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from the Bidding and Renegotiation of Power Contracts in India∗

Nicholas Ryan†

July 30, 2019

Abstract

Weak contract enforcement may reduce the efficiency of production in developing coun-
tries. I study how contract enforcement affects efficiency in procurement auctions for the
largest power projects in India. I gather data on bidding and ex post contract renegotia-
tion and find that the renegotiation of contracts in response to cost shocks is widespread,
despite that bidders are allowed to index their bids to future costs like the price of coal.
Connected firms choose to index less of the value of their bids to coal prices and, through
this strategy, expose themselves to cost shocks to induce renegotiation. I use a structural
model of bidding in a scoring auction to characterize equilibrium bidding when bidders
are heterogeneous both in cost and in the payments they expect after renegotiation. The
model estimates show that bidders offer power below cost due to the expected value of later
renegotiation. The model is used to simulate bidding and efficiency with strict contract
enforcement. Contract enforcement is found to be pro-competitive. With no renegoti-
ation, equilibrium bids would rise to cover cost, but markups relative to total contract
value fall sharply. Production costs decline, due to projects being allocated to lower-cost
bidders over those who expect larger payments in renegotiation.

1 Introduction

Countries that enforce contracts strictly invest and produce more in industries that rely on

relationship-specific investments (Acemoglu, Johnson and Mitton, 2009; Nunn, 2007). Coun-

tries that enforce contracts unevenly, to the contrary, may bear an economic cost in terms of

foregone investment, lost production or lower efficiency.

Such economic costs of weak contract enforcement are hard to track down. Firms change

their strategies in response to contract enforcement and thereby alter competition between

firms and the efficiency of a market on the whole. When contracts cannot be enforced, firms

may sustain agreements through their reputations or through political connections (Banerjee

∗Thank you to Rahul Banerjee for sparking my interest in this topic. Thanks to Sushanta Chatterjee for
rich discussions and assistance in data collection. Thanks to Kevin Rowe, Hideto John Mori and Ryo Tamaki
for excellent Research Assistance. Thanks to Phil Haile and Ali Yurukoglu for detailed comments. All views
and errors are my own.
†Department of Economics, Yale University, Box 208269, New Haven, CT 06520-8269 (e-mail:

nicholas.ryan@yale.edu.)
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and Duflo, 2000; Fisman, 2001). Connected firms earn higher profits (Fisman, 2001; Faccio,

2006). The mere fact that connected firms earn high profits, however, is not enough to

establish an efficiency cost of weak contracts. It may be that connected firms are just as

efficient at investing and producing as other firms, and any rents they earn are transfers.

This paper studies the efficiency costs of weak contract enforcement in the Indian power

sector. I gather a new data set on bidding, contracting and contract renegotiation in power

procurement auctions. In each auction a state, or group of states, seeking to buy power offers

a long-term contract to purchase from a private seller. The seller offering the lowest price

of power wins the contract to supply. These auctions were the main way, after a structural

reform in the 2000s, that states bought power from new plants, and thus contributed to a surge

of private investment in power generation (Figure 1).1 The auctions offer an ideal setting in

which to study how contract enforcement affects equilibrium rents and productive efficiency.

Each contract awarded at auction runs for twenty-five years, so there is a huge risk that cost

shocks, mainly to coal prices, will change the cost of production during the life of a contract

and may force renegotiation.

The analysis is in two parts. A descriptive part studies the extent and causes of contract

renegotiation. A structural part builds these forces into a model of renegotiation to study

how contract enforcement affects equilibrium rents and efficiency.

The descriptive analysis shows that the renegotiation of contracts is widespread and driven

in part by cost shocks. Of the auction winners for whom contract outcomes can be found, half

petition the regulator that approved the contract to change its terms. Petitions typically seek

an increase in the unit price, a “compensatory” tariff, to offset a cost shock. Projects that

see a jump in coal prices after they are bid out are far more likely to renegotiate, especially

if they rely on imported coal, which has the most volatile prices.

The large effects of cost shocks on renegotiation are surprising given that the auction

mechanism allowed bidders to index their bids. Bidders can offer several different bid com-

ponents, including fixed charges, energy charges, and energy charges indexed to future coal

prices, and have complete flexibility over how they break down their bid across these compo-

nents. Bidders therefore could have insulated themselves against coal shocks entirely, if they

1The average investment in these power projects is USD 553 million per plant and the largest projects of
this generation, so-called Ultra-Mega Power Plants, demand USD 2.5 billion of capital. I calculate the total
capacity procured through the auction mechanism studied to be 45% of the generation capacity in India when
the auction rules were put in place.
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wished, by indexing all of their energy costs to the price of coal.

Further descriptive evidence argues that not indexing is a deliberate firm strategy. I find

that politically connected firms index less of the value of their bids to coal prices, exposing

themselves to fuel price risk, and renegotiate more if they win a project. A documentary case

study of the Mundra Ultra Mega Power Plant, a prominent project, shows that not indexing

is a strategy that bidders use to lower their bids by lowering their offered prices late in the

life of a contract. This bidding strategy makes bids appear lower up front but increases the

risk of renegotiation and therefore payments to firms ex post.

To generalize the finding of this case, I develop a new measure of firm connectedness based

on the government’s allocation of free coal to power companies in the “coalgate” scandal.2 I

deem the companies that received coal in the coalgate scandal to be politically “connected,”

in the sense of having greater influence over the government. I link the connected firms, from

coalgate, to the companies bidding to supply power in procurement auctions, to measure the

effect of connectedness on bidding strategies and renegotiation. I show that connected firms

index less of the value of their bids in power auctions ex ante and renegotiate more ex post.

This evidence is consistent with connected firms being more willing to bear fuel price risk,

because they can hold up the government if they are subject to a cost shock.3

Renegotiation, therefore, is due both to exogenous coal price shocks and to the endogenous

choices of bidders to bear this coal price risk. Motivated by these findings, I build a model

of the auction environment with contract renegotiation. Bidders in the model bid to supply

power in the future. They choose both the level of their bid and the level of indexation of

their bid to future coal prices. Bids are scored based on the expected present discounted

value of offered prices for power. The model allows bidder types to differ in two dimensions.

First, bidders differ in heat rate, the quantity of coal energy input they need to generate a

unit of electricity (the key determinant of variable cost in thermal power generation). Second,

2This scandal was independent from, but roughly contemporaneous with, the power procurement auctions I
study. The Indian government has a monopoly over coal production, but in the 1990s and 2000s a government
committee gave away the rights to many coal mines to private firms with “no clearly spelt out criteria” for
allocation. The Comptroller and Auditor General of India issued an audit report on this allocation process
and found that the windfall gain to companies that received coal was $214 billion (Comptroller and Auditor
General of India, 2012). This report launched a national scandal, “coalgate,” and led to the Supreme Court
in 2014 overturning the coal awards.

3An alternative interpretation is that receiving coal in coalgate directly provides a hedge against input cost
shocks and therefore need not measure the effect of connectedness per se. I consider this alternative explanation
at length, through several tests of whether coalgate had a direct effect on costs or hedging, and reject these
alternatives in favor of a direct connectedness effect independent of costs.
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bidders differ in bonus, the per unit additional tariff they expect to receive if their contract

is renegotiated. The variation in bonus across bidders is meant to capture heterogeneity in

the connectedness or influence of firms with the government. Renegotiation depends on both

exogenous coal price shocks and on the endogenous indexation choice of the winning bidder.

If a bidder bid a very low price, without indexation, then it takes a smaller cost shock to wipe

out their variable profits and make a threat to exit the project credible. Firms are risk averse

and wish to maximize their profits, including the value of renegotiation, while not taking on

too much fuel price risk.

Renegotiation has effects on both the level and composition of bids in the model. Without

renegotiation, bidders fully index their bids, because they dislike risk. With renegotiation,

bidders no longer fully index their bids. Bidders with low heat rates (high efficiency) index

less, because coal price changes have a smaller effect on their costs. Bidders with a high

bonus index less, ceteris paribus, since they expect higher payments in renegotiation after

a cost shock. Because those higher payments are not accounted for in the auction score ex

ante, this strategy makes the bids of those who expect renegotiation artificially competitive.

Bidders take on risk to endogenously increase the likelihood of renegotiation. In equilibrium

with renegotiation, these distortions in bidding strategy imply that firms with a high bonus

are strong bidders and may underbid firms with the lowest cost of production.

I prove that bidder types are identified in the model from the level and composition of

bids. The proof of identification is in two steps. First, while bidder types are two-dimensional,

these types can provisionally be reduced to a one-dimensional pseudo-type that measures a

bidder’s overall strength (Asker and Cantillon, 2008). Bid scores can therefore be inverted to

recover one dimensional pseudo-types as in a standard first price auction (Guerre, Perrigne

and Vuong, 2000). Second, given pseudo-types, the mapping from bidders’ two-dimensional

types to the pair made up of the level of their bids and the part of their bid indexed to coal

prices is invertible. The intuition for this result is that, conditional on a level of heat rate and

thus cost, the bonus a bidder expects in renegotiation will determine how much they choose

to index their bid to future coal prices, a choice which is observed in the data. Identification

does not require imposing a parametric form on the joint distribution of bidder types.

I estimate the model to recover the joint distribution of types and to characterize equilib-
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rium bidding.4 The structural analysis offers a pair of striking findings about the equilibrium

with weak contract enforcement. First, the joint distribution of types suggests that low heat

rate (thus low cost) firms tend to have somewhat higher bonuses. This means that the firms

that are best at producing power are also estimated to have higher expected values of rene-

gotiation. Second, in equilibrium, markups for winning bidders are 18% above pseudo-types

(the relevant one-dimensional measure of apparent cost) but marginally (3%) below produc-

tion cost. This finding means that bidders bid below cost in equilibrium in order to win the

contract and then recover part of the anticipated contract value in renegotiation.

With the structure of the model it is possible to consider counterfactual equilibria under

different enforcement regimes. The leading case of interest is a regime with perfect contract

enforcement and therefore zero expected value of renegotiation for all bidders. I model this

counterfactual as a first-price auction where bidders have a one-dimensional cost type due to

the marginal distribution of heat rates alone. That is, bidder bonuses are rendered meaningless

in the counterfactual, as they will never be paid out, so the type collapses to a single dimension.

The counterfactual set-up is similar to a policy reform India enacted in 2013, in response to

the set of auctions studied here, that tamped down renegotiation by mandating that bidders

index all of their variable costs.

The counterfactual shows that strict contract enforcement is pro-competitive and increases

efficiency, but also raises prices. In the counterfactual regime it is no longer possible for bidders

to underbid in expectation of future renegotiation payments. Therefore, equilibrium bids

under perfect enforcement rise 16% and equilibrium winning bids rise 9%. Bidder markups

are now above production cost, but the margins of winners are cut by one-third, down to

13% relative to cost in the counterfactual (as compared to 18% above pseudo-types in the

equilibrium with renegotiation). Even as bid prices rise, production costs for winning bidders

in the counterfactual decline by nearly ten percent. This decline in production costs indicates

that stronger contract enforcement would improve productive efficiency by allocating power

projects to lower-cost firms.

This paper contributes to disparate literatures on firm connectedness and how contract en-

forcement affects efficiency, in development economics, and on empirical auctions, in industrial

organization.

4A limitation of the data is that, because projects are large, the auction sample contains only 162 bids from
31 auctions, and component parts are not available for all bids. I observe contract outcomes for 39 projects.
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On firm connections, Fisman (2001) shows that political connections increase Indonesian

firms’ stock market value, a finding that has been replicated broadly (Faccio, 2006). Few

papers approach the question of whether the profits earned by connected firms have a real

efficiency cost.5 This paper not only shows that firm connectedness changes profits (markups)

but also traces the mechanism through equilibrium changes in firm bidding strategies; con-

nected firms behave differently, and that is how they earn rents. I build a structural model

to estimate how weak contract enforcement changes the equilibrium efficiency of the market.

On contract enforcement and efficiency, there is a rich empirical literature in development

using de facto variation in property protections or contract enforcement to study how con-

tracting affects real outcomes and efficiency (Field, 2007; Goldstein and Udry, 2008; Pande

and Udry, 2005; Besley and Ghatak, 2010). There is little work on how contract enforcement

affects investment in the commanding heights of developing economies, such as power, trans-

portation and infrastructure, though it is widely understood that weak contract enforcement

is a barrier to investment.6

On procurement auctions, weak contract enforcement may dissipate efficiency gains from

public-private partnerships and other procurement mechanisms (Engel, Fischer and Gale-

tovic, 2014). Most papers in the empirical auctions literature ignore ex post performance

altogether. The closest precedents to this paper are several innovative studies of how ex

post performance concerns affect bidding in highway procurement (Lewis and Bajari, 2011,

2014; Bajari, Houghton and Tadelis, 2014).7 This paper makes several contributions rela-

tive to this frontier. First, in my model and setting, ex post renegotiation depends not only

on exogenous shocks, as in Bajari, Houghton and Tadelis (2014), but also on endogeneous

bidder actions. Renegotiation happens in part because bidders induce it by taking on more

price risk. Second, several studies emphasize the efficiency consequences of moral hazard for

5Khwaja and Mian (2005), a notable exception, find that public banks in Pakistan lend more to politically
connected firms and these politically-motivated loans are more likely to default. They bound efficiency costs
with assumptions on the alternative use of the capital spent on bad loans. Estimates of efficiency costs are
scarce even in the broader empirical literature on corruption (Olken and Pande, 2012). Corruption is hard to
quantify and leading work estimates the loss to corruption using measures of transfers, such as the share of
work not done or project funds missing (Olken, 2007; Ferraz and Finan, 2011).

6The energy supply industry, which is built of specific assets, has provided examples both of how contracts
adapt to specificity and how limited commitment can undermine contracting (Joskow, 1987; Bettauer, 2009;
Stroebel and Van Benthem, 2013).

7In common with Lewis and Bajari (2011), this paper uses the theoretical results of Asker and Cantillon
(2008) on scoring auctions to build a model with multi-dimensional types. In common with Bajari, Houghton
and Tadelis (2014), I study how ex post shocks affect bidding. Bhattacharya, Ordin and Roberts (2018) study
how the form of auction bidding affects later investment effort in the context of oil drilling.
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contract performance ex post, whereas in my model the prospect of renegotiation generates

potential ex ante misallocation of the contract. Third, with the bid components in my data,

I am able to identify and estimate the key structural object, the joint distribution of bidder

types, which other analysis has circumvented.

The rest of the paper runs as follows. Section 2 describes the context of Indian power

sector reform and the data. Section 3 provides both documentary and econometric evidence

of the extent and causes of renegotiation. Section 4 lays out the model and identification

and Section 5 the estimation. Section 6 presents the structural estimates and counterfactual

bidding and production costs under strict contract enforcement. Section 7 concludes.

2 Context and Data

a Ownership and regulation of electricity generation in India

After independence, the Indian power sector was mostly publicly owned and run for more

than forty years. The Electricity (Supply) Act of 1948 established State Electricity Boards

in each state as public monopolies vertically integrated across generation, transmission and

distribution. The Central government invested more in transmission and generation over time,

in particular with the creation of a large central generating company in the 1970s, in response

to an energy crisis and flagging investment by the states.

A sweeping economic liberalization in the early 1990s opened power generation to private

firms, and the Indian government solicited investment, including from foreign companies. This

liberalization, which lifted tariffs and deregulated manufacturing, is considered a triumph for

trade, productivity and growth (Topalova and Khandelwal, 2011; Aghion et al., 2008; Rodrik

and Subramanian, 2005). For the power sector specifically, though, the 1990s liberalization

was a failure. Because the deregulation of entry in generation was not paired with any

deeper structural reform, potential private entrants still faced monopsony buyers, the State

Electricity Boards, in every state, and were therefore reluctant to invest (Mathavan, 2008;

Kundra, 2008).

Figure 1 shows the generation capacity in the Indian power sector from 1947 to the present,

with total capacity up to 1992 and capacity by ownership (state government, central govern-

ment, private) thereafter. The power sector, in the decade after the 1990s liberalization, is
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Figure 1: Growth in Capacity by Ownership
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The figure displays the division of generation capacity between the state, central, and private sectors in India
from 1947 to 2017. The National Tariff Policy, which introduced new competitive bidding guidelines under
the Electricity Act of 2003, was issued in 2006 (indicated by the vertical line). Only the combined generation
capacity is available prior to 1992. The data from 1947 to 1992 and from 2001 to 2017 is from the report “Growth
of Electricity Sector in India from 1947-2017” from the Central Electricity Authority of the Government of
India. The data from 1992 to 2001 is from the Ninth Plan and Tenth Plan reports by the Planning Commission
of the Government of India.

open to private investment, but the privately-owned share of capacity is low and slow-growing

during this time. Fear of hold-up, in the absence of strong contract enforcement, is a plausible

explanation for slow private investment in power in the 1990s.8

The failure of this generation of private projects and power rationing built up pressure for

deeper reforms. The Electricity Act of 2003 (and its predecessor, the Electricity Regulatory

Commissions Act of 1998) undertook structural reforms that recognized the natural monopoly

nature of much of the power sector (Kumar and Chatterjee, 2012). Under these laws, the State

Electricity Boards were separated into component parts, for generation, transmission and

distribution. Independent regulators were established to rule on power contracts and tariffs.

Markets for power, though initially a small share of the sector, provided an outside option

8A gas-fired power plant in Dabhol, Maharashtra, built during this period by a consortium led by Enron,
became a cautionary example of hold-up in the power sector. The company negotiated and signed a power
purchase agreement with the Maharashtra State Electricity Board that was guaranteed by both the State of
Maharashtra and the Government of India. The Board renegotiated the price of power downwards before the
plant opened, and after a year of plant operation, the Board defaulted on the contract anyways (Bettauer,
2009). Project partners sought compensation through international arbitration and expropriation insurance,
but largely failed (Kundra, 2008). After a settlement the project was nationalized by the Central government.
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for private entrants to sell power (Ryan, 2017). Each of these measures served to reduce the

hold-up power of the former Boards and therefore the political risk faced by private entrants.

b Auction mechanism for power purchase agreements

The auctions studied here were meant to take advantage of the new structure of the power

sector and give private investors a way to invest. The National Tariff Policy (2006), issued

under Section 63 of the Electricity Act (2003), mandated that state procurement of power must

be done through a competitive bidding process (Ministry of Power, 2006). To implement this

policy, the Ministry of Power issued standard bidding documents saying how power auctions

should be run.

The procurement auctions, critically for the present analysis, allow a high degree of flexi-

bility in how bidders structure their bids. The model and empirical analysis will use bidders’

decisions about the degree of indexation in order to study how the prospect of renegotiation

affects bids. The bidding guidelines say that bids will be set in multi-part tariffs allowing

both capacity (fixed) and energy (variable) charges. For any given charge, bidders may fur-

ther break the charge down into escalable (i.e., indexed) and non-escalable bid components.9

Therefore, a bidder can offer a bid wherein the payments for energy production are an affine

function of the future price of coal. Appendix A, Figure A1 gives an example of a bid with

energy and capacity charges, both indexed and not indexed, over twenty-five years.

A bid’s score, called the levelized tariff, is the expected present discounted tariff across

all bid components using an interest rate for discounting and assumed growth rates for each

escalable bid component. Section 2 c discusses the structure of bids in more detail and

Section 5 bid scoring.

The bidding guidelines split projects into two types based on the specificity of assets to be

used in generation. In non-specific asset projects, the procurer specifies an amount of power

they want to buy, at a particular point in the transmission network, and that can be supplied

by any new or existing plant. In specific-asset projects, the procurer specifies the location

and source of fuel to be used for a new plant; for example, a plant might be intended to be

9Bidders can use additional sundry charges, including charges for the transportation of fuel, the handling
of fuel and the transmission of electricity. Bidders can also in many auctions index not only energy charges
but also other charges such as capacity charges and transportation charges (to pre-specified components of the
wholesale price index). However, energy charges are by far the largest and most volatile component of costs,
so in the analysis I will map all bids to three parts: capacity charges, variable charges not indexed to energy
costs, and variable charges indexed to energy costs.
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set up at a mine and to use that mine as a captive source of fuel, or a plant might be set up

at a port upon state-owned land to use imported coal.10

The flagships of this second generation of power projects were specific asset (Case 2)

projects called Ultra-Mega Power Projects (UMPPs), to distinguish them from the Mega

Power Projects (MPPs) of the failed prior generation. There were intended initially to be

sixteen UMPPs but only four have been bid out. These projects are distinct for first, their

namesake scale, typically about 4,000 MW at an investment of USD 2.5 billion apiece, and

second, the fact that the procurement process was run centrally by the Government of India,

which helped arrange the specific assets (land, a coal mine) involved. Despite this central

process, the power from these projects was still bought by state utilities, either alone or in

consortia.

The auction results are formalized in a power purchase agreement (PPA), a contract for

the procurement of power that is written at the price set by the auction and reviewed and

approved by the electricity regulator. The relevant regulator is the Central Electricity Reg-

ulatory Commission (CERC), for projects with central procurement, or the State Electricity

Regulatory Commision (SERC), for projects run by the states themselves. Each auction win-

ner signs a PPA with the procuring state utility or utilities. The regulatory review of these

contracts is universal but pro forma, since the Electricity Act (2003) advises deference to the

market process for procurement: “the Appropriate Commission shall adopt the tariff if such

tariff has been determined through transparent process of bidding in accordance with the

guidelines issued by the Central Government” (Ministry of Law and Justice, 2003).

Several features of this procurement process tilt the balance of bargaining power in favor

of private power sellers and away from the distribution companies buying power. First, the

existence of Electricity Regulatory Commissions to approve contracts and arbitrate disputes.

Second, the principle of contracts being revealed at auction, which may lower contract prices

and increase the transparency of price setting. Third, the deference of the institutions now

involved to the market process of setting prices. Fourth, the specific assets that sellers may

obtain if they win an auction, and in general the large amount of power they are supplying,

10The terminology used for these projects is Case 1 (non-specific asset) and Case 2 (specific asset). The
official descriptions of each type literally turn on asset specificity, with the full name of Case 1 “Tariff Based
Bidding Process for Procurement of Power on Long Term Basis by Setting up Power Stations where Location
or Fuel is not specified” and Case 2 “Tariff Based Bidding Process for Procurement of Power on Long-Term
Basis from Power Stations to be set up at Specified Location (and/or operating on Specified Fuel).”

10



which may make them difficult to replace in the short term. Fifth and finally, the fact that the

buy side consists of consortia of state bidders for large projects, which diversifies the political

risk faced by sellers.

There was a large wave of private investment in power in response to the deeper structural

reforms in the electricity sector and under the new bidding rules. The rules took effect in

2006 but the new projects built under these rules typically had a five-year lag, meaning that

they came online in 2011. Returning to Figure 1, we see a rapid increase in private generation

capacity during this period, as shown by the top (light grey) area of the figure, such that by

2017 private generation capacity was a plurality of total capacity, greater than that owned by

either the states or the central government.

c Data on bidding and renegotiation

The data have been gathered from an array of administrative sources and together form the

first dataset on this large wave of private investments in power. The population of interest is

the auctions for long-term power procurement run under the bidding rules in effect from 2006

through 2012, after which the bidding rules were revised. I obtain data on the characteristics of

auctions, the bids offered under auctions, the contracts signed for winning bids and subsequent

revisions of those contracts. Appendix A describes the data sources in more detail.

Central Electricity Regulatory Commission, State Electricity Regulatory Commissions.

The Forum of Regulators, a joint body of the Central and State commissions, gathered an

inventory of auctions which I used as the basis for the population and supplemented with

additional projects. The CERC and SERCs review Power Purchase Agreements (PPAs), the

contracts signed after an auction, and approve tariff orders. I gathered these contracts from

CERC and SERCs. In some cases SERCs would include bids as part of tariff orders. The

respective ERC that notified the original tariff order for a project also records any subsequent

changes or revisions to that contract.

Distribution companies, Power Finance Corporation. Additional bids were gathered from

the distribution companies that procured power under the auctions. Whether the bids were

publicly available or privately available varied across states. I obtained most bids from the

major states with the most procurement under the bidding rules, including Gujarat, Ma-

harashtra, Madhya Pradesh, Punjab, Rajasthan and Uttar Pradesh. Bids for Ultra-Mega
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Power Projects were obtained from the Power Finance Corporation, which ran the Central

Government’s procurement process.

The main data set of bids for the structural estimates consists of bids from 31 auctions.

The main limitation of the data is that I could not obtain the individual bid components in

each year of the contract for all bids. The sample for the structural analysis is restricted to the

long-term (25-year) contracts for which bid components are available: there are 162 bids with

scores and 121 bids with both scores and the component parts of the bid. I take the approach

of using all available data to estimate the model in each estimation step. In Section 6 I check

that this is reasonable by comparing the levels of bids and markups between bids that have

all component parts available and bids that have only the final score. I find that bids in the

full sample and in the restricted sample with components available are similar.

For some projects I do not have bids but did find project renegotiation outcomes and

covariates. I have the outcome of the project for 39 contracts in total. These contracts are

the relevant sample for specifications looking only at project outcomes (Tables 2 and 3).

d Data on firm connectedness

This subsection describes a measure of firm connectedness to the Government of India. The

goal of the measure of connectedness is to test using an observable characteristic of firms

whether firms with influence over the government change their bidding strategies. I denote

a firm as connected if it received coal at below-market prices from the Government in the

“coalgate” scandal, described below.

The Government of India, by law, has a monopoly on coal production in the country.

However, under pressure to increase output, the government allocated coal mines to private

companies in energy-intensive sectors such as power, iron and steel to use for their own

production. The Ministry of Coal has a Screening Committee that decides what companies

get coal. From 1993 to 2005, this committee had “no clearly spelt out criteria” for the award

of coal blocks (Comptroller and Auditor General of India, 2012). In 2005, the Ministry of

Coal proposed to auction off coal instead of awarding by committee, but this proposal died

and the Screening Committee continued to pick and choose which companies would get coal

blocks.11

11After 2005 the stated criteria for award were written down. The Committee based its decisions on “the
techno-economic feasibility of the end use project, status of preparedness to set up the end use project, past
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Comptroller and Auditor General (CAG). The Comptroller and Auditor General of India

(CAG) audited the coal allocation process to see if it was meeting the goal of increasing

production in the country. In March 2012, a draft of the CAG report was leaked to the press

and incited a national scandal later known as “coalgate” (Dutta, 2012). The draft report

concluded that the difference between the value of the coal given away by the Government

and the cost of extraction, the “windfall” gain to the companies receiving coal, was INR 11

trillion (USD 214 billion). The appendix of the draft report painstakingly details the value of

the coal received by a large number of private and government-owned industrial companies

in the power and manufacturing sectors (See Appendix A). The report also concludes that

few companies actually started coal production with their coal blocks; instead, they largely

sat on them as coal prices rose.

To form a measure of firm connectedness, I match the private companies named in the

draft report to the bidders in power procurement auctions. The idea is that to get a coal

block for free a company must have influence with the Government. Both bidders and coal

awardees include many of the largest industrial companies in India. I find that 90 out of

162 bids (56%) were offered by parent companies that received free coal through coalgate,

including titans like Tata Group, Jindal Steel and Power, Essar Group and Adani Power.

This coalgate measure is a proxy for firm connections, capturing the exercise of connected-

ness, rather than personal ties between company directors and the government or subjective

assessments, as have been used in the literature (Khwaja and Mian, 2005; Fisman, 2001). A

strength of this proxy measure is that it is drawn from a domain, coal allocation and sourc-

ing, in which power companies must be active and therefore has a significant overlap with my

bidding sample. A plausible limitation of coal block allocation as a measure of connected-

ness, for my purposes, is that receiving a coal block may also affect firm costs of production

and therefore bidding strategies directly. I discuss this alternative interpretation with the

empirical analysis.

track record in execution of projects, financial and technical capabilities of the applicant companies, recom-
mendations of the State Governments and Administrative Ministry concerned.” (Comptroller and Auditor
General of India, 2012)
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3 Renegotiation of power auctions

This section provides case study and descriptive evidence that renegotiation is common and

studies the determinants of renegotiation to provide empirical grounding for the model.

a Case study of Mundra Ultra Thermal Power Project

This section considers contract renegotiation in the Mundra Ultra Mega Power Project. This

project is not meant to be representative of the sample, as it is a flagship UMPP. Yet the

process of renegotiation in Mundra is emblematic of how contract enforcement works under

the new post-reform structure of the power sector.

i Bidding

Mundra is a port in Gujarat in the west of India. The Mundra UMPP was an asset-specific

project that included the right to build a power plant on a large plot of land in the port as

well as a power purchase agreement, with the plan that the plant would rely on coal imported

from overseas. The project was bid out in late 2006 with the winning bidder responsible to

build the 3,800 MW plant and supply power over twenty-five years.

The auction was won by Tata Power, part of the storied Indian industrial house, at an

expected discounted price of INR 2.26 per kWh (Central Electricity Regulatory Commission,

2003). Figure 2, panel A shows the time path of all the bids in the auction, ranked from L1

(the winning bidder) to L6 (the highest bidder) in terms of their expected discounted nominal

tariff (the score of the auction). Each curve shows the tariff offered by each bidder in each

year of the contract from one to twenty-six (contracts are 25 years long but often span 26

calendar years). These future offered tariffs are expectations, because, for bids indexed to

future prices, like the price of coal, the realized value of future tariffs will depend on the

realizations of those prices.

Figure 2, panels B, C and D then break down the overall tariffs for the L1, L2 and L6

bidders into their component parts. In each of these three panels, there are three curves. The

lowest, dashed curve shows the nominal tariff for capacity (i.e., fixed) charges. The middle,

dotted (red) curve shows the tariff for all parts of the bid not indexed to coal prices. It is

therefore the sum of the dashed curve and other charges like energy charges not indexed to
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Figure 2: Bidding for the Mundra Ultra-Mega Power Project
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The figure shows bids from the Mundra Ultra-Mega Power Project, which was bid in 2006 for delivery starting
in 2012. Panel A shows the time path of all the bids in the Mundra UMPP auction, ranked from L1 (the
winning bidder) to L6 (the highest bidder) in terms of their expected discounted nominal tariff (the score
of the auction). Each curve shows the tariff offered by each bidder in each year of the contract from one
to twenty-six (contracts are 25 years long but often span 26 calendar years). These future offered tariffs are
expectations, because, for bids indexed to future prices, like the price of coal, the realized value of future tariffs
will depend on the realizations of those prices. Panels B, C and D then break down the overall tariffs for the
L1, L2 and L6 bidders into their component parts. In each of these three panels, there are three curves. The
bottom, dashed (blue) curve shows the nominal tariff for capacity (i.e., fixed) charges. The middle, dotted
(red) curve shows the tariff for all parts of the bid not indexed to coal prices. It is therefore the sum of the
dashed curve and other charges like energy charges not indexed to coal prices and transportation charges. The
topmost, solid (black) curve shows the total tariff in a year. The gap between the solid (black) and dotted
(red) curves is therefore the part of the bid indexed to coal prices.

coal prices. The topmost, solid (black) curve shows the total tariff in a year. The gap between

the solid (black) and dotted (red) curves is therefore the part of the bid indexed to fuel prices.

These figures show, of course, that Tata’s bid was the lowest in expected discounted value

terms (panel A). They also show two features of the bid that bear on Tata’s prospects for

later renegotiation. First, in panel A, although Tata was the winning bid, there are several

other bids that are very close. In particular, in the initial years of the contract, Tata, the
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L2 and the L4 bidders offer nearly identical prices for power. It is only in later years that

these bids rise and Tata, by keeping its bid low, wins the lowest expected discounted tariff.

Second, in panel B, we see that even in the final years of the bid, most (about three-quarters)

of Tata’s winning bid was not indexed to future coal prices. This project used imported coal

and the level of coal prices in twenty-five years is uninsurable on financial markets. Losing

bidders tended to increase their bids more over time and to index more of their bids to future

prices. In panel C, the L2 bidder increases its bid more at the end of the contract and indexes

about half of the value of its tariff in the last year to coal prices. In panel D, we see that the

bidder offering the highest price increases its bid still more steeply over time.

Therefore Tata’s expected discounted bid is low due mainly to low prices offered towards

the end of the contract. Other bidders indexed a greater share of their bids; by the scoring

of the auction, this implied that their expected energy charges to the procurers would grow

in nominal terms over time.

ii Renegotiation

The structure of Tata’s bid was central to later renegotiations of Tata’s contract. The first

units of the Mundra UMPP were commissioned and began working in mid-2012 roughly on

schedule. However, in the interim between bidding and the plant starting up, coal prices

had spiked dramatically, then receded only partway to their former level. Figure 3 shows the

time series of the relevant coal price index for imported coal (solid black line), with the gray

histogram in the background showing the number of bids received in sample auctions in each

year. The Mundra project, having been bid in 2006, was followed by a steep increase in coal

prices. The imported coal price was around USD 50 per ton in the years preceding bidding

and moved sharply upwards, to a level around USD 100 per ton in the year the plant started

running.12

In September 2012, Tata applied to the Central Electricity Regulatory Commission for an

increase in the tariff set by the auction (Central Electricity Regulatory Commission, 2012).

Their legal argument was that the price increase was unexpected and due in part to changes

in foreign law, which should be considered force majeure to revise the contract.13 A majority

12Observers attributed this increase in part to the fundamental shift of China rapidly moving from a net
exporter to a net importer of coal.

13Tata specifically argued they had tried to hedge by contracting for coal and buying part of a coal mine
in Indonesia. The Government of Indonesia revised its rules on coal pricing and foreign ownership of mines,
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Figure 3: Timing of Power Procurement and Coal Price Shocks
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The figure shows the number of bids in sample power procurement auctions (gray bars, against left axis) and
the time series of imported coal prices (solid black line, against right axis). The coal price is the Newcastle coal
index, formerly the Barlow-Jonkers index, which gives the price of one ton of coal with gross calorific value of
6,300 kcal per kg. This benchmark price, out of Australia, is used as a reference price for international coal
for the indexation of Indian power purchase auctions.

of members of the CERC accepted this argument and granted Tata a “compensatory tariff” of

INR 0.53 per kWh, or roughly a quarter of the tariff from the auction, among other additional

compensation.

The case turned on the question of whether a prudent bidder should be expected to index

the price of power to the price of coal. In the ruling granting the added tariff, one dissenting

member of CERC argued, sardonically, that Tata should be held to their bid:

[B]y not factoring in the market price of coal and not quoting the escalable

energy charges in full has helped it in winning the bids. The petitioner . . .

cannot renege on its commitment and seek restitutionary remedy in the form of

additional tariff . . . . The petitioner being in business for a pretty long time is

expected to factor in the possible market variation, while quoting for a period of

more than 25 years. (Central Electricity Regulatory Commission, 2012)

which changed the terms on which Tata could export coal. However, even the claimed hedge was not close
to the full quantity or duration of contract needed to fully supply the Mundra plant. The plant would need
about 12 million tons per year of coal. Petition documents show that Tata had secured contracts for 55% of
this amount for the first five years of production, or 11% of its total coal demand over the 25-year contract
(Central Electricity Regulatory Commission, 2012).
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This argument, in rough terms, sustained several stages of appeal. The Supreme Court of

India ruled against the grounds for the compensatory tariff and legal disputes continued. Tata

proposed to sell the plant back to the procurers, and as of writing the Government of Gujarat

is apparently considering this offer.

The ex ante and even ex post result of this renegotiation is hard to value for Tata and

other bidders. Renegotiation can take several forms, including successful renegotiation via

the regulator, successful renegotiation via the buyer, and unsuccessful renegotiation. The

Mundra case is an example of successful renegotiation via the regulator. Tata was granted a

compensatory tariff for a time and is now in further renegotiation for the sale of its plant. In

these cases, the tariff bid is adjusted upwards by a fixed amount, rather than being explicitly

indexed ex post. Successful renegotiation via the buyer occurs when, even if the regulator does

not grant an explicit compensatory tariff, the buyer of power offers concessions to increase

project profits or keep the project operating. For example, Reliance Power sold the Tilaiya

UMPP off to the state utility of Jharkhand, the power buyer, for a positive amount, at a

time when the net present value of that project, on the contract set at auction, ran billions of

dollars into the red.14 It is plausible in these cases that filing a petition for renegotiation with

the regulator serves to strengthen the bargaining position of the bidder, even if the regulatory

petition itself is not granted. In unsuccessful renegotiation, a bidder may file a petition that

is rejected and also fail to renegotiate bilaterally with the buyer. In this case the winning

bidder is stuck with a money-losing project.

The main import of this case study for the analysis that will follow is that (a) some bidders

had a founded expectation they may be able to revise terms to increase the value of their

contracts as bid (b) the prospects for renegotiation depend on exogenous shocks to input

costs.

b Descriptive evidence on mechanisms for renegotiation

This subsection provides evidence that the mechanism of renegotiation in the Mundra case

was common to other projects of this generation. I establish four facts. First, renegotiation

is widespread. Second, firms renegotiate in response to cost shocks. Third, firms that are

14Using the Tilaiya bid and contract, I estimate that the NPV of the project at the time of exit was negative.
The increase in tariff required to make the project whole at the time of exit was INR 0.38 per kWh, or 21% of
the tariff as bid.
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Table 1: Summary of Bids and Renegotiation

Year Bids Winners
Petition status Mean

Known Filed Granted Tariff Capacity
(INR/kWh) (MW)

(1) (2) (3) (4) (5) (6) (7) (8)

2006 18 3 3 3 2 2.1 3465
2007 23 10 8 4 0 2.9 1043
2008 26 6 4 3 1 3.1 350
2009 34 11 8 7 3 3.5 913
2010 36 5 4 0 0 3.8 365
2011 22 7 3 1 1 4.7 259
2012 40 12 9 2 0 5.7 340
Total 199 54 39 20 7 3.9 836

The table summarizes the outcomes of power procurement auctions in the sample. The
rows of the table represent different years in which contracts were auctioned. The columns
give the number of bids (column 2) and winners (column 3), then the number of winners
for which contract status is known (column 4), for which a petition for revision of the
tariff at auction was filed (column 5) and granted (6), as well as the initial tariff and
capacity on average across winners (columns 7 and 8). Columns 5 and 6 are restricted to
only the auction winners for which the petition status is known, as shown by the column
4 entry.

more connected to the Government of India renegotiate more than other bidders. Fourth,

connected bidders index less of their bids to the price of coal.

i Renegotiation is widespread

Table 1 summarizes auction outcomes at the bid level. The rows of the table represent different

years in which contracts were auctioned. The columns give the number of bids and winners,

then whether a petition for revision of the tariff at auction was filed (column 4) and granted

(5), as well as the initial tariff and capacity on average across winners (columns 6 and 7).

Renegotiation is very common. Of 39 (column 4) auction winners for which the status of

renegotiation can be found, 20 (column 5) file a petition with the regulator for a revision of

the tariff revealed at auction and 7 (column 6) are successful. Thus roughly half of projects

have some kind of renegotiation, even if all do not yield a payoff. The rate of petition filing

is highest in the initial auction years of 2006 through 2009, in which a staggering 17 out of

23 auction winners filed a petition for tariff revision. The tariffs bid by winners in these early

auction years, in particular 2006 and 2007, are much lower than later years of the sample,

after coal prices had risen (Figure 3).
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ii Renegotiation responds to cost shocks

The tendency to renegotiate should differ across projects. Projects bid early in the sample

saw greater coal price shocks than those bid later. Projects also differ in their asset-specificity

and in their fuel type. Some projects use imported fuel exposed to market prices, whereas

others use a domestic or captive source for fuel and so are less exposed to coal price shocks.

I test these factors with a linear probability model

Rit = γ0 + γ1CoalShockt + γ2CoalShockt × CoalImportedi + γ3UMPPi

+γ4CoalImportedi + γ5CoalDomestici + εit.

where subscripts refer to a project i that was bid out in year t. The model is estimated in

a cross-section of data consisting of the winning bids of each project for which renegotiation

outcomes are available. Here Rit is a dummy for filing a petition to change one’s tariff by

the end of 2017 (the last year observed), CoalShockt is the change in coal prices from the

average over the five years before an auction held at t to the five years after, CoalImportedi

and CoalDomestici are dummies for fuel source, with the omitted category being captive

coal, and UMPPi is a dummy for whether a project is an Ultra-Mega Power Plant. The coal

shock is measured in units of INR per kWh to represent the change in generating cost caused

by changes in coal prices for a typical plant.15 A one unit coal price shock would therefore

change output prices by 1 INR per kWh, about one-quarter of the average bid (Table 1).

The five-year lead and lag are set since most projects have a five-year lead before they start

producing power.

The results of the regression are reported in Table 2. (Summary statistics for the variables

in Table 2 and Tables 3 and 4 below are reported in Appendix D.) The specification in

column 1 shows that projects that experienced a one INR per kWh increase in cost are 0.242

(standard error 0.099) more likely to renegotiate, on a base of about half. Column 2 shows

that the coal price shock remains after controlling for asset-specificity (the UMPP dummy),

which independently predicts renegotiation. In column 3, we drop the coal price shock. In

this specification, UMPPs are much more likely (coefficient 0.526, standard error 0.177) to

15I assume a calorific value of coal of 6,300 kcal per kg (the benchmark gross calorific value for the Newcastle
coal index) and a plant heat rate of 11,615 btu per kWh for this conversion (close to the mean operating heat
rate of 11,424 btu per kWh of Cropper et al. (2012)).
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Table 2: Cost Shocks and Renegotiation

Dependent variable: Dummy for renegotiation
(1) (2) (3) (4)

Coal price shock (Rs/kWh) 0.242∗∗ 0.205∗ 0.120
(0.0991) (0.109) (0.124)

Coal imported (=1) × 0.452∗∗∗

coal price shock (Rs/kWh) (0.159)

Ultra-mega power plant (=1) 0.335∗∗ 0.526∗∗∗ 0.197
(0.142) (0.177) (0.215)

Coal imported (=1) 0.474∗∗ 0.228
(0.177) (0.205)

Coal domestic (=1) 0.282∗ 0.178
(0.166) (0.202)

Constant 0.513∗∗∗ 0.487∗∗∗ 0.158 0.278
(0.0762) (0.0839) (0.129) (0.175)

Observations 39 39 39 39

The table shows linear probability models for whether an auction winner filed a petition for
renegotiation of tariffs. The explanatory variables are the shock to coal prices around the
time of bidding, a dummy for whether a plant is an ultra-mega power plant (large, asset-
specific projects) and dummies for the source of fuel used by the plant. The coal price shock
is measured as the difference in coal prices in a five-year moving period after the auction date
relative to a five-year moving period before the auction. The units for the coal price shock are
converted from USD per ton, the original price of the coal price index, to INR per kWh, by
assuming a gross calorific value of coal of 6,300 kcal per kg and a plant heat rate of 11,615 btu.
Hence a one unit change in coal prices is the change in coal prices that would cause a plant with
this efficiency and using this grade of coal to experience a one INR per kWh increase in the
marginal cost of power generation. The coal price shock has been demeaned. Robust standard
errors in parentheses with ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

renegotiate than other projects, consistent with an effect of asset specificity. Imported and

domestic coal projects, which are exposed to market prices, are also much more likely to

renegotiate, relative to the omitted category of projects using captive fuel. Finally, in column

4, I interact the coal price shock with the use of imported fuel. The interaction effect is 0.452

(standard error 0.159), which is a large and statistically significant effect. In column 4, having

controlled for the coal price shock, the UMPP dummy is no longer statistically different from

zero, though it remains fairly large (point estimate 0.197). The regressions suggest that fuel

price shocks are an important cause of renegotiation. In the full column 4 specification, a

UMPP using imported coal hit by a one INR per kWh fuel price shock would be 60 percentage

points more likely to renegotiate than a captive, non-UMPP project.

These cross-sectional specifications account for whether a project renegotiates, but not the

timing of renegotiation, though projects have different time at risk from when they are bid
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out to the end of the sample. Because the sample ends well before the end of the long-dated

contracts studied, it is also likely that even the high rates of renegotiation observed in the

sample underestimate the rate of renegotiation that would be seen over the full life of these

contracts. Appendix D, Table D1 estimates an alternative, hazard model of renegotiation,

using a panel expansion of the data to account for when projects renegotiate. This analysis

shows that the qualitative findings that cost shocks drive renegotiation are unchanged in

the hazard model and that, additionally, the timing of coal price shocks does affect when

renegotiation occurs.

iii Connected bidders renegotiate more and index less of their bids

It is striking that cost shocks have a large effect on renegotiation despite that the auction

rules allowed complete coal price indexation. One view of this finding is that cost shocks

are inevitable and renegotiation must occur for a large enough shock. Another view, which

is informed by the Mundra case and not mutually exclusive, is that bidders may choose to

expose themselves to cost shocks to gain a competitive advantage.

Bidders that are more connected to the Government of India, specifically, may have an

advantage in renegotiation. This part presents evidence that connected firms renegotiate more

than other bidders. More subtly, I argue that, because these bidders are more confident in

their prospects for renegotiation, they bid differently ex ante: connected bidders index less of

the value of their bids to the price of coal, taking on more risk.

First I consider whether connected bidders renegotiate more, and more successfully, than

other bidders. I estimate a regression in the sample of project outcomes of a dummy for rene-

gotiation on ConnectedF irmi, a dummy for a firm being given a coal block in the “coalgate”

scandal (Section 2 d) and firm-level controls. These specifications should be interpreted with

caution, since the sample is necessarily restricted to auction winners. If connected firms have

an advantage in winning auctions, as I argue below, then selection into winning may differ

for connected and non-connected firms.

Table 3 reports the results. In columns 1 and 2, the dependent variable indicates that

the firm has filed a petition for renegotiation. In columns 3 and 4, the dependent variable

indicates that the firm filed a petition that was then granted by the relevant regulatory com-
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Table 3: Firm Connectedness and Renegotiation

Dependent variable: Dummy for petition . . .

Filed Filed Granted Granted
(1) (2) (3) (4)

Connected firm (=1) 0.292∗ 0.331∗ 0.183 0.251∗

(0.161) (0.166) (0.112) (0.124)

Firm controls Yes Yes

Mean dependent variable:
All firms 0.51 0.51 0.18 0.18
Unconnected firms 0.33 0.33 0.07 0.07

Observations 39 39 39 39

The table shows linear probability models for whether an auction winner filed a petition
for renegotiation of tariffs (columns 1 and 2) and whether a winner was granted a peti-
tion (columns 3 and 4). The explanatory variables are a dummy for whether a firm is
connected (received coal in the coalgate scandal) and controls for firm age and whether
a firm is publicly traded. Robust standard errors in parentheses with ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.

mission.16 Table 3, columns 2 and 4 show that the mean values of renegotiation and successful

renegotiation amongst unconnected firms are 0.33 and 0.07, respectively. The estimated co-

efficients on connected firms are large and, in general, marginally statistically significant, at

the ten percent level. The coefficient on connectedness in column 2 is 0.331 (standard error

0.166), implying that connected firms renegotiate twice as often as unconnected firms. The

estimated coefficient on connectedness in column 4, where the outcome is successful renegoti-

ation, is 0.251 (standard error 0.124). The estimate, while imprecise, implies that a connected

firm is more than four times as likely to renegotiate successfully as an unconnected firm.

Firms that expect to renegotiate may bid differently in the first place. To test this hy-

pothesis, I regress bidding strategies in power procurement auctions on ConnectedF irmi.

The specification for bidder i in auction a is:

FractionIndexedai = β0 + β1ConnectedF irmi + β2BidPriceai + β′3Xi + β′4Xa + εai (1)

in the sample of all bids for which bid components are available. Here FractionIndexedai ∈

[0, 1] is the share of the present value of a bid that is indexed to coal prices, BidPriceai is

the present discounted value of the power price offered by firm i in auction a, Xi are firm-

16A petition being granted by the regulatory commission should be taken as a lower bound on the success of
renegotiation, since in several projects, petitioners were directly able to renegotiate contracts with the buying
party, despite their petitions being declined.
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Table 4: Firm Connectedness and Bidding Strategies

Dependent variable: Fraction of bid indexed to coal
(1) (2) (3) (4) (5)

Connected firm (=1) -0.0694∗∗ -0.0803∗∗∗ -0.0814∗∗∗ -0.0774∗∗ -0.0802∗∗

(0.0297) (0.0296) (0.0304) (0.0347) (0.0316)

Bid price (Rs/kWh) 0.0589∗∗∗ 0.0268 0.0558∗∗ 0.0543∗∗ 0.0552∗∗

(0.0108) (0.0295) (0.0258) (0.0267) (0.0259)

Connected firm (=1) -0.0216
× coal tied to auction (=1) (0.0645)

Connected firm (=1) -0.00854
× auction before coal awarded (=1) (0.0698)

Firm controls Yes Yes Yes Yes
Auction controls Yes
Auction fixed effects Yes Yes Yes

Mean dep. var. 0.24 0.24 0.24 0.24 0.24
Observations 121 121 121 121 121

The table shows estimates of linear regressions of bidding strategies on firm connectedness. The dependent
variable is the fraction of the expected present discounted value of a bid that is indexed to the price of coal.
The main independent variable of interest is “Connected firm (=1)”, which is a dummy variable equal to one
if the firm bidding was allocated a coal block during the coalgate scandal. All regressions control for “Bid
price (Rs/kWh)”, the present discounted value of the bid. Firm-level controls are the firm age at bidding
and whether the firm is publicly owned. Auction controls include a set of dummies for the source of fuel and
the price of coal at the time of bidding. See the text for a description of the interaction variables. Robust
standard errors in parentheses with ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

level controls including a dummy for public ownership and firm age, and Xa are auction-level

controls including the source of coal and the price of coal at the time of bidding. Some

specifications replace auction-level controls with auction fixed effects. The main coefficient of

interest is β1, the effect of connectedness on bidding strategies.

Table 4 presents the results of estimating equation 1. Column 1 has no controls, column

2 has firm and auction controls, and column 3 and onwards have firm controls and auction

fixed effects. The main finding is that the coefficient on being a connected firm is negative

and significant in all specifications. Therefore, given a level of the bid price, connected firms

index less of the value of that bid to the price of coal. The effect is economically large. The

mean share of the present value of bids indexed to the price of coal is 24%; the effect of

connectedness is to reduce indexation by 8.14 percentage points (standard error 3.04 pp) of

bid value (column 3), or one-third. This evidence is consistent with connected firms being

willing to take on greater fuel price risk when bidding in power procurement auctions.

My preferred interpretation of this result is that connected firms expect that their influ-
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ence with the government will allow them to change bid prices in the event of a cost shock.

There are two plausible alternative interpretations that the regression speaks against. First,

connected firms may be larger, more widely held and therefore less risk averse in general. The

firm controls (not reported) include both dummies for whether a firm is publicly held and

firm age. These variables have small and insignificant effects on bidding strategies and do not

change the estimated coefficient on connectedness (comparing column 2 to column 1).

The second alternative explanation for the bidding strategies of connected firms is that

connected firms may use the coal they got in the scandal to hedge fuel price risk. There are

three reasons why this appears unlikely. First, renegotiation is widespread. If connectedness

were a hedge, instead of a means to renegotiate, then we should not observe contracts being

changed. Second, the effect of connectedness is observed even in auctions that came with

their own coal sources. Some auctions specifically designate that the winner of the power

procurement contract will produce with a specific asset: coal from a mine bundled with the

project, or coal imported from a port bundled with the project. In those cases a company

having a coal block somewhere else in the country should not affect costs or risk. Yet, the

effect of connectedness on bidding is as strong in these auctions as in others (column 4,

small and insignificant coefficient on “Connected firm (=1) × coal tied to auction (=1)”).

Third, the effect of connectedness is observed even in auctions bid out before the bidders were

given any coal blocks in coalgate. Column 5 adds an interaction between “Connected firm

(=1) × auction before coal awarded (=1)”, where the latter variable equals one if the power

procurement auction was run prior to the company receiving any coal via coalgate. The small

and insignificant coefficient on this interaction indicates that connected firms behave like they

are connected even prior to being awarded any coal. I interpret these findings as showing that

the mechanism through which connectedness affects bidding strategies is not a direct impact

on costs, but rather through the confidence of connected firms in their ability to renegotiate.

4 A model of renegotiation

The theoretical model follows the descriptive evidence by letting renegotiation depend on

both exogenous shocks and endogenous bidder indexation decisions.
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a Environment

A number N of firms i bids at t = 0 to supply one unit of electricity in t = 1. Each firm has a

two-dimensional type θi = {hi,∆i} consisting of their heat rate, the energy of coal input per

unit of electricity output (btu per kWh), and a return to renegotiation ∆i described below.

Bidder types are assumed to be independently and identically distributed and privately known.

This independent private values (IPV) assumption is reasonable if values differ because firms

have different generating costs. It would be violated if, conditional on observable project

characteristics, there is a common component of costs, for example a common risk premium

for selling power to a particular state government.

A bid consists of two components βi = (βFi, βhi). The firm or firms bidding the W ≥ 1

lowest total scores S(βi) are awarded the contract.17 The score for a bid βi is

S(βi) = βFi + βhiE[p].

where p is the coal price in INR per btu. The price p ∼ H of coal is uncertain at the time of

bidding. The payment to the firm in t = 1, after the price is realized and net of the cost of

production, is

π(βi, θi) = βFi + (βhi − hi)p.

Hence the firm’s realized marginal cost is ci = hip INR per kWh.

b Renegotiation

Renegotiation occurs if net variable payments are less than some V0. The fixed component

of bids and profits cannot trigger renegotiation, since the uncertainty about fixed costs is

very small relative to the uncertainty about variable costs. We may also imagine that fixed

investments are sunk by the time the price shock is realized, and therefore the only threat the

firm has in renegotiation is to walk away from operating the plant and earning its variable

profits. This threat is credible if variable profits are low.

17Some auctions award contracts to multiple plants. Appendix D compares auctions with multiple winners
to auctions with a single winner. Average bids in the two kinds of auctions are similar, though auctions with
multiple winners have fewer bidders per winner and therefore higher winning bids.
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The event of renegotiation is therefore

R(βi, θi) = 1 {(βhi − hi)p < V0}

= 1 {p > V0/(hi − βhi)}

where we assume that hi > βhi so that bidders index less than their marginal cost. Bidders

can still earn markups through the fixed component of bids. This event sets a threshold price

p(βi, θi) =
V0

hi − βhi

such that renegotiation occurs if the realized price is higher than the threshold. The greater is

the indexation of bids, the higher a coal price shock has to be in order to induce renegotiation.

Since limβhi→h−i
p(βi, θi) =∞, no shock can induce renegotiation if a bid is fully indexed. Thus

renegotiation depends on both the shock and the bid that the auction winner offered.

In the event of renegotiation, we assume the bidder gets an additional payment ∆i per

unit. Therefore net payments are

π(βi, θi) = βFi + (βhi − hi)p+ ∆iR.

accounting for renegotiation. The heterogeneity in ∆i, the INR per kWh return to renegotia-

tion or bonus, is meant to reflect that some firms may have greater bargaining power with the

government and therefore be able to extract a higher price in response to a given cost shock

ex post. This structure assumes that ∆i affects the return conditional on renegotiation, and

therefore the expected return due to renegotiation, but not the probability of renegotiation

happening for a given bid and cost shock.18

c Preferences

The firm is risk averse. The risks posed by shocks to coal prices are significant, even for large

firms, and the model requires a degree of risk aversion to match the fact that that bidders

index a quarter of their bids on average (Table 4). The firm is assumed to value a payment

18Alternatively, one could assume the bidder type affects both the return and the probability of renegotiation.
The identification of such a model would likely require additional data, beyond bids, in order to separate the
probability of renegotiation from the realized return conditional on renegotiation occuring.
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as

V (π) = E[π + ∆iR]− ηV ar[π].

These preferences are close to mean-variance preferences, as arise from a constant absolute

risk aversion model with normally distributed shocks. I deviate from strict mean-variance

preferences by assuming that the firm does not account for variance induced by renegotiation.

This assumption greatly simplifies the bidding problem and does not have a large effect on

optimal indexation choices.19

d Equilibrium

First consider the choice of bid components conditional on a score Si. The firm will choose

bid components βi = (βFi, βhi) to maximize value conditional on meeting the score

max
(βFi,βhi)

E[π(βi, θi)]− ηV ar[π(βi, θi)]

subject to Si = βFi + βhiE[p].

We can substitute for the fixed charge in the objective function for

max
βhi

E[Si − βhiE[p] + (βhi − hi)p+ ∆iR]− ηV ar[π(βi, θi)]

max
βhi

Si − hiE[p] + ∆iE[R]− ηV ar[π(βi, θi)].

The key features that this scoring model satisfies are that (i) the score is linear in βF (ii) the

optimal βhi is independent of the desired score. A bidder can always pick the right level of

risk indexation and then meet a desired score by adjusting the fixed charge.

Given these features, the firm’s two-dimensional type can be summarized by a one-

dimensional pseudo-type, a summary measure of bidder strength (Asker and Cantillon, 2008).

The correct definition of pseudo-type is the firm’s contribution to apparent social surplus

k(θi) = max
βhi
{−hiE[p] + ∆iE[R(βi, θi)]− ηV ar[π(βi, θi)]} . (2)

19The practical deviation from strict mean-variance preferences is small for reasonable parameter values,
because the omitted variance term from renegotiation is roughly offset by the fact that renegotiation positively
covaries with prices, and this covariance reduces the volatility of payments net of renegotiation.
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The pseudo-type gives the maximum level of apparent surplus that the firm can generate

and thus omits any transfer payments in the auction. We expect that firms with higher heat

rates, and thus costs, will have lower pseudo-types (the first term) and that firms with higher

bonuses will have higher pseudo-types (the second term); however, a firm’s pseudo-type will

also affect the likelihood of renegotiation and, through indexation choices, the variance of

profits, so this result is not immediate.

The optimal indexation conditional on the score is the solution to equation above

β∗hi ∈ arg max
βhi|θi

{−hiE[p] + ∆iE[R(βi, θi)]− ηV ar[π(βi, θi)]} . (3)

The optimal fixed charge is then inferred as β∗Fi = Si − β∗hiE[p] for any desired score.

Now consider i’s choice of an optimal score. Let Sj(W ) denote the W th order statistic,

in ascending order, of scores for bidders j 6= i. The bidder i, in an auction with W winners,

solves

max
Si

V (Si|θi)Pr(Si < Sj(W )) = max
Si

(Si + k(θi))Pr(Si < Sj(W ))

where the right side follows from the definition of the pseudo-type. The pseudo-type and score

are separable because the pseudo-type is independent of the desired score. Let G(·|Xa) give

the marginal distribution of equilibrium scores conditional on the observable characteristics

Xa of an auction, such as the number of bidders. The firm solves

max
Si

(Si + k(θi)) (1−G(Si|Xa))
N−W .

Taking the first-order condition with respect to Si and solving for k(θi) yields

k(θi) =
1

N −W
1−G(Si|Xa)

g(Si|Xa)
− Si. (4)

This expression gives the pseudo-type as a function of the number of bidders, the distribution

of bids and the bidder’s own score. Bidders in the same auction that offer a higher score Si

are inferred to have lower pseudo-types k(θi), hence indirectly to have a combination of higher

costs of production or lower payments in renegotiation.
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e Identification

The bidder type is distributed as θi ∼ F on R2
+ and the distribution of these types is the

main structural estimand of interest. The observables Xi = {Si, βFi, βhi} include each bidder’s

score and the components of the bid. The distribution of prices is also known.

The identification argument depends on the bidder’s indexation problem, as characterized

by the following lemmas (Appendix B has the proofs).

Lemma 1. The optimal indexation is increasing and pseudo-type decreasing in heat rate.

This result formalizes the intuition that inefficient (high heat rate) bidders have worse

pseudo-types and are therefore weaker bidders, who will index a greater part of their bids to

protect against cost shocks.

Lemma 2. The optimal indexation is decreasing and the pseudo-type increasing in the rene-

gotiation bonus.

The renegotiation bonus and indexation are strategic substitutes, as a bidder confident

of a return to renegotiation will not feel compelled to index as insurance against high input

prices.

Proposition. Assume that the parameters (η, V0) are known and that the chosen indexation

β∗hi is interior. Then the bidder’s type θi is non-parametrically identified from Xi.

The proof is in two steps. First we recover the bidder’s pseudo-type from the score in the

auction (Guerre, Perrigne and Vuong, 2000). Then we show that the mapping from bidder

types to the pseudo-type and optimal indexation is injective.

Proof. The optimal bidding condition (4) describes a first-price auction, hence we can recover

the pseudo-type for each bidder k(θi) non-parametrically (Guerre, Perrigne and Vuong, 2000).

The right-hand side of (4) is observed since Si, the score of i’s bid, is observable and G(·|Xa)

is the distribution of these scores.

Consider the mapping Γ from types θ̃i = {hi,−∆i} to bids Γ(θi) = {βhi,−ki} where the

pseudo-type in the bid is observed from the first step. The optimal level of indexation βhi

is increasing in hi and the pseudo-type ki is decreasing in hi, thus both elements of Γ are

increasing in hi (Lemma 1). The optimal level of indexation is decreasing and the pseudo-

type is increasing in ∆, thus both elements of Γ are increasing in −∆i (Lemma 2). By this
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Figure 4: Illustration of Model Identification
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The figure illustrates the identification of the model by tracing out the iso-cost and iso-bonus loci for a calibrated
set of model parameters. The figure plots the pseudo-type k(θ) of a bidder against that bidder’s chosen level
of indexation βh. In this figure, the gray curves represent the bidder value functions for three different heat
rates, and a fixed bonus, at different levels of indexation along the horizontal axis. The highest gray curve
is the value function for a relatively low heat rate (equivalently, low cost) bidder, who therefore has a high
pseudo-type (since this is a procurement auction pseudo-type is by convention negative so that high values
represent lower costs). The bidder, despite being risk averse, does not wish to use a high level of indexation,
since that would eliminate the prospect of a bonus; however, at low levels of indexation the bidder is exposed
to too much price risk. Point A, the maximum of the gray curve, is the optimal level of indexation for this type.
The solid (black) iso-bonus locus from point A through points B and C shows how the optimal indexation and
pseudo-type change linearly if we increase the heat rate (as proven in Lemma 1). Higher cost bidders have
lower pseudo-types. An analogous iso-cost locus can be found by fixing the heat rate and varying the bonus.
Increasing ∆, we move from southeast to northwest along the dashed (red) curve, reducing indexation and
raising the bidder’s pseudo-type or bidding strength.

strict monotonicity in both arguments Γ is inverse isotone and therefore injective (Rheinboldt,

1970).

The intuition for the identification result is illustrated by Figure 4, which plots the pseudo-

type k(θ) of a bidder against that bidder’s chosen level of indexation βh. In this figure, the

gray curves represent the bidder value functions for three different heat rates, and a fixed

bonus, at different levels of indexation along the horizontal axis. The highest gray curve is

the value function for a relatively low heat rate (equivalently, low cost) bidder. The bidder,

despite being risk averse, does not wish to use a high level of indexation, since that would

eliminate the prospect of a bonus; however, at low levels of indexation the bidder is exposed

to too much price risk. Point A is the optimal level of indexation for this type. The iso-bonus
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locus from point A through points B and C shows how the optimal indexation and pseudo-

type change linearly if we increase the heat rate (as proven in Lemma 1). Higher cost bidders

have lower pseudo-types. An analogous iso-cost locus can be found by fixing the heat rate

and varying the bonus. Increasing ∆, we move from southeast to northwest along the dashed

line, reducing indexation and raising the bidder’s pseudo-type or bidding strength. Bidders

that have a larger bonus bid more aggressively (i.e., index less) and have higher pseudo-types.

The identification result shows that the intersection of iso-cost and iso-bonus loci, which is

observed at a point such as B, can be uniquely inverted to recover a bidder’s underlying type.

Thus the data can break the strength of bidders down into its component parts: cost and

renegotiation payoffs. The intuition for identification is that, since we observe both the level

of the bid and its division into indexed and not-indexed parts, we can use bidding strategies

to recover a two-dimensional bidder type.

5 Estimation

This section maps the theoretical model to the empirical model. The empirical model stays

very close to the theory but is enriched in a few directions for realism. I make a parametric

assumption on the distribution of scores, which can be judged against the observed empirical

distribution of scores, but non-parametrically identify the unobserved distribution of types,

using the result above.

The three steps in estimation are: (1) estimate the distribution of equilibrium scores; (2)

use the first-order condition for optimal bidding to invert the score distribution and recover

bidder pseudo-types; (3) use the bidder’s optimal indexation problem to invert the pair of

pseudo-type and indexation choice for the two-dimensional bidder types. I now discuss these

steps in turn.

a Equilibrium score distribution

The first object of interest is G(Si|Xa), the equilibrium distribution of scores for an auction

with observable characteristics Xa. I parameterize G(·) as a log-normal cumulative distri-

bution function. I specify the mean and the log variance of the score distribution as linear

functions of a set of observables that should affect equilibrium scores. These observables are:
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the price of coal at the time of bidding, dummies for whether a project is an Ultra-Mega

Power Plant, whether coal is imported, whether coal is domestic (the omitted category being

a captive source of coal), and the number of bidders. The coal price series used varies by coal

source as described in Appendix A.

I fit the distribution of scores by maximum likelihood. With the distribution of scores, the

number of bidders, the number of winners, and each bidder’s score Si, I then invert equation

4 to recover bidder pseudo-types (Guerre, Perrigne and Vuong, 2000).

b Type distribution

There are two main ways in which the theoretical model is enriched to match the empirical

setting in the estimation of types. First, prices are not realized in a single second period,

as in the theory, but as a price path over 25 years. Second, bidders may have different

price expectations than those used in the auction scoring. This difference in expectations is

important to account for since it could form an alternative rationale for low indexing.

The discussion below is a summary of the detailed steps to map theory to data laid out in

Appendix C. To account for the time-series nature of prices, we simulate possible coal price

paths, for each coal price series and for each bidding year. This yields expected present values

of future prices as of year t of E
[
P̃t

]
. For the purposes of estimating renegotiation probability,

we model the price series as a geometric random walk with a log-normal distribution and then

calculate the expected discounted present number of future renegotiation events E
[
R̃t

]
using

the probability of price shocks large enough to induce renegotiation. The variable P̃0 measures

the present value of future prices assumed by the auctioneer in scoring bids.

With these modifications, the bidder’s pseudo-type is

k(θi) = max
βhi

βhi

(
E
[
P̃t

]
− P̃0

)
− hiE

[
P̃t

]
+ ∆iE

[
R̃t

]
− η(βhi − hi)2V ar

[
P̃t

]
. (5)

The problem is analogous to (d) with two modifications. First, price expectations are now

over price paths. Second, I allow price expectations to differ from the expectations used by

the auctioneer. That is, bidders, based on the history of prices, may expect prices to rise more

or less than is assumed in the scoring of the auction. This feature allows that, for example,

bidders may not index, even if they do not expect to renegotiate, because they believe that
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the auctioneer has assumed prices will rise too quickly. In that case, the first term of the

pseudo-type will be negative, because the bidder’s contribution to surplus will decline the

higher is βhi. This force will drive bidders to index less than if they had common beliefs

with the auctioneer (or more, if bidders expect prices to rise more quickly). I do not allow

bidders to have idiosyncratic beliefs about future prices that differ from the beliefs of both

the auctioneer and the other bidders.20

The optimal indexed bid conditional on the score is the solution β∗hi to the problem 5.

The first order-condition for this problem is

dk(θi)

dβh
=

(
E
[
P̃t

]
− P̃0

)
+ ∆i

dE
[
R̃t

]
dβh

+ η2(hi − βhi)V ar
[
P̃t

]
= 0. (6)

In addition to the type, the system consisting of (5) and (6) has two unknowns, V0 and η.

I calibrate these based on documentary evidence, from the Mundra case and others, and bid

indexation choices, and hold them fixed across all bidders. These parameters therefore help

fit the level of bids but play no part in fitting heterogeneity across bids. The parameter V0

may be called the tolerable loss—the amount, in INR per kWh, that the regulator will allow

a project to lose in variable profits per unit before permitting renegotation. I set V0 = 0.30

INR per kWh, which is about ten percent of a typical bid.21 The parameter η is risk aversion,

the relative weight the bidder puts on variance in expected payments relative to the expected

value of payments. I calibrate the level of risk aversion in the model such that a bidder of

median heat rate from Chan, Cropper and Malik (2014) would, using imported coal in 2010,

index approximately one-quarter of their bid to coal prices, as is observed on average in the

data. This results in η ≈ 1 so I take η = 1 as the base case. Appendix D considers the

robustness of the estimated type distribution to other values of the calibrated parameters.

I now can solve the system consisting of (5) and (6) to recover each bidder’s pseudo-type.

For a given bid, the system is solved exactly to recover the pseudo-type pairs {ĥi, ∆̂i} for each

20Differences in beliefs about future prices could rationalize heterogeneity in indexing, in the same way that
differences in the expected returns to renegotiation do in the model. Coal prices are commonly observed. Given
common information, differences in beliefs would have to be driven by, for example, different forecast models.
Any idiosyncratic differences in beliefs, which are unmodeled, will increase the residual variation of bid scores
and therefore estimated bidder types.

21Documents from petition filings can give some idea of what the regulator may view as a tolerable loss.
For example, in the Mundra case, Tata claimed it was facing a loss of INR 18.73 billion per year, equivalent
to INR 0.64 per kWh. In the Tilaiya case, discussed above, the bidder sold off the project at a time when it
had expected future losses of INR 0.38 per kWh. Since these renegotiations were successul, they establish an
upper bound on the likely value of V0, which the baseline value of V0 = 0.30 respects.
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bidder.

c Counterfactual bids under strict contract enforcement

The main counterfactual of interest is to consider a world where all contracts are strictly en-

forced. I interpret this to mean that Rt = 0 for all bidders and years, regardless of price shocks.

Therefore bidders with higher bonus ∆i will not receive any advantage, since renegotiation

will never occur.

I model this counterfactual as a first-price auction with independent private values given

by the bidder heat rates. The estimated two-dimensional bidder type collapses, in this coun-

terfactual, to a one-dimensional type, since ∆i is not payoff-relevant. For a given bidder I

set ci = E
[
P̃t

]
hi + F + T for estimated heat rate hi, fixed costs F and transportation costs

T , which are common by year and project type. Therefore all heterogeneity across bidders

comes from differences in production efficiency and thus variable costs.

The distribution of average costs ci is an affine shift of the estimated distribution of

heat rates hi. Considering a first-price procurement auction with N bidders and W winning

bidders, the optimal bid function can be solved as

S(ci) = ci +

∫ c
ci

(1− F (c̃))N−Wdc̃

(1− F (ci))N−W
. (7)

Here F (·) is the distribution of costs. The markup term is the probability of winning at a

bidder’s cost ci over the marginal change in the probability of winning with respect to cost,

evaluated at the same point in the cost distribution.

For the empirical implementation of F I smooth over the cumulative distribution of heat

rates using a bandwidth of 1,000 btu per kWh and a normal kernel. For the numerator of the

above expression, I use Gauss-Legendre quadrature to numerically integrate the appropriate

function of the cost CDF over the relevant range of the cost distribution, which differs bidder

by bidder. I can therefore both recover the type distribution and solve the above condition for

counterfactually optimal bidding without making any parameteric assumptions on the form

of the type distribution.
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Figure 5: Distribution of Equilibrium Scores
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The figure shows the distribution of equilibrium bid scores. The score of a bid is the expected present discounted
tariff (i.e., “levelised tariff”) of a bid over the life of a contract in INR per kWh. Panel A shows the unconditional
distribution of scores. Panel B shows the distribution of residual scores. Let µ̂jt be the estimated mean of the
log score distribution in auction j in year t and likewise σ̂jt the estimated standard deviation. The residual
score is then defined as εijt = (logSi− µ̂jt)/σ̂jt. The residuals plotted are scaled up as ε̃ijt = exp(σ̂jtεijt + µ̂jt)
to represent the residual variance in an average auction. The red curve overlaid on the histogram is the
log-normal fit for such an auction.

6 The value of strict contract enforcement

This section discusses the empirical estimates of the structural model. The first subsection

presents the estimates of the score and type distributions. Then, I use these distributions to

estimate production costs and bidder markups in the present equilibrium. Finally I compare

these estimated costs and markups to the counterfactual costs and markups that would be

achieved if there was no renegotiation of contracts as bid.

a Model estimates

i Score distribution

To give a sense of the fit of the score model, Figure 5 plots the equilibrium score distribution

and the residual of the score distribution. Panel A plots the equilibrium scores (expected

discounted tariffs) in the raw data. Panel B plots the residual scores. I calculate residuals by

subtracting the predicted mean score in each auction and dividing by the standard deviation.

I then reflate residuals to the original units, INR per kWh, by using the average µit and σit

across auctions. Panel B therefore shows what bidders would have bid, if they all bid in an

auction with the same observable characteristics.
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Figure 6: Joint Distribution of Types
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The figure shows the joint density of the type distribution. The density is oriented to provide a view to the
relation between heat rates and bonuses. The horizontal (lower right) axis shows the heat rate hi in btu per
kWh, decreasing from left (high heat rate, inefficient plants) to right (low heat rate, efficient plants). The
horizontal (lower left) axis shows the bonus ∆i, increasing from upper left (low bonus plants) to lower right
(high bonus plants, that expect to received high payments in renegotiation). The density is kernel-smoothed
in both dimensions using a normal kernel and bandwidths of 1,000 btu per kWh in the heat rate dimension
and INR 0.2 per kWh in the bonus dimension.

The observable characteristics used have strong explanatory power for bid scores. The

unconditional score distribution is broad, with a variance of 1.49 INR per kWh squared. The

residual score distribution is much narrower, with a variance of 0.33 INR per kWh squared,

22% as large. I overlay the log-normal distribution fit on the residual score distribution.

The parametric log-normal distribution has a good fit and in particular matches the slight

right-skewness of the distribution of residual scores.

ii Type distribution

The score distribution is an equilibrium object that depends on bidder types—their heat rates

and bonuses—but also on coal prices, project types and other characteristics. I now present

and discuss the type distribution that underlies these equilibrium bids.

Figure 6 shows the joint density of the type distribution. The density is oriented to provide

a view of the relation between heat rates and bonuses. The horizontal (lower right) axis shows
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Figure 7: Marginal Distribution of Heat Rates
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B. Cumulative distribution function
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The figure plots the marginal distribution of heat rates estimated in the model and used for counterfactual
simulations of optimal bidding. Panel A shows the probability density function and panel B the cumulative
distribution function. The PDF and CDF are kernel-smoothed using a normal kernel and a bandwidth of 1000
btu per kWh.

the heat rate hi in btu per kWh, decreasing from left (high heat rate, inefficient plants) to

right (low heat rate, efficient plants). The horizontal (lower left) axis shows the bonus ∆i,

increasing from upper left (low bonus plants) to lower right (high bonus plants, that expect

to receive high payments in renegotiation).

There are two features of the joint distribution of types of interest. First, it is sharply

peaked, with most bidders having heat rates around 10,000 btu per kWh and bonuses of

less than INR 0.5 per kWh (I discuss the reasonableness of the levels of these types below).

Second, the orientation of the mass of the joint distribution suggests that the plants with the

lowest heat rates have higher bonuses. The correlation of the two parts of the type is -0.20,

because the foothills of the joint distribution move from the upper left towards the lower

right, with few plants in the lower left (which would indicate high costs and high bonuses).

This feature of the joint distribution is important, since it implies that there will be few very

high cost bidders who win auctions because they have countervailingly high bonuses, and are

therefore willing to bid low prices despite their high costs.

The counterfactual will use the marginal distribution of heat rates. Figure 7 plots this

marginal distribution. Panel A shows the probability density function and Panel B the cu-

mulative distribution function. The modal heat rate is slightly below 10,000 btu per kWh,

with the 25th percentile at 8,192 btu per kWh and the 75th at 12,546 btu per kWh. This
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Figure 8: Counterfactual Bid Functions
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The figure plots the counterfactual bid functions from equation 7 for two example auctions. The horizontal
axis is the cost of the bidder and the solid black line is the optimal bid of a bidder with that cost. The gap
between the dotted forty-five degree line and the black optimal bid line shows the markup at each level of cost.

distribution has a similar central tendency, but broader dispersion, than the distribution of

operating heat rates reported for Indian plants from engineering estimates (Cropper et al.,

2012). Figure 7, Panel B plots the median engineering estimate of heat rates for operational

Indian plants on the estimated distribution; the engineering median is at about the 60th

percentile of the estimates. Since sample plants are newer than the average plant we would

expect them to be slightly more efficient, as is observed.22

b Counterfactual allocation without renegotiation

This section considers the effects of renegotiation on equilibrium markups and the counter-

factual effects of strict contract enforcement on bidding and production costs.

Figure 8 shows optimal bid functions calculated by applying equation 7 to the estimated

cost distribution for two auctions, one with three bidders (panel A) and another with six (panel

B). The optimal markup in a first price auction is the ratio of the probability of winning to the

change in the probability of winning if a bidder changes their bid. The markup is therefore

generally higher for low-cost bidders, who are more likely to win, as seen by the decline in the

gap between the bid and cost for higher costs in both panels. The markup is also smaller in

22The dispersion of the estimated distribution of heat rates, relative to engineering estimates, may be due to
idiosyncratic differences in fuel price expectations or to unobserved differences in access to coal at concessional
prices. If some firms get access to coal at below market rates, relative to the common domestic price that I
use to form bidder expectations, the model, using the common price, will infer that some heat rates must be
very low for firms to offer power so cheaply.
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more competitive auctions (panel B as compared to panel A).

Table 5: Equilibrium and Counterfactual Bids, Costs and Mark-ups

Equilibrium Counterfactual

Sample: With bid With type With type

Bids: All Winning All Winning All Winning
(1) (2) (3) (4) (5) (6)

Bid (INR/kWh) 3.68 3.41 3.62 3.39 4.20 3.70
(0.05) (0.05) (0.05) (0.05) (0.10) (0.09)

Pseudo-type (INR/kWh) 3.46 3.03 3.38 2.98 3.38 3.27
(0.06) (0.08) (0.07) (0.10) (0.07) (0.11)

Margin over pseudotype (%) 9.16 16.61 10.07 18.36 29.07 21.87
(1.01) (2.19) (1.28) (2.75) (2.95) (4.87)

Cost of supply (INR/kWh) 3.97 3.72 3.97 3.36
(0.10) (0.11) (0.10) (0.10)

Margin over cost (%) -3.88 -2.81 7.73 12.81
(1.76) (2.94) (0.95) (1.91)

Bonus ∆ (INR/kWh) 0.29 0.31 0.29 0.33
(0.02) (0.05) (0.02) (0.05)

Value of renegotiation (INR/kWh) 0.22 0.24
(0.02) (0.04)

The table presents both the equilibrium estimates and the counterfactual results in parallel. The first four
columns show estimates describing the current equilibrium bidding. The last two columns show counterfactual
simulations. The statistics in the table are reported for two samples. The first pair of columns applies to the
entire sample of bids. The second and third pairs of columns, columns three through six, apply to only bids that
have their component parts, such as the indexed energy charge, in the data set. Within each pair of columns,
the first column reports the mean for all bids and the second the mean for winning bids only. Each column of
the table then reports the means of several bidder-level variables. These are the equilibrium or counter-factual
bid; the pseudo-type; the margin of the bid over the pseudo-type; the cost of supply, using the estimated heat
rate and the coal price applicable to each auction; the margin over cost; the estimated bidder bonus ∆i; and
finally the value of renegotiation, which is equal to the bonus times the expected discounted number of times
renegotiation will occur evaluated at the time of bidding. I bootstrap equilibrium outcomes and counterfactual
outcomes by redrawing bidders within clusters of bidding year, fuel source, and data availability (i.e., whether
a bid as component parts or not). Standard errors across 200 bootstrap samples are reported in parentheses.

Table 5 presents both the equilibrium estimates and the counterfactual results in parallel.

The first four columns show estimates describing the current equilibrium bidding. The last

two columns show counterfactual simulations. The statistics in the table are reported for two

samples. The first pair of columns applies to the entire sample with bids, i.e. equilibrium

scores. The second and third pairs of columns, columns three through six, apply to only

bids that have their component parts, such as the indexed energy charge, in the data set.

Equilibrium scores are sufficient to infer pseudo-types for all bids. The sample restriction from

column three onwards is needed because only for bids with component parts is it possible to
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infer underlying types and therefore to run counterfactuals. Within each pair of columns, the

first column reports the mean for all bids and the second the mean for winning bids only.

Each column of the table reports statistics that describe bidding. These are the equilibrium

or counter-factual bid; the pseudo-type; the margin of the bid over the pseudo-type; the cost

of supply, using the estimated heat rate and the coal price applicable to each auction; the

margin over cost; the estimated bidder bonus ∆i; and finally the value of renegotiation,

which is equal to the bonus times the expected discounted number of times renegotiation

will occur evaluated at the time of bidding. I report the pseudo-type and bonus for the

counter-factual scenario, even though they have no effect on auction outcomes, in order to

understand the selection of winners in the counterfactual. I bootstrap equilibrium outcomes

and counterfactual outcomes by re-drawing bidders, within clusters at the level of bidding

year, fuel source, and data availability (i.e., whether a bid has component parts or not).

On each bootstrap iteration, I redraw bids, estimate the score distribution, invert scores for

pseudo-types, solve pseudo-types for types and, in counterfactuals, use the inferred types to

solve the counterfactual model. Standard errors across 200 bootstrap samples are reported in

parentheses.

Bidders earn moderate markups relative to their pseudo-types. First consider Table 5,

columns 1 through 4, which characterize equilibrium bids. The mean bid across all bidders is

INR 3.68 per kWh (all bids are in expected present nominal values at the time of bidding) and

the mean bid among winners slightly lower at INR 3.41 per kWh. Relative to the pseudo-type,

this implies that winning bidders earn a markup of 16.61% (column 2). The levels of bids and

pseudo-types are similar in the sample of bids with component parts available compared to

the whole sample, with differences less than one standard error (columns 3 and 4 as compared

to columns 1 and 2). Winning bidders earn a slightly higher markup in the restricted sample

of 18.36% (standard error 2.75%), but this is not significantly different from the markup in

the full sample.

Markups with respect to cost, unlike markups with respect to pseudo-types, are estimated

to be negative or zero. In the sample of bidders with types, in columns 3 and 4, we can

compare bids to the cost of supply. The mean cost of supply is estimated at INR 3.97 per

kWh and the mean amongst winners at INR 3.72 per kWh. These costs imply that bid

markups are -3.88% (standard error 1.76%) on average and -2.81% (standard error 2.94%) for
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winners. A negative markup means that bidders, because they expect to earn more in ex post

renegotiation, bid below cost at the start.23 Consistent with these estimates, market analysts

at the time of some auctions puzzled over how such low bids could cover firm costs.24

The mean bonus across all bidders is INR 0.29 per kWh and across winning bidders INR

0.31 per kWh. There is therefore selection into winning an auction on the dimension of cost

but little on the dimension of bonus. The bonus represents the value of renegotiation when

it occurs. The expected present value of renegotiation at the time of bidding, taken across

future years, is INR 0.24 per kWh for winning bidders. The value of renegotiation is therefore

7% of the value of the initial winning bid (= 100× 0.24/3.39), on average.

Now consider Table 5 columns 5 and 6, which characterize the counterfactual equilibrium

where bidding is based only on costs. In this new equilibrium, where bidders do not get any

bonus from renegotiation, the mean bid across all bids rises to INR 4.20 per kWh (a 16%

increase) and the mean winning bid to INR 3.70 per kWh (a 9% increase). Bidders increase

their bids to insulate themselves against cost shocks, now that renegotiation will not do so.

The margins over bidder’s pseudo-type (as estimated in equilibrium and held fixed) rise to

29% for all bidders and 22% for winners (columns 5 and 6); however, these margins are no

longer relevant to bidders as the pseudo-type includes the expected value of renegotiation,

which the bidders do not obtain in the counterfactual.

The large increase in bid prices comes despite a decline in production costs for winning

bidders, from INR 3.72 (standard error 0.11) in the estimated equilibrium to 3.36 per kWh

(standard error 0.10; a 9.7% decrease) in the counterfactual. This decline in production cost

is equal to a reduction of 0.28 standard deviations of the estimated heat rate distribution, or

0.24 of the interquartile range. The decline in production cost is close to a sufficient statistic

for welfare gains in the model. If aggregate power demand is inelastic, and we neglect bidder’s

risk aversion, the change in production costs is the change in surplus. With their higher bids

and lower costs, winning bidders now earn markups of positive 12.81% (standard error 1.91%)

relative to cost in the counterfactual (column 6). Nonetheless, this markup over cost is about

23The Bajari and Tadelis (2001) model of procurement likewise predicts that “the seller is offered an initial
compensation that does not cover his expected costs,” when renegotiation is anticipated.

24For instance, an article in the Business Standard from 2006 quotes an analyst describing bids
in the Mundra and Sasan projects as “aggressive, but realistic”, on the grounds that “Otherwise
the gap between the highest and the second highest bidder would not have been so narrow.” (See
http://www.rediff.com/money/2006/dec/19lanco.htm). If multiple bidders expect some bonus in renegotia-
tion, then the gap between bidders is no longer informative about the relation of bids to costs.
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one-third smaller than the markup they previously earned relative to pseudo-types.

The counterfactual results show that strict contract enforcement would transform the

pattern of bidding. Contract enforcement is pro-competitive, since barring renegotiation

would force bids ex ante sharply upwards and compress margins. It also decreases production

costs. The size of the change in costs due to contract enforcement depends on both the

competitiveness of auctions and the correlation of bonuses with cost. The structure of the

joint distribution of bonuses and costs implies that there are not many inefficient but well-

connected firms that expect large enough bonuses to out-bid more efficient firms at the start.

In general, the more positive the correlation of cost and bonus, the structural measure of firm

connectedness, the larger would be the cost savings from strict contract enforcement. The

structure of the joint distribution of types, which is the focus of the identification argument,

is therefore central to measuring the efficiency costs of renegotiation.

7 Conclusion

This paper studies the effect of contract enforcement on equilibrium prices and efficiency in

the market for long-term power procurement contracts in India. I show that these contracts

are subject to widespread renegotiation, in particular in response to cost shocks. I argue that

the auction mechanism allowed bidders to insulate themselves against these shocks, but that

connected bidders deliberately chose not to, in order to increase their value due to ex post

renegotiation.

The analysis has a few novel features. First, I provide evidence that connectedness changes

firms’ strategies, and that this change is the mechanism by which connected firms win con-

tracts and earn rents. Second, the model allows for the channel of bids affecting renegotiation,

and therefore the prospects of renegotiation causing endogenous changes to bidding in equi-

librium. Third, the model is specified, identified and estimated with no parametric restriction

on the joint distribution of bidder types. This approach allows an especially direct and trans-

parent counterfactual analysis of bidding under strict contract enforcement.

The combination of structural analysis and bidding data, in an environment with weak

contracting, can be useful to measure the normative effects of institutions. Property rights

theory concerns the affect of contract enforcement on market structure and real outcomes
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like investment (Klein, Crawford and Alchian, 1978; Hart and Moore, 1990). Cross-country

and aggregative tests of property rights theory test its positive implications, such as when

integration is more likely to be observed (Acemoglu, Johnson and Mitton, 2009; Nunn, 2007).

Micro-economic analysis can provide measures of how weak property rights, renegotiation or

corruption affect efficiency (Goldstein and Udry, 2008; Weaver, 2018). This line of work is

important because large effects on positive outcomes, such as changes in market prices, can

be consistent with small effects on efficiency.

A broader question is how procurement should be designed when contracting is imperfect.

Auctions are a transparent procurement mechanism but often do not account for expected

contract performance. Ironically, the use of auctions to remove all discretion from procure-

ment, to stamp out corruption, can exacerbate renegotiation by forcing governments to pick

low bidders, even when those bidders are not reliable (Decarolis, 2014). The cost of using

auctions instead of negotiations will be higher for more complex projects, where ex post adap-

tation is more likely to be needed, where the costs of specifying a complete contract are high,

or where negotiation itself reveals information about project terms (Bajari, McMillan and

Tadelis, 2008; Bajari and Tadelis, 2001; Goldberg, 1977). Transactions costs, in a broad view,

include the costs of enforcing contracts by law (Williamson, 1985). In the setting of this

paper, where the auction design explicitly anticipated that the price of coal might change, it

is clear that the transactions costs lie not in specifying, but in enforcing, a contract.

A common policy response to imperfect contracting in procurement is to attempt to write

more complete contracts, for example, to score auctions to account for performance risk. Che

(1993) studies scoring auctions and finds that without commitment, the only viable scoring

rule in an auction is the utility function of the buyer. In the Indian power sector the rules of

auctions were changed in 2013, as a result of the renegotiation studied here, in order to force

bidders to index their bids to energy prices and thereby to rule out renegotiation. This change

in auction design, to use a simpler scoring rule, can be seen as an example of Che’s result: the

government, buying power, cares about productive efficiency, and not about the insurance or

risk properties of the price path that a fully flexible bid yields. Therefore forcing bidders to

bid heat rates may be better than allowing bids to be more flexible functions of future costs.

The general lesson would be that the sophistication of a procurement mechanism should not

outstrip what can be enforced.
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Appendix A [NOT FOR PUBLICATION]

A Appendix: Data (Not for Publication)

The paper uses original data on: (a) bidding in power auctions, (b) the contracts that result

from those auctions and the renegotiation of those contracts, and (c) firm connectedness to

the government. We also use data on (d) coal prices and investment. The subsections below

describe the sources of data.

a Bidding

The sample consists of bids in long-term power procurement auctions following the bidding

guidelines notified by the Government of India (Ministry of Power, 2006). These guidelines

were in force from 2006 through 2012 and were then revised in 2013. There is no central

database of bids, which are kept by the distribution companies that procured power, con-

sultants or financial bodies that assisted in scoring the auctions, and sometimes the relevant

regulatory commission that approved the power contract resulting from an auction (Cen-

tral Electricity Regulatory Commission, CERC, or State Electricity Regulatory Commision,

SERC). I obtained bids from the following bodies: Bihar Electricity Regulatory Commis-

sion, Central Electricity Regulatory Commission, Power Finance Corporation Ltd., Gujarat

Urja Vikas Nigam Ltd., Haryana Electricity Regulatory Commission, Karnataka Electricity

Regulatory Commission, Maharashtra Electricity Regulatory Commission, Madhya Pradesh

Electricity Regulatory Commission, Punjab State Power Corporation Ltd., Rajasthan Rajya

Vidyut Prasaran Nigam Ltd., Uttar Pradesh Electricity Regulatory Commission.

Figure A1 gives an example of a bid. The bidding guidelines say that bids will be set

in multi-part tariffs allowing both capacity (fixed) and energy (variable) charges. Additional

sundry charges are often specified in auctions including charges for the transportation of fuel,

the handling of fuel and the transmission of electricity. For any given charge, bidders may

further break the charge down into escalable (i.e., indexed) and non-escalable bid components.

Therefore, a bidder can offer a bid wherein the payments for energy production are an affine

function of the future price of coal. This example bid has energy and capacity charges,

both indexed and not indexed, over twenty-five years. The component of a charge that is

not indexed is specified separately for each year. A charge that is indexed is specified only

in the initial year, and is thereafter determined by the initial year’s charge inflated by the
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Figure A1: Example of Bidding Data

realization of the cost index. Therefore this bid, which is of the minimal possible complexity,

has 26 × 2 + 2 = 54 charges that can be independently set. After the contract is awarded

and over the life of the contract, the payment is calculated for each charge, accounting for the

current value of the relevant indices, and paid to the supplier on a monthly basis.

b Contracts and renegotiation

Winning bidders sign contracts with buyer called power purchase agreements (PPAs). These

PPAs have to be reviewed and approved by the appropriate regulatory commission (Central or

State), as do any revisions to the PPA after adoption. I gathered PPA documents and revisions

from the respective regulatory commissions’ websites. I code renegotiation as happening if

the firm filed any petition for a change to the original PPA with the appropriate regulatory

commission. I could not find the contract status for all auction winners. Table 1 shows the

numbers of winning bidders and the number of winning bidders with contract status.

c Connectedness (Coalgate)

The measure of firm connectedness comes from an audit report on the “coalgate” scandal.

The Comptroller and Auditor General (CAG) finished its audit of the Ministry of Coal in
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February 2012 and on March 22nd, 2012, the press reported on a draft of the CAG audit

report (Comptroller and Auditor General of India, 2012). The report describes the process of

coal allocation and in Annexure 1B tabulates the private companies given coal blocks, how

much coal they were given and the difference between the value of that coal and the estimated

cost of extraction.

Figure A2: Example of Coalgate Data

The measure of connectedness in the bidding data is whether the parent company of a

power procurement auction bidder received coal in the coalgate scandal, according to Annex-

ure 1B of the Draft CAG report. Figure A2 gives an example page from the Annexure with

coal block level data. The main variables used in the empirical analysis are the company

name (column b), the date of allotment (column (d), the sector of the company (column e)

and the quantity of coal (column f). The CAG also calculated a measure of the value of coal

relative to the cost of extraction (column n); however, I do not use this measure as it is nearly

collinear with the quantity of coal (the only difference being the quality grading and therefore

price of different coal blocks).
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d Coal prices and investment

The data source on coal prices differs by the origin of the coal. Coal India Limited is a public

sector monopoly on domestic coal supply in India. I obtain domestic coal prices from the

price notifications of Coal India, using the price of Grade B thermal coal for the power sector.

Because these notifications are published at irregular intervals it is useful to interpolate this

series. I use the Wholesale Price Index (WPI) for Non-coking Coal, indexed to the level of Coal

India prices, to compute the inflation rate of domestic coal between Coal India notifications.

For international coal I use the Newcastle Coal Price Index (NEWC), formerly the Barlow-

Jonkers Index. The Newcastle Index reflects the spot price of one ton of coal with a gross

calorific value of 6,300 kcal per kg (net value of 6,000 kcal) free on board at the Newcastle

Coal Terminal in Australia. This index is the primary benchmark for coal prices in Asia and

is used, in particular, for indexation of coal prices in sample auctions that use imported coal.

For investment and capacity figures I gather monthly and quarterly reports from the

Central Electricity Authority (CEA). For the characteristics of bidding firms I use data on

ownership from the Centre for Monitoring the Indian Economy’s (CMIE) Prowess database.
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B Appendix: Model (Not for Publication)

This appendix contains parts of the proof of model identification.

Proof. (Lemma 1). The bidder’s problem yields first-order condition

dk(θi)

dβh
= −∆h

(
V0

h− βh

)
V0

(h− βh)2
+ η2(h− βh)σ2p = 0.

The indexation choice βh appears only as a difference with heat rate (including within p).

Thus if we fix all other parameters and vary h, optimal levels of interior indexation satisfy

h − βh = C for some constant, and β∗h must be linear and increasing in cost with a slope

of one. By observation of the pseudo-type (d), the constant level of indexation net of cost

h−β∗h = C implies that the right-hand two terms are constant for all possible hi, and therefore

the pseudo-type as a whole is decreasing linearly in hi with a slope of −E[p], following the

first term.

Proof. (Lemma 2). Take the second part first. By the envelope theorem

dk(θi)

d∆
= (1−H(p)) ≥ 0

for interior βh. The inequality is strict provided the support of H(·) is sufficiently broad that

renegotiation may occur for all levels of indexation (e.g., there is some possibility of very

high prices that induce renegotiation even for a conservative bid). The optimal choice of βh

depends on the cross derivative

d

dβh

dk(θi)

d∆
=

d

dβh
(1−H(p)) = −h

(
V0

h− βh

)
V0

(h− βh)2
≤ 0

where the inequality is again strict if there is some density at high prices. This implies that

increases in ∆ decrease the marginal value of βh and thus the optimal βh is decreasing in

∆.
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C Appendix: Estimation (Not for Publication)

The model has two periods. In the data, the second period is in fact a sequence of twenty-

five years, over which the series of coal prices is realized. This subsection maps the multi-

period objects observed in the data to the simpler structure of the model. It also shows

robustness checks for the estimated type distribution under different assumptions on the

calibrated parameters of risk aversion η and the regulator’s tolerance for firm losses V0.

i Score and value function

The score of a bid is the present discounted value of the price of electricity that the bidder

offers (i.e., the levelized tariff, in INR per kWh). The score is calculated with an interest rate

r for discounting and an assumed growth rate of coal prices rp. The interest rate r for scoring

bids is published with each auction. The score is therefore

S(β) =
T∑
t=1

1

(1 + r)t−1
(
βft + βet + βh(1 + rp)

t−1p0
)

=
T∑
t=1

1

(1 + r)t−1
(βft + βet)︸ ︷︷ ︸

β̃f

+βh

T∑
t=1

(
1 + rp
1 + r

)t−1
p0︸ ︷︷ ︸

P̃0

= β̃f + βhP̃0.

where βft is the fixed charge in a given year, βet is the energy charge not indexed to cal prices

in a given year, and βh is the energy charge indexed to coal prices. Therefore the score is the

same as in the model where the fixed component of the bid is the cumulative present value of

the components of the bid not indexed to fuel prices, the indexed component of the bid is as

in the data, and the coal price is the cumulative present value of future coal prices assumed

in the auction scoring. The initial level of prices, p0, is observed at the time of bidding.

The above pertains to the auction scoring. Bidders care about risk and bidder valuations

will therefore differ from the score, as in the model. In a given year the bid pays

π(βt, pt) = βft + βet + βhtpt + ∆iRt(βt, pt).
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We assume that bidders use the same interest rate r for discounting their future value as the

auctioneer uses to score bids. The value of the stream of payments at the time of bidding is

therefore

V (β) = E

[
T∑
t=1

1

(1 + r)t−1
(βft + βet + (βh − hi)pt + ∆iRt)

]

−ηV ar

[
T∑
t=1

1

(1 + r)t−1
(βft + βet + (βh − hi)pt)

]

=
T∑
t=1

1

(1 + r)t−1
(βft + βet) + (βh − hi)E

[
T∑
t=1

1

(1 + r)t−1
pt

]
+ ∆iE

[
T∑
t=1

1

(1 + r)t−1
Rt

]

−η(βh − hi)2V ar

[
T∑
t=1

1

(1 + r)t−1
pt

]

= β̃f + (βh − hi)E

[
T∑
t=1

1

(1 + r)t−1
pt

]
+ ∆iE

[
T∑
t=1

1

(1 + r)t−1
Rt

]

−η(βh − hi)2V ar

[
T∑
t=1

1

(1 + r)t−1
pt

]
= β̃f + (βh − hi)E

[
P̃t

]
+ ∆iE

[
R̃t

]
−η(βh − hi)2V ar

[
P̃t

]
.

This expression has four terms, which we calculate as follows:

1. β̃f . This term gives the present value of components of bid not indexed to fuel prices,

which is observable and deterministic at the time of bidding.

2. (βh−hi)E
[∑T

t=1
1

(1+r)t−1 pt

]
. This term gives the variable component of expected profit.

The expectation is over the cumulative present value of the future stream of coal prices,

as of time zero. We calculate this term by simulating possible future price paths using

the history of twelve-monthly innovations in log price up to the time of bidding.

(a) Let p0 = 1.

(b) Consider a sample of monthly price observations up to the time of bid submission.

(c) Draw logδm = log pm − log pm−12 randomly from this sample.

(d) Calculate the simulated time series from p0 onwards as pt = pt−1δm for t = 1 . . . 25.

(e) Repeat B times for each starting year in t0 ∈ {2006, . . . , 2012}.
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(f) Calculate the expected value over B draws.

3. ∆iE
[∑T

t=1
1

(1+r)t−1Rt

]
. This term gives the present value of revenues from renegotia-

tion. It would be possible to simulate this term, however, we choose not to do so, for two

reasons. First, unlike the second term, it would be relatively cumbersome to simulate,

because Rt is a function of the bid β and type hi. Second, the derivative of this term

will enter the bidder’s first-order condition, so it will be useful to have an analytic and

thus smooth representation of the function.

Therefore I make additional assumptions on the time series pt in order to calculate the

value of revenues from renegotiation analytically. Assume that log pt ∼ N(µt, σ
2
t ) and

that pt follows a geometric random walk. We estimate the drift in this process with a

model

log pt = log pt−1 + log(1 + gp) + log εt (8)

where log εt is assumed normal. Because auctions happen at different times, I allow

bidders to use the information available in the price series up to the time of their

auction to estimate the parameters (gp, σε) of the price process as follows:

(a) Restrict the sample to include price data from 1995 through the year before the

year in which the auction is bid, at monthly frequency, as bidders’ information set.

The bidders therefore have at least a decade of history with which to estimate the

parameters of the price process.

(b) Let ∆p = log pt − log pt−1 and calculate the mean log price innovation ∆p.

(c) Apply equation 8 to estimate the parameter ĝp = exp
(
∆p

)
− 1.

(d) Estimate the parameter σ̂ε as the standard deviation of (∆p −∆p).

With these parameters to govern price innovations and drift, the parameters of the price

distribution Ht in any future year t are given by

µt = µ0(1 + gp)
t

σt = σε
√
t.
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We can therefore calculate the log-normal distribution of prices in any future year. The

expected value of renegotiation is then

E

[
T∑
t=1

1

(1 + r)t−1
Rt

]
=

T∑
t=1

1

(1 + r)t−1
E [Rt]

=
T∑
t=1

1

(1 + r)t−1
(1−Ht(p(β, θ)))

=
T∑
t=1

1

(1 + r)t−1

(
1−Ht

(
V0

h− βh

))
.

This expression can be evaluated analytically with the assumed form for Ht(·). The

point of evaluation for renegotiation is the same in all years. However, because the

variance of the time series of prices increase over time, we are evaluating a broader

distribution Ht at a given point; thus the mass below the threshold price will fall and

the likelihood of renegotiation rise in later years, in expectation.

4. η(βh − hi)2V ar
[
P̃t

]
. This term gives the present value of price risk. I simulate this

term using the same procedure as for the second term, but calculating the variance in

the last step.

The above four terms complete the specification of the value function with long-lived bids.

The main difference between the model objects and the empirical objects is that the empirical

objects represent statistics calculated over the future stream of prices, rather than a single

price realization. In the new notation of the empirical model, the bidder’s problem is written

max
(β̃fi,βhi)

β̃f + (βh − hi)E
[
P̃t

]
+ ∆iE

[
R̃t

]
− η(βh − hi)2V ar

[
P̃t

]
subject to Si = β̃f + βhP̃0.

Substitute the score into the bidder’s indexation problem for

max
(β̃fi,βhi)

Si − βhP̃0 + (βh − hi)E
[
P̃t

]
+ ∆iE

[
R̃t

]
− η(βh − hi)2V ar

[
P̃t

]
max

(β̃fi,βhi)
Si + βh

(
E
[
P̃t

]
− P̃0

)
− hiE

[
P̃t

]
+ ∆iE

[
R̃t

]
− η(βh − hi)2V ar

[
P̃t

]
.

This expression is very similar to the expression in the two-period case. The main change is
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that, instead of expectations or variances of a single realization of price, the uncertain parts

of the value are functions of the path of prices. The expression also allows that the expected

present value of prices E[P̃t] may differ from the present value used in the auction scoring

P̃0. If bidders agree with the auctioneer’s expectation then the second term is zero and does

not change indexation decisions. If instead bidders expect greater price appreciation than the

auctioneer, then the second term in the value will be positive, and optimal indexation will be

higher.

ii Pseudo-type

The pseudo-type is the bidder’s contribution to apparent social surplus

k(θi) = max
βhi

βhi

(
E
[
P̃t

]
− P̃0

)
− hiE

[
P̃t

]
+ ∆iE

[
R̃t

]
− η(βhi − hi)2V ar

[
P̃t

]
. (9)

The optimal indexed bid conditional on the score is the solution to the above problem

β∗hi ∈ arg max
βhi

βhi

(
E
[
P̃t

]
− P̃0

)
− hiE

[
P̃t

]
+ ∆iE

[
R̃t

]
− η(βhi − hi)2V ar

[
P̃t

]
.

The first order-condition for this problem is

dk(θi)

dβh
=

(
E
[
P̃t

]
− P̃0

)
+ ∆i

dE
[
R̃t

]
dβh

+ η2(hi − βhi)V ar
[
P̃t

]
= 0.

The second term is

dE
[
R̃t

]
dβh

=
d

dβh

[
T∑
t=1

1

(1 + r)t−1

(
1−Ht

(
V0

h− βh

))]

=

[
T∑
t=1

1

(1 + r)t−1

(
−ht

(
V0

h− βh

)
V0

(h− βh)2

)]
.

The derivative is therefore the sum of the change in the probabilities of renegotiation over the

life of the contract.
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D Appendix: Additional Results (Not for Publication)

a Hazard model for effect of cost shocks on renegotiation

An assumption of the model, tested in Table 2, is that large input cost shocks induce renego-

tiation. Table 2 provides evidence on this point, but, given the cross-sectional specification,

only considered whether renegotiation occurred, and not its timing. This subsection provides

further evidence that cost shocks affect renegotiation from the timing of renegotiation.

Figure D3 show the timing of renegotiation against the time series of coal prices. Rene-

gotiation is dated with the year in which a petition was filed for the revision of the tariff

discovered at auction. The very large, but brief price spike in 2008 is not accompanied by

renegotiation, but few projects had been bid out by that point, and those that had were

not yet generating. The climb in prices in 2010 and 2011 is followed by a large number of

renegotiations in 2012 and 2013. Renegotiations then taper off. This wave of renegotiation

therefore shows a slightly delayed response to price shocks.

Figure D3: Timing of Petition Filing and Coal Price Shocks
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The figure shows the number of petition filings each year (grey bars, against left axis)
and the time series of coal prices (solid black line, against right axis). The petitions
are petitions to the appropriate Central or State Electricity Regulatory Commission
for a change in the tariff discovered at auction. The coal price is the Newcastle coal
index, formerly the Barlow-Jonkers index. This benchmark price, out of Australia,
is used as a reference price for international coal for the indexation of Indian power
purchase auctions.
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The regression in Table 2 simplifies the description of cost shocks by (a) using whether a

petition for a change in tariff was filed to indicate renegotation, rather than accounting for

when a petition was filed (b) measuring cost shocks around the time an auction was bid out,

when in fact coal prices vary month by month after a project is awarded.

Table D1 presents a Cox proportional hazard model that relaxes both of these assumptions,

but is otherwise analogous to the cross-sectional specification of Table 2. In this hazard model,

an observation is a winning bid-by-month, and each winning bid is observed from the time

of the auction until the time of failure (filing a petition to revise the tariff) or the end of the

sample (at the end of 2017). The coal price shock is measured as the change in a five-year

moving average of coal prices from the time of an auction to the time of observation.

Table D1: Cost Shocks and Renegotiation, Hazard Model

Failure: Dummy for renegotiation
(1) (2) (3) (4)

Coal price shock (Rs/kWh) 2.228∗ 2.119∗ 1.232
(0.058) (0.089) (0.66)

Coal imported (=1) × 7.379∗∗

coal price shock (Rs/kWh) (0.011)

Ultra-mega power plant (=1) 1.376 2.094 1.110
(0.41) (0.15) (0.84)

Coal imported (=1) 4.682∗∗ 1.982
(0.011) (0.43)

Coal domestic (=1) 2.641 1.911
(0.14) (0.40)

Observations (winning bid) 39 39 39 39
Observations (year-month) 2699 2699 2699 2699

The table shows hazard ratios from Cox proportional hazard models for whether an auction winner
filed a petition for renegotiation of tariffs. In hazard model terms, filing a petition represents
failure. The sample is monthly data from the first year of auctions, 2006, to the end of 2017.
Contracts are at risk of failure from the time of the auction until failure is observed or until
the end of the sample. The explanatory variables include a time-varying shock to coal prices
from the month of bidding to the observation month. Explanatory variables that do not vary in
time include: a dummy for whether a plant is an ultra-mega power plant (the largest projects)
and dummies for the source of fuel used by the plant. The coal price shock is measured as the
difference in coal prices in a five-year moving average in the observation month minus the same
five-year moving average in the auction month. The units for the coal price shock are converted
from USD per ton, the original price of the coal price index, to INR per kWh, by assuming a
calorific value of coal of 6300 kcal per kg and a plant heat rate of 11615 btu. Hence a one unit
change in coal prices is the change in coal prices that would cause a plant with this efficiency
and using this grade of coal to experience a one INR per kWh increase in the marginal cost of
power generation. The coal price shock has been demeaned. Table entries are hazard ratios, not
coefficients. Inference is done with robust standard errors clustered at the bid level (across years);
p-values from a test of the null that the hazard ratio is equal to one are in parentheses, with ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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The main findings of the hazard model are the same as for the cross-sectional model of

Table 2. The entries in Table D1 are hazard ratios. Column 1 shows that the hazard for

renegotiation of a project is roughly twice as high for a project that has experienced a coal-

price shock that would change the output price by Rs. 1 per kWh (about a third of the

mean price bid). This estimate has a p-value of 0.058 against the null hypothesis that the

hazard ratio is one. The elevated hazard estimate is unaffected by controlling for UMPP

status (column 2); the coefficient on ultra-mega power plant is itself greater than, but not

statistically different from, one. Column 3, removing the control for price shocks, shows that

imported coal projects face the greatest hazard, nearly five times higher than projects based

on captive coal. Column 4 shows that this elevated hazard is due to the greater exposure of

imported coal projects to coal price shocks. An imported coal project exposed to a one unit

coal price shock has a hazard seven times higher than baseline, with a p-value of 0.011 against

the null of a hazard ratio of one.

The hazard model, which accounts for the timing of coal price shocks and the differential

length of exposure of different projects, therefore supports the main finding of Table 2 that

input cost shocks drive renegotiation.

b Summary statistics for renegotiation and bidding strategy regressions

This subsection reports summary statistics for the variables used in the regressions of Tables 2,

3 and 4.

Tables 2 and 3 use a sample of auction outcomes from winning bids. The main outcome is

whether a winning bidder filed a petition to renegotiate their tariff (or, alternately, whether

they filed a successful petition). Summary statistics for this sample are given in Table D2

below. Table D3 compares the tariffs of winning bids based upon whether or not the winner

would go on to file a petition to revise the tariff.

The statistics in Table D3 suggest that bidders who go on to file petitions have mean-

ingfully lower bids, although the differences with other winning bidders are not statistically

different from zero, due to the small sample of auction winners. The table compares auction

characteristics by whether or not the winning bidder filed a petition to renegotiate the tar-

iff set at auction. The auction characteristics are the winning bid price and the number of

bidders per auction winner. The first three columns show the means [standard deviations]

61



Appendix D [NOT FOR PUBLICATION]

of these variables for three different groups: auction winners who did not file a petition to

revise tariffs (column 1), auction winners who filed a petition to revise tariffs (column 2) and

auction winners who filed a petition and had that petition granted (column 3).

The mean tariffs among winners filing petitions are INR 0.36 per kWh lower (standard

error INR 0.37 per kWh, column 4) than those who do not file (INR 3.61 per kWh, column

1). The mean tariffs among winners granted petitions are INR 0.56 per kWh (standard error

INR 0.50 per kWh, column 5) lower than for those not granted a petition and INR 0.64 per

kWh (standard error 0.53) lower than for those who did not file. These differences, while not

statistically significant, are economically meaningful relative to estimated bid markups and

the value of renegotiation. Lower bids among winners who petition are consistent with the

idea that having underbid in the initial auction contributes to renegotiation.

Table D2: Summary statistics for determinants of renegotiation

Mean SD

Bidder petitioned for new tariff (=1) 0.51 0.51
Bidder petition granted (=1) 0.18 0.39
Coal price shock (5 years after − before) 0.00 0.78
Coal imported (=1) × coal price shock 0.09 0.34
Ultra-mega power plant (=1) 0.08 0.27
Coal imported (=1) 0.28 0.46
Coal domestic (=1) 0.64 0.49
Connected firm (=1) 0.62 0.49
Age of bidder (years) 27.41 24.22
Publicly-owned firm (=1) 0.69 0.47

Observations 39

The table shows summary statistics for the dependent and indepenent vari-
ables in the regressions of Tables 2 and 3. The variables are: whether a
bidder filed a petition for a revision to their tariff; whether the bidder filed
a petition for a new tariff that was granted; the (de-meaned) shock to coal
prices from the five years before a project was bid to the five years after; the
interaction of the coal price shock with a dummy for the use of imported
coal; dummies for imported and domestic coal use; a dummy for a firm
being connected, as measured by having received coal during the coalgate
scandal, the age of the firm and a dummy for whether the firm is publicly
owned.

Table 4 uses a sample of auction bids, regardless of whether a bidder won or not. The

outcome is the share of a bid that a bidder indexed to coal prices. Summary statistics for this

sample are given in Table D4 below.
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Table D3: Tariff bid by renegotiation status

Petition status

None Filed Granted Filed - None Granted - Not
(1) (2) (3) (4) (5)

Bid price (Rs/kWh) 3.61 3.26 2.97 -0.36 -0.56
[1.08] [1.21] [1.28] (0.37) (0.50)

Bidders per winner 3.35 3.74 4.00 0.40 0.55
[1.49] [1.82] [2.69] (0.53) (1.00)

Observations 19 20 7 39 39

The table compares auction characteristics by whether or not the winning
bidder filed a petition to renegotiate the tariff set at auction. The auction
characteristics are the winning bid price and the number of bidders per auction
winner. The first three columns show the means [standard deviations] of
these variables for three different groups: auction winners who did not file a
petition to revise tariffs (column 1), auction winners who filed a petition to
revise tariffs (column 2) and auction winners who filed a petition and had that
petition granted (column 3). Since a petition has to be filed to be granted,
the column 3 cases are a subset of column 2. Column 4 gives the difference
between columns 2 and 1 and column 5 the difference between column 3 and
all cases where a petition was either not filed or not granted (therefore, the
weighted mean of columns 1 and 2). In columns 4 and 5, the number in
parentheses is the standard error of the estimated difference in means.

Table D4: Summary statistics for bidding strategies

Mean SD

Share of bid value indexed 0.24 0.18
Connected firm (=1) 0.54 0.50
Bid price (Rs/kWh) 3.61 1.33
Connected firm (=1) × coal tied to auction (=1) 0.12 0.33
Connected firm (=1) × bid before getting coal (=1) 0.15 0.36
Age of bidder (years) 30.69 26.82
Publicly-owned firm (=1) 0.69 0.47
Coal source captive (=1) 0.11 0.31
Coal source imported (=1) 0.07 0.26
Coal price (INR/ton) 1759.37 581.43

Observations 121

The table shows summary statistics for the dependent and indepenent variables in the
regressions of Table 4. The variables are: the fraction of the present value of a bid
indexed to the price of coal; a dummy for a firm being connected, as measured by
having received coal during the coalgate scandal; the present discounted value of the
bid; an interaction between being connected and the source of coal for a project being
bundled with the auction; an interaction between being connected and the auction
being bid out before a connected firm was awarded a coal block in coalgate; the age of
the firm; a dummy for whether the firm is publicly owned and controls for the source
of coal for a project and the coal price at the time of an auction.
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c Effect of connectedness on indexation, without bid price controls

Table 4 showed that connected firms index their bids less to the price of coal, conditional on

firm and auction characteristics and the level of prices bid. In the context of the model, the

specification properly includes the bid price as a control, since the prediction of the model

is that given a level of efficiency, a connected bidder will index less. However, it may be

objected that, since the bid price and level of bid indexation are determined simultaneously,

it is unorthodox to control for bid price when indexation is the dependent variable.

Table D5: Firm Connectedness and Bidding Strategies

Dependent variable: Fraction of bid indexed to coal
(1) (2) (3) (4) (5)

Connected firm (=1) -0.102∗∗∗ -0.0788∗∗∗ -0.0801∗∗ -0.0702∗∗ -0.0764∗∗

(0.0320) (0.0295) (0.0308) (0.0351) (0.0322)

Connected firm (=1) -0.0541
× coal tied to auction (=1) (0.0625)

Connected firm (=1) -0.0250
× auction before coal awarded (=1) (0.0695)

Firm controls Yes Yes Yes Yes
Auction controls Yes
Auction fixed effects Yes Yes Yes

Mean dep. var. 0.24 0.24 0.24 0.24 0.24
Observations 121 121 121 121 121

The table shows estimates of linear regressions of bidding strategies on firm connectedness. The dependent
variable is the fraction of the expected present discounted value of a bid that is indexed to the price of coal.
The main independent variable of interest is “Connected firm (=1)”, which is a dummy variable equal to one
if the firm bidding was allocated a coal block during the coalgate scandal. Firm-level controls are the firm
age at bidding and whether the firm is publicly owned. Auction controls include a set of dummies for the
source of fuel and the price of coal at the time of bidding. See the text for a description of the interaction
variables. Robust standard errors in parentheses with ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table D5 therefore reproduces Table 4 without the control for the bid price. The estimated

effect of connectedness on indexation in these specifications is very similar to the estimated

effect with the control for bid price. The point estimate in column 1, without controls, shows

a slightly larger (more negative) effect of connectedness on indexation, though I could not

reject that the estimated coefficient is equal to that in Table 4, column 1. The coefficients

in columns 2 through 5, which include firm and auction level controls, are even more similar.

Thus the finding that connected firms index less of their bids does not depend on whether

the test is conditional on the level of those bids.
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d Auctions with multiple winners

Power procurement auctions may select a single winner or multiple winners. I assume that

the number of bidders N and the number of winners W in an auction are both known ex

ante. The number of bidders is likely to be known ex ante, since financial bids are preceded

by a request for qualification (RFQ), or screening stage. The number of winners is not known

ex ante, but the quantity of capacity to be procured is known, and bidders are likely able to

infer how many winning bids will be needed to meet that capacity. All UMPP projects have

only one winner. For non-UMPP projects, the correlation between the number of winners

and capacity is 0.81, suggesting that bidders are well informed about the number of winners

in an auction.

There is no significant difference in the average offered bid in auctions with multiple

winners versus auctions with a single winner, with the mean bid in auctions with multiple

winners INR 0.57 per kWh (standard error INR 0.37 per kWh) higher than in auctions with

a single winner. However, auctions with multiple winners have about two fewer bidders per

winner, and, consistent with this difference in participation reducing competitiveness, winning

bids are INR 0.80 per kWh (stndard error INR 0.33 per kWh) higher in auctions with multiple

winners. The model accounts for these differences in competitiveness by using the number of

bidders and winners in each auction in both estimation and counterfactuals (see equations 4

and 7, respectively).

e Score distribution parameter estimates

Table D6 reports the maximum likelihood estimates of the parameters of the distribution of

equilibrium scores. Since the distribution is assumed log-normal the parameters µit and σit

are the mean and standard deviation of the distribution of log scores; the two columns of the

table report the coefficients on observables from linear specifications for µit and log σit.

The parameters of the distribution are precisely estimated and marginal effects on the

mean of the distribution have the expected signs. Since the same variables change both the

mean and dispersion of the distribution I use the coefficients in the table to calculate marginal

effects (or the discrete effects of switching indicator variables from zero to one). The mean

of the score distribution is higher for projects reliant on imported or domestic coal than for

captive coal projects. For example, applying the estimated parameters to a project with four
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bidders and the mean coal price, if we change a project from a captive Ultra-Mega Power

Plant to a plant using domestic coal, this raises the mean of the score distribution by INR

1.82 per kWh (the mean of the score distribution in the data is INR 3.68 per kWh, so this is

a large effect). This jump in prices is to be expected since a captive UMPP has the lowest

cost structure of any type of plant. The mean of the score distribution is also increasing in

the coal price. The price effect is large and precisely estimated. A one standard deviation

(INR 519 per ton) increase in coal price raises the mean score by INR 0.55 per kWh. A two

standard deviation price change therefore has the same effect as moving a project from using

domestic to imported coal.

3pt 8pt

Table D6: Estimates of equilibrium score distribution

µjt log σjt
(1) (2)

Coal price (USD/ton) 0.027 -0.010
(0.0017) (0.0082)

Ultra-mega power plant (=1) 0.274 0.337
(0.0863) (0.4268)

Coal imported (=1) 0.666 -0.418
(0.0952) (0.3119)

Coal domestic (=1) 0.968 -0.127
(0.1140) (0.4833)

Number of bidders 0.000 -0.012
(0.0037) (0.0166)

Constant 0.334 -1.619
(0.1102) (0.4638)

N 162
logL -135.88

The table provides estimates of the parameters of the marginal
distribution of equilibrium bid scores. The first column gives coef-
ficients on variables affecting the mean score for auction j in time t
and the second column coefficients on variables changing the vari-
ance. Number of bidders is the maximum of the number of bidders
in an auction and six. An asset-specific project is a project where
land or coal is given to the winning bidder. Ultra-mega power
plant is a large projects of nearly 4,000 MW capacity for which
the Central government ran procurement. Coal source not cap-
tive refers to projects using domestic or imported sources of coal
and therefore exposed to coal price fluctuations. The coal price is
the 5-year trailing average of the Newcastle (imported) coal price
as of the year prior to bidding in the auction. Estimates are by
maximum likelihood with standard errors in parentheses.
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f Robustness of type distribution estimates

Table D7 studies the robustness of the estimated type distribution to alternative assumptions

on the calibrated parameters. The baseline values of the calibrated parameters are η = 1.0,

for firm risk aversion, and V0 = 0.30 (INR per kWh), for the regulator’s tolerance for a firm’s

loss in variable profits before permitting renegotiation. Column 1 shows statistics on the

type distribution under the baseline values of these parameters and the other columns show

the same statistics on the estimated type distribution under different values of the calibrated

parameters, as indicated by the column headers.

3pt 2pt

Table D7: Robustness of Type Distribution Estimates to Calibrated Parameters

Calibrated parameter values

η = 1.0 η = 0.5 η = 1.5 η = 1.0 η = 1.0
V0 = 0.30 V0 = 0.30 V0 = 0.30 V0 = 0.15 V0 = 0.45

(1) (2) (3) (4) (5)

Mean h (btu/kWh) 10433 10602 10199 10263 10500
(306) (307) (316) (304) (316)

Median h (btu/kWh) 9876 10046 9787 9926 9974
(159) (180) (201) (192) (187)

Standard deviation of ∆ (btu/kWh) 3635 3674 3706 3767 3702
(373) (365) (374) (381) (378)

Mean ∆ (INR/kWh) 0.29 0.26 0.31 0.25 0.31
(0.023) (0.021) (0.027) (0.021) (0.026)

Median ∆ (INR/kWh) 0.15 0.14 0.15 0.12 0.17
(0.021) (0.015) (0.022) (0.014) (0.024)

Standard deviation of ∆ (INR/kWh) 0.33 0.29 0.36 0.29 0.35
(0.024) (0.023) (0.030) (0.024) (0.026)

Correlation of h and ∆ -0.20 -0.15 -0.20 -0.19 -0.15
(0.076) (0.079) (0.074) (0.073) (0.077)

The table shows summary statistics on the estimated type distribution under different assumptions on
the calibrated parameters in the model. The calibrated parameters are the bidder risk aversion η and
the regulatory threshold V0 for granting a contract revision. Column 1 shows the baseline estimates and
the other columns vary the values of η and V0. The standard errors are bootstrapped over B = 200
iterations. In each column the row statistic is calculated on each iteration and the standard error is the
standard deviation of the statistic across iterations.

The estimates of the type distribution are not sensitive to reasonable changes in the values

of the calibrated parameters. For example, the mean heat rate in the baseline case with η = 1.0

is 10,433 btu per kWh (standard error 306 btu per kWh) and the median is 9,876 btu per kWh
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(standard error 159 btu per kWh). If we cut risk aversion by half, to η = 0.50, the mean heat

rate rises to 10,602 btu per kWh (standard error 307 btu per kWh) and the median to 10,046

btu per kWh (standard error 180 btu per kWh). These are small changes both economically

and statistically. Cutting risk aversion in the same way decreases the estimated mean bonus

∆ from 0.29 INR per kWh to INR 0.26. There are similarly small changes in the moments

of the estimated heat rate and bonus distributions from changing the regulatory tolerance

for firm losses (columns 4 and 5). Nor does varying the calibrated parameters change the

conclusion that there is a negative and significant correlation of around -0.20 between the two

dimensions of the type (final row, comparing across columns).

The robustness checks illustrate the logic of the trade-off in the model between risk and

renegotiation. In particular, when firms are more risk averse, we estimate a combination

of lower heat rates and higher bonuses. This result can be understood via how the model

rationalizes bidding patterns. Given the data that shows the firm’s bid and its indexation

choice, if the same firm is supposed to be more risk averse, then to have chosen the observed

bid it must have had either lower heat rates or a higher bonus. Lower heat rates, ceteris

paribus, since a more risk averse firm faces lesser risk from fuel prices if it is more efficient

and therefore uses less coal per unit output. A higher bonus, ceteris paribus, since a more

risk averse firm is willing to bear risk only if it expects a greater payoff to renegotiation.
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