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Abstract

People reason about uncertainty with deliberately incomplete mod-
els, including only the most relevant variables. How do people ham-
pered by different, incomplete views of the world learn from each other?
We introduce a model of “model-based inference.” Model-based rea-
soners partition an otherwise hopelessly complex state space into a
manageable model. We find that unless the differences in agents’ mod-
els are trivial, interactions will often not lead agents to have common
beliefs, and indeed the correct-model belief will typically lie outside the
convex hull of the agents’ beliefs. However, if the agents’ models have
enough in common, then interacting will lead agents to similar beliefs,
even if their models also exhibit some bizarre idiosyncrasies and their
information is widely dispersed.
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Learning under Diverse World Views:
Model-Based Inference

1 Introduction

Economists’ theories typically model people as having a complete and perfect
understanding of their world. When people lack information, such uncer-
tainty is captured by a (common) state space, whose elements “resolve all
uncertainty.” Physicists may not be sure which is the right reconciliation of
quantum theory and general relativity, but they understand every detail of
every possibility.

In practice, people work with models that are deliberately incomplete,
including the most salient variables and excluding others. At best, the
states in such models resolve all relevant uncertainty. Moreover, different
people work with different models. Civil engineers building bridges and
electrical engineers designing quantum computers persist with models that
are incomplete.

People routinely interact, exchanging information and beliefs. These
exchanges seldom lead to complete agreement, but people do learn from
each other. How do they do this when hampered by different incomplete
views of the world? We address this question by developing and analyzing
a model of “model-based inference.”

We conduct our analysis in a particularly stylized interaction. As in
Geanakoplos and Polemarchakis (1982), our agents observe information,
form beliefs about an event, exchange these beliefs, update in response to
the other agents’ beliefs, announce their new beliefs, and so on. We are
obviously ignoring much of the complexity of actual interactions, but re-
tain precisely what is needed to examine how people learn from others with
diverse world views.

What do we mean by “diverse world views?” One obvious source of
different views is different information. However, Aumann’s (1976) agreeing-
to-disagree theorem (as adapted by Geanakoplos and Polemarchakis, 1982)
tells us that asymmetric information alone cannot be a source of persistently
different views of the world.

We assume people follow Savage’s (1972) recommendation that they es-
cape the hopeless complexity of states that resolve all uncertainty by parti-
tioning the state space into elements designed to capture the most important
factors and ignore less important ones. The elements of these partitions
become the states in people’s models. But we expect different people to
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construct this partition differently, leading to different world views. Once
they have formed their models, our agents apply Bayes’ rule.

Since different information can give rise to persistently different world
views when people have different prior beliefs, why not simply assume agents
hold different priors? The important advantage of working directly with
different models is that we can then reasonably insist that agents have a
common prior on the common elements of their models. This restores much
of the discipline whose absence typically pushes research away from models
with heterogeneous priors. Appendix B.1 illustrates the lack of discipline
that arises with heterogeneous priors.

Sections 2 and 3 introduce model-based reasoning and interactions be-
tween model-based reasoners. In Section 4, we show that unless the dif-
ferences in agents’ models are trivial, interactions will not lead agents to
common beliefs. More problematically, any conventional aggregate of the
agents’ beliefs will often be off the mark, in the sense that the correct-model
belief will lie outside the convex hull of the agents’ beliefs. In general, we
cannot expect people with different models to effectively aggregate their
information.

Section 5 shows that if the agents’ models have enough in common, then
interacting will lead agents to similar beliefs, even if their models also ex-
hibit some bizarre idiosyncracies. Perhaps more importantly, we identify
conditions under which agents who collectively have sufficient information
will have average belief close to the correct-model belief, even if their infor-
mation is widely dispersed. The key to effective information aggregation is
thus not that people have common information or a common model, but that
the different models people use imply a sufficiently common interpretation
of whatever information they have.

2 The Setting

2.1 The Environment

We begin with a familiar model of uncertainty. A state of the world is an
element of the set Ω = XN , where X ⊆ R and N ⊆ N is possibly infinite.1

Nature draws a state ω from Ω according to the probability measure ρ on
Ω. Agents form beliefs about the occurrence of an event F . It is convenient

1With the exception of Section 4 and Proposition 8 in Section 5.3, our results hold
for a more general model in which states of the world are given by a complete, separable
metric space Ω, endowed with the associated Borel σ-algebra. See the preceding working
paper (Mailath and Samuelson, 2019) for details.
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to describe this event in terms of its indicator function f : Ω → {0, 1}, so
that f(ω) = 1 if and only if ω ∈ F .

For illustration, we often assume that X is finite (at which point nothing
is lost by taking X to be the set {0, 1}) and N is finite, which we refer to
as the finite case.

2.2 Model-Based Reasoning

It is standard in economic analyses to equip agent i with the state space Ω,
nature’s distribution ρ as prior belief, and description f of the event. We
refer to such a reasoner as an (agent) oracle.

In contrast, we are concerned with model-based reasoners. A model-
based reasoner is a faithful adherent of Savage’s (1972) Foundations of
Statistics. Savage explains that it is a hopeless undertaking to work with
a state space that resolves all uncertainty, i.e., that specifies “[t]he exact
and entire past, present, and future history of the universe, understood in
any sense, however wide” (Savage, 1972, p. 8).2 Savage argues on the next
page that “the use of modest little worlds, tailored to particular contexts,
is often a simplification, the advantage of which is justified.” A model-
based reasoner’s “modest little world” effectively partitions the state space
into equivalence classes that he or she believes capture relevant information
about F while ignoring irrelevant information. These equivalence classes
then become “states” in the reasoner’s model.3

We capture this reliance on models by assuming that each agent i ex-
plains the occurrence of the event F by a function (her theory)

f i : XM i → [0, 1]

that depends only on the realizations of the variables contained in a subset
M i ⊆ N .4 We refer to the set M i as agent i’s model. Once the agent has
a model and attendant theory, we can talk about reasoning, Bayesian or
otherwise.

2Savage (1972, p. 16) describes this logical extreme of “look before you leap” as “utterly
ridiculous.”

3This is not the only possible interpretation of Savage (1972). An alternative is that
Bayesian decision making in the spirit of Savage (1972) is only justified in situations where
a decision maker can legitimately specify a state space that resolves all uncertainty. The
distinction between these interpretations is particularly relevant when discussing the origin
of the prior, an issue we avoid by assuming (1) and (2) below.

4The corresponding formulation in the general case is that i’s theory f i is measurable
with respect to a sub-σ-algebra Mi of the Borel σ-algebra.
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If the variables in M i suffice to determine whether F has occurred, then
agent i correctly understands the forces determining F . We are most inter-
ested in cases in which agent i works with a set M i that omits some of the
variables required to determine whether F has occurred. Agent i realizes
that such a model cannot be expected to perfectly explain the event F , re-
flected in f i mapping into [0, 1], giving the probability that the event F has
occurred, rather than {0, 1}.

Denote by ωM i an element of the set XM i
. An element ωM i specifies

the realizations drawn from X of each of the variables that appear in i’s
model. In terms of Savage’s procedure for creating a “modest little world”,
the model M i identifies the equivalence classes, of the form {ωM i}×X−M i

,
that convert XN into agent i’s view of the world.

For example, suppose the event F corresponds to an increase in the
price of a financial asset. Even upon restricting attention to professionals,
we encounter a variety of approaches. A fundamentalist will typically seek
information on the cash reserves, debt load, volume of sales, profit margin
(and so on) of the underlying firm; these are the variables that would appear
in her model M i. A chartist’s M i will include variables corresponding to
recent share trading volumes, price trends, reversals in price movements, the
existence of apparent price ceilings, and so on. An efficient marketer will
ask for a coin to flip. And even among professionals, there are forecasters
whose models focus on astrological data. The fundamentalist is likely to
exclude much of the asset-price history from her model, while the chartist
may neglect various aspects of the firm’s current financial position. Both
will typically exclude information about zodiac signs. All of the agents are
likely to miss factors whose relevance has not yet been imagined, as well as
factors they are convinced are irrelevant, while possibly including irrelevant
factors.

We assume that agent i’s theory f i is consistent with the event F ’s
indicator function f . The probability agent i attaches to the event F given
ωM i matches the probability that the prior probability measure ρ attaches
to the event F , conditional on ωM i . In the finite case, this is the requirement
that for every ωM i (for which ρ(ωM i) = ρ({ωM i} ×X−M i

) is positive),

f i(ωM i) =
∑
ω∈Ω

f(ω)ρ(ω|{ωM i} ×X−M
i
). (1)

To formulate the infinite version of this requirement, letMi be the σ-algebra
on XN induced by the model M i.5 Agent i’s theory f i : XM i → [0, 1] can

5That is, Mi is generated by the equivalence classes {ωMi} ×X−M
i

.
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also be viewed as a function fromXN to [0, 1] that is measurable with respect
to Mi, i.e., that takes on the value f i(ωM i) for every ω ∈ {ωM i} ×X−M i

.
We adopt this view throughout our formal development, while thinking of
f i as a function on XM i

for interpretation. To keep notation uncluttered,
we refer to both formulations as f i, with the context making clear which is
appropriate. Our assumption for the infinite case is

f i(ω) = E[f |Mi](ω). (2)

As in (1), the probability agent i attaches to event F having observed the
variables in Mi is the probability attached to the event F by the prior
measure ρ, conditional on the event.6

One interpretation for the correct beliefs assumed in (2) is that, as in
Spiegler (2016), agent i builds her theory from her model M i and her access
to a record of an unlimited number of independent draws from the prior
distribution ρ.7 Recall that the agent restricts attention to the variables
in her model. For each of the possible realizations ωM i of such variables
(focusing for interpretation on the finite case), the agent identifies the draws
in the record whose realizations match ωM i for the variables in M i and
calculates the frequency with which the event F has occurred among these
realizations, giving rise to the probabilities f i(ωM i) in (1).

Of course we do not expect agent i to literally have access to an infinite
number of independent draws from the distribution ρ. In practice, the agent
must construct f i using a finite number of observations. Hence, even while
using the device of an infinite record to interpret the beliefs in (1)–(2), we
still feel free to appeal to the case of finite data when developing intuition for
our analysis. Our goal in imposing (1)–(2) is to isolate the implications of
agent i’s model-based inference from the statistical problems that invariably
arise with finite sets of data, much as econometricians prefer to separate
questions of estimation and identification. We thus endow each agent with
correct beliefs and examine the implication of these beliefs. In particular,
(2) imposes a natural consistency requirement across agents.

Remark 1 (Clinging to Models) Our agents are dogmatic in their mod-
els, in the sense that they never entertain the possibility of adopting a dif-
ferent model. People indeed go to great lengths to defend models to which
they resolutely cling. Einstein is reputed to have argued that “God does

6Because Ω in the general case is complete, separable, and metric (i.e., Polish), we can
assume conditional beliefs exist for all ω (Stroock, 2011, Theorem 9.2.1).

7Eyster and Piccione (2013, p. 1492) analogously motivate a condition similar to (1)–
(2) as the outcome of a statistical learning process.
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not play dice with the universe” and Dirac to have argued that “God used
beautiful mathematics in creating the world.” Both are examples of defend-
ing particular (types of) model. We do not examine the process by which
agent i might come to focus on the model M i or might consider alternatives
to the model M i. Importantly, one should not expect such processes to
eliminate differences in models, since different agents may follow different
model selection processes.8

Section 2.3.4 returns to this issue. �

2.3 Beliefs

Forming beliefs about uncertain events, whether by an oracle or a model-
based reasoner, requires two steps. First, the agent identifies their complete-
information beliefs. Then the agent takes expectations of these complete-
information beliefs with respect to an appropriately updated probability
measure.

2.3.1 Full-Information Beliefs

If agent i observed all of the information she deemed relevant, i.e., if agent
i observed the realization ωM i of the variables in her model M i, then she
would regard herself as having full information and would attach to the
event F the probability

f i(ωM i) = f i(ω),

whose value is given by (2). We write the notation-abusing equality as a
reminder that f i is viewed as a function on XN throughout our formal
development, measurable with respect to Mi, but often interpreted as a
function on XM i

. We refer to this as a full information belief. Agent i
ignores any variables outside of M i, but she correctly uses the implications of
the information she does think relevant, namely ωM i . It follows immediately
from (2) that the full-information beliefs of a model-based reasoner agree
with those of an agent oracle having information ωM i .

8Hong, Stein, and Yu (2007) examine a model in which agents restrict attention to
a class of models simpler than that of an (in our terms) agent oracle, but update their
beliefs about which model in the simple class is appropriate. The extension of our model
to such a setting would involve agents who restrict attention to different classes of models,
or follow different model-updating rules. The difficulties agents face in learning from other
agents would only be exacerbated in such a setting.
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2.3.2 Prior Beliefs

If agent i has no information about the state, then she attaches to the event
F the expectation of her full-information belief, given by

E[f i(ω)] = E[E[f |Mi](ω)] = E[f(ω)], (3)

where the first equality is from (2) and the second is an application of the
law of iterated expectations.

This indicates that agent i’s prior belief matches that of an agent oracle.
This is no surprise. Recall we interpret i’s belief as having arisen from a
consultation of the record. Without any information, no observations from
the record are eliminated as possible candidates, and the empirical frequency
calculated by i matches that calculated by an oracle.

2.3.3 Interim Beliefs

We now consider the case where agent i observes the realizations ωIi for
some subset Ii ⊆ N . Agent i then forms her interim beliefs, which we
denote by βi.

Analogously to our treatment of agent i’s theory f i, for purposes of
interpretation, we treat βi as a function XIi → [0, 1], identifying for each
realization ωIi ∈ XIi the updated probability agent i attaches to the event
F . For the formal development, we view βi as an equivalent (and identically
named) function on XN that is measurable with respect to the information
contained in Ii.9

We think of agent i as observing her information ωIi and then consulting
the record. She identifies all those realizations that match her observation
ωIi , and calculates the frequency of the various values of ωM i in these ob-
servations. This gives her an updated distribution of the realizations of the
variables ωM i . Each realization of ωM i gives rise to a full-information belief,
and she takes the expectation of these full-information beliefs with respect
to this updated distribution.

Importantly, the essence of our model-based inference “model” of the
agent is that agent i does not simply look at the empirical frequency of
the occurrence of F under Ii. This reflects our assumption that i acts
as if only her model variables are relevant for predicting F , and the only
value in information is to help her in inferring the variables in M i. Indeed,
calculating βi as the empirical frequency of F under Ii is equivalent to taking

9This latter viewpoint is particularly useful when we include announcements by other
agents in i’s information.

7



M i = N . Given the stark simplicity of our model of model-based reasoners,
agent i appears to be throwing away useful information. Recall, though, that
our model is a representation of a vastly more complex reality, in which (as
we explain in Section 2.3.4) the agent adopts a model, uses whatever means
she has available for formulating full-information beliefs (for convenience
assumed to be correct in our analysis), and then uses information to update
her beliefs about the variables in her model.

Denote by Ii the σ-algebra induced by Ii.10 Then agent i’s interim
belief, denoted by βi(ω), is

βi(ω) = E[f i | Ii](ω). (4)

An oracle can similarly be viewed as examining those observations in the
record that match ωIi , but then taking the expectation of the description
f(ω) over this set. If Ii ⊆ M i, then these two updating procedures are
equivalent.11 We have

βi(ω) = E[f i | Ii](ω)
= E[E[f |Mi] | Ii](ω)
= E[f | Ii](ω),

where the first equality repeats the definition (4) of the interim belief βi,
the next line follows from the definition of the full-information belief from
(2), and the last line follows from the law of iterated expectations.

We hereafter assume Ii ⊆ M i,allowing us to focus on interactions be-
tween agents.12

2.3.4 Why Don’t Agents Choose the Right Model?

Given an unlimited record of previous draws from the distribution ρ, why
doesn’t the agent use the record to identify the correct model? Equivalently,
why doesn’t the agent choose the largest possible model, N , ensuring that
she never omits anything relevant?

In practice, agents are confronted with finite data and a state space of
potentially infinite complexity. Even big data cannot “slip the surly bonds”
of finiteness, while Arrow and Hurwicz (1972, p. 2) note that variables

10Similar to footnote 5, Ii is generated by the equivalence classes {ωIi} ×X−M
i

.
11If II *MI , the agent’s interim beliefs and the agent oracular beliefs need not coincide,

since we cannot apply the law of iterated expectations.
12We view the restriction of Ii to a subset of M i as reasonable in many circumstances,

on the grounds that people are likely to not process information they deem irrelevant.
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are unlimited: “How we describe the world is a matter of language, not of
fact. Any description of the world can be made finer by introducing more
elements to be described.” An agent will never encounter data that unam-
biguously contradicts whatever model she holds or unambiguously identifies
a correct model. Instead, anomalous observations can be explained away
by unobserved factors, and for every event and every set of data, there will
an infinite collection of models that explain the data perfectly, making it
impossible to use the data to find the “right” model. And for every event,
there will be an infinite list of variables about which the agent could collect
information, making it impossible to be a pure empiricist. Al-Najjar (2009)
and Gilboa and Samuelson (2012) elaborate on the futility of interpreting
data without models. If she is to make any meaningful use of the data,
agent i must then appeal to some model M i and proceed as if only the vari-
ables captured by M i matter. In order to focus on how and whether agents
can “learn” from each other, we make the extreme assumption captured in
(1)–(2) that the agent makes perfect use of whatever model she has.

Giacomini, Skreta, and Turén (2017) describe the behavior of 75 pro-
fessional forecasters in terms we recognize as model-based reasoning. The
object of each participant was to predict the US inflation rate, for each of
the years 2007–2014. Forecasting typically began at the beginning of July
of the preceding year (with slightly later initial forecasts for 2007 and 2008),
with individual forecasters updating their predictions at any time until the
end of the year in question. Giacomini, Skreta, and Turén (2017) argue
that the forecasters in their sample appear to be Bayesians (albeit much
more so in non-crisis years), but with different models that lead them to
different forecasts. In response to this disagreement, the agents persevere
in their belief in their models (again, more so in non-crisis years) and in
their disagreement. Such agents would find themselves well at home in our
setting.

3 Learning From Others

We now assume there are K agents. Each agent i = 1, . . . ,K has a model
M i exhibiting the properties outlined in Section 2.2, and has access to in-
formation Ii ⊆M i.

3.1 Unknown Sense or Known Nonsense?

How does agent i extract information from agent j’s beliefs, given that i and
j may have different models? What, if anything, must agent i know about
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j’s model to draw such inferences?
Our leading interpretation is that agent i need know nothing about j’s

model. We refer to this as the case of unknown sense—agent i may allow
for the possibility that there is some sense behind j’s reasoning, but i might
have no idea how this reasoning proceeds. The fundamentalist may comment
that “I have no idea how the chartist comes up with these conclusions.”

Our model is also consistent with the assumption that each agent knows
the models of other agents. In this case, agent i may think that agent j
is ill-advised in her choice of model—this is presumably why agent i sticks
with her own model rather than adopting j’s model—and hence we refer
to this as the case of known nonsense. The fundamentalist might remark
that ”I can read the charts and see how the astrologer comes up with these
predictions, but I do not believe it an improvement to incorporate the zodiac
into my model.”

We follow Geanakoplos and Polemarchakis (1982) in examining the fol-
lowing information-exchange protocol:

(a) First, each agent i observes her information ωIi and forms her interim
belief.

(b) Agents (by assumption truthfully) simultaneously announce their in-
terim beliefs.

(c) Agents update their beliefs in response to these announcements.

(d) Agents then announce their revised beliefs, update, and announce, and
so on.

Formally, this process continues indefinitely; we say that the process termi-
nates if a stage is reached at which beliefs are not subsequently revised.13

In the known nonsense case, one can readily imagine how i draws in-
ferences from j’s beliefs, since i can invert j’s reasoning. But how does i
draw inferences under our leading interpretation, in which i may have no
understanding of how j reasons?

We interpret the updating that occurs in steps (c) and (d) of this process
as follows. Consistent with our discussion in Section 2, we think of the record

13Geanakoplos and Polemarchakis (1982) assume the agents have finite information par-
titions, ensuring that the belief revision process terminates in a finite number of steps.
Sethi and Yildiz (2012) apply Geanakoplos and Polemarchakis (1982) to a model of delib-
eration with different priors. There is no belief updating in their model after the first round
because the first round signals are a sufficient statistic of the relevant private information.
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as including not only the realizations of the state, but also the sequences
of announcements made by the agents. Agent i forms her interim belief by
identifying those states in the record corresponding to her observation ωIi ,
then identifying the relative frequencies of ωM i in these states, and then
taking the expectation of her full-information belief over this set. She forms
her next update by restricting attention to the subset of such states in which
the other agents’ first announcements match those she has observed, and
again identifying the relative frequencies of ωM i in these states and taking
the expectation of her full-information belief over this set. She continues
similarly in subsequent rounds.14

3.2 The Details of Updating Beliefs

Fix ω and suppose that agent i has observed her information ωIi and the
other agents have announced the vector b−i0 = (b10, . . . , b

i−1
0 , bi+1

0 , . . . , bK0 ),
where the jth-element of the vector b−i0 corresponds to agent j’s announced
interim belief bj0 = βj(ω) of the event F (determined by j’s observation of his
information). Agent i then forms a belief denoted by βi(ωIi , b

−i
0 ). Letting

B−i0 be the σ-algebra generated by the announcement b−i, agent i forms her
model-based belief about the event F as15

βi(ω, b−i0 ) = E[f i|Ii,B−i0 ](ω). (5)

Denote the interim belief announced by agent i by bi0, the second poste-
rior by bi1, and so on; the vector of announced posteriors is similarly denoted
by b0 = (bi0, b

−i
0 ), b1 = (bi1, b

−i
1 ), and so on. The beliefs we have examined to

this point are
bi0 = βi(ω) and bi1 = βi(ω, b−i0 ).

Let B−i1 denote the σ-algebra induced by the announcements (b−i0 , b−i1 ). Then
given the beliefs bi0 = βi(ω) and bi1 = βi(ω, b−i0 ), an announcement by the
remaining agents of their updated posteriors bj1 = βj(ω, b−j0 ) results in agent

14Each agent’s beliefs in any round of the protocol depend only on previous-round beliefs
of the other agents. There is then no circularity of the type that arises in Spiegler (2016)
when considering decisions.

15Throughout the formal analysis, agent i’s beliefs at each stage of the updating process
are given by a function on XN that is measurable with respect to the σ algebra generated
by the relevant information. We conserve on notation by using βi(·) to denote these
beliefs, such as βi(ω), βi(ω, b−i0 ), βi(ω, b−i0 , b−i1 ), and so on, where · identifies the relevant
information. (Recall footnote 9.) In examples, we replace ω by ωIi in this notation to
serve as a reminder of agent i’s initial information.
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i updating her beliefs to

bi2 = βi(ω, b−i0 , b−i1 ) = E[f i|Ii,B−i1 ](ω).

Letting B−in and Bn denote the σ-algebras induced by (b−i0 , . . . , b−in ) and
(b0, . . . , bn), we have, for all n,

bin+1 = βi(ω, b−i0 , . . . , b−in ) = E[f i|Ii,B−in ](ω) = E[f i|Ii,Bn](ω),

where the last equality follows from σ(Ii,B−in ) = σ(Ii,Bn) (and σ(A,B)
is the σ-algebra generated by the σ-algebras A and B). Denote by b :=
(b0, b1, . . . ) the infinite sequence of announcements and by B∞ the σ-algebra
induced by b. It will also be useful to keep track of the beliefs of the public
oracle,

E[f |Bn] and E[f |B∞].

Intuitively, a public oracle is an agent whose model is given by N and whose
theory is thus given by f , and who observes the announcements of all players,
but no other information.

Since each agent i and the public oracle follow Bayesian updating on
the sequence of increasingly informative announcements (filtrations) (B−in )
and (Bn), the resulting sequence of updates are martingales and so converge
(with probability one under ρ) to limits which are measurable with respect
to the limit σ-algebras. Summarizing this discussion:

Lemma 1 The updated beliefs

(E[f i|Ii,B−in ])∞n=1 and (E[f |Bn])∞n=1

are martingales, with ρ-almost-sure limits

E[f i|Ii,B−i∞ ] and E[f |B∞].

Remark 2 (Different Models or Different Events?) We interpret our
analysis as that of agents forming beliefs about a single event F , but with
different models. The challenge is then to examine how agents infer infor-
mation relevant to their own models from other agents who have different
models. Returning to our example, the fundamentalist may recognize that
there is information to be gleaned about fundamentals from another agent
who is primarily concerned with charts.

Much of the analysis of this section could be recast as one in which every
agent is an oracle, but the agents are forming beliefs about different events.
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The challenge is then to examine how agents infer information about their
own events from other agents who are concerned with other events. One
fundamentalist may be concerned with industrial stocks, while recognizing
that there is useful information to be gleaned from the beliefs of an analyst
who specializes in agricultural futures. For the purposes of much of this
section, it is a taste question which interpretation is most congenial. How-
ever, most of the results in subsequent sections are consistent only with our
preferred interpretation of agents using different models to reason about a
common event. �

3.3 Example

Agent i may find j’s beliefs relevant for two reasons. First, j may observe
a variable that appears in i’s model but i does not observe. A fundamen-
talist may be convinced that the outcome of a firm’s recent drug trial is
important, but may not be privy to that outcome, and so may glean in-
ferences from the beliefs of an insider. Second, there may be correlations
between the variables. A fundamentalist may take note when the CEO of a
firm opens a secret bank account in the Cayman Islands, not because such
accounts appear directly in the list of fundamentals, but because they are
correlated with other variables that do. If the president of the country be-
lieves in astrology, then government policy may cause firm fundamentals to
be correlated with astrological phenomena, inducing the fundamentalist to
glean information from the beliefs of the astrologer.

Example 1 Suppose the state space is given by {0, 1}4. The pair (ω1, ω2) is
drawn from the distribution Pr{(ω1, ω2) = (0, 0)} = Pr{(ω1, ω2) = (1, 1)} =
3
8 , Pr{(ω1, ω2) = (0, 1)} = Pr{(ω1, ω2) = (1, 0)} = 1

8 , and the pair (ω3, ω4)
is independently drawn from a distribution with an identical correlation
structure. The event is

F =
{
ω :
∑4

k=1
ωk ≥ 2

}
.

There are two agents. Agent 1’s model and information are given by

M1 = {1, 2, 3, 4} and I1 = {2, 3}

while agent 2’s are given by

M2 = {3, 4} and I2 = {4}.
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State Prior 2’s theory Interim beliefs First-round updates Second round
(ω1, ω2, ω3, ω4) ρ f(ω) f2(ωM2) β1(wI1) β2(wI2) β1(ωI1 , b20) β2(ωI2 , b10) β2(ωI2 , b10, b

1
1, b

2
0)

(0, 0, 0, 0) 9/64 0 3/8 1/16 14/32 0 3/8 3/8
(0, 0, 0, 1) 3/64 0 5/8 1/16 29/32 1/4 5/8 5/8
(0, 0, 1, 0) 3/64 0 5/8 13/16 14/32 1/4 14/32 5/8
(0, 1, 0, 0) 3/64 0 3/8 13/16 14/32 3/4 14/32 3/8
(1, 0, 0, 0) 3/64 0 3/8 1/16 14/32 0 3/8 3/8
(0, 0, 1, 1) 9/64 1 1 13/16 29/32 1 29/32 29/32
(0, 1, 0, 1) 1/64 1 5/8 13/16 29/32 1 29/32 29/32
(1, 0, 0, 1) 1/64 1 5/8 1/16 29/32 1/4 5/8 5/8
(0, 1, 1, 0) 1/64 1 5/8 1 14/32 1 5/8 5/8
(1, 0, 1, 0) 1/64 1 5/8 13/16 14/32 1/4 14/32 5/8
(1, 1, 0, 0) 9/64 1 3/8 13/16 14/32 3/4 14/32 3/8
(1, 1, 1, 0) 3/64 1 5/8 1 14/32 1 5/8 5/8
(1, 1, 0, 1) 3/64 1 5/8 13/16 29/32 1 29/32 29/32
(1, 0, 1, 1) 3/64 1 1 13/16 29/32 1 29/32 29/32
(0, 1, 1, 1) 3/64 1 1 1 29/32 1 1 1
(1, 1, 1, 1) 9/64 1 1 1 29/32 1 1 1

M1 = {1, 2, 3, 4}, M2 = {3, 4},
I1 = {2, 3}, I2 = {4}.

Figure 1: The beliefs for Example 1. Because agent 1 is an oracle, her theory
agrees with the indicator f and so is not listed separately.

This information is summarized in Figure 1, together with the interim beliefs
β1(ωI1) and β2(ωI2).

Now we turn to updating in response to others’ beliefs. First, consider
agent 1, who is an oracle. Agent 2 observes only one piece of information,
namely ω4, and different realizations of ω4 cause agent 2 to announce dif-
ferent interim beliefs. Agent 1’s first-round update, given by (5), is then
identical to the interim belief agent 1 would have if 1 observed {ω2, ω3, ω4}.
We report these beliefs in Figure 1, in the column labeled β1(ωI1 , b20). There
is nothing more agent 1 can learn, and hence agent 1 does no further up-
dating.

Turning to agent 2, suppose, first, b10 = 1. Agent 2 observes ω4, and
infers that agent 1 has observed ω3 = 1. Agent 2 then has (from her point
of view) full information. Any information about ω2 in agent 1’s belief agent
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2 considers irrelevant. Agent 2’s updated beliefs β2(ωI2 , b10) about the event
F are then given by

β2(0, 1) = 5/8 and β2(1, 1) = 1.

We see here the difference between model-based and oracular updating.
An agent-2 oracle who observed ω4 = 0 and b10 = 1 would infer that the
state is (0, 1, 1, 0) with probability 1/2 and (1, 1, 1, 0) with probability 1/2.
Both states give rise to the event F , and so the agent-2 oracle would attach
posterior probability 1 to the event. In contrast, the model-based updater
who has observed ω4 = 0 and b10 = 1 draws the inference that the state
(in her model) (ω3, ω4) equals (1, 0). The agent then calculates her full
information probability of F , given (ω3, ω4) = (1, 0), which is 5/8.

The case of b10 = 1/16 is similar.
Finally, suppose b10 = 13

16 . Unlike the previous two cases, this observation
does not unambiguously identify player 1’s observation, instead pooling the
realizations (0, 1) and (1, 0) of (ω2, ω3). Let ρ2(ωM2 |ωI2 , b10) identify the
probabilities agent 2 attaches to the values of the states (in her model)
ωM2 = (ω3, ω4) given the information ωI2 and the announcement b10. Then

ρ(0, 0 | 0, 13/16) = 3/4, ρ(1, 0 | 0, 13/16) = 1/4,
ρ(0, 1 | 1, 13/16) = 1/4, and ρ(1, 1 | 1, 13/16) = 3/4.

Agent 2’s updated beliefs β2(ωI2 , b10) about the event F are then given by

β2(0, 13/16) = 14/32 and β2(1, 13/16) = 29/32.

Again, these beliefs differ from those of an agent-2 oracle, who attaches
probabilities 5/8 (after observing (ω4, b

1
0) = (0, 13/16)) and 1 (after observ-

ing (ω4, b
1
0) = (1, 13/16)) to event F . The results of agent 2’s updating

are reported in the column β2(ωI2 , b10). This concludes the first round of
updating.

The subsequent round of updating is described in Appendix B.2. �

3.4 How Revealing are Beliefs?

Why not have agents simply announce their information rather than their
beliefs? We are comfortable in abstracting from the details of agents’ in-
teractions by using the exchange of beliefs as a convenient proxy for the
workings of such interactions, but we are not comfortable simply assuming
the interaction will reveal all of the agents’ information.
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This difference matters. As illustrated by Geanakoplos and Polemar-
chakis (1982, Proposition 3) and Figure 4 below, an agent oracle need not
hold the same beliefs as someone who can observe the information contained
in ∪Kk=1I

k.16 Instead, some player k’s belief announcements may pool to-
gether some of the information contained in Ik. Constructing such examples
is straightforward, even when the agents are all oracles.

One might counter that the pooling encountered in these examples is
nongeneric (Geanakoplos and Polemarchakis, 1982, Proposition 4). Indeed,
one might argue that for a generic specification of prior beliefs, each agent’s
first announcement reveals that agent’s information, and hence we need not
worry about multiple rounds of announced beliefs.

We first note that if the state space is a (multi-dimensional) continuum
with agents receiving continuously distributed signals, and if an agent ob-
served several signals, then a one-dimensional announcement will typically
(and generically) not reveal all the agent’s information. We find it conve-
nient in the examples to strip away complications by working with discrete
signals, but are then unwilling to appeal to genericity arguments. Second,
even within a discrete framework, the space of prior beliefs may not be the
appropriate space to seek genericity. For example, the factors determining
which state has occurred may be summarized by a tree, with random moves
at decision nodes and terminal nodes corresponding to states. We would
then apply genericity arguments to the mixtures appearing in the tree. If
this tree has a nontrivial structure, then generic specifications of the proba-
bilities appearing in the tree will induce probability distributions over states
that appear nongeneric, but that we nonetheless view as robust.

We believe that the repeated announcement of beliefs gives us infor-
mation transmission similar to that allowed by (for example) the common
knowledge that agents are willing to trade, sufficiently so that we are will-
ing to avoid modeling the fine details of market microstructure by working
directly with sequences of belief announcements. However, we are not con-
vinced that market or other interactions will necessarily reveal every detail
of every agent’s information, and so would be skeptical of a model that
precluded pooling.

3.5 The Bliss of Others’ Ignorance

Our next example illustrates a phenomenon that can only arise with agents
having different models: increasing the information of one agent (even when

16The limit beliefs held by an agent oracle are Geanakoplos and Polemarchakis’s (1982)
indirect communication equilibrium beliefs.
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State Prior Interim beliefs First-round update
(ω1, ω2, ω3) ρ f∗(ω) β1(ωI1) β2(ωI2) β1(ωI1 , b20)

(0, 0, 0) 1/10 0 (2x+ y)/5 (x+ y)/4 0
(1, 0, 0) 1/10 x (x+ y)/5 (x+ y)/4 (x+ y)/2
(0, 0, 1) 1/10 0 (2x+ y)/5 (x+ y)/4 0
(1, 0, 1) 1/10 y (x+ y)/5 (x+ y)/4 (x+ y)/2
(0, 1, 0) 2/10 x (2x+ y)/5 (2x+ y)/6 (2x+ y)/3
(1, 1, 0) 2/10 0 (x+ y)/5 (2x+ y)/6 0
(0, 1, 1) 1/10 y (2x+ y)/5 (2x+ y)/6 (2x+ y)/3
(1, 1, 1) 1/10 0 (x+ y)/5 (2x+ y)/6 0

Ω = {0, 1}3, M1 = {1, 2, 3}, M2 = {2, 3},
I1 = {1}, I2 = {2}.

Figure 2: The beliefs for Example 2.

another agent thinks the information is valuable) can result in a deterioration
of inferences.

Example 2 We jump immediately to the tabular presentation of this ex-
ample, which includes all the relevant information, presented in Figure 2. In
contrast to the presentation of our earlier examples, we replace the column
specifying the indicator function, f , with f∗, its expected value conditional
on all the agents’ model variables, i.e., f∗(ω) := E[f(ω) | ω1, ω2, ω3]. In
Example 1, N = ∪iM i, which is to say that the variables contained in
{0, 1}∪iM i

suffice to determine the value of f . In the current example, there
are additional variables in the state space that we have not presented. These
variables lie outside all agents’ models, and play a role in the analysis only
to the extent that they shape the values of f∗ and so we omit them from
the table.

Since ω1 is independent of (ω2, ω3), agent 2 learns nothing from agent 1
and does no updating. Agent 1 learns the realization of ω2 from agent 2,
and so does one round of updating. In four of the states, agent 1 learns the
probability of F , namely 0. Agent 1 overestimates the value of F in two of
the remaining four states and underestimates it in the remaining two states.

Now suppose we give agent 2 more information, as displayed in Figure 3.
Agent 2 again does not update, while agent 1 does one round of updating.
As a result of the additional information, agent 2 now pools her states.
Agent 1 does not estimate the probability of F correctly in any state. �
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State Prior Interim beliefs First-round update
(ω1, ω2, ω3) ρ f∗(ω) β1(ωI1) β2(ωI2) β1(ωI1 , b20)

(0, 0, 0) 1/10 0 (2x+ y)/5 x/2 2x/3
(1, 0, 0) 1/10 x (x+ y)/5 x/2 x/3
(0, 0, 1) 1/10 0 (2x+ y)/5 y/2 y/2
(1, 0, 1) 1/10 y (x+ y)/5 y/2 y/2
(0, 1, 0) 2/10 x (2x+ y)/5 x/2 2x/3
(1, 1, 0) 2/10 0 (x+ y)/5 x/2 x/3
(0, 1, 1) 1/10 y (2x+ y)/5 y/2 y/2
(1, 1, 1) 1/10 0 (x+ y)/5 y/2 y/2

Ω = {0, 1}3, M1 = {1, 2, 3}, M2 = {2, 3},
I1 = {1}, I2 = {2, 3}.

Figure 3: The result of giving agent 2 in Figure 2 increased information.

3.6 Properties of the Belief Updating Process

The following proposition gathers some information about the belief-updating
process. Recall that throughout, we maintain the assumption that Ii ⊆M i

for all i, and that b = (b0, b1, . . . ) denotes the complete sequence of publicly
announced beliefs with associated σ-algebra B∞. We introduce the omni-
scient oracle who, in addition to having the model N , knows the realization
of the state.

Proposition 1

1. IfMi is finite for all i ∈ {1, . . . ,K}, then b is eventually constant, i.e.,
the updating process terminates. If the M i are infinite, the updating
process need not terminate.

2. The limiting beliefs of different agents need not be equal.

3. With ρ-probability one, once an agent’s belief equals 0 or 1, that agent’s
beliefs agree with those of the omniscient oracle, and so are never
subsequently revised.17 Thus, two agents cannot simultaneously assign
a belief of 0 and 1 to the event F .

17So model-based reasoners cannot match the common description of being “often wrong
but never in doubt.”
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4. Agent i’s private information is only pooled in the limit if it does not
matter to agent i, that is,

E[f i | Ii,B∞] = E[f i | B∞].

5. If f depends only on the variables in M i, then f i = f and agent i’s
limit belief equals the agent oracular and public oracular belief, that is,

E[f | Ii,B∞] = E[f i | Ii,B∞]

= E[f i | B∞]
= E[f | B∞].

6. If ∪jIj ⊆M i, then agent i’s limit belief equals the agent oracular and
public oracular belief,

E[f | Ii,B∞] = E[f i | Ii,B∞]

= E[f i | B∞]
= E[f | B∞].

Proof.

1. At each round n of the updating process, agent i’s belief about the
event F is the expectation of i’s full-information belief conditioning on
the σ-algebra reflecting i’s information and the information revealed
by the collective announcements of the agents, σ(Ii,Bn). The se-
quence (σ(Ii,Bn))∞n=0 is a filtration, with each σ-algebra being coarser
than σ(I1, . . . , IK). If all Mj are finite, then each σ(Ii,Bn) and
σ(I1, . . . , IK) are generated by finite partitions, and so the filtration
must eventually be constant, ensuring that the updating process ter-
minates. Appendix B.3 describes an example with infinite M1 and
M2 in which updating proceeds for an infinite number of rounds.

2. Example 1 shows that the limit beliefs need not agree. With positive
probability, the limiting beliefs in Appendix B.3 are not equal.

3. A belief bin for agent i can equal an extreme value (0 or 1) at some
round n if and only if the full-information belief f i(ω) takes the same
extreme value on a full ρ-measure event in σ(Ii,Bn), which implies
the omniscient oracle has the same beliefs on a full ρ-measure event
in σ(Ii,Bn), and so on every subsequent subevent in the sequence.
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Since the omniscient oracle cannot have two distinct beliefs, it is then
immediate that two agents cannot simultaneously assign a beliefs of 0
and 1 to the event F .

4. Proof is by contradiction. Suppose that

E[f i | Ii,B∞] 6= E[f i | B∞].

Then, B∞ must pool together some states that agent i does not pool
together, and on which f i is not constant.18 But if this were the case,
then there would be an announcement from agent i not contained in
B∞, a contradiction.

5. Immediately follows from the definitions and item 4.

6. We verify the first equality. Since σ(Ii,B∞) ⊆ σ(∪jIj), if ∪jIj ⊆Mi,
then σ(Ii,B∞) ⊆ σ(Mi), and so (using (2) and the law of iterated
expectations)

E[f i | Ii,B∞] = E[E[f | Mi] | Ii,B∞]

= E[f | Ii,B∞].

The second equality is just item 5 above, while the third equality is
established by an identical argument to that which verified the first
equality.

Remark 3 (Common Knowledge) If we adopt the interpretation that
the agents know each others’ models, then their limit beliefs are common
knowledge. Appendix B.4 provides details. �

18More precisely, there exist two positive probability events E and E′ in σ(Ii,B∞) not
separated by B∞ (i.e., for all events B ∈ B∞, we have either E,E′ ⊆ B or (E∪E′)∩B = ∅)
for which E[f i | E] 6= E[f i | E′].
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4 Agents and Oracles

4.1 Do Agents Agree?

In one sense, it is obvious (and our earlier discussion confirms) that when
agents have substantively different models, their limit beliefs may not agree.
We now explore the sources and implications of agreement.

To ease notation, we consider the case of two agents. We say that limit
beliefs necessarily agree if, for all ω ∈ Ω, the limit beliefs of agents 1 and 2
are equal, i.e.,

E[f1|I1,B∞](ω) = E[f2|I2,B∞](ω). (6)

The left side is agent 1’s model-based belief, giving 1’s observation of ωI1
and the announced sequence of beliefs, and the right side is agent 2’s corre-
sponding belief. From Proposition 1.4, equation (6) can be rewritten as

E[f1|B∞](ω) = E[f2|B∞](ω).

Given I1 and I2, we say that the variable k ∈M i is redundant in agent
i’s model if E[f i | I1, I2] is constant in ωk.

When the variables in Ii \M j are not redundant for agent i, it seems dif-
ficult to achieve necessary agreement. Suppose k ∈ Ii \M j is not redundant
for agent i. Then we would expect agent i’s belief to vary as the value of ωk
varies, while agent j’s theory is not responsive to variations in the values of
ωk for k 6∈M j . It may still be that agent j’s belief varies with ωk (reflecting
changes in j’s beliefs over ωMj ), but agent j’s theory averages f over ωk
and so it seems difficult to obtain agreement on the more confident beliefs,
precluding necessary agreement. Appendix B.5 illustrates this intuition.

While suggestive, this intuition fails when there is no variation in be-
liefs. The example in Figure 4 has the feature that both agents pool their
information (agent 1 because she is not fully informed). Consequently, both
agents’ beliefs agree with the prior.

Under independence, necessary agreement implies either that the vari-
ables in Ii \M j are redundant, or the information is not being revealed (as
in Figure 4):

Proposition 2 Suppose the variables ωk are drawn independently and K =
2. Suppose the beliefs of agents 1 and 2 necessarily agree. If for some
i ∈ {1, 2}, the variables in Ii \M j are not redundant for agent i, then for
some j ∈ {1, 2} (which may but need not equal i)

E[f j | B∞] 6= E[f j | I1, I2],
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State Prior Theories Beliefs
(ω1, ω2) ρ f(ω) f1(ωM1) f2(ωM2) β1(ωI1) β2(ωI2)

(0, 0) 1/4 0 0 1/2 1/2 1/2
(0, 1) 1/4 1 1 1/2 1/2 1/2
(1, 0) 1/4 1 1 1/2 1/2 1/2
(1, 1) 1/4 0 0 1/2 1/2 1/2

X = {0, 1}, M1 = {1, 2}, M2 = {2},
I1 = {1}, I2 = {2}.

Figure 4: An example with agreement, even though variable 1 is not redun-
dant for agent 1.

that is, not all the agents’ information is revealed.

Note that if agents’ information is not all revealed, then even if the
different variables in N are independent, agent’s beliefs conditional on B∞
need not be independent.

Proof. Suppose the beliefs of agents 1 and 2 necessarily agree and that
I1 \ M2 is not redundant for agent 1, Suppose, moreover, that for both
i = 1, 2,

E[f i | B∞] = E[f i | I1, I2], (7)

so that all agents are effectively conditioning on all the information. Since
the variables are independent, E[f2 | I1, I2] does not depend on ωk for
k ∈ I1 \M2. But necessary agreement implies E[f1 | B∞] = E[f2 | B∞]
while nonredundancy of I1 \M2 implies E[f1 | I1, I2] must depend on ωk
for some k ∈ I1 \M2, contradicting (7).

Hence, when variables are independent, agents necessarily agree only if
either there are effectively no differences in information (i.e., information is
either redundant or common) or not all information is revealed.

Correlation in variables may allow necessary agreement even when there
are nonredundant variables and all information is revealed. If there is cor-
relation, then agent 1 may observe information that is useful to agent 2, not
because it appears in 2’s model but because it is correlated with the values
of other variables in 2’s model (that 2 does not observe). The example in
Appendix B.6 illustrates that this can occur. Moreover, Section 5 shows
that strong correlation implies limit beliefs will be close.
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Conversely, redundancy in general leads to agreement, with or without
independence. In the following, we must strengthen redundancy since E[f1 |
I1, I2] constant in ωk for all k ∈ I1 \M2 need not imply that E[f1 | I1] is
constant in ωk for all k ∈ I1 \M2 (for example, ωk may be correlated with
a variable in I2 ∩M1).

Proposition 3 Suppose K = 2, E[f1 | I1,G2] is constant in ωk for all
k ∈ I1 \M2 and all sub-σ-algebras G2 of I2, and E[f2 | I2,G1] is constant
in ωk for all k ∈ I2 \M1 and all sub-σ-algebras G1 of I1. Then, the limit
beliefs of agents 1 and 2 necessarily agree, and agree with the public oracular
belief.

Proof. The strengthened redundancy assumptions imply that no matter
what agent 1, for example, learns from agent 2’s announcements, 1’s pre-
diction is independent of ωk for all k ∈ I1 \M2. This implies that, without
loss of generality, we may assume Ii \M j = ∅ for all i. This implies that
for each agent i, I1 ∪ I2 ⊆ M i, and so by Proposition 1.6, agent i’s limit
belief necessarily agrees with the public oracular belief, and so with agent
j’s limit belief.

4.2 The Wisdom of the Crowd?

The idea of the “wisdom of the crowd” (e.g., Surowiecki (2004), Wolfers and
Zitzewitz (2004)) is that groups or “crowds” of people effectively aggregate
information, even if their members disagree. We can thus reasonably assert
that information is aggregated, even though various agents disagree, as long
as the crowd forms beliefs that are “correct on average.”

We have introduced agent oracles, the public oracle and the omniscient
oracle. We now introduce the universal oracle, who has access to all of the
agents’ information and hence has beliefs E[f | I1, . . . , IK ].

All oracular beliefs are based on the true indicator function f . The
difference between the different oracles is the information on which they
condition. In order of increasing information, the public oracle has the least
information (namely, B∞), followed by an agent’s oracle (who has both B∞
and that agent’s information Ii), then the universal oracle, and finally the
omniscient oracle.

One interpretation of “correct on average” is that there is some statistic
ϕ of the crowd’s limit beliefs that necessarily agrees with the universal oracle.
There are many possible candidates for such a statistic (mean, median, etc).
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It is easy to see that if there is any such statistic, then the public oracle
effectively aggregates all the agents’ information.

Proposition 4 Suppose there exists a function ϕ : [0, 1]K → [0, 1] that
necessarily agrees with the universal oracle, i.e., for all ω ∈ Ω,

ϕ
(
E[f1 | I1,B∞](ω), . . . ,E[fK | I1,B∞](ω)

)
= E[f | I1, . . . , IK ](ω). (8)

Then, for all ω ∈ Ω, the public and universal oracular beliefs coincide:

E[f | I1, . . . , IK ](ω) = E[f | B∞](ω).

Proof. From Proposition 1.4,

ϕ(E[f1 | I1,B∞](ω), . . . ,E[fK | I1,B∞](ω)) =

ϕ(E[f1 | B∞](ω), . . . ,E[fK | B∞](ω)),

and so the statistic (as a function of limit beliefs) must be measurable with
respect to the sequence of public announcements B∞, and by (8) then so
must be the belief of the universal oracle. But then the universal oracle
must agree with the public oracle.

The least demanding standard for beliefs being correct on average is that
the universal oracular belief lies in the convex hull of the agents’ updated
beliefs. Unfortunately, even this mild requirement is not guaranteed.

Example 3 We examine a case in which M1 ∪M2 = Ω = I1 ∪ I2 = Ω, so
every variable appears in the model of at least one agent and is also observed
by at least one agent. This presents conditions most favorable to information
aggregation. Consider the environment in Figure 5. Both agents observe the
information they deem relevant, neither updates, and their limiting beliefs
are given by their theories. In every state, the universal oracular belief
(given by f∗(ω)) lies outside the convex hull of the agents’ limit beliefs.

F

Our next proposition shows it is a pervasive result that the universal
oracular belief lies outside the convex hull of the model-based beliefs. A
subset Ñ ⊂ N is sufficient if the variables in Ñ suffice to determine whether
F has occurred. Obviously N is always a sufficient set. There is always at
least one minimal sufficient set, and there may be multiple minimal sufficient
sets (e.g., if the realizations of some variables are perfectly correlated).
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State Prior Theories
(ω1, ω2) ρ f∗(ω) f1(ωM1) f2(ωM2)

(0, 0) 1/4 7/8 1/2 9/16
(0, 1) 1/4 1/8 1/2 1/2
(1, 0) 1/4 2/8 9/16 9/16
(1, 1) 1/4 7/8 9/16 1/2

X = {0, 1}, M1 = {1}, M2 = {2},
I1 = {1}, I2 = {2}.

Figure 5: The universal oracular beliefs (given by f∗(ω)) are not in the
convex hull of agent beliefs.

Proposition 5 Suppose X and N are finite and let ∪Kk=1M
k = ∪Kk=1I

k =
Ñ for some minimal sufficient set Ñ , with the collection {Mk}k pairwise
disjoint and Mk ( Ñ for each k. Suppose ρ has full support. Then there
exist states for which the universal oracular belief lies outside the convex hull
of the model-based beliefs.

Proof Because no model is sufficient, f is not constant. Suppose first
that beliefs reveal the agent’s information, i.e., B∞ = σ(I1, . . . , IK). Then
the agents’ limit model-based beliefs will be their full-information beliefs.
However, because f is not measurable with respect to any Mj , for every
agent there is a state at which her beliefs do not equal 0 or 1.

We now note that there is a state at which every agent’s belief is strictly
between 0 and 1. Otherwise it could not be the case that for every state,
there is at least one agent whose belief is either 0 or 1.19

Because Ñ is sufficient, the universal oracular belief will always be 0 or
1, and hence must sometimes lie outside the convex hull of the agents beliefs.

Finally, if beliefs are not revealing, then the agents have less information,
and so again there cannot be an agent whose beliefs are always either 0 or
1.

This result does not require that announcements pool information, and
so is not simply a statement that the universal oracle has more information

19 Since ρ has full support, if f i(ωMi) = 1 for some ωMi , then f(ωMi , ω−Mi) = 1 for
all ω−Mi . Suppose for some ω′Mj , f j(ω′Mj ) = 0. Then for all ωMi and all ω−Mi−Mj ,
f(ωMi , ω′Mj , ω−Mi−Mj ) = 0. But this is impossible, and so f(ω) = 1 for all ω, a contra-
diction (because f is not constant).
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than does any single agent—in the limit they will often have identical infor-
mation. However, the universal oracle has a more encompassing model than
any of the individuals, and hence makes use of more information, leading to
more extreme beliefs.

5 Information Aggregation

This section presents three variations on the idea that groups of agents
will effectively aggregate information if they have a sufficiently common
understanding. The agents need not have similar information, and indeed
each individual agent may have very little information. The protocol will
aggregate their information, as long as their models by which they interpret
this information are not too different.

5.1 Correlated Model Predictions

If the realizations of the variables in the agents’ different models are suffi-
ciently correlated across models, then their limit beliefs will be close. We
view this correlation as an indication that the agents’ models are, for prac-
tical purposes, nearly the same. The extreme case involves agents whose
models are disjoint, but whose realizations are perfectly correlated, so that
the agents effectively have the same model described in different languages.

Proposition 6 Fix agent i’s theory f i. For any ε > 0, there is an η < 1
such that if the coefficient of correlation between agent i’s theory f i and
agent j’s theory f j is at least 1 − η, then agents i’s and j’s limiting beliefs
are within ε of one another with probability 1− ε.

This proposition imposes the correlation requirement on f i and f j , rather
than imposing the stronger requirement on the correlation between ωM i and
ωMj , because correlation is relevant only for those variables that play a role
in affecting beliefs about F .

The proof first shows that if two agents’ theories are perfectly correlated
ex ante, then their updated beliefs must be identical. In this case, the
agents effectively have identical models with different descriptions. We then
show that if two agents’ theories are close ex ante, then their limit beliefs
must, with high probability, be close. The delicateness in establishing this
seemingly intuitive result arises in showing that it holds irrespective of the
nature of the agents’ information. Appendix A.1 contains the proof.

26



5.2 Models with a Common Component

The next result shows that if the agents’ models share a large enough com-
mon component, then their beliefs cannot be too different from one another.
We fix a group of K agents and examine a sequence (M1

n, . . . ,M
K
n )∞n=1, with

each element (M1
n, . . . ,M

K
n ) specifying a model for each agent, and with

these models growing (at least weakly) larger along the sequence.

Proposition 7 Consider a sequence of (M1
n, . . . ,M

K
n )∞n=1, with Mk

n ⊂Mk
n+1.

Suppose that for all i and j, ∪∞n=0M
i
n = ∪∞n=0M

j
n. Then for every δ > 0,

there exists Nδ such that for any accompanying sequence of information
(I1
n, . . . , I

K
n )∞n=1, for all n > Nδ, with probability at least 1 − δ, the limit

beliefs of all agents are within δ of each other.

The requirement that ∪nM i = ∪nM j ensures that any variable that
eventually appears in i’s model also eventually appears in j’s model (and
that if the models are constant, then they agree). Notice that we do not
require that F is completely determined by the variables in ∪nM i

n. It may
be that no agent i ever acquires a complete understanding of the event F .

The conditions of the proposition are consistent with the agents having
an arbitrarily small, even zero, proportion of their models in common, for
every term in the sequence.20

The proposition indicates that as the agents’ models come to share an
increasing common component, the agents come to share common beliefs.
If the agents have access to little information, these beliefs will be rather
uninformative, while if the agents have access to ample information, these
beliefs will be close to those of an omniscient oracle.

Appendix A.2 contains the proof. The idea behind the proof is that even
though f may depend on an infinite number of variables (in the sense that
there is no finite set of variables L such that f is measurable with respect
to XL, there are a limited number of variables that can be “important”
in determining whether F occurs. Eventually, the important variables are
either included in everyone’s model, ensuring that each agent makes use of
the information that is important to the public oracle, or such variables
never appear in the agents’ models, in which case the public oracle also
lacks access to such information. In either case, the agents’ beliefs must
grow close to those of the public oracle.

20For example, agent 1’s nth model may be {1, 2, 3, . . . , n} ∪ {1, 3, 5, 7, . . . } and agent
2’s nth model may be {1, 2, 3, . . . , n} ∪ {2, 4, 6, 8, . . . }.
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5.3 Dispersed Information

We now investigate the sense in which the limiting beliefs of agents with
diverse models and dispersed information approximate the belief of the om-
niscient oracle as the number of agents grows.

Our first step toward an information-aggregation result is to show that if
an agent’s model is sufficiently sophisticated, than that agent’s full-information
belief cannot be too far from the omniscient belief. For an arbitrary subset
Z ⊆ N , let GZ denote the σ-algebra induces by Z.21 Appendix A.3 contains
the proof of the following:

Lemma 2 For all ζ > 0, there exists a finite set Zζ ⊆ N such for all σ-
algebras H,

ρ
{
ω :
∣∣E[f |GZζ ,H](ω)− f(ω)

∣∣ < ζ
}
≥ 1− ζ.

Lemma 2 implies that if an agent’s model includes the variables Zζ ,
not only is the agent’s full-information belief close to the omniscient belief,
but there is no additional information that can change the agent’s belief
significantly. It is not surprising that if we put enough of the right variables
into an agent’s model, then their full-information belief will be close to
the omniscient oracular belief. The more delicate part of Lemma 2 lies in
showing that nothing else the agent could possibly include in her model can
drive the agent outside the ζ-margin of error.

Remark 4 (Proposition 7 Redux) Lemma 2 allows a variation on Propo-
sition 7. Any sequence whose agents’ models eventually include Zζ must
eventually have beliefs that are close to those of an public oracle (and hence
each other). Lemma 2 plays the role of Lemma A.1 in the proof of Propo-
sition 7, mutatis mutandis. �

We need to replace the full-information beliefs of Lemma 2 with limit-
ing beliefs. It is clear that doing so will require some conditions, even if
all agents were agent oracles—Geanakoplos and Polemarchakis (1982) and
Figure 4 above present examples in which agents’ announcements convey
no information, despite all agents being agent oracles. The culprit behind
the agents’ discombobulation in Figure 4 is that their initial announcements
pool information, preventing even oracular agents from making use of this
information. If we are to even get off the ground, we must ensure some in-
formation transmission. Section 3.4 explains why we do not rule out pooling

21For example, GM
i

=Mi.
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by making the stronger assumption that ρ is generic. It is also worth noting
that genericity would not simplify the argument.

Definition 1 The indicator f is discernible if, for any sets I1, I2 ⊆ N , we
have

E[f |I1, I2] = E[f |σ(E[f |I1],E[f |I2])], (9)

where σ(E[f |I1],E[f |I2]) is the σ-algebra induced by the announcements of
the beliefs E[f |I1] and E[f |I2].

Discernibility requires that the announcements E[f |I1] and E[f |I2] allow
an agent oracle to infer the information contained in I1 ∪ I2 that is relevant
for determining f (but may not allow the agent oracle to identify ωI1∪I2 , and
hence allows the pooling of information that is irrelevant for determining F ).
For any f , discernibility will approximately hold if I1 and I2 are sufficiently
large. Discernibility fails in Figure 4.

We note that discernibility extends to finite numbers of sets. The fol-
lowing result is immediate:

Lemma 3 Suppose f is discernible. Then

E[f |I1, I2, I3] = E[f |σ(E[f |I1, I2],E[f |I3])]
= E[f |σ(E[f |I1],E[f |I2],E[f |I3])].

The first equality is the statement of discernibility, and the second again
applies discernibility.22

We can hope to replace the full-information beliefs of Lemma 2 with
limiting beliefs only if the sequence of announced beliefs conveys sufficient
information. Our route to ensuring this is to examine a large group of
agents. To make the notion “large” precise, we construct a sequence of
groups of agents whose models and information are randomly determined,
designed to capture our interest in agents with diverse models and dispersed
information.

Definition 2 A sequence of groups of agents (with the number of agents
going to infinity) is canonical if there is a probability measure λ and a family
of measures {µM : M ⊂ N} satisfying

22The discernibility condition (9) implies that the expectation E[f |I1, I2] of f condi-
tioning on the σ-algebra σ(I1, I2) is measurable with respect to the coarser σ-algebra
σ(E[f |I1],E[f |I2]), and hence the random variable E[f |I1, I2] is measurable with respect
to σ(E[f |I1],E[f |I2]), or σ(E[f |I1, I2]) = σ(E[f |I1],E[f |I2]).
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1. λ is a full support measure on the space of all finite models,

2. there is a Γ ∈ N such that for each finite model M ⊂ N, µM is a full
support probability distribution over the subsets of M with at most Γ
elements, and

3. in each group, each agent’s model and information are determined by
independent draws from λ and µM .

The agents in a canonical sequence will exhibit a wide variety of mod-
els, reflecting the full-support measure λ. Importantly, sophisticated mod-
els arise with positive probability, and so in large groups, with very high
probability there will be very sophisticated agents. At the same time, the
information of each individual may be paltry (Γ may be small), and hence
individuals may lack the requisite information to form interim beliefs that
are close to full information beliefs.

In a sufficiently large group drawn from a canonical sequence, any agent
whose model contains the variables Zζ (from Lemma 2) will, with high prob-
ability, effectively learn F from the sequence of announced beliefs. Appendix
A.4 proves:

Lemma 4 Suppose f is discernible and fix a canonical sequence of groups
of agents. For all ε > 0, there exists an Nε such that for all n > Nε, every
agent with a finite model M containing Zε2/8 has, with probability at least
1− ε, a limiting belief within ε of the omniscient oracle.

The argument first identifies a set of agents KI whose interim beliefs, given
discernibility, allow any agent whose model is precisely Zε2/8 to form full-
information beliefs. In a sufficiently large set of agents drawn from a canon-
ical sequence, such a set KI will exist with high probability. We then argue
that the limiting beliefs of an agent whose model contains Zε2/8 must be
close to that agent’s full information beliefs, and use Lemma 2 to argue that
the latter must be close to the beliefs of the omniscient oracle. The triangle
inequality (with the help of our choice of the parameter ε2/8) then ensures
that the agents’ limiting beliefs are close to those of the omniscient oracle.

The key to bringing the average of the agents’ limiting beliefs close to
those of the limiting oracle is to have the measure λ insert enough sufficiently
sophisticated agents into the groups in the canonical sequence. Let Λ(ζ) be
the probability that a model drawn according to λ does not contain Zζ .

Proposition 8 Suppose f is discernible and fix a canonical sequence of
groups of agents. For all ε > 0, there exists N∗ε such that for all n > N∗ε ,
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the probability the average of beliefs is within 3ε+ Λ(ε2/8) of the omniscient
belief is at least 1− ε.

Proof. We can choose N∗ε ≥ Nε so that for all n > N∗ε , with probability
at least 1 − ε the proportion of agents whose models include Zε2/8 will be
at least 1 − Λ(ε2/8) − ε and the KI-agents are present. Conditional on
this event, the difference between the average belief and the belief of an
omniscient oracle is then at most

(1− Λ(ε2/8)− ε)((1− ε)ε+ ε) + Λ(ε2/8) + ε ≤ 3ε+ Λ(ε2/8).

The discernibility requirement in Lemma 4 gets the information-revelation
process off the ground in a particularly brutal way, ensuring that for any
information set I, the first announcement by an agent i with M i = Ii = I
reveals all the relevant information contained in I. It would suffice that lim-
iting beliefs reveal such information, and we could formulate discernibility in
terms of limiting beliefs, at the costs of greater complexity and pushing the
assumption further away from the fundamentals of the problem. Alterna-
tively, discernibility is more demanding when applied to small information
sets. We could work with a version of γ-discernibility that applies the dis-
cernibility requirement only to sets with at least γ elements, but then would
need to place stronger requirements on the presence of agents with larger
information sets.

Proposition 8 establishes that if enough agents have large enough (i.e.,
containing Zε2/8) models, then it is very likely that the average belief will
be “close” to that of an omniscient oracle. How close? This depends on the
characteristics of the canonical sequence. If the measure λ puts sufficient
probability on large models, then Λ(ε2/8) will be small. This is the case of a
sophisticated crowd, whose members entertain sufficiently nuanced models
of the forces determining the event F that the revelation of information can
bring their beliefs close to those of the omniscient oracle. If λ concentrates
its probability of small models, Λ(ε2/8) will be large, giving us a dogmatic
crowd whose beliefs are impervious to the onslaught of overwhelming infor-
mation.

Proposition 8 may appear to be nothing more than the statement that if
enough people get it right, then the average will be about right. The more
delicate part of the argument involves showing the beliefs of those who would
otherwise “get it right” are not disrupted by the presence of some agents
with bizarre models. This requires a uniformity condition across σ-algebras
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(in Lemma 2). The average belief is then driven toward the omniscient belief,
not by having those who get it right convincing or converting those who are
confused, but by having the former swamp the latter. Notice, however, that
for this to happen there must be sufficiently many agents with sufficiently
large and common models. There is no similar requirement on the common-
ality of information. Interactions can indeed effectively aggregate dispersed
information, if the agents have a sufficiently common understanding of the
meaning of that information.

6 Discussion and Related Literature

People cannot help but reason via models, different people use different
models, and yet people learn from one another. We provide a tractable
description of model-based reasoning that describes how people can learn
from each other in a disciplined manner. Our analysis confirms that we
should not expect people to agree after exchanging opinions, nor should we
expect the average opinion of a group to be particularly accurate. But our
analysis elucidates the sense in which interactions can effectively aggregate
information and generate approximate consensus, no matter how dispersed
is information and no matter what idiosyncracies various models contain, as
long as the models share a sufficient common core.

A key element of our description is the notion of a model-based rea-
soner, who forms beliefs about the occurrence of an event using only the
variables in her model. Such a reasoner uses information not in her model
only to infer those variables in her model that she does not know. In this
sense, a model-based reasoner uses a particularly simple Bayesian network.
A Bayesian network is a directed acyclic graph, with the arrows capturing
conditional dependencies. A model-based reasoner effectively reasons using
a Bayesian network with two maximal cliques, one capturing the dependence
of the event F on the variables in agent i’s model M i, and another capturing
the possible dependence of variables in M i (but not F ) on variables not in
M i. See Pearl (2009) for an exposition of Bayesian networks, Spiegler (2016)
for an application to decision making, and Spiegler (2019) for a review of re-
cent work. That work focuses the behavioral implications of misinterpreted
correlations and causations, while our focus is on inference and information
aggregation.

Our work shares with Jehiel (2005) the idea that agents will simplify the
description of the world by aggregating states. In particular, we can view
an element of agent i’s model partition {ωM i} ×X−M i

as an analogy class.
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Jehiel (2005) introduced the idea of an analogy class and used it to define an
equilibrium notion for games of perfect information, and Jehiel and Koessler
(2008) discuss an extension to games of incomplete information. Eyster and
Piccione (2013) examine financial traders who partition the state space into
analogy classes, and then form expectations on these analogy classes as in
our (1)–(2).

The idea of the “wisdom of the crowd” has attracted considerable atten-
tion (e.g., Surowiecki (2004), Wolfers and Zitzewitz (2004), Page (2017)).
One can view our model of information exchange as a stylized model of the
process by which the crowd grows wise. Arieli, Babichenko, and Smorodin-
sky (2018) take a different perspective in a similar setting, examining a
model in which the members of a crowd of agents receive signals, update
their beliefs, and then (once) report their beliefs. The question is when
an observer can infer the identity of the underlying state, despite knowing
nothing about the agents’ signal structures. The (rough) answer is that
even if the crowd is arbitrarily large, no inferences can be drawn unless a
signal drives a posterior belief to either 0 or 1. The flavor of this result is
reminiscent of our observations that (Proposition 1) beliefs of 0 or 1 must
match those of an omniscient oracle and that (from Appendix B.1) when
beliefs are interior, Bayes’ rule places very little discipline on models in the
absence of a common prior.

Analyses of information exchange inevitably takes place in the shadow
of Aumann’s agreeing-to-disagree theorem (Aumann (1976)) and Milgrom
and Stokey’s no-trade theorem (Milgrom and Stokey (1982)). An extensive
literature has arisen motivated by a desire to break these results by relaxing
various assumptions underlying them. Perhaps the most obvious approach is
to allow heterogenous priors (e.g., Morris (1994)).23 We believe that agents
will often hold different prior beliefs. For much the same reasons, we believe
that agents will hold different models. We explain in Appendix B.1 that
model-based reasoning imposes more discipline than simply allowing priors
to differ.24

23Disagreement can also arise, reflecting considerations similar to those that arise with
different prior beliefs, when agents have a common prior but nonpartitional information
structures (e.g., Geanakoplos (1989) and Brandenburger, Dekel, and Geanakoplos (1992)),
while the possibility of noise traders (e.g., Kyle (1985) and Ostrovsky (2012) figures promi-
nently among the many other approaches to disagreement and trade.

24Sethi and Yildiz (2016) examine a setting in which agents with different and un-
known prior beliefs learn, but often incompletely, about others’ prior beliefs. Acemoglu,
Chernozhukov, and Yildiz (2016) in which uncertainty about the signal-generating pro-
cess causes posterior beliefs to be sensitive to prior beliefs even after receiving an infinite
sequence of signals, and so allows limiting beliefs of agents with different prior beliefs to
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A Appendices

A.1 Proof of Proposition 6

We first prove a preliminary result that looks obvious, but for the fact that
we require uniformity over σ-algebras H.

Lemma A.1 Suppose (fn)n is a sequence of F-measurable functions con-
verging almost surely to the F-measurable function f †. For all δ > 0, there
exists a set Ωδ with ρ(Ωδ) > 1−δ and an integer Nδ such that for all n > Nδ

and for all σ-algebras H ⊆ F ,∣∣∣E[f †|H](ω)− E[fn|H](ω)
∣∣∣ < δ ∀ω ∈ Ωδ.

Proof. Fix a value δ > 0. Choose λ and ε such that

λ > 1/δ
ε(1 + λ) < δ.

By Egorov’s theorem, there exists a value Nδ and a set Ωδ of measure
at least 1− ε (which is at least 1− δ) with the property that for all n > Nδ,
we have

|fn(ω)− f †(ω)| < ε ∀ω ∈ Ωδ.

We now argue that with probability at least 1− δ, we have∣∣∣E[fn | H]− E[f † | H]
∣∣∣ < δ.

Define

h(ω) :=

{
ε, ω ∈ Ωδ,

1, ω 6∈ Ωδ.

Then,
|fn(ω)− f †(ω)| ≤ h(ω),

and

E[h | H] = εPr(Ωδ | H) + Pr(Ω \ Ωδ | H)
≤ ε+ Pr(Ω \ Ωδ | H).

differ.
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Let A := {ω : Pr(Ω \ Ωδ | H)(ω) > λε}. Then A ∈ H and so

λεPrA <

∫
A
E[χΩ\Ωδ | H]dρ

=
∫
A
χΩ\Ωδdρ

≤ ε,

and so
Pr{ω : Pr(χΩ\Ωδ | H)(ω) > λε} ≤ 1/λ,

and hence we have

Pr{ω : ε+ Pr(Ω \ Ωδ | H)(ω) < (1 + λ)ε} > 1− 1/λ.

Invoking our conditions on λ and ε yields

Pr{ω : E[h | H](ω) < δ} > 1− δ,

and since ∣∣∣E[fn | H]− E[f † | H]
∣∣∣ ≤ E [|fn − f †| | H] ,

we have the desired inequality.

Proof of Proposition 6. Suppose first that the coefficient of correlation
between f i and f j equals 1. Then f j −Ef = α(f i −Ef) ρ-almost surely for
some constant α > 0 (recall (3)). Suppose f i is not constant (if it were, the
result is trivial), so that for some x > 0, Ef + x is in the support of f i.

We now argue that α = 1. En route to a contradiction, suppose α > 1
(a similar argument rules out α < 1). Fix ε > 0 so that α(x − ε) > x and
set B(x) := {ω : x − ε ≤ f i(ω) − Ef ≤ x}. We may assume ρ(B(x)) > 0
(if not, marginally increasing the value of x yields a positive measure set).
Then, for y = αx and B′(y) := {ω : y − αε ≤ f j(ω) − Ef ≤ y}, we have
ρ(B(x)∆B′(y)) = 0.25 From (2), since B(x) ∈ Mi and B′(y) ∈ Mj , we

25The notation A∆B := (A \B)∪ (B \A) is the symmetric difference of the two sets A
and B.
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then have

xρ(B(x)) ≥
∫
B(x)

(f i(ω)− Ef) dρ

=
∫
B(x)

(f(ω)− Ef)dρ

=
∫
B′(y)

(f(ω)− Ef)dρ

=
∫
B′(y)

(f j(ω)− Ef)dρ ≥ (y − αε)ρ(B′(y)),

and so x ≥ α(x− ε), a contradiction.
From Proposition 1.4, we have that agent i’s limiting belief E[f i|Ii,B∞]

equals E[f i|B∞] which equals E[f j |B∞], and so agent i and j’s limiting
beliefs agree on any sequence of announced posteriors.

Turning to the approximation, it is enough to prove that we can make
E|f i − f j | arbitrarily small by choosing η sufficiently small, where 1 − η is
the lower bound on the correlation. We prove the latter by contradiction. If
not, then there exists ε > 0 such that for all n > 0 there exists f jn such that
the correlation between f i and f jn is at least 1− 1/n and yet E|f i− f jn| > ε.

Define X := f i − Ef and Yn := f jn − Ef . Then,

E[YnE(X2)−XE(XYn)]2 = E(X2)[E(X2)E(Y 2
n )− E(XYn)2]

≤ E(X2)[E(X2)E(Y 2
n )− (1− 1/n)2E(X2)E(Y 2

n )]

= (EX2)2E(Y 2
n )[1− 1 + 2/n− 1/n2],

and so YnE(X2)−XE(XYn) converges in mean square to 0 as n→∞ (since
E(Y 2

n ) is bounded above by 1
4). If (Yn)n (or any subsequence) has a limit

in mean square (and so a limit in mean), then that limit must equal X (for
the reasons above). We will show that every subsequence has a convergent
subsubsequence, which implies that the original sequence converges to X.

We use n to index an arbitrary subsequence and let αn := EXYn/E(X2),
so that Yn − αnX converges to 0 in mean square. We claim that (αn)
has a convergent subsequence. For, if not, then |αn| → ∞, which implies
E(Y 2

n )→∞, which is impossible.
Suppose (αnk) converges to some α. Then,

0 ≤ [E(Ynk − αX)2]
1
2 ≤ [E(Ynk − αnkX)2]

1
2 + [E(α− αnk)2X2]

1
2 → 0,

and so Yn converges in mean square to αX, and so α = 1.
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It remains to argue that for n sufficiently large, with probability at least
1− ε, ∣∣E[Yn|Ij ,B∞]− E[X|Ii,B∞]

∣∣ < ε.

By Proposition 1.5, this inequality can be rewritten as

|E[Yn|B∞]− E[X|B∞]| < ε.

Since every subsequence of (Yn)n has a sub-subsequence almost surely con-
verging to X, the desired result is implied by Lemma A.1.

A.2 Proof of Proposition 7

Proof. Fix a value δ > 0. Define

M∞ := σ(M i
1,M

i
2, . . . )

(which is, by assumption, independent of i) and set f̂ := E[f | M∞].
Agent i’s theory under her nth model is given by

f in = E[f | Mi
n] = E[f̂ | Mi

n]

(where the second equality follows from Mi
n being coarser than M∞ and

the law of iterated expectations). Since (Mi
n)n is a filtration, with limit

σ-algebra M∞,
f in → f̂ ρ-a.s.

Our goal is to show that with probability at least 1− δ, we have∣∣E[f in | Iin,B∞(n)]− E[f | B∞(n)]
∣∣ < δ,

where B∞(n) is the σ-algebra induced by the sequence of publicly announced
beliefs for the nth term in the sequence.

By Lemma A.1, with probability at least 1− δ, we have∣∣∣E[f in | B∞(n)]− E[f̂ | B∞(n)]
∣∣∣ < δ.

By Proposition 1.5,

E[f in | Iin,B∞(n)] = E[f in | B∞(n)],
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and so with probability at least 1− δ, we have∣∣∣E[f in | Iin,B∞(n)]− E[f̂ | B∞(n)]
∣∣∣ < δ.

Finally, since B∞(n) is coarser than M∞ (since ∪jIjn ⊆ ∪jMj
n ⊆M∞)

and f̂ := E[f | M∞], we have that with probability at least 1− δ,∣∣E[f in | Iin,B∞(n)]− E[f | B∞(n)]
∣∣ < δ.

A.3 Proof of Lemma 2

Recall that Gt is the σ-algebra generated by the t coordinate of Ω = {0, 1}N ,
and set F t := σ(G1, . . . ,Gt). Since f is measurable with respect to σ(G1,G2, . . . ),
we have

E[f | F t]→ f a.s. [ρ].

Egorov’s theorem implies that for all ζ > 0, there exists Tζ and an event Ωζ ,
with ρ(Ωζ) ≥ 1− ζ/4, for which∣∣E[f | F t](ω)− f(ω)

∣∣ < ζ2/4 ∀t ≥ T ∗ζ , ∀ω ∈ Ωζ . (A.1)

Set Zζ := {1, . . . , Tζ}, so that GZζ = FTζ .

Claim A.1 On a full probability subset of Ωζ ∩ F ,

Pr{E[f | GZζ ,H] ≤ 1− ζ | GZζ} < ζ/4 (A.2)

and on a full probability subset of Ωζ \ F ,

Pr{E[f | GZζ ,H] ≥ ζ | GZζ} < ζ/4. (A.3)

Proof. We prove (A.2); the proof of (A.3) follows similar lines. Define
g†(ω) := E[f | GZζ ,H](ω), and g(ω) := Pr{g† ≤ 1 − ζ | GZζ}(ω).
Note that g is only measurable with respect to GZζ (so in particular,
the inequality in (A.2) is measurable with respect to GZζ ), while g† is
measurable with respect to the finer σ(GZζ ,H).

Recalling that f is the indicator function of the event F , for ω ∈ Ωζ∩F ,
(A.1) is

1− ζ2/4 < E[f | GZζ ](ω),
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and so (A.2) is implied by for ρ-almost all ω ∈ Ωζ ∩ F ,

E[f | GZζ ](ω)] ≤ 1− ζg(ω).

Since the left and right sides of the above inequality are measurable
with respect to GZζ , if the inequality does not hold, there is a positive
ρ-probability event B ∈ GZζ such that,

E[f | GZζ ](ω) > 1− ζg(ω) ∀ω ∈ B. (A.4)

Since B ∈ GZζ , where χA is the indicator function of the event A, and
the first and last (respectively, third) equalities hold because the inte-
grating events are measurable with respect to GZζ (resp., σ(GZζ ,H)),∫

B
E[f | GZζ ]dρ =

∫
B
fdρ

=
∫
B∩{g†≤1−ζ}

fdρ+
∫
B∩{g†>1−ζ}

fdρ

=
∫
B∩{g†≤1−ζ}

g†dρ+
∫
B∩{g†>1−ζ}

g†dρ

≤ (1− ζ)
∫
B
χ{g†≤1−ζ}dρ+

∫
B

1− χ{g†≤1−ζ}dρ

=
∫
B

1− ζχ{g†≤1−ζ}dρ

=
∫
B

1− ζgdρ,

contradicting (A.4). �

Defining
B′ :=

{
ω :
∣∣E[f |GZζ ,H](ω)− f(ω)

∣∣ ≥ ζ}
and

F ′ := {ω : Pr{E[f | GZζ ,H] ≤ 1− ζ | GZζ}(ω) < ζ/4}
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we have (since, up to a zero probability event, Ωζ ∩ F ⊆ F ′ and F ′ ∈ GZζ )

Pr(B′ ∩ F ) = Pr
{
{E[f |GZζ ,H](ω) ≤ 1− ζ} ∩ F

}
≤ Pr

{
{E[f |GZζ ,H](ω) ≤ 1− ζ} ∩ F ′

}
= E

[
E[χ{E[f |GZζ ,H](ω)≤1−ζ}∩F ′ | G

Zζ ]
]

= E
[
E[χ{E[f |GZζ ,H](ω)≤1−ζ} | G

Zζ ]χF ′
]

≤
∫

Ωζ

Pr{E[f |GZζ ,H](ω) ≤ 1− ζ} | GZζ ]χF ′dρ+ ρ(Ω \ Ωζ)

≤ ζ/4 + ζ/4.

Applying a similar argument to B′ \ F , we obtain

Pr(B′ \ F ) ≤ ζ/2,

so that ρ(B′) ≤ ζ.

A.4 Proof of Lemma 4

Proof. Denote by I a collection of subsets of N satisfying Zζ = ∪I such that
no set in I has more than Γ elements. Choose Nε sufficiently large that for
N > Nε with probability at least

√
1− ε, for every set Ii ∈ I, there is an

agent whose model and information set consist precisely of that set. Denote
this set of agents by KI, and suppose this set is present.

Consider now an agent j whose model contains Zζ . We now argue that

ρ
{
ω :
∣∣E[f j | B∞](ω)− f(ω)

∣∣ < ε
}
≥
√

1− ε. (A.5)

Observe first that since for i ∈ KI, agent i’s interim belief is E[f |GIi ],
we have

E[f | B∞] = E
[
f | E[f | B∞], (E[f | GIi ])i∈KI

]
= E

[
f | E[f | B∞],E[f | GZζ ]

]
= E[f | B∞,GZζ ],

where the second equality following from the discernability of f .
From Lemma 2, with probability at least 1− ζ,∣∣E[f | B∞,GZζ ]− f

∣∣ < ζ <
ε

2
. (A.6)

We now bound the first term in the triangle inequality,∣∣E[f j | B∞]− E[f | B∞]
∣∣+
∣∣E[f | B∞,GZζ ]− f

∣∣ ≥ ∣∣E[f j | B∞]− f
∣∣ . (A.7)
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Claim A.2 With probability at least 1− 4ζ/ε,∣∣E[f j | B∞]− E[f | B∞]
∣∣ < ε

2
.

Proof. From Lemma 2, there is a set Ωζ , ρ(Ωζ) > 1 − ζ such that on
Ωζ , ∣∣f j − f ∣∣ < ζ.

Let
B :=

{∣∣f j | B∞]− E[f | B∞]
∣∣ ≥ ε/2} .

Then, ∫
B

∣∣E[f j | B∞]− E[f | B∞]
∣∣ ≥ ερ(B)

2
,

But since B ∈ B∞,∫
B

∣∣E[f j | B∞]− E[f | B∞]
∣∣ =

∫
B

∣∣f j − f ∣∣
< ζρ(B ∩ Ωζ) + ρ(B \ Ωζ)
≤ 2ζ,

and so

ρ(B) <
4ζ
ε
.

�

From (A.6) and the claim, we have that the right side of (A.7) is bounded
above by ε with probability at least

1− ζ − 4ζ/ε >
√

1− ε,

where the inequality follows from ζ = ε2/8.
Since the realization of uncertainty under ρ is independent of the deter-

mination of agents’ information and models, the probability that the set KI

of agents is present and (A.5) holds is
√

1− ε
√

1− ε = 1− ε.
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B Online Appendices

B.1 What’s Wrong with Different Priors?

Could it be that our analysis of model-based reasoning is simply a repackaged
version of allowing agents to hold different priors?

The starkest difference is that models with different prior beliefs impose
virtually no discipline on the relationship of the beliefs of different agents,
and hence on the “collective” beliefs of the agents.26 In contrast, model-
based reasoning ensures that agents’ beliefs about the events they deem
relevant are anchored to the data. This imposes restrictions on the beliefs
of individual agents as well as restrictions on how the beliefs of various agents
can differ.

It is a common characterization of Bayesian updating that (under natural
conditions) at least eventually “the data swamps the prior.” This suggests
that the discordance allowed by differing priors should be only temporary,
with the data eventually imposing as much discipline on a group of agents
with different priors as it does on a group of model-based reasoners. To
investigate this, we examine a sequence in which agents receive increasing
amounts of information. In order to focus clearly in the discipline imposed on
beliefs by this information, we assume the agents have common information.
In particular, let (In)∞n=0 be an increasing sequence of subsets of N. We
consider a sequence in which every agent’s information set Iin in the nth

term is given by In.
We begin with a model of different priors, holding fixed the other aspects

of agents’ models. Suppose each agent has the correct state space and
description f (i.e., is an oracle), but we place no restrictions on the priors
ρi, and in particular no restrictions on how these priors may differ across
agents.

Given the sequence, let (βi,n∞ )K ∞
i=1,n=0 be the sequence of induced limiting

beliefs, for each agent, about the event F . We now argue that once we allow
priors to differ, there are few restrictions placed on the sequence of limit
posteriors (βi,n∞ )K, ∞i=1,n=1, even though the agents are oracles.

Of course, the agents’ limit posteriors are not completely arbitrary, as the
mere fact that they are derived from Bayes’ rule imposes some restrictions.
Say that the sequence (βi,n∞ )K ∞

i=1,n=0 has the martingale property if, for any
agent i and ωIn , there exists ωIn+1 consistent with ωIn with

βi,n+1
∞ (ωIn+1) < βi,n∞ (ωIn), (B.1)

26Di Tillio, Lehrer, Polemarchakis, and Samet (2019) come to a similar conclusion.
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if and only if there also exists ω′In+1
consistent with ωIn with

βi,n+1
∞ (ω′In+1

) > βi,n∞ (ωIn). (B.2)

Intuitively, an agent can receive encouraging news if and only if it is also
possible for the agent to receive discouraging news. Note that this implies
that zero and unitary beliefs are absorbing.

We also impose minimal consistency with f . The consistency require-
ment is the following, where the antecedents should be interpreted as the
joint hypothesis that the limit exists and has the indicated sign, and [ωIn ]
is the cylinder set given by {ωIn , ω−In},

lim
n
βi,n∞ (ωIn) > 0 =⇒ ∃ω ∈ [ω∪nIn ] s.t. f(ω) = 1 (B.3)

and lim
n
βi,n∞ (ωIn) < 1 =⇒ ∃ω ∈ [ω∪nIn ] s.t. f(ω) = 0. (B.4)

Requirements (B.3) and (B.4) are the only ones that connect the event
F with agent beliefs. Without them, there is nothing precluding an agent
from, for example, assigning positive probability to F on the basis of some
information ω∪nIn when F is inconsistent with that information. If that
were to happen, there is clearly no hope for βi,n∞ (ωIn) = Eρi [f | ωIn ].

Proposition B.1 Consider a sequence of groups of agent oracles indexed
by n = 0, . . ., with each agent’s information set in group n given by In,
where the sequence (In)∞n=0 is increasing. Suppose the sequences (βi,n∞ )K, ∞i=1,n=0

satisfy the martingale property and (B.3) and (B.4). Then there exists a
vector of prior beliefs (ρ1, . . . , ρK) generating the limiting posterior beliefs
(βi,n∞ )K, ∞i=1,n=0, i.e., βi,n∞ (ωIn) = Eρi [f | ωIn ].

Before proving this result, we make three observations. First, if ∪∞n=0In =
Ω, then since beliefs are a martingale, βi,n∞ → f ρi-almost surely. For states
with positive probability under ρi and ρ, the data then swamps the prior—
agent i attaches probability one to the event that her beliefs about F con-
verge to those of an omniscient oracle. However, the convergence in the pre-
vious observation is pointwise, not uniform. That is, for any finite sequence
(βi,n∞ ) satisfying the martingale property given in (B.1)–(B.2), there is a
prior rationalizing (βi,n∞ ). Notice that there need be no connection between
such a sequence and the event F . Hence, Bayesian updating from different
priors places no restrictions on finite sequences of agents’ beliefs, no matter
how long. Moreover, if ∪∞n=0In ( Ω, then beliefs over states conditional on
∪∞n=0In are essentially arbitrary, needing only to satisfy the property that
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the conditional probability of F equals the limit of βi,n∞ . Hence, unless we are
dealing with a case in which the agents will eventually resolve every vestige
of uncertainty, updating places few restrictions on beliefs. If agents with dif-
ferent priors are also sufficiently romantic as to think the world will always
contain some mystery, then we cannot expect their beliefs to be coherent.

Proof. We fix an agent i and construct the prior belief ρi, proceeding by
induction. Note that βi,0∞ is the agent’s prior probability of F . If this prior
is either 0 or 1, then so must be all subsequent updates, and then any prior
belief with support contained either on the event F c or on the event F
(respectively, with the requisite set nonempty, by the martingale property)
suffices.

Suppose βi,0∞ ∈ (0, 1). By assumption, the measure βi,1∞ attaches condi-
tional probabilities to a collection of cylinder sets of the form [ωI1 ], with
some of these values larger than βi,0∞ and some smaller. Assign probabilities
ρi([ωI1 ]) to these sets so that the average of the conditional probabilities
is βi,0∞ . Continuing in this fashion, we attach a probability to every cylin-
der set [ωIn ]. It follows from Kolmogorov’s theorem (Billingsley, 2012, p.
517) that this measure extends to a probability measure ψi over X∪

∞
n=0In .

By construction, (βi,n∞ ) is a martingale with respect to ψi, and so converges
ψi-almost surely to some βi,∞∞ (which is measurable with respect to ∪∞n=0In).

Suppose f is measurable with respect to ∪∞n=0In. Then (B.3) and (B.4)
imply that βi,∞∞ = f almost surely: If ∪∞n=0In = N , set ρi = ψi and we have
βi,n∞ (ωIn) = Eρi(·|ωIn )[f(ω)]. If ∪∞n=0In is a strict subset of N , then let ρi be
any probability measure whose marginal on X∪nIn agrees with ψi and we
again have βi,n∞ (ωIn) = Eρi(·|ωIn )[f(ω)].

Suppose f is not measurable with respect to ∪∞n=0In. This implies
that ∪∞n=0In is a strict subset of N . Requirements (B.3) and (B.4) im-
ply that we can choose ρi ∈ ∆(Ω) so that its marginal on X∪In agrees
with ψi and βi,∞∞ (ω∪In) = Eρi(·|ω∪In )[f(ω)]. This then implies βi,n∞ (ωIn) =
Eρi(·|ωIn )[f(ω)].

We now contrast this result with a group of model-based reasoners. We
again consider a sequence that receives increasing amounts of information
(In) and assume the agents have common information. We maintain our run-
ning assumption that agents observe information contained in their models.

Proposition 1 immediately implies the following.

Corollary 1 Consider a sequence n = 1, . . . , of groups of model-based rea-
soners, with agent i’s model given by M i, and each agent i’s information
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set Iin in group n given by In. For each n and each agent i, In ⊆M i. Then
every agent’s limit belief equals the public oracular belief.

Model-based updating thus places considerably more structure on agents’
beliefs. Even when removing all other obstacles to disagreement, including
making information common, agents with different priors face virtually un-
limited possibilities for disagreement. In contrast to the case of different
priors, the only sources of disagreement among agents with different mod-
els arise out of the different ways agents interpret information they think
irrelevant.

B.2 Subsequent Updating in Example 1

We complete the discussion of updating in Example 1. The second round
calls for the agents to announce their updated beliefs to one another. Agent
1 learns nothing new from this new announcement. Agent 2’s original an-
nouncement revealed all of 2’s information to 1, namely the value of ω4, and
so agent 1 draws no further inferences (and the table contains no further
column for agent 1).

Agent 2 does update in response to agent 1’s announcement, giving rise
to the column β2(ωI2 , b10, b

1
1, b

2
0). First, suppose agent 1 announces the belief

1/16 on the first round. This announcement reveals to agent 2 that ω3 = 0
(and also that ω2 = 0, though 2 considers this information irrelevant), and
there is nothing more for 2 to learn from 1’s subsequent announcement of
either 0 or 1/4. Agent 2’s beliefs are unchanged in this case. A similar
argument applies if agent 1 announces a belief of 1.

Suppose that 1’s initial announcement was 13/16, and 2’s observation
is ω4 = 1 (and hence 2’s report was 29/32). Agent 1’s updated belief is
always 1 in this case, and hence there is no new information for agent 2
to process on the second round. In this case, 2’s beliefs remain unchanged.
Suppose, however, that 2’s initial observation was ω4 = 0 (and hence 2’s
report was 14/32). Now suppose 2 observes that 1 has revised her belief to
1/4. This reveals to 2 that ω3 = 1. (It also potentially reveals that ω2 = 0,
but 2 considers this information irrelevant.) Agent 2 then notes that when
(ω3, ω4) = (1, 0), the full-information belief of the event F is 5/8, and this
becomes 2’s new belief. Analogously, suppose that 2’s initial observation
was ω4 = 0 (and hence 2’s report was 14/32). Now 2 observes that 1 has
revised her belief to 3/4. This reveals to 2 that ω3 = 0. Agent 2 then
notes that when (ω3, ω4) = (0, 1), the full information belief of the event F
is 3/8, and this becomes 2’s new belief. We report these beliefs in column
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β2(ωI2 , b10, b
1
1, b

2
0).

It is straightforward to check that subsequent rounds of announcements
have no further effect on beliefs.

B.3 An Example with Infinite Iterations

Let N = N and Ω = {0, 1}∞. There are two agents, with M1 = N \ {1} and
M2 = N \ {2}. The data generating process ρ independently chooses each
variable to be 0 or 1 with probability 1/2. Agents 1 and 2 observe

I1 = {1, 3, 4, 6, 8, 10, . . .} and I2 = {2, 3, 5, 7, 9, 11, . . .}.

We first define two events, G and H, which are constituents of the event
F .

The event G occurs if and only if (ω1, ω2) = (1, 0).
The event H occurs if at least one of the following statements holds:

ω3 = ω4 = ω5,

(ω3 + ω5)mod 2 = ω6 = (ω8 + ω9)mod 2 = (ω10 + ω11)mod 2,

(ω3 + ω4)mod 2 = ω7 = (ω8 + ω9)mod 2 = (ω10 + ω11)mod 2,

(ω3 + ω7)mod 2 = ω8 = (ω10 + ω11)mod 2 = (ω12 + ω13)mod 2

= (ω14 + ω15)mod 2,

(ω3 + ω6)mod 2 = ω9 = (ω10 + ω11)mod 2 = (ω12 + ω13)mod 2

= (ω14 + ω15)mod 2,

(ω3 + ω9)mod 2 = ω10 = (ω12 + ω13)mod 2 = (ω14 + ω15)mod 2

= (ω16 + ω17)mod 2 = (ω18 + ω17)mod 2,

(ω3 + ω8)mod 2 = ω11 = (ω12 + ω13)mod 2 = (ω14 + ω15)mod 2

= (ω16 + ω17)mod 2 = (ω18 + ω19)mod 2,

...

The probability of event H lies between 1/4 (the probability that ω3 = ω4 =
ω5) and 3/4 (the sum of the probabilities of each of the statements on the
list).

Now consider beliefs about the event F := G ∪H.
Upon observing ωI1 , agent 1’s posterior belief about every statement in

the definition of H other than the first is unchanged. However, 1 updates
positively the posterior probability that H holds if ω3 = ω4, and updates
negatively if this equality fails. Agent 1’s first announcement of the prob-
ability of F thus reveals the realization of ω4 to agent 2, but reveals no
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additional information. Similarly, agent 2’s first announcement of the prob-
ability of F reveals the realization of ω5 (but no additional information) to
agent 1.

The first round of announcements may reveal that the event H occurs,
but with positive probability this is not the case. In the latter case, the
agents now update their posteriors about the second and third statements
in the definition of H (and no others), depending on their realizations of ω6

and ω7, and their next announcements of the probability of F reveal these
values. This in turn allows them to update their beliefs about the fourth
and fifth statements (and no others), and so on.

With positive probability, the event H has indeed occurred, in which
case the belief updating about the event H terminates after a finite number
of iterations, with probability 1 attached to H. However, with positive
probability H has not occurred, in which case beliefs about H are revised
forever.

We then have the following possibilities concerning the event F = G∪H
(in all cases, after the initial exchange, subsequent exchanges of beliefs have
no effect on the probability they attach to event G, and cause them to
update the probability that H as described above):

• (ω1, ω2) = (0, 1). Both agents attach interim probability 0 to event G,
and each agent attaches the same probability to event F as they do to
event H. Beliefs about H converge to a common limit.

• (ω1, ω2) = (1, 0). Both agents attach interim probability 1/2 to the
event that G has occurred. Beliefs about F converge to either 1/2 (if
H has not occurred) or 1 (if H has occurred). In either case, beliefs
converge to a common limit.

• (ω1, ω2) = (0, 0). Agent 1 attaches interim probability 0 and agent 2
attaches interim probability 1/2 to event G. If H has occurred, the
beliefs of both agents will eventually place probability 1 on event F .
However, if H has not occurred, it will take an infinite number of
exchanges for beliefs about event F to converge to 0 for agent 1 and
1/2 for agent 2.

• (ω1, ω2) = (1, 1). This duplicates the previous case, with the roles of
agents 1 and 2 reversed.

Remark B.1 A simplification of this example shows that Geanakoplos and
Polemarchakis’s (1982) protocol on an infinite space with a common prior
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and model also need not terminate in a finite number of steps. Take the
event to be H, the common model to be N \ {1, 2}, and let agent 1 observe
{3, 4, 6, 8, . . . }, and agent 2 observe {3, 5, 7, 9, . . . }. �

B.4 Common Knowledge

We now explore the sense in which, once beliefs in the belief revision process
have converged, the resulting beliefs, though different, are common knowl-
edge. Here, we find it most natural to adopt the interpretation that the
agents understand each others’ models.

We first discuss the case where each agent’s model Mi is finite. We
can think of agent i’s model as described by a finite partition of Ω and,
since Ii ⊆ Mi, agent i’s information as a coarser partition of Ω. The
announcement of a belief bi implies that the event that led agent i to having
that belief is common knowledge, and so all agent’s information partitions
are refined. After round n announcements, all agents have new partitions,
and the intersection of the events leading to the round n announcements is
common knowledge (though beliefs conditional on the intersection need not
be common knowledge).

We say that a vector of beliefs (b1, . . . , bK) is common knowledge at state
ω if these beliefs prevail at every state in that element of the meet of the
agents’ partitions containing ω, and their announcement does not lead to
further revision of the partitions.

Intuitively, if the true state was not contained in a common knowledge
event containing the final posteriors to be announced, then there would be
further revision. This leads to:

Proposition B.2 If Mi is finite for all i, then once the updating process
terminates, the resulting beliefs are common knowledge.

Proof. Each agent’s interim belief, and each subsequent announcement by
that agent, must be measurable with respect to the agent’s partition. Each
announcement thus gives rise to a common knowledge event. Moreover, for
each player, these common knowledge events are descending, and hence form
a sequence that is eventually constant. By Proposition 1.4, the limit beliefs
are constant on this limit set, and so their announcement does not change
agents’ partitions. Moreover, since the Mi are finite, all players know the
finite time by which the updating process terminates, and so at that time
the beliefs are common knowledge.
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The common knowledge of limit beliefs implies an agreement theorem.

Proposition B.3 If all agents have the same (finite) model M, then all
agents have the same limit beliefs, for all possible information structures.

Proof. In each round, all agents are updating their beliefs on the same
partition M, and since beliefs are common knowledge, they must agree
(Aumann, 1976).

When the models are infinite, as in Example B.3, the belief revision
process may continue without end. At no stage during the belief-revision
process in Appendix B.3 are the beliefs common knowledge. Despite this
difficulty, there is an appropriate notion of common knowledge when the
models are infinite.

Since we now must deal with conditioning on potentially zero probability
events, we follow Brandenburger and Dekel (1987) in defining knowledge as
probability one belief, and requiring conditional probabilities to be regular
and proper.27 Recall that the state space has prior ρ, and suppose that each
player’s information is described by a σ–algebra Gi. For each agent i, there
is a mapping ρi : F × Ω → [0, 1], where ρi(· | ω) is a probability measure
on F for all ω ∈ Ω; for each G ∈ F , ρi(G | ·) is a version of ρ(G | Gi); and
ρi(G | ω) = χG(ω) for all G ∈ Gi (in other words, ρi is a regular and proper
conditional probability). These are the beliefs used to define what it means
for agent i to know (assign probability 1 to) an event. By Brandenburger
and Dekel (1987, Lemma 2.1), an event G is common knowledge at some
ω (in the sense that every agent assigns probability one to the event, every
agent assigns probability one to every agent assigning probability one to the
event, and so on) if there is a set G′ in the meet ∧Gi such that ω ∈ G′ and
ρi({ω′ ∈ G′ : ω′ 6∈ G} | ω′′) = 0 for all ω′′ ∈ Ω.28 The last requirement is
simply that G′ is a subset of G, up to a zero measure set, under each agent’s
beliefs ρj .

We will say that limit beliefs are common knowledge if they are common
knowledge given the information provided to the agents by the entire infinite
sequence of belief announcements.

Proposition B.4 Limit beliefs are common knowledge.
27Bogachev (2007, Corollary 10.4.10) ensures the existence of such conditional proba-

bilities.
28This is a sufficient condition for common knowledge. The characterization requires a

little more (Brandenburger and Dekel, 1987, Lemma 2.3 and Proposition 2.1), which we
do not need.
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Proof. Recall that Bn denotes the round n σ-algebra generated by the
announcements from the first n rounds. For each ω ∈ Ω, all events G
satisfying ω ∈ G ∈ Bn are common knowledge at ω. Recall also that (Bn)n
is a filtration with limit B∞, so that the beliefs βin+1 = E[f | Ii,Bn] are a
martingale and converge almost surely to E[f | Ii,B∞] =: βi∞. Moreover,
βi∞ =

∫
fdρi∞.

Fix bi in the range of βi∞ and let A := (βi∞)−1(bi). We now prove
that for all ω ∈ A there is a subset A′ in the meet ∧σ(Ii,B∞) containing
ω. Fix ω ∈ A, and define An := ∩j(βjn)−1(bj) where bj = βjn(ω). Since
An ∈ ∧σ(Ii,B∞), we have ∩nAn ∈ ∧σ(Ii,B∞). Suppose ∩nAn 6⊆ A, so that
there exists ω̃ ∈ ∩nAn \A. But then βin(ω) = βin(ω̃) for all n, and since the
beliefs converge,29 βi∞(ω̃) = bi, a contradiction.

Green (2012) presents an agreeing-to-disagree result for infinite models
that would allow us to extend Proposition B.3 to this case.

B.5 Implications of Necessary Agreement

Suppose X and N are finite, M2 ( M1, I1 = M1, and I2 = ∅, that is,
player 1 has full information, and player 2 observes nothing, but thinks only
a subset of the variables in 1’s model are relevant. We can, without loss
of generality, write XM1

= X1 × X2, XM2
= X2, and suppose all states

(ω1, ω2) ∈ X1 × X2 have positive probability. Since player 2 has no infor-
mation, there is no updating after 2 has updated from the announcement of
1’s full information beliefs. Necessary agreement in this context means that
for all (ω1, ω2) ∈ X1 ×X2, if f1(ω1, ω2) = α, then

α = E[f2(ω2) | b1 = α]

= E[E[f1(ω1, ω2) | ω2] | b1 = α].

We now argue that necessary agreement implies that the first coordinate of
1’s model is redundant for 1, that is, f1 is independent of ω1.

Let ᾱ := max f1(ω1, ω2), and let (ω̄1, ω̄2) be values that achieve ᾱ, i.e.,
f1(ω̄1, ω̄2) = ᾱ. Conditional on the announcement ᾱ, necessary agreement
implies

ᾱ = E[f2(ω2) | b1 = ᾱ],

which implies E[f1(ω1, ω2) | ω2] = ᾱ for all ω2 in the support of the condi-
tional beliefs ρ2(· | b1 = ᾱ) ∈ ∆(X2), But this implies that for all ω1 ∈ X1

29The sentence previously footnoted implies we can assume beliefs converge on ∩nAn.
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State Prior Theories Interim beliefs First-round update
(ω1, ω2) ρ f∗(ω) f1(ωM1) f2(ωM2) β1(ωI1) β2(ωI2) β2(ωI2 , b10)

(0, 0) a x ax+by
a+b

ax+cz
a+c

ax+by
a+b ax+by+cz+dw a

a+b
ax+cz
a+c + b

a+b
by+dw
b+d

(0, 1) b y ax+by
a+b

by+dw
b+d

ax+by
a+b ax+by+cz+dw a

a+b
ax+cz
a+c + b

a+b
by+dw
b+d

(1, 0) c z cz+dw
c+d

ax+cz
a+c

cz+dw
c+d ax+by+cz+dw c

c+d
ax+cz
a+c + d

c+d
by+dw
b+d

(1, 1) d w cz+dw
c+d

by+dw
b+d

cz+dw
c+d ax+by+cz+dw c

c+d
ax+cz
a+c + d

c+d
by+dw
b+d

X = {0, 1}, M1 = {1}, M2 = {2},
I1 = {1}, I2 = ∅.

Figure B.1: Agreement need not imply redundancy in the presence of cor-
relation.

and for all ω2 in the support of the conditional beliefs ρ2(· | b1 = ᾱ) ∈ ∆(X2),
f1(ω1, ω2) = ᾱ; in particular, for such ω2, f1 is independent of ω1.

Since X1 × X2 is finite, we can now argue inductively. Suppose α′ :=
max{f1(ω1, ω2) < ᾱ} and let (ω′1, ω

′
2) be values that achieve α′, i.e., f1(ω′1, ω

′
2) =

α′. After agent 1’s announcement of α′, agent 2 assigns positive probability
to ω′2. Moreover, from the previous paragraph, for all ω1, f1(ω1, ω

′
2) ≤ α′ (if

f1(ω1, ω
′
2) = ᾱ for some ω1, then ω′2 is in the support of ρ2(· | b1 = ᾱ) and so

f1(ω′1, ω
′
2) = ᾱ 6= α′, a contradiction). But then, for all ω1 ∈ X1 and for all

ω2 in the support of the conditional beliefs ρ2(· | b1 = α′), f1(ω1, ω2) = α′;
in particular, for such ω2, f1 is independent of ω1. Proceeding in this way
for progressively lower values of beliefs of agent 1, we conclude that f1 is
independent of ω1 for all ω2.

B.6 An Example Illustrating Redundancy and Correlation

We start with the general specification given in Figure B.1. Agent 1 ob-
serves every variable in 1’s model, and so never does any updating past the
interim belief. Agent 2, who observes nothing, ceases updating after the first
round. If the values of ω1 and ω2 are independently drawn, then it follows
immediately from Proposition 2 that beliefs can necessarily agree only if ω1

is redundant for agent 1.
We now seek values of the parameters for which ω1 is not redundant for

player 1, i.e.,
ax+ by

a+ b
6= cz + dw

c+ d
(B.5)
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and for which there is necessary agreement, i.e. (after simplification),

(a+ c)by = ac(z − x) + b
a+ c

b+ d
(by + dw) (B.6)

and

(b+ d)cz = bd(y − w) + c
b+ d

a+ c
(ax+ cz). (B.7)

Setting b = c = 0 gives the case where the two variables are perfectly
correlated (ω2 is simply a relabeling of ω1), and we trivially have necessary
agreement without redundancy.

It is straightforward that there are many parameters with the desired
characteristics. If we set z = x and y = w, then any specification of a, b, c,
d satisfies these equations, including values that also satisfy (B.5). In this
case, ω1 plays no role in the determination of F , and agent 1’s observation
of ω1 is informative only to the extent that it is correlated with ω2. In
addition, agent 2 receives no information of her own, and so must similarly
rely on gleaning information from the correlation of ω1 with ω2, leading the
two agents to agree. In the case of independence, or a = b = c = d, agent 1
learns nothing about the state, and the two agents necessarily agree on the
uninformative posterior of 1/2.

When at least one of z = x and y = w fails, then ω1 plays a role in
determining the event F . There then exist particular values of a, b, c, d
satisfying the equations (B.6)–(B.7) for necessary agreement.
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