let (θ∗, P0) be correctly specified (i.e.

gP0(θ
∗) = 0) such that P contains a submodel through P0 satisfying Assumption C.1. Then:

(i) The CI ĥδ∗ ± χ̂∗δ∗ is asymptotically valid, and its half-length χ̂∗δ∗ satisfies
√
nχ̂∗δ∗ =

χ(θ, P ) + oP (1) uniformly over (θ, P ) ∈ Sn where

χ(θ, P ) = min
k

cvα(biasC(k)/
√
k′Σθ,Pk)

√
k′Σθ,Pk

4To be precise, we should also subscript all other quantities such as Γ and Σ by P . To prevent notational
clutter, we drop this index in the main text unless it causes confusion.

5In general, θ0 and h(θ0) may be set identified for a given sample size n (although our assumptions imply
that the identified set will shrink at a root-n rate). The coverage requirement (19) states that the CI must
cover points in the identified set for h(θ), as in Imbens and Manski (2004); see Appendix C.
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with biasC(k) calculated with Γ = Γθ,P and H = Hθ.

(ii) For any other asymptotically valid CI ĥ± χ̂,

lim infT→∞ lim infn→∞EP0 min{√n · 2χ̂, T}
2χ(θ∗, P0)

≥ κ∗(Hθ∗ ,Γθ∗,P0 ,Σθ∗,P0 , C),

where κ∗(H,Γ,Σ, C) is defined in (17). Furthermore, for any H,Σ,Γ, and C, κ∗ admits

the universal lower bound (z1−α(1 − α) − z̃αΦ(z̃α) + φ(z1−α) − φ(z̃α))/z1−α/2, where

z̃α = z1−α − z1−α/2 and φ(·) denotes the standard normal density.

The proof for this theorem is given in Appendix C, which also gives an analogous result

for one-sided confidence intervals. In the supplemental materials, we also give primitive con-

ditions for the misspecified linear IV model. For the lower bound, the conditions amount to

mild regularity conditions on the least favorable submodel, and in the supplemental materials,

we provide a general way of constructing a submodel satisfying these conditions.

The universal lower bound on κ∗ is new and may be of independent interest. For α = 0.05,

it evaluates to 71.7%. The universal lower bound is sharp in the sense that there exist Γ,Σ, H

and C for which κ∗ equals this lower bound. In particular applications, the efficiency bound

κ∗ can be computed at estimates of Γ, Σ and H, and often, this gives much higher efficiencies.

We illustrate these bounds in the empirical application in Section 6.

3.3 Discussion

To help build intuition for the efficiency bound in Theorem 3.1, and to relate this result to

the literature, we now consider some special cases. We first discuss the (standard) correctly

specified case. Second, we consider the case in which some moments are known to be valid,

and the misspecification in the remaining moments is unrestricted. This case may be of

interest in its own right. Finally, we discuss the general case.

3.3.1 Correctly specified case

Suppose that C = {0}. This is in particular a linear subspace of Rdg , with B = 0, and B⊥ = I,

the dg × dg identity matrix. The approximately linear model (14) reduces to a standard

linear regression model with known covariance matrix, so that the GLS estimator k′LS,0Y ,

with kLS,0 given in (16) (with B = 0), is the best unbiased linear estimator in the limiting

experiment (14) by the Gauss-Markov theorem. Furthermore, this estimator minimizes the

maximum mean-squared error (MSE)—it is minimax.6 In the moment condition model,

6This follows, for example, by applying Proposition 8.6 in van der Vaart (1998) to the sufficient statistic
(Γ′Σ−1Γ)−1Γ′Σ−1Y .
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an estimator with this sensitivity can be implemented as h(θ̂Σ−1), where θ̂Σ−1 is the GMM

estimator with the optimal weighting matrix W = Σ−1, defined in (5). However, since in

the derivation of the limiting experiment, we have restricted attention to asymptotically

linear estimators that satisfy (8), it is unclear whether this minimax optimality carries over

to the moment condition model. The local asymptotic minimax bound in Chamberlain

(1987) shows that it indeed does, so that h(θ̂Σ−1) is asymptotically minimax under the MSE

criterion.

Next, consider inference. In the limiting experiment, for testing the null hypothesis

Hθ = h0 against the one-sided alternative Hθ ≥ h0, the one-sided z-statistic based on k′LS,0Y

is uniformly most powerful (van der Vaart, 1998, Proposition 15.2). Inverting these tests

yields the CI [k′LS,0Y −z1−α

√
k′LS,0ΣkLS,0,∞). Since the underlying tests are uniformly most

powerful, this CI achieves the shortest excess length, simultaneously for all quantiles and all

possible values of the parameter θ. For two-sided CIs, the results described in Section 3.1

imply that the CI h′LS,0Y ± z1−α/2

√
k′LS,0ΣkLS,0 is the unique CI that achieves minimax

expected length, and that this CI has efficiency ((1− α)z1−α + φ(z1−α))/z1−α/2 relative to a

CI that optimizes its expected length at a single value θ∗ of θ when indeed θ = θ∗.

Applying Theorem 3.1 to the case C = {0} gives an asymptotic version of the two-sided

efficiency bound. Furthermore, the CI in Theorem 3.1 reduces to the usual two-sided CI

based on θ̂Σ−1 . Thus, in this case, Theorem 3.1 shows that very little can be gained over the

usual two-sided CI by optimizing the CI relative to a particular distribution P0. Results in the

appendix give an analogous result for one-sided CIs. In the one-sided case, this asymptotic

result is essentially a version of a classic result from the semiparametric efficiency literature

for one-sided tests, applied to CIs (see Chapter 25.6 in van der Vaart, 1998). In the two-sided

case, the result is, to our knowledge, new.

3.3.2 Some valid and some invalid moments

Consider now the case in which the first dg−dγ moments are known to be valid, with the po-

tential misspecification for the remaining dγ moments unrestricted. Then C = {(0′, γ′)′ : γ ∈
Rdγ} corresponds to a linear subspace with B given by the last dγ columns of the identity

matrix, and B⊥ given by the first dg − dγ columns.

Because under this setup, the mean for the last dγ observations is unrestricted, it follows

by the same arguments as in Section 3.3.1, that the GLS estimator k′LS,BY based only on

the observations with no misspecification is best unbiased and minimax. This property can

again be shown to carry over to the moment condition model, so that the GMM estimator

h(θ̂W (B)), with W (B) = B′⊥(B′⊥ΣB⊥)−1B′⊥ is a GMM estimator that only uses the moments

known to be valid, is asymptotically minimax. However, under a weighted MSE criterion,
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if the weights put a sufficient mass on values of γ that are close to zero, if one does not

require unbiasedness, a different estimator may be preferred, such as various shrinkage or

pre-testing estimators that optimize their performance at values of γ close to zero, at the

expense of worse performance for larger values of γ. In the context of the moment condition

model, such estimators have been recently studied in Liao (2013), Cheng and Liao (2015),

and DiTraglia (2016).

Next, consider inference. The one-sided CI based on k′LS,BY achieves the shortest excess

length, simultaneously for all quantiles and all possible values of the parameter θ. The

two-sided CI k′LS,BY ± z1−α/2

√
k′LS,BΣkLS,B is optimal in the same sense as the usual CI in

Section 3.3.1: it achieves minimax expected length, and its efficiency, relative to a CI that

optimizes its length at a single θ∗ and γ = 0, is lower-bounded by z1−α/z1−α/2. Theorem 3.1

formally translates the efficiency bound from the limiting model to the GMM model, so that

the usual two-sided CI based on h(θ̂W (B)) is asymptotically efficient in the same sense as the

usual CI based on h(θ̂Σ−1) discussed in Section 3.3.1 under correct specification. Just as with

the results in Section 3.3.1, this asymptotic result is, to our knowledge, new. The one-sided

analog follows from the results in Appendix C. These results stand in sharp contrast to the

results for estimation, where the MSE improvement at small values of γ may be substantial.

An important consequence of these results is that asymptotically valid one-sided CIs

based on shrinkage or model-selection procedures, such as one-sided versions of the CIs

proposed in Andrews and Guggenberger (2009), DiTraglia (2016) or McCloskey (2017) must

have worse excess length performance than the usual one-sided CI based on the GMM

estimator h(θ̂W (B)) that uses valid moments only. While it is possible to construct two-sided

CIs that improve upon the usual CI based on h(θ̂W (B)) at particular values of θ and γ, the

scope for such improvement is smaller than the ratio of one- to two-sided critical values.

Furthermore, any such improvement must come at the expense of worse performance at

other points in the parameter space.7 Therefore, in order to tighten CIs based on valid

moments only, it is necessary to make a priori restrictions on the potential misspecification

of the remaining moments.

3.3.3 General case

According to the results in Section 3.3.2, one must place a priori bounds on the amount of

misspecification in order to use misspecified moments. This leads us to the general case,

where we place the local misspecification vector c in some set C that is not necessarily

7Consistently with these results, in a simulation study considered in DiTraglia (2016), the post-model
selection CI that he proposes is shown to be wider on average than the usual CI around a GMM estimator
that uses valid moments only.
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a linear subspace. One can then form a CI centered at an estimate formed from these

misspecified moments using the methods in Section 2.3. In the case where C is convex and

centrosymmetric, Theorem 3.1 shows that this CI is near optimal, in the sense that no other

CI can improve upon it by more than a factor of κ∗, even in the favorable case of correct

specification. Since the width of the CI is asymptotically constant under local parameter

sequences θn → θ∗ and sufficiently regular probability distributions Pn → P0 (for example,

Pn → P0 along submodels satisfying Assumption C.1), this also shows that the CI is near

optimal in a local minimax sense. In the general case, Theorem 3.1, as well as the analogous

results for one-sided CIs in Appendix C are, to our knowledge, new.

In Section 4, we discuss particular examples of the set C that can be used in sensitivity

analysis. These sets typically depend on an a priori bound M , such as when C = C(M) =

{Bγ : ‖γ‖ ≤M} for some norm ‖·‖. Rather than choosing M a priori, one may wish to use

a data-driven estimate of M , for example, by using a first-stage J test to assess plausible

magnitudes of misspecification. Formally, one would seek a CI that is valid over C(M) while

improving length when in fact ‖γ‖ �M , where M is some initial conservative bound. When

C is convex and centrosymmetric, Theorem 3.1 shows that the scope for such improvements

is severely limited: the average length of any such CI cannot be much smaller than the CI

that uses the most conservative choice M , even when c = 0. The impossibility of choosing

M based on the data is related to the impossibility of using specification tests to form an

upper bound for M . On the other hand, it is possible to obtain a lower bound for M using

such tests. We develop lower CIs for M in Appendix B. This test can be used as a diagnostic

to check that the magnitude of M chosen by the resereach is not too small.

3.4 Extensions: asymmetric constraints and constraints on θ

In the case where the set C is convex but asymmetric (such as when C includes bounds on

a norm as well as sign restrictions, or when C includes equality and sign restrictions, as

in Moon and Schorfheide (2009)), one can still apply bounds from Armstrong and Kolesár

(2018) to the limiting model described in Section 3.1. Our general asymptotic efficiency

bounds in Appendix C translate these results to the locally misspecified GMM model so long

as C is convex. Since the negative implications for efficiency improvements under correct

specification use centrosymmetry of C, introducing asymmetric restrictions, such as sign

restrictions, is one possible way of getting efficiency improvements at some smaller set D ⊆ C
while maintaining coverage over C. We derive efficiency bounds and optimal CIs for this

problem in Appendix C. Interestingly, the scope for efficiency improvements can be different

for one- and two-sided CIs, and can depend on the direction of the CI in this case. To get some
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intuition for this, note that, in the instrumental variables model with a single instrument

and single endogenous regressor, sign restrictions on the covariance of an instrument with

the error term can be used to sign the direction of the bias of the instrumental variables

estimator, which is useful for forming a one-sided CI only in one direction.

Finally, while we focus on restrictions on c, one can also incorporate local restrictions on

θ. Our general results in Appendix C give efficiency bounds that cover this case. Similar

to the discussion above, these results have implications for using prior information about

θ to determine the amount of misspecification, or to shrink the width of a CI directly. In

particular, while it is possible to use prior information on θ (say, an upper bound on ‖θ‖ for

some norm ‖ ·‖) to shrink the width of the CI, the width of the CI and the estimator around

which it is centered must depend on the a priori upper bounds on the magnitude of θ and

c when this prior information takes the form of a convex, centrosymmetric set for (θ′, c′)′.

This rules out, for example, choosing the moments based on whether the resulting estimate

for θ is in a plausible range.

4 Solutions for particular choices of C
This section gives examples of sets C that can be used to describe a researcher’s beliefs about

potential misspecification. We give intuition for how this affects the optimal sensitivity k and,

in cases where it is available, provide an analytic form for the optimal sensitivity. Derivations

and additional details are relegated to Appendix A.

4.1 Misspecification of a single moment

If one is interested in misspecification of a particular element of g(θ) = (g1(θ), . . . , gdg(θ))
′,

one can take C to allow for misspecification of only this element. For example, if the con-

dition g1(θ) = 0 is suspected to hold only approximately, but the other conditions g2(θ) =

0, . . . , gdg(θ) = 0 are deemed plausible, one can use the set C = [−M,M ]×{0}× · · ·×{0} as

in Remark 2.2. As discussed in Remark 2.2, the constant M can be varied to determine how

sensitive a given result is to failure of the moment condition. We illustrate this approach in

Section 6.

With a single misspecified moment, the worst-case bias of an asymptotically linear esti-

mator with sensitivity k is given simply by biasC(k) = M |k1|, so that the Lagrangian for the

bias-variance trade-off in (10) takes the form mink(k
′Σk + λMk2

1) s.t. H = −k′Γ, which is

minimized at k′λ = −H ′(Γ′WλΓ)−1Γ′Wλ where Wλ = (λM2e1e
′
1 + Σ)−1, and e1 denotes the

first unit vector. Thus, one can implement the optimal sensitivity as a GMM estimator with
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weighting matrix Wλ∗ , where λ∗ minimizes 2 cvα(M |kλ,1|/
√
k′λΣkλ)

√
k′λΣkλ over λ.

4.2 Misspecification of multiple moments

To allow for misspecification of multiple components of g(θ), it is computationally convenient

and flexible to consider sets of the form C = {Bγ : ‖γ‖ ≤ M}, where B is a matrix with

dimensions dg × dγ, ‖·‖ is some norm or semi-norm, and the bound M can again be varied

to determine the sensitivity of a given result. When B = e1, this reduces to the previous

example. Setting B to the last dγ columns of the dg × dg identity matrix as in Section 3.3.2

allows for misspecification in the last dγ moments, while maintaining that the first dg − dγ
moments are valid. More generally, the matrixB may incorporate standardizing the moments

by their standard deviation, or it may be used to account for their correlations (see Sections 5

and 6 for examples). The choice of the norm determines how the researcher’s bounds on

each element of γ interact. With the `∞ norm, one places separate bounds on each element

of γ, which leads to a simple interpretation: no single element of γ can be greater than M .

Under an `p norm with 1 ≤ p < ∞, the bounds on each element of γ interact with each

other, so that larger amounts of misspecification in one element is allowed if other elements

are correctly specified.

The optimal sensitivity can be computed by casting the optimization problem (10) as a

penalized regression problem. To see the connection, note that with c = Bγ, one can write

the approximately linear model (14) as

Y = −Γθ +Bγ + Σ1/2ε,

which one can think of as a regression model with correlated errors, design matrix (−Γ, B),

and coefficient vector (θ′, γ′)′. With this interpretation, it is clear that if the number of

regressors dθ + dγ is greater than the number of observations dg, the constraint on the

norm of γ is necessary to make the model informative. When ‖·‖ corresponds to an `p

norm, the constraint on the worst-case bias in (10) becomes M‖B′k‖p′ ≤ B, where p′ solves

1/p+ 1/p′ = 1.

4.2.1 `2 constraints

When ‖γ‖ corresponds to the Euclidean (or `2) norm, this leads to ridge regression, and the

optimal sensitivity takes the form k′λ = −H(Γ′WλΓ)−1Γ′Wλ, where Wλ = (λM2BB′ + Σ)−1,

where, as in the case with a single misspecified moment, λ is the relative weight on bias

when (10) is put into a Lagrangian form. The optimal sensitivity for CI construction is

23



then given by kλ∗ , where λ∗ minimizes 2 cvα(M‖B′kλ‖2/
√
k′λΣkκ)

√
k′λΣkκ. If one is instead

interested in estimation using MSE as the optimality criterion (see Remark 2.4), the optimal

sensitivity is simply k1, as λ = 1 is the optimal choice in this case. This sensitivity can

be implemented as a GMM estimator with weighting matrix Wλ. The estimator ĥ given in

Section 2.2 is simply the one-step Newton-Raphson version of this estimator. Relative to the

optimal weighting matrix Σ−1 under correct specification, the matrix Wλ trades off precision

of the moments against their potential misspecification.

For additional intuition, observe that the weighting matrix would be optimal under cor-

rect specification if the asymptotic variance of ĝ(θ0) were given by M2λBB′ + Σ instead

of Σ. This form of asymptotic variance arises under a random-effects approach:8 if one

puts a prior on γ with zero mean and variance λM2I, then unconditionally, the variance of

the moment condition will be given by W−1
λ , leading to the same optimal estimator. Thus,

if one is interested in optimal estimation under the MSE criterion, the weighting matrix

W1 is optimal under both `2 constraints on γ, and under a random effects prior on γ with

zero mean and variance M2I. Observe, however, that most of the mass of this random

effects prior lies outside of the set C. For example, if the prior distribution is normal, then

P (Bγ ∈ C) = P (‖γ‖2 < M) equals the probability that a χ2 random variable with dγ degrees

of freedom is smaller than 1, which is smaller than 10% for dγ ≥ 4, and smaller than 1% for

dγ ≥ 7. This is because in higher dimensions, assuming that elements of γ are independent

is not innocuous, as it implies that most of the mass of γ concentrates in certain regions

of the parameter space, which may help with estimation (for example, by the law of large

numbers, the prior will put a lot of mass in the region where the average specification error∑dγ
j=1 γj/dγ is small). Consequently, one needs to assume a rather high prior variance under

to yield estimators that one would obtain under our approach. One can also obtain the

estimator with weight matrix Wλ as the posterior mean in a Bayesian setting with a local

normal prior on γ and a diffuse prior on θ.

This connection is analogous to the connection between Bayes estimators under normal

priors and minimax estimators under `2 constraints in linear models (cf. Li 1982 and Section

2.8.1 of Rossi et al. 2012). However, the resulting CIs are generally different under the

random effects approach from the CIs proposed in this paper, because the former approach

effectively treats the misspecification bias as a source of additional variability of the moments.

8A random-effects approach to dealing with misspecification has been previously considered in Conley
et al. (2012), in the context of the linear instrumental variables model, although the paper does not consider
the implications for the form of optimal estimator.
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4.2.2 `1 and `∞ constraints

When ‖γ‖ corresponds to an `∞ or `1 norm, the penalized regression analogy leads to a simple

algorithm for computing the optimal sensitivity similar to the LASSO/LAR algorithm (Efron

et al., 2004): the solution path of the sensitivities that solve (10) as B varies is piecewise

linear (see Appendix A for details). It follows from this algorithm that under `∞ constraints,

if B corresponds to columns of the identity matrix (as in Section 3.3.2), as M grows, the

optimal sensitivity successively drops the “least informative” moments, so that in the limit,

if dg ≤ dγ + dθ, the optimal sensitivity corresponds to that of an exactly identified GMM

estimator based on the dθ “most informative” moments only, where “informativeness” is given

by both the variability of a given moment, and its potential misspecification. If dg > dγ +dθ,

one simply drops all invalid moments in the limit, as discussed Section 3.3.2 for the case

M =∞.

4.3 Correct specification and Cressie-Read divergences

If C = {0}, the optimal sensitivity is given by k′LS,0 = −H(Γ′Σ−1Γ)−1Γ′Σ−1, which corre-

sponds to the sensitivity of h(θ̂Σ−1), the GMM estimator with the “usual” optimal weight-

ing matrix Σ−1. In general, the optimal weights under misspecification will take a dif-

ferent form, since they take into account model misspecification allowed by C. However,

there is one interesting case where the optimal sensitivity under misspecification is the

same as in the correctly specified case. Under `2 constraints with B = Σ1/2, so that

C = {Σ1/2γ : ‖γ‖2 ≤ M} = {c : c′Σ−1c ≤ M2}, the optimal weighting matrix derived

above for `2 constraints reduces to Σ−1, just as in the correctly specified case. The intuitive

reason for this is that, in this case the uncertainty from potential misspecification is exactly

proportional to the asymptotic sampling uncertainty in ĝ(θ).

For an estimator with this sensitivity, the worst-case asymptotic bias is M
√
k′LS,0ΣkLS,0.

Thus, our CIs can be implemented as

h(θ̂Σ−1)± cvα(M) ·
√
k̂′LS,0Σ̂k̂LS,0/n.

Furthermore, we show in Appendix A that in this case, the value of (11) is given by

(δ/2 + M)
√
k′LS,0ΣkLS,0. Since this is affine in δ, the efficiency in (17) can be calculated

explicitly. We give the expression in Appendix A.1, where we also show that the efficiency

is at least as high as min{κL∗,α, 1 − α}, where κL∗,α denotes the efficiency in Equation (18)

when C corresponds to a linear subspace. In particular, since κL∗,0.05 < 0.95, it follows from

Theorem 3.1 and the discussion in Section 3.3.1 that the asymptotic efficiency of the CI in
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the preceding display at 95% confidence level is asymptotically at least high as the efficiency

of the usual CI under correct specification.

Andrews et al. (2018) have shown that defining misspecification in terms of the magnitude

of any divergence in the Cressie and Read (1984) family leads to a set C that asymptotically

takes this form, so long as the set of probability measures under misspecification is contiguous

to the probability measure corresponding to correct specification. The Cressie-Read family

includes the Hellinger distance used by Kitamura et al. (2013), who consider minimax point

estimation among estimators satisfying certain regularity conditions. The results above imply

that any estimator with sensitivity kLS,0 is near-optimal for CI construction. In line with

these results, the estimator in Kitamura et al. (2013) has sensitivity kLS,0. Thus, the usual

GMM estimator h(θ̂Σ−1) and the estimator in Kitamura et al. (2013) are both near-optimal

for CI construction, even if one allows for arbitrary CIs that are not necessarily centered at

estimators that satisfy the regularity conditions in Kitamura et al. (2013). Also, because

they have the same sensitivity, under this form of misspecification, the usual GMM estimator

h(θ̂Σ−1) and the estimator in Kitamura et al. (2013) have the same local asymptotic minimax

properties.

5 Applications

This section describes particular applications of our approach, along with suggestions for the

set C and other implementation details appropriate to each application.

5.1 Generalized method of moments

Most of the applications we consider in this section are special cases of the generalized method

of moments (GMM) framework. Here, ĝ(θ) = 1
n

∑n
i=1 g(wi, θ) and g(θ) = Eĝ(θ) = Eg(wi, θ).

Equation (2) follows from a central limit theorem, with Σ the variance matrix of g(wi, θ0)

(or, in the case of dependent observations, the long run variance matrix). Equation (3)

follows from a first order Taylor expansion along with additional arguments, as described

in Newey and McFadden (1994). To estimate Σ, one can use the robust variance estimate
1
n

∑n
i=1 g(wi, θ̂initial)g(wi, θ̂initial)

′ (or, in the case of dependent observations, an autocorrelation

robust version of this estimate). To estimate Γ in the case where g(wi, θ) is smooth, one

can use the derivative of the sample objective function d
dθ′
ĝ(θ)

∣∣
θ=θ̂initial

. When g(wi, θ) is

nonsmooth, one can use a numerical derivative with the step size decreasing at an appropriate

rate with n (see Hong et al. 2015, Section 7.3 of Newey and McFadden 1994 and references

therein). The derivative matrix H can be estimated with the derivative d
dθ′
h(θ)

∣∣
θ=θ̂initial

.
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5.2 Instrumental variables

The single equation linear instrumental variables (IV) model is given by

yi = x′iθ0 + εi (20)

where, in the correctly specified case, Eεizi = E(yi − x′iθ0)zi = 0, with zi a dg-vector of

instruments. This is an instance of a GMM model with g(θ) = E(yi − x′iθ)zi and ĝ(θ) =
1
n

∑n
i=1 zi(yi − x′iθ).

One common reason for misspecification in this model is that the instruments do not

satisfy the exclusion restriction, because they appear directly in the structural equation (20),

so that εi = z′Iiγ/
√
n + ηi, where E[ziηi] = 0, and zIi corresponds to a subset I of the

instruments, the validity of which one is worried about. This form of misspecification has

previously been considered in a number of papers, including Hahn and Hausman (2005),

Conley et al. (2012), and Andrews et al. (2017), among others. Bounding the norm of γ

using some norm ‖·‖ then leads to the set

C = {Bγ : ‖γ‖ ≤M}, where B = E[ziz
′
Ii]. (21)

Although the matrix B is unknown, for the purposes of estimating the optimal sensitivity

and constructing asymptotically valid CIs, it can be replaced by the sample analog B̂ =

n−1
∑n

i=1 ziz
′
Ii. This does not affect the asymptotic validity or coverage properties of the

resulting CI. Under this setup, the parameter M bounds that magnitude of γ, the direct

effect of the instruments on the outcome. Therefore, the appropriate choice of M will depend

on the plausible magnitude of these direct effects—see, for example, Conley et al. (2012) for

examples and a discussion.

The derivative matrix Γ = −Ezix′i, can be estimated as Γ̂ = − 1
n

∑n
i=1 zix

′
i. The asymp-

totic variance matrix of the moments is given by Σ = Eε2
i ziz

′
i, which takes the form

ΣH = (Eε2
i ) (Eziz

′
i) under homoskedasticity (i.e. when var(εi | zi) is constant). Given

an initial estimator θ̂initial, these can be estimated using the usual plug-in formulas, Σ̂ =
1
n

∑n
i=1(yi − x′iθ̂initial)

2ziz
′
i, and Σ̂H = 1

n

∑n
i=1(yi − x′iθ̂initial)

2 · 1
n

∑n
i=1 ziz

′
i. As the initial

estimator, one can use the two-stage least squares (2SLS) estimator

θ̂initital =
[
(
∑n

i=1 zix
′
i)
′
(
∑n

i=1 ziz
′
i)
−1

(
∑n

i=1 zix
′
i)
]−1

(
∑n

i=1 zix
′
i)
′
(
∑n

i=1 ziz
′
i)
−1∑n

i=1 ziyi.

When the norm in (21) corresponds to an `p norm, the optimal sensitivity can be computed

using the algorithms and formulas described in Section 4.
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The linearity of the moment condition leads to a particularly simple form of the optimal

estimator. In particular, if the parameter of interest is also linear function of θ: h(θ) = Hθ,

then the one-step estimator ĥ given in Section 2.2 does not depend on the choice of the

initial estimator (except possibly in forming the desired sensitivity k̂)

ĥ = Hθ̂initial + k̂′
1

n

n∑
i=1

(yi − x′iθ̂initial)zi = k̂′
1

n

n∑
i=1

yizi +

(
H − k̂′ 1

n

n∑
i=1

zix
′
i

)
θ̂initial

= k̂′
1

n

n∑
i=1

yizi,

where the second line follows since the weights k̂ satisfy H = −k̂Γ̂ = k̂ 1
n

∑n
i=1 zix

′
i.

In the correctly specified case, the 2SLS estimator, which is the GMM estimator with

weighting matrix Σ̂−1
H , is optimal under homoskedasticity. When homoskedasticity does

not hold, the GMM estimator with weighting matrix Σ̂−1 is optimal. Due to concerns

with finite sample performance, however, it is common to use the 2SLS estimator along

with standard errors based on a robust variance estimate, even when heteroskedasticity is

suspected. Mirroring this practice, one can use Σ̂H when forming the optimal sensitivity k̂

and worst-case bias (in Step 2 of the algorithm in Section 2.3) while using Σ̂ to form the

variance estimate k̂′Σ̂k̂ in Step 3. The resulting CI will be valid under both homoskedasticity

and heteroskedasticity, and will be optimal under homoskedasticity, just as with the usual

CI based on 2SLS with robust standard errors in the correctly specified case.

Remark 5.1. This framework can also be used to incorporate a priori restrictions on the

magnitude of coefficients on control variables in an instrumental variables regression. Sup-

pose that we have a set of controls wi, that appear in the structural equation (20), so that

yi = x′iθ + w′iγ/
√
n + εi, and εi is uncorrelated with wi as well as vector of instruments

z̃i. If one is willing to restrict the magnitude of the coefficient vector γ, so that ‖γ‖ ≤ M ,

then one can add wi to the original vector of instruments z̃i, zi = (z̃′i, w
′
i)
′. For example, if

one is concerned with functional form misspecification, one can define the control variables

to be higher order series terms. We then obtain the misspecified IV model with the set C
given by (21), with B = E[ziw

′
i]. Thus, we can interpret this model as a locally misspecified

version of a model with wi used as an excluded instrument.

Remark 5.2. Instead of bounding the coefficient vector γ, one can alternatively bound the

magnitude of the direct effect z′Iiγ. If all instruments are potentially invalid, zIi = zi, and

one sets C = {γ : E[(z′iγ)2] ≤M}, then under homoscedasticity, this corresponds to the case

discussed in Section 4.3, where the uncertainty from potential misspecification is exactly
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proportional to the asymptotic sampling uncertainty in ĝ(θ). Consequently, in this case the

optimal sensitivity is the same as that given by the 2SLS estimator.

5.3 Nonlinear IV

The linear IV model (20) can be generalized to a nonlinear model of the form εi = ρi(θ0),

where E[εizi] = 0 in the correctly specified case. As in Section 5.2, we can allow for misspec-

ification where the instrument enters the structural equation directly, so that εi = z′Iiγ + ηi

and E[ziηi] = 0, with zIi denoting a subset of the instruments. As in Section 5.2, bounding

the norm of γ leads to a set C of the form given in (21). The BLP demand model in our

empirical application in Section 6 takes the form of a system of nonlinear IV equations, and

we consider such forms of misspecification in our empirical application.

5.4 Omitted variables bias in linear regression

Specializing to the case where zi = xi, the misspecified IV model of Section 5.2 gives a

misspecified linear regression model as a special case. This can be used to assess sensitivity

of regression results to issues such as omitted variables bias. In particular, consider the linear

regression model

yi = x′iθ + w∗i + ε̃i, Exiε̃i = 0

where xi and yi are observed and w∗i is a (possibly unobserved) omitted variable. Correlation

between w∗i and xi will lead to omitted variables bias in the OLS regression of yi on xi. If

w∗i is unobserved, then we obtain our framework by making the assumption
√
nEw∗i xi ∈ C,

for some set C, and letting ĝ(θ) = 1
n

∑n
i=1 xi(yi − x′iθ). This setup can also cover choosing

between different sets of control variables. Suppose that w∗i = w′iγ, where wi is a vector of

observed control variables that the researcher is considering not including in the regression.

If γ is unrestricted, then by the results in Section 3.3.2, the long regression of yi on both

xi and wi yields nearly optimal CIs. If one is willing to restrict the magnitude of γ, it is

possible to tighten these CIs. In particular, we obtain the setting in Section 5.2 by setting

ĝ(θ) = 1
n

∑n
i=1 zi(yi − x′iθ), where zi = (xi, w

′
i), and defining C as in (21), with zI = wi. The

same framework can be used to incorporate selection bias by defining w∗i to be the inverse

Mills ratio term in the formula for E[yi | xi, i observed] in Heckman (1979).

5.5 Functional form misspecification

Our setup allows for misspecification in moment conditions arising from functional form mis-

specification. To apply our setup, one must relate this misspecification to the bounds C on
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the moment conditions at the true parameter value. One approach to bounding functional

form misspecification is to use smoothness conditions from the nonparametric statistics liter-

ature, such as bounds on derivatives (see, for example, Tsybakov, 2009, for an introduction

to this literature). Since these sets are typically convex (taking a convex combination of two

functions that satisfy a given bound on a given derivative gives a function that also satisfies

this bound), they typically lead to convex sets C, so that our framework can be applied.

As a simple example, consider a nonparametric IV model with discrete covariates:

E[yi −m(xi)|zi] = 0.

Suppose x takes values in the finite set X = {x̃1, . . . , x̃Nx} and zi takes values in the finite

set Z = {z̃1, . . . , z̃Nz}. This setting was considered by Freyberger and Horowitz (2015), who

place only nonparametric smoothness or shape restrictions on the unknown function m. To

see the connection with our setting, we note that such restrictions can be interpreted as

bounds on specification error from a parametric model. If one models these restrictions as

local to a parametric family, one obtains our setting. In particular, let m(xi) = f(xi, θ0) +

n−1/2r(xi), r ∈ R, where R is a nonparametric smoothness class. For example, if xi is

univariate, we can let f(xi, θ) = θ1 + θ2xi and define R to be the class of functions with

r(0) = r′(0) = r′′(0) and second derivative bounded by some constant M . This is equivalent

to placing the bound n−1/2M on the second derivative of m(·), which corresponds to a Hölder

smoothness class. We can then map this to a misspecified GMM model, with the jth element

of the moment function given by gj(xi, yi, θ) = (yi − f(xi, θ0))I(zi = z̃j) and jth element

of the misspecification vector c given by Er(xi)I(zi = z̃j) =
∑

x̃∈X r(x̃)P (xi = x̃, zi = z̃j).

Stacking these equations, we see that c = Bγ where B is a matrix composed of the elements

P (xi = x̃, zi = z̃j) and γ = (r(x̃1), . . . , r(x̃Nx))
′. As with the IV setting in Section 5.2, B is

unknown, but can be replaced by a consistent estimate based on the sample analogue. So

long as the set R is convex, we obtain convex restrictions on γ and therefore c, so that our

framework applies.

This example brings up an important point about the interpretation of h(θ). If the

object of interest is a functional of m(x) = f(x, θ0) + n−1/2r(x), then we will need to allow

the object of interest h(·) to depend on the misspecification vector directly, as well as on θ.

As discussed at the beginning of Section 2, this falls into a mild extension of our framework.

Alternatively, under a suitable parametrization of f and r, it is often possible to define the

object of interest to be function of θ alone. For example, if we are interested in the derivative

m′(x0) at a particular point x0 under a bound on the second derivative of m(·), we can let

f(x, θ) = θ1 + θ2x and define R to be the class of functions with r(x0) = r′(x0) = r′′(x0) = 0
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and second derivative bounded by M . Then m′(x0) = θ2.

5.6 Treatment effect extrapolation

Often, the average effect of a counterfactual policy on a particular subset of a population

is of interest, but this effect is not identified under sufficiently weak assumptions. Rather,

policy effects τ1, . . . , τm for each of m other subsets of the population are identified, and

consistent, asymptotically joint normal estimates τ̂ = (τ̂1, . . . , τ̂m) are available. However,

the researcher may have prior information about how these policy effects relate to the policy

effect for the subpopulation of interest. If this information amounts to assuming that the

policy effect of interest θ satisfies (θ − τ1, . . . , θ − τm) ∈ C/√n for some convex set C, then

this falls into our framework with ĝ(θ) = (θ− τ̂1, . . . , θ− τ̂m)′ and g(θ) = (θ− τ1, . . . , θ− τm)′.

An example that has been of recent interest involves nonseparable models with endo-

geneity. Under conditions in Imbens and Angrist (1994) and Heckman and Vytlacil (2005),

instrumental variables estimates with different instruments are consistent for average treat-

ment effects for different subpopulations. A recent literature (Kowalski, 2016; Brinch et al.,

2017; Mogstad et al., 2017) has focused on using assumptions on treatment effect hetero-

geneity to extrapolate these estimates to other populations. If these assumptions amount to

placing the differences between the estimated treatment effects and the effect of interest in

a known convex set that is local to zero, then our framework applies.

6 Empirical application

This section illustrates the confidence intervals developed in Section 2 in an empirical ap-

plication to automobile demand based on the data and model in Berry et al. (1995, BLP

hereafter). We use the version of the model as implemented by Andrews et al. (2017), who

calculate the asymptotic bias of the GMM estimator with weighting matrix Σ−1 under local

misspecification in this setting.9

6.1 Model description

In this model, the utility of consumer i from purchasing a vehicle j, relative to the outside

option, is given by a random-coefficient logit model Uij =
∑K

k=1 xjk(βk + σkvik) − αpj/yi +

ξj + εij, where pj is the price of the vehicle, xjk the kth observed product characteristic,

9The dataset for this empirical application has been downloaded from the Andrews et al. (2017) repli-
cation files, available at https://dataverse.harvard.edu/file.xhtml?persistentId=doi:10.7910/DVN/
LLARSN/2KFPRA&version=1.1.
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ξj is an unobserved product characteristic, and εij is has an iid extreme value distribution.

The income of consumer i is assumed to be log-normally distributed, yi = em+ςvi0 , where

the mean m and the variance ς of log-income are assumed to be known and set to equal

to estimates from the Current Population Survey. The unobservables vi = (vi0, . . . , viK) are

iid standard normal, while the distribution of the unobserved product characteristic ξj is

unrestricted.

The marginal cost mcj for producing vehicle j is given by log(mcj) = w′jλ + ωj, where

wj are observable characteristics, and ωj is an unobservable characteristic. The full vector

of model parameters is given by θ = (σ′, α, β′, λ′)′. Given this vector, and given a vector

of unobservable characteristics, one can compute the market shares implied by utility max-

imization, which can be inverted to yield the unobservable characteristic as a function of θ,

ξj(θ). One can similarly invert the unobserved cost component, writing it as a function of

θ, ωj(θ), under the assumption that firms set prices to maximize profits in a Bertrand-Nash

equilibrium. Given a vector zdj of demand-side instruments, and a vector zsj of supply-side

instruments, this yields the sample moment condition

ĝ(θ) =
1

n

n∑
j=1

(
zdjξj(θ)

zsjωj(θ)

)
,

with g(θ) = E[ĝ(θ)].

The BLP data spans the period 1971 to 1990, and includes information on essentially

all n = 999 models sold during that period (for simplicity, we have suppressed the time

dimension in the description above). There are 5 observable characteristics xj: a constant,

horsepower per 10 pounds of weight (HPWt), a dummy for whether air-conditioning is

standard (Air), mileage per 10 dollars (MP$) defined as MPG over average gas price in a

given year, and car size (Size), defined as length times width. The vector zdj consists of xj,

plus the sum of xj across models other than j produced by the same firm, and for rival firms.

There are 6 cost variables wj: a constant, log of HPWt, Air, log of MPG, log of Size, and a

time trend. The vector zsj consists of these variables, MP$, and the sums of wj for own-firm

products other than j, and for rival firms. After excluding collinear instruments, this gives a

total of dg = 31 instruments, 25 of which are excluded to identify dθ = 17 model parameters.

The parameter of interest is average markup, h(θ) = 1
n

∑
j(pj −mcj(θ))/pj.

One may worry that some of these instruments are invalid, because elements of zdj or zsj

may appear directly in the utility or cost function with the coefficient on the `th element given

by δd`γd`/
√
n or δs`γs`/

√
n, respectively. Here δd` and δs` are scaling constants so that, given

the sample size at hand, γd` has the interpretation that the consumer willingness to pay for
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one standard deviation change in the `th demand-side instrument zdj` is γd`% of the average

1980 car price, and changing the `th supply-side instrument zsj` by one standard deviation

changes the marginal cost by γs`% of the average car price. Andrews et al. (2017) use this

scaling in their sensitivity analysis, and they discuss economic motivation for concerns about

this form of misspecification. By way of comparison, the estimates of the parameters β and

λ in the utility and cost function imply that consumers are on average willing to pay between

2.2 and 10.0% of the average car price for a standard deviation change in one of the included

car characteristics, and that a standard deviation change in the included cost characteristics

changes the marginal cost by between 3.8 and 11.1% of the average car price. We therefore

interpret specifications of the set C that allow for |γs`| ≈ 1–2 (or |γd`| ≈ 1–2) as allowing for

moderate amounts of misspecification in the `th supply-side (or demand-side) instrument.

Given a set I of potentially invalid instruments, the sets C that we consider have the

form

C = {BIγ : ‖γ‖p ≤M(#I)1/p}, B =
( δdE[zdjz

′
dj ] 0

0 δsE[zsjz
′
sj ]

)
,

where BI is given by the columns of B corresponding to the potentially invalid instruments,

#I is the number of potentially invalid instruments, and p ∈ {1, 2,∞}. The scaling by

(#I)1/p ensures that the vector γ = M(1, . . . , 1)′ is always included in the set.

Andrews et al. (2017) report the sensitivity of the usual GMM estimator under this

scaling for misspecification in each instrument individually. This corresponds to c = BIγ

with I containing a single instrument and γ = 1, reported for each choice of the misspecified

instrument. If one is concerned about instruments in a given set I, it is then natural to let

c = BIγ with γ = (1, . . . , 1). This allows all instruments in the set I to be misspecified. The

specification of C given above allows for this when M = 1, and varying M allows one to assess

the sensitivity of conclusions to different amounts of misspecification. Different choices of

p ∈ {1, 2,∞} correspond to different assumptions about how the bounds on misspecification

interact, as discussed in Section 4.2. As we will see below, different choices of C lead to

different sensitivities for the optimal estimator, and using the optimal sensitivity can reduce

the width of the CI substantially relative to CIs based on the usual GMM estimator.

6.2 Results

We set θ̂initial to the GMM estimator that uses Σ̂−1
0 as the weighting matrix, where Σ̂0 is an

initial estimate of the variance of the moment conditions. We estimate B, Γ, and H by their

sample analogs.

To illustrate that using the sensitivity that is optimal under local misspecification can

yield substantially tighter CIs, Figure 1 plots the confidence intervals based on the optimal
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sensitivity, as well as those based on θ̂initial under different sets I of potentially invalid instru-

ments and `2 constraints on γ. It is clear from the figure that using the optimal sensitivity

yields substantially tighter confidence intervals, relative to simply adjusting the usual CI

by using the critical value cvα(·) to take into account the potential bias of h(θ̂initial), by as

much as a factor of 3.4. The intuitive reason for this is that by adjusting the sensitivity

of the estimator, it is possible to substantially reduce its bias at little cost in terms of an

increase in variance. Thus, for example, while the CI for the average markup based on the

estimate θ̂initial is essentially too wide to be informative when the set of potentially invalid

instruments corresponds to all excluded instruments, the CI based on the optimal sensitivity,

[46.0, 66.0]%, is still quite tight.

As discussed in Remark 2.3, if a researcher is ex ante unsure what form of misspecification

one should worry about, as a sensitivity check, it is useful to consider the effects of different

forms of misspecification. In Figure 2, we plot the optimal confidence intervals for different

subsets of invalid instruments, as well as for different choices of p in the `p norm that defines

the set C. When only one instrument is allowed to be invalid, the choice of norm doesn’t

matter. For example, as can be seen from the figure, allowing the supply-side instrument

“Miles/dollar” to be invalid yields the same confidence interval under p = 1, 2, or ∞. Al-

though the choice of norm matters when the number of potentially misspecified instruments

is greater than one, the results are qualitatively similar. Comparing the results for differ-

ent choices of the set of potentially invalid instruments suggests that allowing supply-side

instruments to be invalid generally increases the average markup estimate, while allowing

demand-side instruments to be invalid has the opposite effect.

As it may be ex ante unclear what magnitude of misspecification is reasonable to allow

for, as discussed in Remark 2.2, it is useful to plot the optimal CI for multiple choices of M .

We do this in Figure 3 for p = 2, and we allow all excluded instruments to be potentially

invalid. One can see that while the CI is unstable for values of M smaller than about

0.4, for larger values of M , the estimate is quite stable and equal to about 50%. Even at

M = 2, one rejects the hypothesis that the optimal markup is equal to the initial estimate

h(θ̂initial) = 32.7%. This suggests that ignoring misspecification in the BLP model likely leads

to a downward bias in the estimate of the average markup. At the same time, it is possible

to obtain reasonably tight CIs for the average markup even under a moderate amount of

misspecification.

The J-statistic for testing the hypothesis that all moments are correctly specified equals

404.7. Consequently, the hypothesis is rejected at the usual significance levels. Further-

more, it can be seen from Figure 2 that the CIs for “all excluded” (that allow all excluded

instruments to be invalid at M = 1), and “all excluded demand” (that assume validity of
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supply-side instruments) do not overlap. This implies that either the misspecification in the

demand-side instruments must be greater than 1% of the average care price (M = 1), or else

the supply-side instruments must also be invalid. In Appendix B, we generalize the J-test to

test the hypothesis that, given a set I of potentially invalid instruments, the parameter M is

at most M0 against the alternative that it is greater. Table 1 implements this specification

test, and gives the lower endpoint Mmin of a one-sided 95% CI of the form [Mmin,∞) based

on inverting these tests. In line with Figure 2, the test implies that if we assume that the

supply-side instruments are valid, the misspecification in the demand-side instruments must

be at least M = 1.19 for all `p norms (since, under our scaling, the volume of the set C de-

creases with p, the lower-endpoint Mmin must be increasing in p). More generally, the results

suggest that if one assumes only a subset of the instruments is invalid, the misspecification

in the potentially invalid instruments must be quite large. For example, if we assume that all

instruments are valid except potentially the demand-side instruments based on rival firms’

product characteristics, then the misspecification in these instruments must be greater than

M = 4.08 for all `p norms. Alternatively, if we allow all instruments to be invalid, then

M ≥ 0.48 for all `p norms.

Finally, to illustrate the implication of Theorem 3.1 that one cannot substantively improve

upon the CIs that we construct, we calculate the efficiency bound κ∗ for these CIs in Table 2.

The table shows that the bound is at least as high as the efficiency bound for the usual

CI under correct specification (given in (18) and equal to 84.99% at α = 0.05). Thus, the

asymptotic scope for improvement over the CIs reported in Figure 2 at particular values of

θ and c = 0 is even smaller than the scope for improvement over the usual CI at particular

values of θ under correct specification.

A Details of calculations

This appendix contains the details of calculations of optimal weights in Section 4.

A.1 Cressie-Read divergences

Consider the problem (11) under constraints of the form {c : cΣ−1c ≤M2}. The Lagrangian

for this problem can be written as

2Hθ + λ1(δ2/4− (c− Γθ)′Σ−1(c− Γθ)) + λ2(M2 − c′Σ−1c).
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(we multiply the objective function by 2 so that its optimized value equals ω(δ)). The

first-order conditions are

H ′ + λ1Γ′Σ−1(c− Γθ) = 0,

−λ1Σ−1(c− Γθ)− λ2Σ−1c = 0.

Solving for c in the second equation gives c = λ1
λ1+λ2

Γθ, and plugging this into the first equa-

tion gives θ = (λ1+λ2)/(λ1λ2)·(Γ′Σ−1Γ)−1H ′. Plugging these expressions into the constraints

yields M2 = H(Γ′Σ−1Γ)−1H ′/λ2
2 and δ2/4 = H(Γ′Σ−1Γ)−1H ′/λ2

1. Since H(Γ′Σ−1Γ)−1H ′ =

k′LS,0ΣkLS,0, solving for λ1 and λ2, and plugging into the expression for θ yields

θ =
δ/2 +M√
k′LS,0ΣkLS,0

· (Γ′Σ−1Γ)−1H ′.

Thus, ω(δ) = 2Hθ = (δ + 2M)
√
k′LS,0ΣkLS,0, which is affine, as claimed in the text.

With this form of ω, the bound in (17) becomes

κ∗(H,Γ,Σ, C) =
(1− α)(z1−α +M) + φ(z1−α)

cvα(M)
.

This efficiency equals at least min{κL∗,α, 1− α}, where κL∗,α = ((1− α)z1−α + φ(z1−α))/z1−α/2

denotes the efficiency given in (18) when C is a linear subspace. To show this, observe that

cv′α(M) ≤ 1 for all M ≥ 0. Therefore, the derivative of

(1− α)(z1−α +M) + φ(z1−α)−min{1− α, κL∗,α} cvα(M)

with respect to M , given by 1−α−min{1−α, κL∗,α} cv′α(M), is always non-negative. Since the

expression in the above display equals (κL∗,α−min{κL∗,α, 1−α})z1−α/2 ≥ 0 at M = 0, it follows

that it is always non-negative. Rearranging it then yields κ∗(H,Γ,Σ, C) ≥ min{κL∗,α, 1− α}
as claimed.

Furthermore, it follows from Equation (49) that the efficiency of one-sided CIs at c = 0

is given by κOCI,β
∗ = 1.

A.2 `p Bounds

We now consider the form of the optimal sensitivity under `p constraints of the form C =

{Bγ : ‖γ‖p ≤ M}. The results in Section 4 follow from these results. Observe first that by
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Hölder’s inequality and the fact that the inequality is sharp, the worst-case bias is given by

biasC(k) = sup
‖γ‖p≤1

M |k′Bγ| = M‖B′k‖p′ .

where p′ is the Hölder complement of p. Therefore, the optimization problem (10) is equiva-

lent to

min
k
k′Σk s.t. H = −k′Γ and M‖B′k‖p′ ≤ B. (22)

A.2.1 p = 2

In this case, the Lagrangian form of (22) becomes

min
k
k′(Σ + λM2BB′)k s.t. H = −k′Γ.

Observe that the Lagrange multiplier λ gives the relative weight on bias, with λ = 1 cor-

responding to optimizing the worst-case MSE. Optimizing this objective is isomorphic to

deriving the minimum variance unbiased estimator of Hθ in a regression model with design

matrix −Γ and variance Σ + λM2BB′, so the Gauss-Markov theorem implies that the opti-

mal weights are k′ = −H(Γ′WλΓ)−1Γ′Wλ where Wλ = [Σ + λM2BB′]−1. The solution for

the correctly specified case follows by setting M = 0, and the case with a single misspecified

moment follows by setting B = e1.

A.2.2 p =∞

Write the Lagrangian form of (22) as

min
k
k′Σk/2 + λM‖B′k‖1 s.t. H = −k′Γ. (23)

It will be convenient to transform the problem so that the `1 constraint only involves dγ

elements of k. Let

T =

(
B′⊥

(B′B)−1B′

)
, T−1 =

(
B⊥ B

)
, (24)

where B⊥ is an orthonormal matrix that’s orthogonal to B. Then, since TB = (0, Idγ )
′, the

above minimization problem is equivalent to the problem

min
κ
κ′Sκ/2 + `

∑
i∈I

|κi| s. t. H ′ = −G′κ,
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where κ = T ′−1k, S = TΣT ′, ` = λM , G = TΓ, and I = {dg − dγ, . . . , dg} indexes the last

dγ elements of κ.

To minimize the above display and give the solution path as ` varies, we use arguments

similar to those in Theorem 2 of Rosset and Zhu (2007). For i ∈ I, write κi = κ+,i − κ−,i,
where κ+,i = max{κi, 0} and κ−,i = −min{κi, 0}. We minimize the objective function in the

preceding display over {κ+,i, κ−,i, κj : i ∈ I, j 6∈ I} subject to the constraints κ+,i ≥ 0 and

κ−,i ≥ 0. Let µ denote a vector of Lagrange multipliers on the restriction −H ′ = G′κ. Then

the Lagrangian can be written as

κ′Sκ/2 + `
∑
i∈I

(κ+,i + κ−,i) + µ′(H ′ +G′κ)−
∑
i∈I

(`+,iκ+,i + `−,iκ−,i).

The first-order conditions are given by

e′iSκ+ e′iGµ = 0 i ∈ IC , (25)

e′iSκ+ e′iGµ+ ` = `+,i i ∈ I, (26)

−(e′iSκ+ e′iGµ) + ` = `−,i i ∈ I. (27)

The complementary slackness conditions are given by `+,iκ+,i = 0 and `−,iκ−,i = 0 for i ∈ I,

and the feasibility constraints are `+,i ≥ 0, `−,i ≥ 0 for i ∈ I and −H ′ = G′κ.

Let AC = {i : i ∈ I, κi = 0}, and let A = {i : i 6∈ AC} denote the set of active constraints.

Let s denote a vector of length |A| with elements si = sign(κi) if i ∈ I and si = 0 otherwise.

The slackness and feasibility conditions imply that if for i ∈ I, κi > 0, then `+,i = 0, and

if κi < 0 or `−,i = 0. It therefore follows from (26) and (27) that e′iSκ+e′iGµ = − sign(κi)` =

−si`. We can combine this condition with (25) and write

e′iSκ+ e′iGµ = −si`, i ∈ A. (28)

On the other hand, if i ∈ AC , then since `+,i and `−,i are non-negative, it follows from (26)

and (27) that

|e′iSκ+ e′iGµ| ≤ ` = |e′jSκ+ e′jGµ|, i ∈ AC , j ∈ A. (29)

Let κA denote the subset of κ corresponding to the active moments, GA denote the corre-

sponding rows of G, and SAA the corresponding submatrix of S. Then we can write the

condition (28) together with the feasibility constraint G′κ = −H ′ compactly as(
0 G′A
GA SAA

)(
µ

κA

)
=

(
−H ′
−s`

)
.
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Using the block matrix inverse formula, this implies

µ = (G′AS
−1
AAGA)−1

(
H ′ −G′AS−1

AAs`
)

κA = −S−1
AAGAµ− S−1

AAs`

= S−1
AAGA(G′AS

−1
AAGA)−1

(
G′AS

−1
AAs`−H ′

)
− S−1

AAs`

Consequently, if we’re in a region in where the solution path is differentiable with respect to

`, we have
∂κA
∂`

= S−1
AAGA(G′AS

−1
AAGA)−1G′AS

−1
AAs− S−1

AAs. (30)

The differentiability of path is violated if either (a) the constraint (29) is violated for some

i ∈ AC if κ(`) keeps moving in the same direction, and we add i to A at a point at which (29)

holds with equality; or else (b) the sensitivity κi(`) for some i ∈ A reaches zero. In this

case, drop i from A. In either case, we need to re-calculate the direction (30) using the new

definition of A.

Based on the arguments above and the fact that κ(0) = −S−1G(G′S−1G)−1H ′, we can

derive the following algorithm, similar to the LAR-LASSO algorithm, to generate the path

of optimal sensitivities κ(`):

1. Initialize ` = 0, A = {1, . . . , dg}, µ = (G′S−1G)−1H ′, κ = −S−1Gµ. Let s be a vector

of length dg with elements si = I{i ∈ I} sign(κi), and calculate initial directions as

µ∆ = −(G′S−1G)−1G′S−1s, κ∆ = −S−1(Gµ∆ + s)

2. While (|A| > max{dg − dγ, dθ}):

(a) Set step size to d = min{d1, d2}, where

d1 = min{d > 0: κi + dκ∆,i = 0, i ∈ A ∩ I}
d2 = min{d > 0: |e′i(Sκ+Gµ) + de′i(Sκ∆ +Gµ∆)| = `+ d, i ∈ AC}

Take step of size d: κ 7→ κ+ dκ∆, µ 7→ µ+ dµ∆, and ` 7→ `+ d.

(b) If d = d1, drop argmin(d1) from A, and if d = d2, then add argmin(d2) to A. Let

s be a vector of length dg with elements si = − I{i ∈ I} sign(e′iSκ + e′iGµ), and

calculate new directions as

µ∆ = −(G′AS
−1
AAGA)−1G′AS

−1
AAsA

(κ∆)A = −S−1
AA(GAµ∆ + sA)

(κ∆)AC = 0
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The solution path k(λ) is then obtained as k(λ) = T ′κ(λM).

Finally, we show that in the limit M → ∞, the optimal sensitivity corresponds to a

method of moments estimator based on the most informative set of dθ moments, with the

remaining dg−dθ moments dropped. Observe that as M →∞ if B corresponds to columns of

the identity matrix, minimizing (23) is equivalent to minimizing ‖kI‖1 subject to H = −k′Γ.

This can be written as a linear program min kI,+ + kI,−i st −H ′ = Γ′(k+ − k−), k+, k− ≥ 0.

The minimization problem is done on a dθ-dimensional hyperplane, and solution must occur

at a boundary point of the feasible set, where only dθ variables are non-zero. So the optimal

k has dθ non-zero elements.

A.2.3 p = 1

The solution path can be obtained by arguments analogous to those in the preceding sub-

section. We give details in Appendix D in the supplemental materials.

B Specification test

One can test the null hypothesis of correct specification (i.e. the null hypothesis that c = 0)

using the J statistic

J = nmin
θ
ĝ(θ)′Σ̂−1ĝ(θ) = nĝ(θ̂)′Σ̂−1ĝ(θ̂),

where θ̂ = argminθ ĝ(θ)′Σ̂−1ĝ(θ). Alternatively, letting Σ̂−1/2 denote the symmetric square

root of Σ̂−1, one can project Σ̂−1/2ĝ(θ̃), where θ̃ is some consistent estimate, onto the com-

plement of the space spanned by Σ̂−1/2Γ̂,

S = nĝ(θ̃)′Σ̂−1/2R̂Σ̂−1/2ĝ(θ̃),

where R̂ = I−Σ̂−1/2Γ̂(Γ̂′Σ̂−1Γ̂)−1Γ̂′Σ̂−1/2. If the model is correctly specified, so that c = 0, S

and J are asymptotically equivalent (Newey and McFadden, 1994, p. 2231), and distributed

χ2
dg−dθ .

Under local misspecification, the J statistic has a noncentral χ2 distribution, with non-

centrality parameter depending on c (Newey, 1985), and the asymptotic equivalence of J

and S still holds. In this section, we use this observation to form a test of the null hypoth-

esis H0 : c ∈ C. When C takes the form C = C(M) = {Bγ : ‖γ‖ ≤ M} for some norm ‖·‖,
inverting these tests gives a lower CI for M . We begin with a lemma deriving the asymptotic

distribution of S and J under local misspecification.
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Lemma B.1. Suppose that (1), (2) and (3) hold, and that θ̂ and θ̃ satisfy, for some K and

K ′opt = −(Γ′Σ−1Γ)−1Γ′Σ−1,

√
n(θ̂ − θ0) = K ′opt

√
nĝ(θ0), and

√
n(θ̃ − θ0) = K ′

√
nĝ(θ0).

Suppose that Σ̂ and Γ̂ are consistent estimates of Σ and Γ, and that Σ and Γ are full rank.

Then S = J + oP (1) and S and J converge in distribution to a noncentral chi-square dis-

tribution with dg − dθ degrees of freedom and noncentrality parameter c′Σ−1/2RΣ−1/2c where

R = I − Σ−1/2Γ(Γ′Σ−1Γ)−1ΓΣ−1/2.

Proof. By (1), (2) and (3),
√
nĝ(θ̃) = (I + ΓK ′)Σ1/2(Σ−1/2c + Zn) + oP (1) where Zn =

Σ−1/2[
√
nĝ(θ0)− c] d→ N (0, Idg), so that

S = (Σ−1/2c+Zn)′Σ1/2(Σ−1/2 + Σ−1/2ΓK ′)′R(Σ−1/2 + Σ−1/2ΓK ′)Σ1/2(Σ−1/2c+Zn) + oP (1)

= (Σ−1/2c+ Zn)′R(Σ−1/2c+ Zn) + oP (1)
d→ (Σ−1/2c+ Z)′R(Σ−1/2c+ Z)

where Z ∼ N (0, Idg) and we use the fact that R(I + Σ−1/2ΓK ′Σ1/2) = R. Similarly,

√
nĝ(θ̂) = (I − Γ(Γ′Σ−1Γ)Γ′Σ−1)(c+ Σ1/2Zn) + oP (1) = Σ1/2R(Σ−1/2c+ Zn) + oP (1),

so that J = (Σ−1/2c+ Zn)′R(Σ−1/2c+ Zn) + oP (1) = S + oP (1). To prove the second claim,

decompose R = P1P
′
1, where P1 ∈ Rdθ×(dg−dθ) corresponds to the eigenvectors associated

with non-zero eigenvalues of R. Then

(Σ−1/2c+ Z)′R(Σ−1/2c+ Z) = (P ′1Σ−1/2c+ P ′1Z)′(P ′1Σ−1/2c+ P ′1Z).

Since P ′1Z ∼ N (0, Idg−dθ), it follows that the random variable in the preceding display has

a non-central χ2 distribution with dg − dθ degrees of freedom and non-centrality parameter

c′Σ−1/2RΣ−1/2c.

Lemma B.1 can be interpreted in using the limiting experiment described in Section 3.1.

In particular, the asymptotic distribution of the S and J statistics is isomorphic to the

statistic Y ′Σ−1/2RΣ−1/2Y in the limiting experiment Y = −Γθ + c+ Σ1/2ε.

The quantiles of a non-central chi-square distribution are increasing in the noncentrality

parameter (this is shown in Sun et al., 2010). Thus, to test the null hypothesis H0 : c ∈ C,
the appropriate critical value for tests based on the J or S statistic is based on a non-central
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chi-squared distribution, with non-centrality parameter

λ̄ = sup
c∈C

c′Σ−1/2RΣ−1/2c.

If C = {Bγ : ‖γ‖p ≤M}, then this becomes

λ̄ = sup
‖t‖p≤M

t′B′Σ−1/2RΣ−1/2Bt = sup
‖t‖p≤1

M2‖RΣ−1/2Bt‖2
2 = M2‖A‖2

p,2.

where the second equality uses the fact that R is idempotent, A = RΣ−1/2B, and ‖A‖p,q =

max‖x‖p≤1‖Ax‖q is the (p, q) operator norm. For p = 2, the operator norm has a closed form,

which gives λ̄ = M max eig(B′Σ−1/2RΣ−1/2B).

C Asymptotic coverage and efficiency

This appendix contains the asymptotic coverage and efficiency results discussed in Section 3.

In particular, we prove Theorem 3.1. In order to allow for stronger statements, we state

upper and lower bounds separately. Theorem 3.1 then follows by combining these results.

Theorem 3.1 focuses on two-sided CIs in the case where C is centrosymmetric, in addition

to being convex. In this appendix, we also prove analogous results for one-sided CIs, and

we generalize these results to the case where C is a convex but asymmetric set. When C is

convex but asymmetric, the negative results about the scope for improvement when c is close

to zero no longer hold. Therefore, we consider the general problem of optimizing quantiles

of excess length over a set D ⊆ C, which may be a strict subset of C.
The remainder of this appendix is organized as follows. Section C.1 presents notation

and definitions, as well as an overview of the results. Section C.2 contains results on least

favorable submodels as well as a two-point testing lemma used in later proofs. We then use

this to obtain efficiency bounds for one-sided CIs in Section C.3, and for two-sided CIs in

Section C.4. Section C.5 shows that our CIs achieve (or, for two-sided CIs, nearly achieve)

these bounds. Section C.6 shows how Theorem 3.1 follows from these results, and also gives a

one-sided version of this theorem. Primitive conditions for the misspecified linear IV model,

as well as a general construction of a least favorable submodel satisfying the assumptions

used in this section, are given in the supplemental appendix.
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C.1 Setup

While our focus is on parameter spaces that place restrictions on c, we will also allow for local

restrictions on θ in some results. This allows us to bound the scope for “directing power” at

particular values of θ. Formally, for some parameter θ∗, we consider the local parameter space

that restricts (
√
n(θ − θ∗)′, c′)′ to some set F ⊆ Rdθ+dg . The unrestricted case considered

throughout most of the main text corresponds to F = Rdθ × C (in which case θ∗ does not

affect the definition of the parameter space). We also allow for additional restrictions on θ

by placing it in some set Θn. Finally, we use P to denote the set of distributions P over

which we require coverage.

With this notation, the set of values of θ that are consistent with the model under P (i.e.

the identified set under P ) is

ΘI(P ) = ΘI(P ;F ,Θn) =
{
θ ∈ Θn :

√
n((θ − θ∗)′, gP (θ)′)′ ∈ F

}
,

and the set of pairs (θ, P ) over which coverage is required is given by

Sn = {(θ, P ) ∈ Θn × P : θ ∈ ΘI(P )} = {(θ, P ) ∈ Θn × P :
√
n((θ − θ∗)′, gP (θ)′)′ ∈ F},

which reduces to the definition in Section 3.1 when F = Rdθ ×C. The coverage requirement

for a CI In is then given by (19) with this definition of Sn. To compare one-sided CIs [ĉ,∞),

we will consider the β quantile of excess length. Rather than restricting ourselves to the

minimax criterion, we consider worst-case excess length over a potentially smaller parameter

space G, which may place additional restrictions on θ and c. Let

qβ,n(ĉ;P ,G,Θn) = sup
P∈P

sup
θ∈ΘI(P ;G,Θn)

qP,β(h(θ)− ĉ)

where qP,β denotes the β quantile under P . We will also consider bounds on qP,β(h(θ) − ĉ)
at a single P , which corresponds to the optimistic case of optimizing length at a single

distribution. For two-sided CIs, we will consider expected length.

Our efficiency bounds can be thought of as applying the bounds in Armstrong and Kolesár

(2018) to a local asymptotic setting, which corresponds to the limiting model (14) with

Γ = Γθ∗,P0 , Σ = Σθ∗,P0 and H = Hθ∗ . The between class modulus of continuity for this

model is

ω(δ;F ,G, H,Γ,Σ) = sup H(s1 − s0) s.t. (s′0, c
′
0)′ ∈ F , (s′1, c′1)′ ∈ G,

[(c1 − c0)− Γ(s1 − s0)]′Σ−1[(c1 − c0)− Γ(s1 − s0)] ≤ δ2. (31)
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We use the notation ω(δ) and ω(δ;F ,G) when the context is clear. In the case where

G = F = Rdθ × C and C is centrosymmetric, the solution satisfies s1 = −s0 and c1 = −c0,

which gives the same optimization problem as (11), with the objective multiplied by two

(this matches the definition of ω(·) used to define κ∗ in the main text).

For one-sided CIs, we show that, for any CI satisfying the coverage condition (19) for a

rich enough class P , we will have

lim inf
n→∞

√
nqβ,n(ĉ;P ,G,Θn) ≥ ω(δβ;F ,G, H,Γ,Σ) (32)

where δβ = z1−α+zβ, where zτ denotes the τ quantile of the N (0, 1) distribution. For bounds

on excess length at a single P0 with EP0g(wi, θ
∗) = 0, we obtain this bound with G = {0}:

lim inf
n→∞

√
nqP0,β(h(θ∗)− ĉ) ≥ ω(δβ;F , {0}, H,Γ,Σ). (33)

These results can be thought of as a local asymptotic version of Theorem 3.1 in Armstrong

and Kolesár (2018) applied to our setting.

For two-sided CIs, we show that, if a CI In = {ĥ± χ̂} satisfies the coverage condition (19)

for a rich enough class P , then, for any P0 with EP0g(wi, θ
∗) = 0, expected length satisfies

lim inf
T→∞

lim inf
n→∞

EP0 min{√n2χ̂, T}

≥ (1− α)E[ω(z1−α − Z; {0},F , H,Γ,Σ) + ω(z1−α − Z;F , {0}, H,Γ,Σ)|Z ≤ z1−α], (34)

where Z ∼ N (0, 1). The above bound uses truncated expected length to avoid technical

issues with convergence of moments when achieving the bound (note however that this bound

immediately implies the same bound on excess length without truncation). Our results

constrain the CI to take the form of an interval. We conjecture that the bound applies

to arbitrary confidence sets (with length defined as Lebesgue measure) under additional

regularity conditions.

Here, “rich enough” means that P contains a least favorable submodel. Section C.2 begins

the derivation of our efficiency results by giving conditions on this submodel. In Section E.1

in the supplemental materials, we construct a submodel satisfying these conditions under

mild conditions.

C.2 Least favorable submodel

Let P0 be a distribution with EP0g(wi, θ
∗) = 0 (i.e. the model holds for this data-generating

process with θ = θ∗ and c = 0), and consider a parametric submodel Pt indexed by t ∈ Rdg
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(i.e. the dimension of t is the same as the dimension of the values of g(wi, θ)) with Pt equal to

P0 at t = 0. We assume that {wi}ni=1 are iid under Pt. Let πt(wi) denote the density of a single

observation with respect to its distribution under P0, so that EPtf(wi) = EP0f(wi)πt(wi) for

any function f . We expect that the least favorable submodel for this problem will be the

one that makes estimating EPg(Wi, θ
∗) most difficult. This corresponds to any subfamily

with score function g(wi, θ
∗). We also place additional conditions on this submodel, given in

the following assumption.

Assumption C.1. The data are iid under Pt for all t in a neighborhood of zero, and the

density πt(wi) for a single observation is quadratic mean differentiable at t = 0 with score

function g(wi, θ
∗), where EP0g(wi, θ

∗) = 0. In addition, the function (t′, θ′)′ 7→ Eptg(wi, θ) is

continuously differentiable at (0′, θ∗′)′ with[
d

d(t′, θ′)
Eptg(wi, θ)

]
t=0,θ=θ∗

= (Σ,Γ) (35)

where Σ and Γ are full rank.

To understand Assumption C.1, note that Problem 12.17 in Lehmann and Romano (2005)

gives the Jacobian with respect to t as Σ in the case where g(wi, θ
∗) is bounded, and the

Jacobian with respect to θ is equal to Γ by definition. Assumption C.1 requires the slightly

stronger condition that Eptg(wi, θ) is continuously differentiable with respect to (t′, θ′)′ for

t close to 0 and θ close to θ∗. This is needed to apply the Implicit Function Theorem

in the derivations that follow. In the supplemental materials, we give a construction of a

quadratic mean differentiable family satisfying this condition, without requiring boundedness

of g(wi, θ
∗) (Lemma E.1).

The bounds in Armstrong and Kolesár (2018) are obtained by bounding the power of a

two-point test (simple null and simple alternative) where the null and alternative are given

by the points that achieve the modulus. To obtain analogous results in our setting, we use

a bound on the power of a two-point test in a least favorable submodel.

Consider sequences of local parameter values (θ′0,n, c
′
0,n)′ and (θ′1,n, c

′
1,n)′ where, for some

s0, c0 s1 and c1,

θ0,n = θ∗ + (s0 + o(1))/
√
n, c0,n = c0 + o(1),

θ1,n = θ∗ + (s1 + o(1))/
√
n, c1,n = c1 + o(1). (36)

Consider a sequence of tests of (θ′0,n, c
′
0,n)′ vs (θ′1,n, c

′
1,n)′. Formally, for any (θ′, c′)′, let

Pn(θ, c) =
{
P ∈ P : EPg(wi, θ) = c/

√
n
}

(37)
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be the set of probability distributions in P that are consistent with the parameter values

(θ′, c′)′. We derive a bound on the asymptotic minimax power of a level α test of

H0,n : P ∈ Pn(θ0,n, c0,n) vs H1,n : P ∈ Pn(θ1,n, c1,n), (38)

as well as a bound on the power of a test of H0,n at P0. Let Φ be the standard normal cdf

and let

β(s0, c0, s1, c1) = Φ
(√

[c1 − c0 − Γ(s1 − s0)]′Σ−1[c1 − c0 − Γ(s1 − s0)]− z1−α

)
.

Lemma C.1. Let P be a class of distributions that contains a family Pt that satisfies Assump-

tion C.1. Then, for any sequence of tests φn satisfying lim supn supP∈Pn(θ0,n,c0,n) EPφn ≤ α,

we have

lim sup
n

EP0φn ≤ β(s0, c0, 0, 0) and lim sup
n

inf
P∈Pn(θ1,n,c1,n)

EPφn ≤ β(s0, c0, s1, c1).

Lemma C.1 says that the asymptotic minimax power of any test ofH0,n vsH1,n is bounded

by β(s0, c0, s1, c1). Furthermore, if we take s1 = 0 and c1 = 0, then this bound is achieved

at P0. Note that, in keeping with the analogy with the linear model (14), β(s0, c0, s1, c1)

is the power of the optimal (Neyman-Pearson) test of the simple null (s′0, c
′
0) vs the simple

alternative (s′1, c
′
1) in the model (14).

Proof of Lemma C.1. The proof involves two steps. First, we use the Implicit Function

Theorem to find sequences t0,n and t1,n such that Pt0,n satisfies H0,n and Pt1,n satisfies H1,n.

Next, we apply a standard result on testing in quadratic mean differentiable families to

obtain the limiting power of the optimal test of Pt0,n vs Pt1,n, which gives an upper bound

on the limiting minimax power of any test of H0,n vs H1,n.

Let f(t, θ, a) = EPtg(wi, θ)− a so that (θ′, c′)′ is consistent with Pt iff. f(t, θ, c/
√
n) = 0.

Under Assumption C.1, it follows from the Implicit Function Theorem that there exists a

function r(θ, a) such that, for θ in a neighborhood of θ∗ and a in a neighborhood of zero,

EPr(θ,a)g(wi, θ)− a = f(r(θ, a), θ, a) = 0.

Thus, letting t0,n = r(θ0,n, c0,n/
√
n) and t1,n = r(θ1,n, c1,n/

√
n), Pt0,n satisfies H0,n and Pt1,n

satisfies H1,n. Furthermore,[
d

d(θ′, a′)
r(θ, a)

]
(θ′,a′)=(θ∗,0)

= −Σ−1(Γ,−Idg)
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so that

r(θ, a) = Σ−1a− Σ−1Γ(θ − θ∗) + o(‖θ − θ∗‖+ ‖a‖).

Thus, letting t0,∞ = Σ−1c0 − Σ−1Γs0, we have

t0,n = r(θ0,n, c0,n/
√
n) = Σ−1c0,n/

√
n− Σ−1Γ(θ0,n − θ∗) + o(‖θ0,n − θ∗‖+ ‖c0,n‖/

√
n)

= Σ−1c0/
√
n− Σ−1Γs0/

√
n+ o(1/

√
n) = t0,∞/

√
n+ o(1/

√
n).

Similarly, t1,n = t1,∞/
√
n+ o(1/

√
n) where t1,∞ = Σ−1c1 − Σ−1Γs1.

Since the information matrix for this submodel evaluated at t = 0 is Σ, it follows from

the arguments in Example 12.3.12 in Lehmann and Romano (2005), extended to the case

where the null and alternative are both drifting sequences (rather than just the alternative),

that the limit of the power of the Neyman-Pearson test of Pt0,n vs Pt1,n is

Φ

(√
[t1,∞ − t0,∞]′Σ[t1,∞ − t0,∞]− z1−α

)
= β(s0, c0, s1, c1).

This gives the required bound on minimax power over H1,n. To obtain the bound on power

at P0, note that, for θ1,n = θ∗ and c1,n = 0, t0,n = 0, the bound also corresponds to the power

of a test that is optimal for Pt0,n vs P0.

C.3 One-sided CIs

We prove the following efficiency bound for one-sided CIs.

Theorem C.1. Let P be a class of distributions that contains a submodel Pt satisfying

Assumption C.1. Let Θn(C) = {θ|‖θ − θ∗‖ ≤ C/
√
n} for some constant C, and let F be

given. Let [ĉ,∞) be a sequence of CIs such that, for all C, the coverage condition (19) holds

with Θn = Θn(C). Let G ⊆ F be a set such that the limiting modulus ω is well-defined and

continuous for all δ. Then the asymptotic lower bounds (32) and (33) hold.

Proof. Consider a sequence of simple null and alternative values of θ and c that satisfy (36)

for some s0, c0, s1, c1, with (
√
n(θ0,n − θ∗)′, c′0,n)′ ∈ F and (

√
n(θ1,n − θ∗)′, c′1,n)′ ∈ G, for each

n. Note that

lim
n→∞

√
n[h(θ1,n)− h(θ0,n)] = H(s1 − s0).

Consider the testing problem H0,n : P ∈ Pn(θ0,n, c0,n) vs H1,n : P ∈ Pn(θ1,n, c1,n) defined in

(37) and (38). Suppose that

qβ,n(ĉ;P ,G,Θn) < h(θ1,n)− h(θ0,n). (39)
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Let φn denote the test that rejects when h(θ0,n) /∈ [ĉ,∞). Since, for any P ∈ Pn(θ1,n, c1,n),

we have qP,β(h(θ1,n) − ĉ) ≤ qβ,n(ĉ;P ,G,Θn) by construction, it follows that, for all P ∈
Pn(θ1,n, c1,n),

EPφn = P (h(θ1,n)− ĉ < h(θ1,n)− h(θ0,n)) ≥ P (h(θ1,n)− ĉ ≤ qP,β(h(θ1,n)− ĉ)) ≥ β,

where the last step follows from properties of quantiles (Lemma 21.1 in van der Vaart, 1998).

The coverage requirement (19) implies that the test φn that rejects when h(θ0,n) /∈ [ĉ,∞)

has asymptotic level α for H0,n. Thus, by Lemma C.1, we must have β ≤ β(s0, c0, s1, c1) if

(39) holds infinitely often.

It follows that, if β(s0, c0, s1, c1) < β, we must have

lim inf
n→∞

√
nqβ,n(ĉ;P ,G,Θn) ≥ H(s1 − s0)

since otherwise, (39) would hold infinitely often. Since the sequences and limiting (s′0, c
′
0) ∈ F

and (s′1, c
′
1) ∈ G were arbitrary, the above bound holds for any (s′0, c

′
0) ∈ F and (s′1, c

′
1) ∈ G

with β(s0, c0, s1, c1) ≤ β − η, where η > 0 is arbitrary. The maximum of the right-hand side

over s0, c0, s1, c1 in this set is equal to ω(δβ−η;F ,G, H,Γ,Σ) by definition, so taking η → 0

gives the result.

C.4 Two-sided CIs

We prove the following efficiency bound for two-sided CIs.

Theorem C.2. Suppose that, for all C, {ĥ ± χ̂} satisfies the local coverage condition (19)

with Θn = Θn(C) = {θ|‖θ − θ∗‖ ≤ C/
√
n}, where P contains a submodel Pt satisfying

Assumption C.1. Suppose also that 0dθ+dg ∈ F and a minimizer (s′ϑ, c
′
ϑ)′ of (c−Γs)′Σ−1(c−

Γs) subject to Hs = ϑ and (s′, c′)′ ∈ F exists for all ϑ ∈ R. Then the asymptotic lower

bound (34) holds.

In the case where F = Rdθ ×C, which is the focus of the main text, a sufficient condition

for the existence of the minimizer (s′ϑ, c
′
ϑ)′ is that C is compact, H is not equal to the zero

vector and Γ is full rank.

Proof. For each ϑ ∈ R, let θ̃ϑ,n = θ∗ + sϑ/
√
n, and let φϑ,n = I(h(θ̃ϑ,n) /∈ {ĥ ± χ̂}) be the

test that rejects when h(θ̃ϑ,n) is not in the CI. When the constant C defining Θn = Θn(C)

is large enough, the asymptotic coverage condition (19) implies that φϑ,n is an asymptotic
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level α test for H0,n : P ∈ Pn(θ̃ϑ,n, cϑ) defined in (37) and (38). Thus, by Lemma C.1,

lim sup
n→∞

EP0φϑ,n ≤ Φ(δϑ − z1−α) where δϑ =
√

(cϑ − Γsϑ)′Σ−1(cϑ − Γsϑ). (40)

We apply this bound to a grid of values of ϑ. Let En(m) denote the grid centered at zero

with length 2m and meshwidth 1/m:

En(m) = {j/m : j ∈ Z, |j| ≤ m2}.

Let

Ẽn(m) = {√n[h(θ̃ϑ,n)− h(θ∗)] : ϑ ∈ En(m)}.

Note that h(θ̃ϑ,n) = h(θ∗) + (1 + o(1))Hsϑ/
√
n = h(θ∗) + (1 + o(1))ϑ/

√
n. Thus, letting

a1, . . . , a2m2+1 denote the ordered elements in En(m) and ã1, . . . , ãm2+1 the ordered elements

in Ẽn, we have ãj → aj for each j as n→∞.

Let N (n,m) be the number of elements ãj in Ẽn such that h(θ∗) + ãj/
√
n = h(θ̃aj ,n) ∈

{ĥ± χ̂}. Then

EP0N (n,m) =
2m2+1∑
j=1

EP0I(h(θ̃aj ,n) ∈ {ĥ± χ̂}) =
2m2+1∑
j=1

[1− EP0φaj ,n].

It follows from (40) that (assuming the constant C that defines Θn(C) is large enough),

lim inf
n→∞

EP0N (n,m) ≥
2m2+1∑
j=1

[1− Φ(δaj − z1−α)] =
2m2+1∑
j=1

Φ(z1−α − δaj).

Note that 2χ̂ ≥ n−1/2[N (n,m)−1] ·min1≤j≤2m2(ãj+1− ãj) = n−1/2[N (n,m)−1] ·m−1 ·(1+εn)

where εn = min1≤j≤2m2(ãj+1−ãj)/m−1−1 is a nonrandom sequence converging to zero. This,

combined with the above display, gives

lim inf
n→∞

EP0 min{2n1/2χ̂, T} ≥
[
m−1

2m2+1∑
j=1

Φ(z1−α − δaj)−m−1

]

for any T > 2m. We have

m−1

2m2+1∑
j=1

Φ(z1−α − δaj) = m−1

2m2+1∑
j=1

∫
I(δaj ≤ z1−α − z)dΦ(z). (41)

Following the proof of Theorem 3.2 in Armstrong and Kolesár (2018), note that, for ϑ ≥ 0,
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t ≥ 0, we have δϑ ≤ t iff. ϑ ≤ ω(t; {0},F). Indeed, note that ω(δϑ; {0},F) ≥ Hsϑ = ϑ by

feasibility of 0 and sϑ, cϑ for this modulus problem. Since the modulus is increasing, this

means that, if δϑ ≤ t, we must have ϑ ≤ ω(t; {0},F). Now suppose ϑ ≤ ω(t; {0},F). Then

Hsω(t;{0},F) ≥ ϑ, so, for some λ ∈ [0, 1], (s′λ, c
′
λ) = λ(s′ω(t;{0},F), c

′
ω(t;{0},F)) satisfies Hsλ = ϑ,

which means that δϑ ≤
√

(cλ − Γsλ)′Σ−1(cλ − Γsλ) ≤ t as claimed.

Thus, the part of the expression in (41) corresponding to terms in the sum with aj ≥ 0

is given by

m−1

2m2+1∑
j=1

∫
I(0 ≤ aj ≤ ω(z1−α − z; {0},F)) dΦ(z)

≥
∫
z≤z1−α

min{ω(z1−α − z; {0},F)− 1/m,m}dΦ(z).

By the Dominated Convergence Theorem, this converges to
∫
z≤z1−α ω(z1−α− z; {0},F)dΦ(z)

as m → ∞. Similarly, for ϑ < 0, t ≥ 0, we have δϑ ≤ t iff. −ϑ ≤ ω(t;F , {0}), so that an

analogous argument shows that, for arbitrary ε > 0, there exists m such that
∫
z≤z1−α ω(z1−α−

z;F , {0})dΦ(z) − ε is an asymptotic lower bound for the part of the expression (41) that

corresponds to terms in the sum with aj < 0. Thus, for any ε > 0, there exist constants C

and T such that, if the coverage condition (19) holds with Θn = Θn(C),

lim inf
n→∞

EP0 min{n1/22χ̂, T} ≥
∫
z≤z1−α

[ω(z1−α − z; {0},F) + ω(z1−α − z;F , {0})]dΦ(z)− 2ε.

This gives the result.

C.5 Achieving the bound

This section gives formal results showing that the CIs proposed in the main text are asymp-

totically valid, and that, if the weights are chosen optimally, they achieve the efficiency bound

in Theorem C.1 in the one-sided case, and nearly achieve the bound in Theorem C.2 in the

two-sided case (where “nearly” means up to the sharp efficiency bound κ∗ in the limiting

model, given in (17), in the case where C is centrosymmetric).

We specialize to the case considered in the main text where we require coverage without

local restrictions on θ. In the notation of Sections C.3 and C.4, this corresponds to F =

Rdθ × C for a convex (but possibly asymmetric) set C.
In the main text, we focused on the case where C is centrosymmetric. To allow for general

convex C, we use estimators that are asymptotically affine, rather than linear. We focus on
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one-step estimators, which take the form

ĥ = h(θ̂initial) + k̂′g(θ̂initial) + â/
√
n.

for some weights k̂ and â. To ensure that bias is not arbitrarily large, we continue to require

the condition

Ĥ = −k̂′Γ̂, (42)

where Γ̂ is an estimator of Γ satisfying conditions to be given below.

To deal with asymmetric C, and to state results involving worst-case quantiles of excess

length over different sets, it will be helpful to separately define worst-case upper and lower

bias. For a set C ∈ Rdg , let

biasC(k, a) = sup
c∈C

k′c+ a, biasC(k, a) = inf
c∈C

k′c+ a

A one-sided asymptotic 1− α CI is given by [ĉ,∞) where

ĉ = ĥ− biasC(k̂, â)/
√
n− z1−α

√
k̂′Σ̂k̂/

√
n

= h(θ̂initial) + k̂′g(θ̂initial) + â/
√
n− biasC(k̂, â)/

√
n− z1−α

√
k̂′Σ̂k̂/

√
n

= h(θ̂initial) + k̂′g(θ̂initial)− biasC(k̂, 0)/
√
n− z1−α

√
k̂′Σ̂k̂/

√
n,

and Σ̂ is an estimate of Σ. Thus, the intercept term â does not matter for the one-sided CI

and can be taken to be zero in this case. For two-sided CIs, however, the choice of â matters,

and we assume that â is chosen so that the estimator is centered:

biasC(k̂, â) = sup
c∈C

k̂′c+ â = −
(

inf
c∈C

k̂′c+ â

)
= − biasC(k̂, â). (43)

A two-sided asymptotic 1− α CI is then given by ĥ± χ̂ where

χ̂ = cvα

(
biasC(k̂, â)/

√
k̂′Σ̂k̂

)√
k̂′Σ̂k̂/

√
n, where cvα(t) is the 1− α quantile of |N (t, 1)|.

For both forms of CIs, we first state a result for general weights k̂, â, and then specialize

to optimal weights. For the one-sided case, we consider CIs that optimize worst-case length

over (
√
n(θ− θ∗)′, c′)′ in some set G, subject to coverage over F = Rdθ ×C. In principle, this

allows for confidence sets that “direct power” not only at particular values of c but also at

particular values of θ. However, Lemma E.2 in the supplemental materials shows that the

optimal weights for this problem are the same as the optimal weights when G is replaced by
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Rdθ × D(G), where D(G) = {c : there exists s s.t. (s′, c′)′ ∈ G}. Thus, it is without loss of

generality to consider weights that optimize worst-case excess length over c ∈ D subject to

coverage over c ∈ C where D ⊆ C is a compact convex set.

The optimal weights take the form k̂ = k(δβ, Ĥ, Γ̂, Σ̂) where

k(δ,H,Γ,Σ)′ =
((c∗1,δ − c∗0,δ)− Γ(s∗1,δ − s∗0,δ))′Σ−1

((c∗1,δ − c∗0,δ)− Γ(s∗1,δ − s∗0,δ))′Σ−1ΓH ′/HH ′
(44)

and c0,δ, s0,δ, c1,δ, s1,δ solve the between class modulus problem (31) with F = Rdθ × C and

G = Rdθ × D. For a two-sided CI of the form given above, the optimal weights take this

form with D = C, δ minimizing χ̂, and with â chosen to center the CI so that (43) holds.

We note that, in the case where D = C and C is centrosymmetric, s∗1,δ = s∗0,δ and c∗1,δ = c∗0,δ,

and (31) reduces to two times the optimization problem (11). The weights k̂ then take the

form given in (12) in the main text, and, since C is centrosymmetric, â = 0, which gives the

two-sided CI proposed in the main text.

For our general result showing coverage for possibly suboptimal weights k̂, â, we make the

following assumptions. In the following, for a set An, random variables An,θ,P and Bn,θ,P and

a sequence an, we say An,θ,P = Bn,θ,P + oP (an) uniformly over (θ, P ) in An if, for all ε > 0,

sup(θ,P )∈An P (a−1
n ‖An,θ,P − Bn,θ,P‖ > ε) → 0. We say An,θ,P = Bn,θ,P + OP (an) uniformly

over (θ, P ) in a set An if limC→∞ lim supn→∞ sup(θ,P )∈An P (a−1
n ‖An,θ,P − Bn,θ,P‖ > C) = 0.

In the following, the set Sn defined in Section C.1 over which coverage is required is defined

with F = Rdθ × C.

Assumption C.2. The set C is compact or takes the form C̃ × Rdg2 where dg1 + dg2 = dg

and C̃ is a compact subset of Rdg1 . In addition, θ̂initial − θ = OP (1/
√
n), ĝ(θ̂initial) − ĝ(θ) =

Γθ,P (θ̂initial−θ)+oP (1/
√
n) and h(θ̂initial)−h(θ) = Hθ(θ̂initial−θ)+oP (1/

√
n) uniformly over

(θ, P ) ∈ Sn.

Assumption C.3. ĝ(θ) − gP (θ) = O(1/
√
n) uniformly over (θ, P ) ∈ Sn. Furthermore, for

a collection of matrices Σθ,P such that k′θ,PΣθ,Pkθ,P is bounded away from zero and infinity,

sup
t∈R

sup
(θ,P )∈Sn

∣∣∣∣∣∣P
√nk′θ,P (ĝ(θ)− gP (θ))√

k′θ,PΣθ,Pkθ,P
≤ t

− Φ (t)

∣∣∣∣∣∣→ 0.

Assumption C.4. k̂ − kθ,P = oP (1) uniformly over (θ, P ) ∈ Sn, and similarly for â, Γ̂, Ĥ

and Σ̂. Furthermore, kθ,P , aθ,P , Γθ,P , Hθ and Σθ,P are bounded uniformly over (θ, P ) ∈ Sn.

In the case where C = C̃×Rdg2 , assume that the last dg2 elements of k̂ are zero with probability

one for all P ∈ P.
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Theorem C.3. Suppose that Assumptions C.2, C.3 and C.4 hold and let ĉ be defined above

with k̂, Γ̂ and Ĥ satisfying (42). Then

lim inf
n→∞

inf
(θ,P )∈Sn

P (h(θ) ∈ [ĉ,∞)) ≥ 1− α,

and

lim sup
n→∞

sup
P∈P

sup
θ∈ΘI(P ;Rdθ×D,Θn)

{√
nqβ,P (h(θ)− ĉ)

−
[
biasC(kθ,P , 0)− biasD(kθ,P , 0) + (z1−α + zβ)

√
k′θ,PΣθ,Pkθ,P

]}
≤ 0.

Proof. If C = C̃ × Rdg2 with C̃ compact, the theorem can equivalently be stated as holding

with k̂ redefined to be the vector in Rdg1 that contains the first dg1 elements of the original

sensitivity k̂, and with other objects redefined similarly. Therefore, it suffices to consider the

case where C is compact.

Note that

√
n(ĥ− h(θ)) = Hθ

√
n(θ̂initial − θ) + k̂

√
nĝ(θ) + k̂

√
n(ĝ(θ̂initial)− ĝ(θ)) + â+ oP (1)

= Hθ

√
n(θ̂initial − θ) + k̂

√
n(ĝ(θ)− gP (θ)) + k̂′c+ k̂

√
nΓθ,P (θ̂initial − θ) + â+ oP (1)

= (Hθ + k′θ,PΓθ,P )
√
n(θ̂initial − θ) + k′θ,P c+ aθ,P + k′θ,P

√
n(ĝ(θ)− gP (θ)) + oP (1),

where c =
√
ngP (θ) and the oP (1) terms are uniform over (θ, P ) ∈ Sn (the last equality uses

the fact that C is compact). By Assumption C.4 and (42), Hθ + k′θ,PΓθ,P = 0 so this implies

√
n(ĥ− h(θ)) = k′θ,P c+ aθ,P + k′θ,P

√
n(ĝ(θ)− gP (θ)) + oP (1) (45)

uniformly over (θ, P ) ∈ Sn. By compactness of C and Assumption C.4, we also have

biasC(k̂, â) = biasC(kθ,P , aθ,P ) + oP (1), k̂′Σ̂k̂ = k′θ,PΣθ,Pkθ,P + oP (1)

uniformly over (θ, P ) ∈ Sn. Thus,

√
n(ĉ− h(θ)) =

√
n(ĥ− h(θ))− biasC(k̂, â)− z1−α

√
k̂′Σ̂k̂

= k′θ,P c+ aθ,P + k′θ,P
√
n(ĝ(θ)− gP (θ))− biasC(kθ,P , aθ,P )− z1−α

√
k′θ,PΣθ,Pkθ,P + oP (1)

uniformly over (θ, P ) ∈ Sn. Since k′θ,P c + aθ,P − biasC(kθ,P , aθ,P ) ≤ 0 by definition, the first

part of the theorem (coverage) now follows from Assumption C.3. For the last part of the
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theorem, note that, using the above display and the fact that k′θ,P c+ aθ,P ≥ biasD(kθ,P , aθ,P )

for any (θ, P ) with c =
√
nEPg(wi, θ) ∈ D, it follows that

√
n(h(θ)− c) is less than or equal

to

biasC(kθ,P , aθ,P )− biasD(kθ,P , aθ,P ) + z1−α

√
k′θ,PΣθ,Pkθ,P + k′θ,P

√
n(ĝ(θ)− gP (θ)) + oP (1)

uniformly over (θ, P ) with
√
nEPg(wi, θ) ∈ D. This, along with Assumption C.3, gives the

last part of the theorem.

Theorem C.4. Suppose that Assumptions C.2, C.3 and C.4 hold and let ĥ and χ̂ be defined

above with k̂, â, Γ̂ and Ĥ satisfying (42) and (43). Then

lim inf
n→∞

inf
(θ,P )∈Sn

P
(
h(θ) ∈ {ĥ± χ̂}

)
≥ 1− α.

In addition, we have

√
nχ̂− cvα

biasC(kθ,P , aθ,P )√
k′θ,PΣθ,Pkθ,P

√k′θ,PΣθ,Pkθ,P
p→ 0

uniformly over (θ, P ) ∈ Sn.

Proof. As with Theorem C.3, it suffices to consider the case where C is compact. Let

(θn, Pn) be a sequence in Sn and let cn =
√
ngPn(θn). Let bn = k′θn,Pncn + aθn,Pn , sdn =√

k′θn,PnΣθn,Pnkθn,Pn and bn = biasC(kθn,Pn , aθn,Pn). Note that, by (43), biasC(kθn,Pn , aθn,Pn) =

− biasC(kθn,Pn , aθn,Pn) when Assumption C.4 holds. It therefore follows that −bn ≤ bn ≤ bn.

Let Zn =
√
nk′θn,Pn(ĝ(θn)− gPn(θn))/sdn. Note that Zn converges in distribution (under

Pn) to a N (0, 1) random variable by Assumption C.3. By (45),

√
n(ĥ− h(θn)) = bn + sdnZn + oPn(1).

Using the fact that sdn is bounded away from zero and
√
k̂′Σ̂k̂/sdn converges in probability

to one under Pn, it also follows that

√
n(ĥ− h(θn))/

√
k̂′Σ̂k̂ = bn/sdn + Zn + oPn(1).

Also, by Assumption C.4, we have, for a large enough constant K,∣∣∣∣∣cvα

(
biasC(k̂, â)√

k̂′Σ̂k̂

)
− cvα

(
bn
sdn

)∣∣∣∣∣ ≤ K
{[

biasC(k̂, â)− bn
]

+
[√

k̂′Σ̂k̂ − sdn

]}
p→ 0.
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This, along with the fact that
√
k̂′Σ̂k̂/sdn converges in probability to one under Pn, gives

the second part of the theorem. Furthermore, it follows from the above display that

Pn

(
h(θn) > ĥ+ χ̂

)
= Pn

√n
(
ĥ− h(θn)

)
√
k̂′Σ̂k̂

< − cvα

(
biasC(k̂, â)/

√
k̂′Σ̂k̂

)
= Pn

(
bn/sdn + Zn < − cvα

(
bn/sdn

)
+ oPn(1)

)
= Φ(−bn/sdn − cvα

(
bn/sdn

)
) + o(1).

Similarly,

Pn

(
h(θn) < ĥ− χ̂

)
= Pn

√n
(
ĥ− h(θn)

)
√
k̂′Σ̂k̂

> cvα

(
biasC(k̂, â)/

√
k̂′Σ̂k̂

)
= Pn

(
bn/sdn + Zn > cvα

(
bn/sdn

)
+ oPn(1)

)
= 1− Φ(−bn/sdn + cvα

(
bn/sdn

)
) + o(1).

Thus, the probability of the CI not covering is given, up to o(1), by

1− Φ(−bn/sdn + cvα
(
bn/sdn

)
) + Φ(−bn/sdn − cvα

(
bn/sdn

)
).

This is the probability that the absolute value of a N (bn/sdn, 1) variable is greater than

cvα
(
bn/sdn

)
, which is less than 1− α since |bn| ≤ bn.

We now specialize to the case where the optimal weights are used. We make a uniform

consistency assumption on Γ̂, Ĥ and Σ̂, as well as assumptions on the rank of H, Γ and Σ.

The latter are standard regularity conditions for the correctly specified (C = {0}) case.

Assumption C.5. The estimators Γ̂, Ĥ and Σ̂ are full rank with probability one and satisfy

Γ̂− Γθ,P = oP (1), Ĥ −Hθ = oP (1) and Σ̂− Σθ,P = oP (1) uniformly over (θ, P ) ∈ Sn.

Assumption C.6. There exists a compact set B that contains the set {(Hθ,Γθ,P ,Σθ,P ) : θ ∈
Θn, P ∈ P} for all n, such that (i) in the case where C is compact, H 6= 0 and Γ and Σ are

full rank for any (H,Γ,Σ) ∈ B or (ii) in the case where C = C̃ × Rdg2 with C̃ compact, the

same holds for the sub-matrices corresponding to the first dg1 moments.

Using these assumptions, we can verify that Assumption C.4 holds with weights kθ,P

that achieve the efficiency bound in Theorem C.1 and nearly achieve the efficiency bound in

Theorem C.2. This gives the following results.
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Theorem C.5. Suppose that Assumptions C.2, C.3, C.5 and C.6 hold and let ĉ be defined

above with k̂ = k(δβ, Ĥ, Γ̂, Σ̂). Then

lim inf
n→∞

inf
(θ,P )∈Sn

P (h(θ) ∈ [ĉ,∞)) ≥ 1− α

and

lim sup
n→∞

sup
P∈P

sup
θ∈ΘI(P ;Rdθ×D,Θn)

[√
nqβ,P (h(θ)− ĉ)− ω(δβ;Rdθ × C,Rdθ ×D, Hθ,Γθ,P ,Σθ,P )

]
≤ 0.

Proof. In the case where C is compact, it follows from Lemma E.6 in the supplemental mate-

rials, k(δ,H,Γ,Σ) is continuous on {δ}×B. Since B is compact, this means that k(δ,H,Γ,Σ)

is uniformly continuous. Thus, Assumption C.5 implies that k̂ satisfies Assumption C.4 with

kθ,P = k(δ,Hθ,Γθ,P ,Σθ,P ). Furthermore, k̂ satisfies (42) by assumption. By properties of the

modulus (Equation (24) in Armstrong and Kolesár, 2018),

biasC(kθ,P , 0)− biasD(kθ,P , 0) + (z1−α + zβ)
√
k′θ,PΣθ,Pkθ,P

= ω(δβ;Rdθ × C,Rdθ ×D, Hθ,Γθ,P ,Σθ,P )

for this kθ,P . Applying Theorem C.3 gives the result.

In the case where C = C̃ × Rdg2 with C̃ compact, the last dg2 elements of k̂ are equal to

zero as required by Assumption C.4, and the first dg1 elements are the same as the weights

computed from the modulus problem with the last dg2 components thrown away and H,

Γ and Σ redefined to be the sub-matrices corresponding to the first dg1 elements of the

moments. Thus, the same arguments apply in this case.

For two-sided CIs, we consider weights k̂ = k(δ∗(Ĥ, Γ̂, Σ̂), Ĥ, Γ̂, Σ̂) given by (44) with

G = F = Rdθ ×C, where δ∗ may depend on the data through Ĥ, Γ̂ and Σ̂. If δ∗ is chosen to

optimize the length of the fixed length CI, it will be given by δχ(Ĥ, Γ̂, Σ̂) where

δχ(H,Γ,Σ) = argmin
δ

cvα

(
ω(δ)

2ω′(δ)
− δ

2

)
ω′(δ) (46)

where ω(δ) = ω(δ;Rdθ × C,Rdθ × C, H,Γ,Σ) is the single class modulus (see Section 3.4 in

Armstrong and Kolesár, 2018).

We make a continuity assumption on δ∗.

Assumption C.7. δ∗ is a continuous function of its arguments on the set B given in As-

sumption C.6.
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Theorem C.6. Suppose that Assumptions C.2, C.3, C.5, C.6 and C.7 hold and let ĥ be

defined above with k̂ = k(δ∗(Ĥ, Γ̂, Σ̂), Ĥ, Γ̂, Σ̂). Then the conclusion of Theorem C.4 holds.

If, in addition, δ∗ = δχ(Ĥ, Γ̂, Σ̂) for δχ the CI length optimizing choice of δ given in (46),

then the half-length χ̂ satisfies
√
nχ̂ = χ(θ, P ) + oP (1) uniformly over (θ, P ) ∈ Sn, where

χ(θ, P ) = min
δ

cvα

(
ω(δ)

2ω′(δ)
− δ

2

)
ω′(δ), ω(δ) = ω(δ;Rdθ × C,Rdθ × C, Hθ,Γθ,P ,Σθ,P ).

Proof. The result follows from using the same arguments as in the proof of Theorem C.5,

along with continuity of δ∗, to verify Assumption C.4. The form of the limiting half-length

for the optimal weights follows from properties of the modulus (see Section 3.4 in Armstrong

and Kolesár, 2018).

C.6 Centrosymmetric case

Theorem 3.1 in Section 3 gives a bound for two-sided CIs in the case where C is cen-

trosymmetric. This follows from applying Theorems C.6 and C.2 in the centrosymmetric

case. In particular, comparing the asymptotic length in Theorem C.6 to the bound in

Theorem C.2 and using the fact that ω(δ;Rdθ × C, {0}, Hθ,Γθ,P ,Σθ,P ) = ω(δ; {0},Rdθ ×
C, Hθ,Γθ,P ,Σθ,P ) = 1

2
ω(2δ;Rdθ × C,Rdθ × C, Hθ,Γθ,P ,Σθ,P ) when C is centrosymmetric gives

the bound κ∗(Hθ,Γθ,P0 ,Σθ,P0 , C) from the statement of Theorem 3.1. This corresponds to

the bound in Corollary 3.3 of Armstrong and Kolesár (2018). The universal lower bound for

κ∗ follows from the following result:

Theorem C.7. For any H,Γ,Σ and C, the efficiency κ∗ given in (17) is lower bounded by

(z1−α(1− α)− z̃αΦ(z̃α) + φ(z1−α)− φ(z̃α))/z1−α/2

where z̃α = z1−α − z1−α/2 and Φ and φ denote the standard normal cdf, and pdf respectively.

The lower bound is sharp in the sense that it holds with equality if ω(δ) = K0 min{δ, 2z1−α/2},
for some constant K0.

Proof. Since cvα(b) ≤ b+ z1−α/2, the denominator in (17) is upper-bounded by

min
δ

2 cvα

(
ω(δ)

2ω′(δ)
− δ

2

)
ω′(δ) ≤

2 cvα

(
ω(2z1−α/2)

2ω′(2z1−α/2)
− z1−α/2

)
ω′(2z1−α/2) ≤ ω(2z1−α/2). (47)
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On the other hand, the numerator in (17) can be decomposed as

(1− α)E [ω(2(z1−α − Z)) | Z ≤ z1−α] = E
[
ω(2(z1−α − Z)) I{Z ≤ z1−α − z1−α/2}

]
+ E

[
ω(2(z1−α − Z)) I{z1−α − z1−α/2 ≤ Z ≤ z1−α}

]
.

Since the modulus ω(δ) is non-decreasing, the first summand is lower-bounded by

E
[
ω(2z1−α/2) I{Z ≤ z1−α − z1−α/2}

]
= ω(2z1−α/2)Φ(z1−α − z1−α/2).

Since the modulus ω(δ) is concave, ω(2(z1−α−Z)) ≥ (z1−α−Z)/z1−α/2 · ω(2z1−α/2), so that

the second summand is lower-bounded by

ω(2z1−α/2)

z1−α/2
E
[
(z1−α − Z) I{z1−α − z1−α/2 ≤ Z ≤ z1−α}

]
=
ω(2z1−α/2)

z1−α/2

(
z1−α(1− α− Φ(z1−α − z1−α/2)) + φ(z1−α)− φ(z1−α − z1−α/2)

)
,

where the equality follows by the formula for the expectation of a truncated normal random

variable. Combining the two preceding displays then yields

(1− α)E [ω(2(z1−α − Z)) | Z ≤ z1−α]

≥ ω(2z1−α/2)
z1−α(1− α)− z̃αΦ(z̃α) + φ(z1−α)− φ(z̃α)

z1−α/2
, (48)

where z̃α = z1−α−z1−α/2. Combining this with the bound in (47) then yields the result. The

sharpness of the bound for the case ω(δ) = K0 min{δ, 2z1−α/2} follows from by noting that

in this case, both (47) and (48) hold as equalities.

For the one-sided case, we obtain the following bound.

Theorem C.8. Consider the setting of Theorem C.5, with C centrosymmetric. Then the

weights k̂ = k̂(δβ, Ĥ, Γ̂, Σ̂) with D = C are identical to the weights k̂(δβ̃, Ĥ, Γ̂, Σ̂) computed

with D = {0}, but with β̃ = Φ((zβ − z1−α)/2). Furthermore, letting ĉminimax denote the lower

endpoint of the CI computed with these weights (k̂(δβ, Ĥ, Γ̂, Σ̂) with D = C), we have

lim sup
n→∞

sup
P∈P

sup
θ∈ΘI(P ;Rdθ×{0},Θn)

{√
nqβ,P (h(θ)− ĉminimax)− 1

2

[
ωθ,P (δβ) + δβω

′
θ,P (δβ)

]}
≤ 0

where ωθ,P (δ) = ω(δ;Rdθ × C,Rdθ × C, Hθ,Γθ,P ,Σθ,P ). For ĉ computed instead with D = {0},
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we obtain

lim sup
n→∞

sup
P∈P

sup
θ∈ΘI(P ;Rdθ×{0},Θn)

{√
nqβ,P (h(θ)− ĉ)− 1

2
ωθ,P (2δβ)

}
≤ 0.

Proof. The first statement follows from Corollary 3.2 in Armstrong and Kolesár (2018).

The second statement follows from applying Theorem C.3 as in the proof of Theorem C.5,

noting that bias{0}(kθ,P , 0) = 0, and using arguments from the proof of Corollary 3.2 in

Armstrong and Kolesár (2018). The last statement follows from Theorem C.5 and the fact

that ω(δ;Rdθ × C,Rdθ × {0}, Hθ,Γθ,P ,Σθ,P ) = 1
2
ω(2δ;Rdθ × C,Rdθ × C, Hθ,Γθ,P ,Σθ,P ).

Thus, directing power toward the correctly specified case yields the same one-sided CI

once one changes the quantile over which one optimizes excess length. If one does attempt

to direct power, the scope for doing so is bounded by a factor of

κOCI,β
∗ (Hθ,Γθ,P0 ,Σθ,P0 , C) =

ωθ,P (2δβ)

ωθ,P (δβ) + δβω′θ,P (δβ)
. (49)

This gives a bound for the one-sided case analogous to the bound κ∗ in (17) for two-sided

CIs.

A consistent estimate of these bounds can be obtained by plugging in ω(δ;Rdθ ×C,Rdθ ×
C, Ĥ, Γ̂, Σ̂) for ωθ,P (δ) = ω(δ;Rdθ × C,Rdθ × C, Hθ,Γθ,P ,Σθ,P ). Table 2 reports estimates of

this bound under different forms of misspecification in the empirical application in Section 6.
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Table 1: J-test of overidentifying restrictions in the application to Berry et al. (1995) under
different forms of `p misspecification.

Instrument set p = 1 p = 2 p =∞
D/F: # cars 9.77 9.77 9.77
S/F: # cars 15.32 15.32 15.32
Supply: Miles/dollar 17.00 17.00 17.00
All D/F 2.38 2.59 2.59
All D/R 4.08 5.22 5.40
All S/F 2.04 2.61 2.62
All S/R 2.47 4.16 6.99
All excluded demand 1.19 1.72 1.88
All excluded supply 1.02 1.64 1.78
All excluded 0.48 1.08 2.54

Notes: The table gives the minimum value of M such that the test of overidentifying restrictions
has p-value equal to 0.05.

Table 2: Efficiency bounds (in %) for one and two-sided 95% confidence intervals at c = 0
under `p misspecification in the application to Berry et al. (1995).

Two-sided One-sided

Instrument set p = 1 p = 2 p =∞ p = 1 p = 2 p =∞
D/F: # cars 85.9 85.9 85.9 100.0 100.0 100.0
S/F: # cars 90.1 90.1 90.1 99.8 99.8 99.8
Supply: Miles/dollar 85.0 85.0 85.0 100.0 100.0 100.0
All D/F 85.4 85.5 85.7 100.0 100.0 100.0
All D/R 94.3 94.8 95.3 95.3 93.9 95.3
All S/F 88.0 88.6 89.1 99.9 99.7 99.7
All S/R 89.5 89.4 89.2 99.1 98.5 99.5
All excluded demand 95.0 95.4 96.4 97.7 95.0 97.3
All excluded supply 89.8 90.3 90.1 98.8 98.2 99.6
All excluded 96.3 97.0 97.5 99.0 99.5 98.2

Notes: For two-sided confidence intervals, the table calculates the ratio of the expected length of
a 95% confidence interval that minimizes its length at c = 0 relative to the length of the FLCI
in (15), given in (17). For one-sided confidence intervals, the table calculates an analogous bound,
given in Appendix C.6, when the confidence interval optimizes the 80% quantile of excess length.
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Figure 1: Confidence intervals under `2 misspecification and M = 1 in the application to
Berry et al. (1995).

Vertical lines correspond to the estimate ± the worst case bias, and horizontal lines correspond to 95% con-
fidence intervals. Different rows correspond to assuming that different subsets of instruments are potentially
invalid. “None”: correct specification. “D/F” “S/F”: Demand-side instrument based on characteristics of
other cars produced by the same firm. “S/F”: Supply-side instrument based on characteristics of other cars
produced by the same firm. “D/R”: Demand-side instrument based on characteristics of cars produced by
rivals. “S/R”: Supply-side instrument based on characteristics of cars produced by rivals. “All excluded”:
All excluded instruments are potentially invalid.
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Figure 2: Optimal Confidence intervals under `1, `2, and `∞ misspecification and M = 1 in
the application to Berry et al. (1995).

Vertical lines correspond to the estimate ± the worst case bias, and horizontal lines correspond to 95% con-
fidence intervals. Different rows correspond to assuming that different subsets of instruments are potentially
invalid. “None”: correct specification. “D/F” “S/F”: Demand-side instrument based on characteristics of
other cars produced by the same firm. “S/F”: Supply-side instrument based on characteristics of other cars
produced by the same firm. “D/R”: Demand-side instrument based on characteristics of cars produced by
rivals. “S/R”: Supply-side instrument based on characteristics of cars produced by rivals. “All excluded”:
All excluded instruments are potentially invalid.
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Figure 3: Optimal confidence intervals under `2 misspecification the application to Berry
et al. (1995) as a function of misspecification parameter M , when all excluded instruments
are allowed to be potentially invalid.

Dotted line corresponds to point estimate, shaded region denotes the estimate ± its worst-case bias, and a
95% confidence band is denoted by solid lines.
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