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Abstract

On the Galois Action on Motivic Fundamental Groups

of Punctured Elliptic and Rational Curves

Nikolay Malkin

2021

Themainmotive of this thesis is to study the action of themotivic Galois group on themotivic fundamental

group of an algebraic curve - punctured at a finite set of points (:

GalMot � cMot
1 (- − (, E0). (1)

The algebraic, geometric, and analytic aspects of this action are examined in two cases: for - = P1 and for -

an elliptic curve.

To study this action, we rely on motivic correlators, canonical elements in the fundamental Lie coalgebra

of the category of mixed motives over a number field. We trace three themes:

(1) The Lie coalgebra structure on the motivic correlators. Using combinatorial arguments with an injection

of Hodge theory, we find general families of relations (double shuffle relations) on these elements.

(2) The Hodge realization of the structure in (1). The canonical real periods of the motivic correlators are

the Hodge correlator functions, functions of several --valued variables that are computed as Feynman

integrals. We find new functional equations on the Hodge correlator integrals. The proofs of results

related to themes (1) and (2) are closely intertwined.

(3) The geometry of modular manifolds. The phenomenon that the complex computing cohomology of some

locally symmetric space can be mapped to the standard cochain complex of the motivic Lie coalgebra had

been observed in several cases. Our work on Bianchi hyperbolic threefolds and the motivic fundamental

groups of CM elliptic curves is a variation on this theme.
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Chapter 1

Introduction

The main motive of this thesis is to study the action of the motivic Galois group on the motivic fundamental

group of an algebraic curve - punctured at a finite set of points (:

GalMot � cMot
1 (- − (, E0). (1.1)

This thesis consists of two parts, in which the algebraic, geometric, and analytic aspects of this action are

examined in two cases: for - = P1 (Chapter 2) and for - an elliptic curve (Chapter 3).

To study this action, we rely on motivic correlators, canonical elements in the fundamental Lie coalgebra

of the category of mixed motives over a number field that were constructed by Goncharov in [G9]. We trace

three themes:

(1) The Lie coalgebra structure on the motivic correlators. Using combinatorial arguments with an injection

of Hodge theory, we find general families of relations (double shuffle relations) on these elements.

(2) The Hodge realization of the structure in (1). The canonical real periods of the motivic correlators are

the Hodge correlator functions, functions of several --valued variables that are computed as Feynman

integrals. We find new functional equations on the Hodge correlator integrals. The proofs of results

related to themes (1) and (2) are closely intertwined.

(3) The geometry of modular manifolds. The phenomenon that the complex computing cohomology of some

locally symmetric space can be mapped to the standard cochain complex of the motivic Lie coalgebra had

been observed in several cases ([G10, G8]). Our work on Bianchi hyperbolic threefolds and the motivic

fundamental groups of CM elliptic curves is a variation on this theme.

The structure of the text is the following. The remainder of the introduction is an exposition of the common
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background to our results: mixed motives and motivic correlators for general curves (§1.1) and a special case,

mixed Tate motives and motivic correlators for rational curves (§1.2). In Chapters 2 and 3 we present our

results on the motivic fundamental groups of rational curves and CM elliptic curves, respectively.

1.1 Hodge and motivic correlators

1.1.1 Hodge correlator integrals

Let - be a complex curve (in this thesis, - = P1 (C) or an elliptic curve). The Hodge correlator functions,

defined in [G9], are functions

CorH (G0, . . . , G=),

where each G8 is either a point of - or a 1-form representing a class in �1 (-;C). The depth of this expression
is the number of points among the G8 minus one, if - is an elliptic curve, or the number of points distinct from

0 among the G8 minus one, if - = P1. The weight is = plus the depth.

The Hodge correlators depend on the choice of a tangential base point – a base point B ∈ - and a tangent

vector E0 at B. If = = 1 and G0, G1 ∈ - , then CorH (G0, G1) is a (normalized) Green’s function with pole at B.

In particular,

– If - = P1 and B = ∞, then

CorH (G0, G1) = �∞ (G0, G1) = (2c8)−1 log |G0 − G1 | + �.

The constant � depends on the choice of tangent vector at ∞, but the correlator is independent of this

constant in weight > 2, so we will ignore it when convenient. (When E0 = −1
I2

m
mI
= m
mF

with F = I−1, we

have � = 0.) The correlator for other tangential base points can be derived using the fact that it is invariant

under automorphisms of P1 acting on the base point and the arguments.

– If - is the elliptic curve C/(Z+Zg), where Im(g) > 0, with coordinate I inherited from the complex plane,

then

CorH (G0, G1) = �B (G0, G1) = �Ar (G0, G1) − �Ar (G0, B) − �Ar (B, G1) + �.

Here �Ar is the Arakelov Green’s function, the unique (up to constant) solution to the elliptic partial

differential equation (2c8)−1mm�Ar (G) = vol� − X0. It has the Fourier expansion

�Ar (I) = 2Im(g)
2c8

∑
W∈(Z+Zg)\{0}

exp (2c8 Im(IW)/Im(g))
|W |2

. (1.2)
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The Arakelov Green’s function has a logarithmic singularity at 0. Hence, the function CorH (G0, G1) has
singularities of the form log |I | at the divisors G0 = G1, G0 = B, G1 = B.

– Remark: The Green’s function on P1 is a specialization of the one on � . To be exact, write ��g for the

Green’s function on � = C/(Z+Zg) with base point 0. Then, taking I to be the coordinate on �g inherited
from the complex plane, such that the section I ∈ �g approaches 42c8I ∈ P1, with appropriate choice of

tangential base points,

lim
g→+8∞

��g (I1, I2) = �1

(
42c8I1 , 42c8I2

)
= log

���� 1
42c8I1 − 1

− 1
42c8I2 − 1

���� .

(This can be shown by a residue computation or an application of the Kronecker limit formula. We will

require this fact in §3.4.2.)

If = ≥ 2, the Hodge correlators are defined as sums of integrals determined by plane trivalent trees. Picture

the G0, . . . , G= written counterclockwise along the boundary of a disc and consider a trivalent tree ) embedded

in the disc with leaves at the = + 1 boundary points. The tree has = − 1 interior vertices +◦ and 2= − 1 edges

�0, . . . , �2=−2. The embedding into the plane gives a canonical orientation Or) ∈ {±1} (an ordering of the

edges up to even permutation).

Assign to each interior vertex E ∈ +◦ a copy of - , called -E , with coordinate GE . Then assign to each

edge �8 either a function 58 or a 1-form l8 , as follows:

(1) If �8 = (D, E) is an interior edge, let 58 = �B (GD , GE ), a function on -D × -E .

(2) If �8 = (D, G 9 ) is a boundary edge with the leaf decorated by a point G 9 ∈ - , let 58 = �B (GD , G 9 ), a
function on -D .

(3) If �8 = (D, G 9 ) is a boundary edge with G 9 = l a 1-form, let l8 = l(GD), a 1-form on -D .

Without loss of generality, �0, . . . , �: are the edges labeled by functions (i.e., not boundary edges

decorated by 1-forms). Suppose also that each form is either purely holomorphic or purely antiholomorphic

(which we may do because the Hodge correlators are linear in the forms); let there be ? and @ forms of these

types, respectively. Then, setting 3C = m − m, we define

2) (G0, . . . , G=) = (−2):
(

:
1
2 (: + ? − @)

)−1
Or)

∫
-+

◦
50 3
C 51 ∧ · · · ∧ 3C 5: ∧ l:+1 ∧ · · · ∧ l2=−2. (1.3)

3



0 1

2l

I1 I2

∫
I1 ,I2

� (I1, 0) 3C� (I1, I2) ∧ 3C� (I2, 1) ∧ 3C� (I2, 2) ∧ l(I1)

Figure 1.1. One of the trees contributing to CorH (0, 1, 2, l).

The Hodge correlator is the sum of such expressions over all plane trivalent trees,

CorH (G0, . . . , G=) =
∑
)

2) (G0, . . . , G=). (1.4)

The Hodge correlator is independent of the choice of ordering of edges. As a function of the arguments that

are points on - , it is either purely real or purely imaginary.

Figure 1.1 shows the integral corresponding to one of the two trees contributing to CorH (0, 1, 2, l).
The Hodge correlators satisfy a family of (first) shuffle relations. For 8, 9 > 0, let Σ8, 9 be the set of

(8, 9)-shuffles, permutations f ∈ (8+ 9 such that f(1) < · · · < f(8) and f(8 + 1) < · · · < f(8 + 9). The

(8, 9)-shuffle relation states:

∑
f∈Σ8, 9

CorH (G0, Gf−1 (1) , Gf−1 (2) , . . . , Gf−1 (8+ 9) ) = 0. (1.5)

1.1.2 Correlator coalgebra and fundamental group

We review the construction of Hodge and motivic correlators from [G9]. The Hodge correlator functions

CorH (G0, . . . , G=) of the previous section are upgraded to elements of the Tannakian Lie coalgebra Lie∨Hod of

the category of R-mixed Hodge structures:

CorHod (I0, . . . , I=) ∈ Lie∨Hod. (1.6)

The upgraded Hodge correlators (1.6) satisfy the first shuffle relations, and their coproduct in the coalgebra

Lie∨Hod is given by a simple formula, which we state below.

4



Hodge-theoretic setup

Let MHSR of be the tensor category of R-mixed Hodge structures and HSR the category of R-pure Hodge

structures. Every object of MHSR is filtered by weight, and MHSR is generated by the simple objects

R(?, @) + R(@, ?) (?, @ ∈ Z). (We write R(?) for R(?, ?).) By Deligne’s theory [D2], the cohomology of a

(possibly singular) complex variety is a mixed Hodge structure.

The Galois Lie algebra of the category of mixed Hodge structures, LieHod, is the algebra of tensor

derivations of the functor gr, : MHSR → HSR. It is a graded Lie algebra in the category HSR, and MHSR

is equivalent to the category of graded LieHod-modules in HSR. Let Lie∨Hod be its graded dual. A canonical

period map

? : Lie∨Hod → R

was defined in [G9], §1.11.

Let - be a smooth curve, ( ⊂ - a finite set of punctures, B ∈ ( a distinguished puncture (called the base

point), and E0 a distinguished tangent vector at B. The pronilpotent completion cnil1 (- \ (( ∪ {B}), E0) of the
fundamental group c1 (- \ (, B) carries a mixed Hodge structure, depending on E0, and thus there is a map

LieHod → Der
(
gr, cnil1 (- \ (, E0)

)
.

Hodge correlator coalgebra

The Hodge correlator coalgebra is defined as a vector space by

CL∨-,(,E0 :=
) (C [(]∨ ⊕ �1 (-;C))

relations
⊗ �2 (-).

Note that �2 (-) � R(1). If [ℎ] ∈ �2 (-) is the fundamental class, we write G(1) for G ⊗ [ℎ]. This coalgebra
is graded by weight. It is more finely graded by the Hodge bidegree, or type, where points in ( have type

(1, 1), holomorphic and antiholomorphic 1-forms have type (1, 0) or (0, 1), respectively, and �2 (-) has type
(−1,−1), extended to be additive with respect to the tensor product. The weight of an element of type (?, @) is
? + @. This algebra also carries a filtration by depth, defined analogously to the depth for the Hodge correlator
functions introduced above.

The relations are the following:

(1) Cyclic symmetry: G0 ⊗ · · · ⊗ G= = G1 ⊗ · · · ⊗ G= ⊗ G0.

5



(2) (First) shuffle relations: ∑
f∈Σ8, 9

G0 ⊗ Gf−1 (1) ⊗ · · · ⊗ Gf−1 (8+ 9) = 0.

(3) The elements of nonpositive weight are set to 0.

An action of the graded dual Lie algebra CL-,(,E0 by derivations on gr, cnil1 (-\(, E0)⊗Cwas constructed
in [G9]. This action is injective; its image consists of the special derivations

Der(
(
gr, cnil1 (- \ (, E0) ⊗ C

)
,

those which act by 0 on the loop around∞ and preserve the conjugacy classes of all the loops G ∈ ( \ {B}.
Dualizing this map composed with the action of LieHod, we get the Hodge correlator morphism of Lie

coalgebras:

CorHod : CL∨-,(,E0 → Lie∨Hod.

Let Lie∨Hod (-, (, E0) denote the image of this action, and let Lie∨Hod (-, () denote the algebra generated by

the Lie∨Hod (-, (, E0) for all choices of base point. We will use the shorter notation CorHod (G0, . . . , G=) for
CorHod ((G0 ⊗ · · · ⊗ G=) (1)), or CorB (. . . ), when we wish to specify the base point.

The Lie coalgebra structure on CL∨
-,(,E0

has a simple description on the generators. There are two terms

in the coproduct, XS and XCas, which are each sums over “cuts” of the element

� = (G0 ⊗ · · · ⊗ G=) ⊗ [ℎ],

which we picture as G0, . . . , G= written counterclockwise around a circle.

(1) Term X(: Consider a line inside the circle beginning at a point on the circle labeled by a puncture G8 and

ending between two adjacent points. It cuts the circle into two parts �1 and �2, which share only the

point G8 , where �1 lies clockwise of G8 . This contributes to the coproduct the term �1 ∧ �2, and XS� is

the sum of these terms over all such cuts. That is,

X(� =
∑
cyc
G0∈(

=∑
?=1

( (
G0 ⊗ G? ⊗ · · · ⊗ G=

) ⊗ [ℎ]) ∧ ( (
G0 ⊗ G1 ⊗ · · · ⊗ G?−1

) ⊗ [ℎ]) , (1.7)

where the outer sum is only taken over those cyclic reorderings where E0 is a puncture. (See Figure 1.2,

top.)

(2) Term XCas: Consider a line inside the circle beginning between two points H1 and I1 and ending between

6



G0
G1

G=

G8 G8+1

X(↦→

G0

G=

G8+1

∧
G0

G1

G8

G0
G1

G=

G8 G8+1

XCas↦→

G0

G=

G8+1

l∨
8∧

G1

G8

l8

Figure 1.2. Above: The typical term in the X( component of the coproduct.
Below: The typical term in the XCas component.

two points H2 and I2. It cuts the circle into two parts �1 and �2, in which H1 and I2 are adjacent and in

which H2 and I1 are adjacent. We insert a point labeled l between H1 and I2 on �1 and a point labeled

l∨ between I2 and H1 on �2 to obtain � ′1 and � ′2, then take the sum over l in a fixed symplectic basis

{l8}26 (- )8=0 of �1 (-;C). This contributes the term � ′1 ∧ � ′2, and XCas is the sum of these terms over all

such cuts. That is,

XCas� =
=∑
?=0

=∑
@=0

26 (- )∑
8=1

( (
G? ⊗ · · · ⊗ G@−1 ⊗ l8

) ⊗ [ℎ]) ∧ ( (
G@ ⊗ · · · ⊗ G?−1 ⊗ l∨8

) ⊗ [ℎ]) . (1.8)

(See Figure 1.2, bottom.)

The term XCas is absent if - = P1. If - has positive genus, CL∨
-,(,E0

is graded by weight and filtered by

depth, and the terms XCas disappear in the associated graded gr�CL∨
-,(,E0

.

Period map and Hodge correlator functions

Recall that the Hodge correlator functions CorH (G0, . . . , G=) satisfy cyclic symmetry and shuffle relations, so

we may also denote by CorH the function

CorH : CL∨-,(,E0 → C,

(G0 ⊗ · · · ⊗ G=) (1) ↦→ CorH (G0, . . . , G=).

7



The dual to the Hodge correlator CorH : CL∨
-,(,E0

→ C is called the Green operator GE0 . It can be viewed

as a special derivation of gr, cnil1 (- \ (, E0) ⊗ C, and defines a R-mixed Hodge structure on cnil1 (- \ (, E0).
An element G ∈ CL∨

-,(,E0
of type (?, @) provides a framing R(?, @) + R(@, ?) → gr,?+@cnil1 (- \ (, E0), and

CorHod (G) is the element of Lie∨Hod induced by this framing.

As made precise by a main result of [G9], CorH factors through the Hodge correlator map to Lie∨Hod and

the period map Lie∨Hod → C, and the resulting mixed Hodge structure on cnil1 coincides with the standard one.

Theorem 1.1 ([G9], Theorem 1.12). (a) For G ∈ CL∨
-,(,E0

, CorH (G) = (2c8)−=?(CorHod (G)), where ? is

the canonical period map Lie∨Hod → R.

(b) The mixed Hodge structure on cnil1 determined by the dual Hodge correlator map coincides with the

standard mixed Hodge structure on cnil1 .

Furthermore, let -/� be a smooth curve over a base �. For a collection of nonintersecting sections

( and choice of relative tangent vector E0, we can analogously define CL∨
-/�,(,E0 . In this setting, for

G ∈ CL∨
-/�,(,E0 , [G9] constructs a connection on the fiberwise CorHod (G) that makes CorHod (G) a variation

of mixed Hodge structures over �. We have the following essential fact, which follows from the Griffiths

transversality condition:

Lemma1.2. If G ∈ CL∨
-/�,(,E0 of type (?, @), andweight ?+@ > 2, has X(CorHod (G)) = 0, andCorH (G |1) = 0

at some 1 ∈ �, then CorHod (G) = 0.

Proof. If X(CorHod (G)) = 0, then CorHod (G) ∈ Ext1 (R(0),R(?, @) + R(@, ?)), which is one-dimensional and

rigid by the Griffiths transversality condition. Hence the variation is constant and captured by the period map

Ext1 (R(0),R(?, @) + R(@, ?)) → C. �

Motivic correlators and motivic fundamental group

Let � be a number field. There is a semisimple abelian category PM� of Grothendieck pure motives over

� and a functor � : SmProj� → PM� assigning to every smooth projective variety over � the sum of its

motivic cohomology objects:

� (-) =
2 dim(- )⊕
8=0

�8 (-).

This category is graded by the weight, where the weight of �8 (-) is 8. There is an invertible Tate object Q(1)
of weight −2; we write " (=) for the Tate twist " ⊗ Q(1)⊗=. The various realization functors respect the

weight.

Beilinson’s conjectures ([B3]) predict that there is a categoryMM� of mixed motives over �. Every

object inMM� should have a weight filtration, and there should be a functor gr, :MM� → PM� , where
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PM� is the category of pure motives over �. For every embedding f : � → C, there should be a realization
functor Af :MM� → MHS� . For every simple object " ∈ MM� , there should be an injective regulator

map

reg : Ext1MM�
(Q(0), ") →

⊕
�→C/complex conj.

Ext1MHSR (R(0), Af ("))).

Following constructions from the theory of Tannakian categories (see [DM]), define the fundamental (motivic)

Lie algebra LieMot/� to be the algebra of tensor derivations of the functor gr, , a graded Lie algebra in the

category PM� . The category MM� is equivalent to the category of graded LieMot/� -modules. The

Hodge realization of a mixed motive should be a mixed Hodge structure; an embedding f induces a map

Af : Lie∨Mot/� → Lie∨Hod.

Let - be a curve defined over �, ( ⊂ - (�) a finite set of punctures, and E0 the distinguished tangent

vector at B ∈ (. There is expected to be a motivic fundamental group cMot
1 (- \ (, E∞), a prounipotent group

scheme in the categoryMM� . The Hodge realization of its Lie algebra should be cnil1 (- \ (, E0). As it is an
object inMM� , there is an action LieMot/� → Der

(
gr, cMot

1
)
.

The construction of the Hodge correlator coalgebra CL∨
-,(,E0

can be upgraded to the motivic setting,

simply by replacing all the Hodge-theoretic objects by their motivic avatars. For example, the definition of

the motivic correlator coalgebra mimics that of its Hodge realization:

(
CLMot

-,(,E0

)∨
:=
)

((Q(1)()∨ ⊕ �1 (-))
relations

⊗ �2 (-),

a graded Lie coalgebra in the category of pure motives over �, where the relations imposed are the cyclic

symmetry, first shuffles, and quotient by nonpositive weight. Then CLMot
-,(,E0

is isomorphic to the algebra of

special derivations of gr, cMot
1 (- − (, E0), and there is a motivic correlator map

CorMot :
(
CLMot

-,(,E0

)∨
→ Lie∨Mot/� .

We will write CorMot (G0, . . . , G=) for CorMot ((G0 ⊗ · · · ⊗ G=) (1)).
Fix an embedding f : � → C. We have the composition of the realization functor with the period map:

CorH ◦ Af :
(
CLMot

-,(,E0

)∨
⊗ C→ CL∨-,(,E0 ⊗ C→ C.

By Theorem 1.1, it coincides with the composition

(
CLMot

-,(,E∞

)∨
→ Lie∨Mot → Lie∨Hod → C.
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We can summarize all of the objects and maps as follows, where the top row is conjectural:

Der( (gr, cMot
1 (- \ (, E0))∨ (CLMot

-,(,E0
)∨ CorMot //

A

��

Lie∨Mot/�

A

��
Der( (gr, cnil1 (- \ (, E0))∨ CL∨

-,(,E0

CorHod //

CorH
&&

Lie∨Hod
?

��
C.

(1.9)

Relations among the motivic correlators can be proven by showing that they hold in the Hodge realization

under any complex embedding: there is the following fact, which is an immediate consequence of the

(hypothetical) injectivity of the regulator and Lemma 1.2.

Lemma 1.3. Suppose G ∈
(
CLMot

-,(,E∞

)∨
is of type (?, @) with weight ? + @ > 2, XCorMot (G) = 0, and

CorH (A (G)) = 0 for every embedding A : � → C. Then CorMot (G) = 0.

This fact allows us to lift relations on Hodge correlators to relations on motivic correlators. In particular,

all results in Chapter 3 – the second shuffle relations for Hodge correlators and the map from the Bianchi

complexes to an algebra of Hodge correlators – should hold with “Hodge” replaced by “motivic”.

1.2 Mixed Tate motives and correlators on rational curves

In this section, we trace in greater detail the constructions of §1.1 in the Tate case. This will mainly be used

in Chapter 2.

1.2.1 Hodge correlators

Hodge correlator integrals

Let - = P1 (C). The Hodge correlator integrals CorH defined in §1.1.1 can be thought of as functions

of = + 1 complex variables CorH (I0, . . . , I=), defined by the expression (1.4) via the Green’s function

�∞ (G, H) = (2c8)−1 log |G − H |.
Let us consider the simplest examples. The Hodge correlator integral of weight 2 (semiweight1 1) is

shown in Figure 1.3.

1.Wewill very soon reindex the weight filtrations for mixed Hodge-Tate structures, renaming the semiweight
to the weight. In anticipation of this, on the next several pages, whenever weight is mentioned we also write
the semiweight. (This convention will be used in this section and in Chapter 2.)
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I0

I1

Figure 1.3. Hodge correlator with two arguments: CorH (I0, I1) = (2c8)−1 log |I0 − I1 |.

I0I1

I2

G

Figure 1.4. Hodge correlator with three arguments.

In weight 4 (semiweight 2), the Hodge correlator integrals are given by

CorH (I0, I1, I2) = −
1
8

∫
G

(2c8)−3 log |G − I0 | 3C log |G − I1 | ∧ 3C log |G − I2 | .

This integral is described by the Feynman diagram in Figure 1.4.

Recall the single-valued version of the dilogarithm, called the Bloch-Wigner function:

L2 (I) = Im (Li2 (I)) + log |I | arg(1 − I)

The weight-4 (semiweight-2) Hodge correlator integral can be calculated explicitly as

CorH (I0, I1, I2) = (2c8)−2L2

(
I1 − I0
I2 − I0

)
. (1.10)

The Hodge correlator integrals satisfy dihedral symmetry relations:

CorH (I0, I1, . . . , I=) = CorH (I1, . . . , I=, I0)

= (−1)=+1CorH (I=, . . . , I1, I0).

One can show directly using (1.3) that the Hodge correlators are invariant under an additive shift of the
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arguments. In weight > 2 (semiweight > 1), they are also invariant under a multiplicative shift:

CorH (I0, . . . , I=) = CorH (I0 + 0, . . . , I= + 0),

CorH (I0, . . . , I=) = CorH (0I0, . . . , 0I=) (0 ∈ C∗, = > 1).

Mixed Hodge theory

A mixed Hodge structure is a mixed Hodge-Tate structure if the Hodge number ℎ?,@ = 0 unless ? = @. When

considering mixed Hodge-Tate structures, we reindex the Hodge filtration by semiweight (so R(1) has weight
−1, rather than −2). Mixed Hodge-Tate structures are iterated extensions of the one-dimensional pure mixed

Hodge-Tate structures of weight −=, denoted R(=).
Let MHTR of be the tensor category of R-mixed Hodge-Tate structures (a subcategory of MHSR) and

HTSR the category of R-pure Hodge-Tate structures (a subcategory of HSR). Every object of MHTR is filtered

by weight, and MHTR is generated by the simple objects R(=), the pure Hodge-Tate structures of weight −=.
The cohomology of a punctured projective line is a mixed Hodge-Tate structure, nontrivial in weights 0 and 1.

The Galois Lie algebra of the category of mixed Hodge-Tate structures, LieHT, is the algebra of tensor

derivations of the functor gr, : MHTR → HTSR. It is a graded Lie algebra in the category HTSR, and MHTR

is equivalent to the category of graded LieHT-modules in HTSR. Let Lie∨HT be its graded dual.

Let LieHT = Der⊗gr, be the graded Lie algebra in HTSR of tensor derivations of the functor gr, . That

is, every mixed Hodge-Tate structure - determines an action

LieHT → Der
(
gr, -

)
.

Let Lie∨HT be the graded dual of LieHT.

LieHT is free on ⊕
=<0

Ext1MHTR (R(0),R(=))∨ ⊗EndR(=) R(=).

A framing of a mixed Hodge-Tate structure + of weight = consists of a pair of morphisms R(0) → gr,0 + ,

gr,−2=+ → R(=). The isomorphism classes of framed R-mixed Hodge-Tate structures generate a Hopf algebra

H•, with the structure defined by [BGSV], which is canonically isomorphic to the dual of the universal

enveloping algebra of LieHT. An element of Lie∨HT of weight = is represented by a framed R-mixed Hodge-

Tate structure of weight =, modulo products inH , that is,

Lie∨HT/� �
H

H>0 · H>0
. (1.11)
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The Ext1 (R(0),R(=)) are trivial for = ≥ 0 and 1-dimensional for = < 0, in which case

Ext1 (R(0),R(=)) = (R(=) ⊗ C)/R(=) = R(=) ⊗R 8R.

According to [G9], a choice of generators =F of LieHT ⊗ C satisfying =F = −=F amounts to a map

Lie∨HT →
⊕
=<0

Ext1MHTR (R(0),R(=)) ⊗ R(=)∨ =
⊕
=<0
R(=) ⊗R 8R,

and thus defines a canonical period map

? : Lie∨HT → R.

Such generators were originally defined byDeligne for the larger category ofR-mixedHodge structures ([D4]).

However, we use the different set of generators proposed by Goncharov ([G9]), the Green’s operators �F .

They have the property that, for Hodge structures varying over a base, the Griffiths transversality condition

needed to define variations of Hodge structures is expressed by a Maurer-Cartan differential equation on the

�F , which is essential to the construction of Hodge correlators. Contrary to this, the differential equations

for Deligne’s generators are difficult to write.

Recall that a variation of R-mixed Hodge-Tate structures on a complex variety � is a variation of the linear

data of R-mixed Hodge-Tate structure that satisfies the Griffiths transversality condition. A consequence of

the transversality condition is that for = > 1, Ext1 (R(0),R(=)) is rigid in the category of variations of mixed

Hodge-Tate structures over �: if the coproduct of a variation of Hodge-Tate structures of weight F > 1 is 0,

then the variation is isomorphic to a constant one.

Pronilpotent fundamental group

Let - = P1 (C), ( ⊂ - a finite set of punctures containing∞, and E∞ = −1
I2

3
3I

a distinguished tangent vector at

∞. Let c1 = c1 (- \ (,∞) be the classical fundamental group. The group algebra � = Q[c1] is a free group
generated by loops around the points of ( \ {∞}. Let I = ker(�→ Q) be the augmentation ideal. Then form

a Hopf algebra

�nil (- \ (, E∞) := lim←

(
· · · → �/I=+1 → �/I= → · · · → �

)
,

with coproduct defined by 6 → 6 ⊗ 6 for 6 ∈ c1. The subset of primitive elements is denoted cnil1 (- \ (, E∞).
It is actually a pronilpotent Lie algebra, the Maltsev completion of c1.

There is a canonical weight filtration on �1 (- \ (,Q), where the loops around punctures lie in weight −1.
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This induces a weight filtration, on �nil, and we have

gr, �nil (- \ (, E∞) = ) (gr,�1 (- \ (,Q)).

!-,(,E∞ be the free Lie algebra generated by C [( \ {∞}]. Then there is a canonical isomorphism

!-,(,E∞ � gr, cnil1 (- \ (, E∞) ⊗ C.

Let - = P1 (C), ( ⊂ - a finite set of punctures containing ∞, and E∞ = −1
I2

m
mI

a distinguished tangent

vector at ∞. The pronilpotent completion cnil1 (- \ (( ∪ {∞}), E∞) of the fundamental group c1 (- \ (,∞)
carries a mixed Hodge-Tate structure, depending on E∞, and thus there is a map

LieHT → Der
(
gr, cnil1 (- \ (, E∞)

)
.

Hodge correlator coalgebra

The Hodge correlator coalgebra for a rational curve - \ ( is defined as

CL∨-,(,E∞ :=
) (C [( \ {∞}]∨)

relations
⊗ �2 (-).

Note that �2 (-) � R(1). If [ℎ] ∈ �2 (-) is the fundamental class, we write G(1) for G ⊗ [ℎ].
The relations are the following:

(1) Cyclic symmetry: G0 ⊗ · · · ⊗ G= = G1 ⊗ · · · ⊗ G= ⊗ G0.

(2) (First) shuffle relations: ∑
f∈Σ?,@

G0 ⊗ Gf−1 (1) ⊗ · · · ⊗ Gf−1 (?+@) = 0.

(3) Set to 0 the elements of nonpositive weight (elements (G0) (1) and (1) (1)).

The Lie cobracket in CL∨
-,(,E0

, given by the sum of terms (1.7) and (1.8), simplifies to

X ((G0 ⊗ · · · ⊗ G=) (1)) =
∑
cyc

=−1∑
8=1
((G0 ⊗ G1 ⊗ · · · ⊗ G8) (1)) ∧ ((G0 ⊗ G8+1 ⊗ · · · ⊗ G=) (1)) . (1.12)

The algebra CL-,(,E∞ acts by derivations on !-,(,B0 , and the action

CL-,(,E∞ → Der
(
!-,(,E∞

)
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is injective. Its image consists of the special derivations Der(
(
!-,(,E∞

)
, those which act by 0 on the loop

around∞ and preserve the conjugacy classes of all the loops around punctures B ∈ ( \ {∞}.
Dualizing this map composed with the action of LieHT, we get theHodge correlator map of Lie coalgebras:

CorHod : CL∨-,(,E∞ → Lie∨HT.

We will also write CorHod (G0, . . . , G=) for CorHod ((G0 ⊗ · · · ⊗ G=) (1)).

Period map and Hodge correlator functions

Recall that the Hodge correlator functions CorH (G0, . . . , G=) satisfy cyclic symmetry and shuffle relations, so

we may also denote by CorH the function

CorH : CL∨-,(,E∞ → C,

(G0 ⊗ · · · ⊗ G=) (1) ↦→ CorH (G0, . . . , G=).

Recall that the Green operator GE∞ is the dual to the Hodge correlator map CorH : CL∨
-,(,E∞ → C. It acts

as a special derivation of gr, cnil1 (- \ (, E∞) ⊗ C, and defines a R-mixed Hodge structure on cnil1 (- \ (, E∞).
An element G ∈ CL∨

-,(,E∞ provides a framing R(=) → gr,2=c
nil
1 (- \ (, E∞), and CorHod (G) is the element of

Lie∨HT induced by this framing.

We then have the following variant of Theorem 1.1:

Theorem 1.4 ([G9], Theorem 1.12). (a) Let G ∈ CL∨
-,(,E∞ be homogeneous of weight =. Then CorH (G) =

(2c8)−=?(CorHod (G)), where ? is the canonical period map Lie∨HT → R.

(b) The mixed Hodge structure on cnil1 determined by the dual Hodge correlator map coincides with the

standard mixed Hodge structure on cnil1 .

Correlators in families

The construction of the Hodge correlator coalgebra can be performed over a base. Let - → � be a smooth

family of genus-0 curves. Generalizing from the case of � a point, one simply replaces the punctures B by

nonintersecting sections B : � → - and the tangential base point by a nonvanishing section E∞ : � → )1
-/�

factoring through a distinguished section B∞ : �→ - . This construction yields a family of coalgebras

(
CL∨

-C , {(B8)C }, (E∞)C

)
C ∈�

. (1.13)
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We will denote this coalgebra by CL∨
-/�,(,E∞ when the objects -, (, E∞ vary over �.

The Green’s function (2c8)−1 log |G − H |, used in the definition of the Hodge correlator, becomes a

distribution on - ×� - with logarithmic singularities along the relative divisors G = B∞, H = B∞, and G = H.

As we explain below, the higher-weight correlators also determine smooth variations over the base. In

particular, the period map CorH : CL∨
-,(,E∞ → C is upgraded to a map

CorH : CL∨
-/�,(,E∞ → A

0
�,

and the map CorHod to a map

CorHod : CL∨
-/�,(,E∞ → Lie∨HT/�

to the fundamental Lie coalgebra of the category of variations of R-mixed Hodge-Tate structures.

The case of specialization at intersecting sections, as well as degeneration to nodal curves, is related to

the behavior of the Hodge structure on cnil1 at the boundary of the moduli space of Riemann surfaces with =

punctures. We will examine this question in §2.3.

As -, (, E0 vary over the moduli spaceM ′0,= of Riemann surfaces of genus 0 with = distinct marked points

and a tangential base point E0, we get a family V of framed R-mixed Hodge structures on cnil1 (- \ (, B0).
Theorem 1.4 is generalized to the following.

Theorem 1.5 ([G9], Theorem 1.12). (a) There is a flat connection onVmaking it a variation of mixed Hodge

structures overM ′0,=.

(b) This variation coincides with the standard variation of mixed Hodge structures on cnil1 .

A consequence of Theorem 1.5 is that the coalgebra structure on CL∨
-,(,B0

should translate into differential

equations on the periods overM ′0,=. We now describe these equations.

Extend the period map CorH to a map defined on homogeneous elements by

CorH : ∧2CL-/�,(,E∞ → A1
�,

�1 ∧ �2 ↦→ 2F2 − 1
2(F − 1)CorH (�2) 3C�CorH (�1)

− 2F1 − 1
2(F − 1)CorH (�1) 3C�CorH (�2),
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where F8 = wt�8 and F = F1 + F2. Then we have a diagram that commutes in weight > 1:

CL-/�,(,E∞
X //

CorH
��

∧2
� CL-/�,(,E∞

CorH
��

A0
�

3� // A1
�
.

(1.14)

We emphasize that we have so far required the sections to be nonintersecting. In §2.3 we will prove a

specialization theorem, which allows to pass to the boundary ofM ′0,=. It will imply a statement about periods:

Theorem 1.6. The Hodge correlators CorH (I0, . . . , I=) are continuous on C=+1 \ {I0 = · · · = I=}.

Distribution relations

The formula expressing how the Hodge correlators transform under endomorphisms of - appears in [G9],

Lemma 12.3. We translate this result to our setting.

Consider the map [;] : P1 → P1, I ↦→ I; (; ∈ Z>0). Let (′ = [;]−1 ((). It induces a map

[;]∗ : CL-,(,E∞ → CL-,(′,E∞ ,

(I0 ⊗ · · · ⊗ I=) (1) ↦→ 1
;
(I′0 ⊗ · · · ⊗ I′=) (1),

where

I′8 =




∑
H;
8
=I8 (H8) I8 ≠ 0

; · (0) I8 = 0
.

The factor 1
;
comes from the degree of the induced map on �2 (-).

Then the diagram commutes:

CL-,(,E∞
[; ]∗ //

CorHod &&

CL-,(′,E∞
CorHod
��

Lie∨HT.

1.2.2 Motivic correlators

Mixed motives

Let � be a number field andMTM� the category of mixed Tate motives over �. It should be a full tensor

subcategory of the conjectural mixed motive categoryMM� . It is generated by objects Q(=) = Q(1)⊗= for
= ∈ Z, whereQ(1) is the Tate motive, pure of weight −1. This induces a canonical weight filtration on objects
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ofMTM� . There is a functor gr, :MTM� → PM� , where PM� is the category of pure motives over

�.

Such a category with desirable properties has been constructed by [DG]. If - is a rational curve, then

� (-) is a mixed Tate motive. The simple objects ofMTM� are Q(=) = Q(1)⊗=, = ∈ Z, and every object

ofMTM� is an iterated extension of these objects. They satisfy

Hom(Q(<),Q(=)) = 0, < < =;

Ext1 (Q(0),Q(=)) =



0 = ≤ 0

 2=−1 (�) ⊗ Q = > 0
,

Ext8 (Q(0),Q(=)) = 0, 8 > 1.

When we speak about mixed Tate motives, the associated graded objects of the weight filtration are trivial in

odd weight, so we reindex the filtration by semiweight (so Q(1) has weight −1, rather than −2).

Fundamental Lie algebra and period map

The Tannakian reconstruction theorem implies that there is a negatively graded Lie algebra LieMT/� in the

category PM� , the fundamental (motivic Tate) Lie algebra, such thatMTM� is canonically equivalent to

the category of finite-dimensional graded LieMT/� -modules in PM� . That is, for any - ∈ MTM� , there

is an action by derivations LieMT/� → Der(gr, -). We prefer to study its graded dual Lie∨MT/� .

Let - = P1, ( ⊂ - (�) a finite set of punctures containing ∞, and E∞ the distinguished tangent vector at

∞. Deligne and Goncharov’s motivic fundamental group ([DG]) cMot
1 (- \ (, E∞)un is a prounipotent group

scheme in the category MTM� . The Hodge realization of its Lie algebra is cnil1 (- \ (, E∞). As it is an

object inMTM� , there is an action LieMT/� → Der
(
gr, cMot

1
)
.

An embeddingf : � → C induces a realization functor A :MTM� → MHTR and amap A : Lie∨MT/� →
Lie∨HT. This means that there is a period map ? ◦ AHod : Lie∨MT/� → R.

For every integer = > 0, there is the Beilinson regulator map

reg : Ext1MTM�
(Q(0),Q(=)) →

⊕
�→C/conj.

Ext1MHTR (R(0),R(=)).

By Beilinson’s theorem ([B1]) it coincides for = > 1 with the Borel regulator on  2=−1 (�). Borel’s theorem
states that this regulator map is injective [B6]. So there is an injective map on the first cohomology of the
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fundamental Lie coalgebras

ker(Lie∨MT/�
X−→ ∧2Lie∨MT/� ) →

⊕
�→C/conj.

ker(Lie∨HT
X−→ ∧2Lie∨HT).

In particular, the conjectural Lemma 1.3 simplifies to the following basic theorem, which plays a crucial role

in Chapter 2:

Theorem 1.7. If G ∈ Lie∨MT/� is of weight at least 2 with X(G) = 0 and ?(AHod (G)) = 0 for every embedding

A : � → C, then G = 0.

Motivic correlator coalgebra

The construction of the Hodge correlator coalgebra CL∨
-,(,E∞ can be upgraded to the motivic setting. The

definition of the motivic correlator coalgebra mimics that of its Hodge realization:

(
CLMot

-,(,E∞

)∨
:=
)

(
(Q(1)(\{∞})∨

)
relations

⊗ �2 (-),

a graded Lie coalgebra in the category of pure motives over �, where the relations imposed are the cyclic

symmetry, first shuffles, and quotient by nonpositive weight. Then CLMot
-,(,E0

is isomorphic to the algebra of

special derivations of gr, cMot
1 (- − (, E∞), and there is a map

CorMot :
(
CLMot

-,(,E∞

)∨
→ Lie∨MT/� .

We will write CorMot (G0, . . . , G=) for CorMot ((G0 ⊗ · · · ⊗ G=) (1)).
Let us describe how motivic correlators are related to Hodge correlators. Fix an embedding A : � → C.

The Hodge realization provides coalgebra maps Lie∨MT/� → Lie∨HT and

A :
(
CLMot

-,(,E∞

)∨
⊗ C→ CL∨-,(,E∞ ⊗ C,

and thus a period map

CorH ◦ A :
(
CLMot

-,(,E∞

)∨
⊗ C→ CL∨-,(,E∞ ⊗ C→ C.

By Theorem 1.4, it coincides with the composition

(
CLMot

-,(,E∞

)∨
→ Lie∨Mot → Lie∨HT → C.
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We can summarize the main objects and maps defined in this section in a variant of diagram (1.9):

Der( (gr, cMot
1 (- \ (, E∞))∨ (CLMot

-,(,E∞ )∨
CorMot //

A

��

Lie∨MT/�

A

��
Der( (gr, cnil1 (- \ (, E0))∨ (CL∨

-,(,E∞ )
CorHod //

(2c8)FCorH
&&

Lie∨HT
?

��
R.

In this setting, a variant of Lemma 1.3 holds. Under certain conditions, relations on motivic correlators

can be proven by showing that they hold in the Hodge realization under any complex embedding. This is a

key fact in the proof of the motivic upgrade of our relations on Hodge correlators in Chapter 2:

Lemma 1.8. Let - \( be a rational curve over �. Suppose G ∈
(
CLMot

-,(,E∞

)∨
has weight > 1, XCorMot (G) = 0,

and CorH (A (G)) = 0 for every embedding A : � → C. Then CorMot (G) = 0.

Proof. CorMot (G) is an element of Lie∨MT/� with coproduct 0. The canonical period of its Hodge realization

in Lie∨HT coincides with the correlator period CorH (A (G)) = 0. By Theorem 1.7, it is 0. �

This does not hold in weight 1. For example, choose I to be an element of � that is not a root of unity,

but has norm 1 under every complex embedding (e.g., � = Q(8) and I = 1
5 (3 + 48)). Then ((0) ⊗ (I)) (1)

has coproduct 0 and period log |f(I) | = 0 under both of the embeddings Q(8) f−→ C. However, the object

CorMot (0, I) is not 0 as an element of Ext1MTM/� (Q(0),Q(1)) � �× ⊗ Q.

Dependence on (

If ( ⊆ (′, there is an induced inclusion ] : (CLMot
-,(,E0

)∨ → (CLMot
-,(′,E0 )∨.

The following diagram commutes:

(CLMot
-,(,E∞ )∨

]

��
CorMot

��

CorH◦A

��

(CLMot
-,(′,E∞ )∨

CorMotxx CorH◦A
$$

Lie∨MT/� ?◦A
// C.

This allows us to write down elements of (CLMot
-,(,E0

)∨ without explicitly specifying (.
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Distribution relations

Suppose G8 ∈ � are such that G; − G8 splits in � for all 8. Then the distribution relations defined above for

Hodge correlators hold for motivic correlators as well, that is:

CorMot (G0, . . . , G=) = 1
;

∑
H;
8
=G8

CorMot (H0, . . . , H=),

where H8 = 0 is taken with multiplicity ; if G8 = 0.

1.2.3 Multiple polylogarithms

We review the properties of multiple polylogarithms ([G3]).

It is well known that these functions obey a family of double shuffle relations, similar to our relations

for the Hodge correlators that we will show in Chapter 2. However, they do not enjoy some of their other

properties. They are multi-valued and do not satisfy dihedral symmetry relations. The shuffle relations

between multiple polylogarithms involve products, while for Hodge correlators they are linear.

Definition and properties

The multiple polylogarithms are defined by

Li=1 ,...,=A (I1, . . . , IA ) =
∑

0<:1< · · ·<:A

I:1
1 . . . I:AA

:=1
1 . . . :=AA

, =1, . . . , =A > 0. (1.15)

(The depth of this formal expression is A and the weight is F := =1 + · · · + =A .) These series converge for

|I8 | < 1 and have analytic continuations to multivalued functions with singularities on CA . The multivalued

structure is encoded by a smooth variation of mixed Hodge-Tate structures of weight F over a dense open

subset of CA .

When A = 1, the multiple polylogarithms are the classical polylogarithms Li= (I). Their monodromy and

associated mixed Hodge-Tate structures are well understood ([H]).

We can form an algebra ! generated over Q by the multiple polylogarithms, filtered by the weight and

the depth. The expression (1.15) yields expansions for products of polylogarithms, which shows that ! has a

well-defined multiplication. For example,

Li=1 (I1)Li=2 (I2) =
(∑
0<:1

I:1
1
:=1

1

) (∑
0<:2

I:2
2
:=2

2

)
=

[ ∑
0<:1<:2

+
∑

0<:2<:1

+
∑

0<:1=:2

]
I:1

1 I
:2
1

:=1
1 :

=2
2

= Li=1 ,=2 (I1, I2) + Li=2 ,=1 (I2, I1) + Li=1+=2 (I1I2).
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Notice that the left side and all terms on the right side have weight =1 + =2; however, the left side and the first

two terms on the right side have depth 2, while Li=1+=2 (I1I2) has depth 1.

The general relation is:

Li=1 ,...,=A (I1, . . . , IA )Li=A+1 ,...,=A+B (IA+1, . . . , IA+B)

=
∑
f∈ΣA,B

Li=
f−1 (1) ,...,=f−1 (A+B) (If−1 (1) , . . . , If−1 (A+B) ) + lower-depth terms, (1.16)

where ΣA ,B ⊂ (A+B is the set of (A, B)-shuffles.

Expressions (1.16) are called first shuffle relations for multiple polylogarithms. It is convenient to express

them with generating functions. Let

!
(
I1, . . . , IA | C1 : · · · : CA

) ∑
=8>0

Li=1 ,...,=A (I1, . . . , IA )
A∏
C=1

C=8−1
8

;

then

!
(
I1, . . . , IA | C1 : · · · : CA

)
!
(
IA+1, . . . , IA+B | CA+1, . . . , CA+B

)
=

=
∑
f∈ΣA,B

!
(
If−1 (1) , . . . , If−1 (A+B) | Cf−1 (1) : · · · : Cf−1 (A+B)

) + lower-depth terms. (1.17)

To describe the lower-depth terms in the right side of (1.16), we need the notion of quasishuffle. Let

� = {01 < · · · < 0A } and � = {11 < · · · < 1B} be two ordered sets. A quasishuffle of � and � is a sequence

of slots {1, . . . , "} and a placement of each element of � ∪ � in a slot, such that each slot is filled with one

of: (1) some 08 ∈ �, (2) some 1 9 ∈ �, or (3) a pair
{
08 , 1 9

}
, and such that the sequence of slots containing

the 01, . . . , 0A and the sequence of slots containing the 11, . . . , 1B are ordered left to right. If 08 and 1 9 share

a slot, they are said to collide. If no elements collide, the quasishuffle is said to be a shuffle.

Let � = {1, . . . , A} and � = {A + 1, . . . , A + B}with the natural orders. Then, equivalently, the quasishuffles

are the surjectivemaps {1, . . . , A + B} f−→ {1, . . . , "f} that are strictly increasing on 1, . . . , A and A+1, . . . , A+B.
An index 8 ∈ {1, . . . , A} collides with an index 9 ∈ {A + 1, . . . , A + B} whenever f(8) = f( 9). Let ΣA ,B be the
set of quasishuffles.

A quasishuffle f is a shuffle if "f = A + B. We naturally identify ΣA ,B with the the subset of shuffles in

ΣA ,B .
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We then have:

Li=1 ,...,=A (I1, . . . , IA )Li=A+1 ,...,=A+B (IA+1, . . . , IA+B) =

=
∑
f∈Σ̃A,B

Li=̃
f−1 (1) ,...,=̃f−1 ("f )

( Ĩf−1 (1) , . . . , Ĩf−1 ("f ) ), (1.18)

where

=̃f−1 (8) =
∑
f ( 9)=8

= 9 , Ĩf−1 (8) =
∏
f ( 9)=8

I 9 .

Such relations are easily proved by interpreting the terms as cells of the simplicial decomposition of the

product of an A-simplex and an B-simplex.

Iterated integrals

The analytic continuation of the multiple polylogarithms has a presentation in terms of iterated integrals. Let

�=1 ,...,=A (I1 : I2 : · · · : IA+1) =
∫
W

3C

I1 − C ◦
3C

C
◦ · · · ◦ 3C

C︸                      ︷︷                      ︸
=1

◦ · · · ◦ 3C

IA − C ◦
3C

C
◦ · · · ◦ 3C

C︸                      ︷︷                      ︸
=A

,

where W : [0, 1] → C is a path from 0 to IA+1. Here, for 1-forms l1, . . . , lA ,

∫
W

l1 ◦ · · · ◦ lA :=
∫

0≤C1≤···≤CA ≤1

<∧
8=1

W∗l8 (C8)

is Chen’s iterated path integral ([C]). Then ([G3], Theorem 2.1)

Li=1 ,...,=A (I1, . . . , IA ) = �=1 ,...,=A (1 : I1 : I1I2 : · · · : I1 . . . IA ). (1.19)

Iterated path integrals also satisfy a shuffle product formula, whose terms correspond to the top-dimensional

cells of a decomposition of the product of two simplices:

∫
W

l1 ◦ · · · ◦ lA
∫
W

l<+1 ◦ · · · ◦ l<+= =
∑

f∈Σ<,=
lf−1 (1) ◦ · · · ◦ lf−1 (<+=) .
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This gives a different kind of shuffle relations (second shuffle relations) on the iterated integrals �=1 ,...,=A ,

which can also be expressed in terms of generating functions. Let

! ′
(
I1 : · · · : IA+1 | C1, . . . , CA

)
=

=
∑
=8>0

�=1 ,...,=A (I1 : · · · : IA+1) C=1−1
1 (C1 + C2)=2−1 . . . (C1 + · · · + CA )=A−1, (1.20)

so

!
(
I1, . . . , IA | C1 : · · · : CA

)
= ! ′

(
1 : I1 : · · · : I1 . . . IA | C1, C2 − C1, . . . , CA − CA−1

)
. (1.21)

Then

! ′
(
I1 : · · · : IA : 1 | C1, . . . , CA

)
! ′

(
IA+1 : · · · : IA+B : 1 | CA+1, . . . , CA+B

)
=

=
∑
f∈ΣA,B

! ′
(
If−1 (1) : · · · : If−1 (A+B) : 1 | Cf−1 (1) , . . . , Cf−1 (A+B)

)
. (1.22)

Double shuffle relations

Note the similarity between (1.17) and (1.22). There is a duality between the relations with homogeneous and

inhomogeneous arguments I8 and C8 . Together, they form systems of double shuffle relations.

The combinatorics of such relations are studied by [G3, G5], allowing them to describe a connection

between an algebra of values of the multiple polylogarithms at roots of unity and the geometry of some locally

symmetric spaces for GL= (Z) (= = 2, 3; and recently for = = 4 in [G10]).

Relation to Hodge correlators

In depth 1, the Hodge correlators are related to the multiple polylogarithms. We have seen this in weights 1

and 2. In higher weight, define a single-valued version of the polylogarithm by

L= (I) =



Re = odd

Im = even

(
=−1∑
:=0

V: log: |I | · Li=−: (I)
)
(= ≥ 2),

where V: , close relatives of theBernoulli numbers, are the coefficients of the Taylor expansion 2G
42G−1 =

∑
V:G

: .

Then

CorH (1, 0, . . . , 0︸   ︷︷   ︸
=−1

, I) = −(2c8)−=
(
2= − 2
= − 1

)−1 ∑
0≤:≤=−2
: even

(
2= − : − 3
= − 1

)
2:+1

(: + 1)!L=−: (I) log: |I | . (1.23)
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The precise relationship between the multiple polylogarithms and Hodge correlators in depth > 1 is unknown.

Remark

A formula relating iterated integrals and Hodge correlators, and a different interpretation of the quasishuffle

relations (Chapter 2), was very recently found by Rudenko ([R2], §4).
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Chapter 2

Shuffle relations for Hodge and motivic

correlators on P1

The results of this chapter have appeared in [M2].

2.1 Introduction and main results

2.1.1 Summary

The Hodge correlators CorH (I0, I1, . . . , I=) are functions of several complex variables, defined by an explicit

integral formula in [G9]. They satisfy some linear relations: the dihedral symmetry relations, the distribution

relations, and the shuffle relations.

We found new relations, called second shuffle relations. When I8 ∈ {0} ∪ `# , where `# are the #-th

roots of unity, they should give almost all relations: the results of [G10] suggest that the other relations are

sporadic, i.e., cannot be described by universal formulae.

When the I8 run through a finite subset ( of C, the Hodge correlators are the canonical real periods of

the mixed Hodge-Tate structures on the pronilpotent completion of the fundamental group cnil1 (CP1 \ (( ∪
{∞}), E∞), with the tangential base point at∞. The latter is a Lie algebra in the category of mixed Q-Hodge-

Tate structures. The Hodge correlators describe the R-mixed Hodge structure on this Lie algebra tensored

over Q by R.

The category ofmixedQ-Hodge-Tate structures is canonically equivalent to the category of representations

of a graded Lie algebra over Q. Let us take its image in the representation defining cnil1 (CP1 \ ((∪ {∞}), E∞),
and consider the graded dual Lie coalgebra Lie∨HT ((). The Hodge correlators were lifted in [G9] to canonical
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elements

CorHod (I0, . . . , I=) ∈ Lie∨HT ((). (2.1)

The real numbers CorH are the canonical real periods of these elements. We prove that our new relations can

be lifted to relations on the elements (2.1).

Let ( ⊂ Q ⊂ C. The Lie algebra cnil1 (CP1 \ (( ∪ {∞}), E∞) is the Betti realization of the motivic

fundamental group cMot
1 (P1 \ ((∪{∞}), E∞). The latter is a Lie algebra in the category of mixed Tate motives

over Q, defined in [DG]. This category is identified with the category of representations of the motivic Galois

Lie algebra. Just like in the Hodge case, we take the image of this Lie algebra in the representation provided by

the motivic fundamental group, and consider the graded dual Lie coalgebra Lie∨MT ((). In [G9], the elements

(2.1) were lifted to elements

CorMot (I0, . . . , I=) ∈ Lie∨MT ((). (2.2)

We prove that our relations can be upgraded to linear relations on these elements.

The universal enveloping algebra for the Lie coalgebra Lie∨MT (() was described in [G5] via motivic

multiple polylogarithms. The motivic double shuffle relations for them were proved in [G6]. The explicit

relation between motivic correlators and multiple polylogarithms is an interesting open problem.

The multiple polylogarithms obey a similar system of double shuffle relations, but the dihedral symmetry

relation holds only at roots of unity. The combinatorics of those relations, originally described by [G3]-[G5],

were studied further by [R1].

The motivic correlator description of cMot
1 (P1 \ ((∪ {∞}), E∞) has several advantages. Most importantly,

motivic correlators are defined for any algebraic curve, not only A1 \ (, and the double shuffle relations

admit a generalization to elliptic curves, at least in the depth 2 (see Chapter 3). The motivic correlators

obey double shuffle and cyclic symmetry relations at all points. Motivic correlators describe elements of the

Lie coalgebra rather than its universal enveloping algebra. Finally, they give the best way to describe the

mysterious connection between the Lie coalgebra Lie∨MT ({0} ∪ `# ) and modular manifolds ([G10]).

Structure

In the remainder of the introduction, we will state the main results: Theorems 2.1, 2.6, and 2.7. Their proof

has three parts.

The first and longest part (§2.2) is a combinatorial calculation, the construction of the quasidihedral

coalgebra.

The second part (§2.3) is a specialization theorem that allows us to make continuity arguments about the
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Hodge correlators.

The third part (§2.4) is a series of formal arguments to deduce the three realizations of the main result.

2.1.2 Hodge correlator integrals and shuffle relations

The main result of this chapter is a set of functional equations on the Hodge correlator integrals and the

Hodge-theoretic and motivic upgrades of these relations. Let us first state the results for the Hodge correlator

integrals.

Second shuffle relation

Recall the first shuffle relation for the Hodge correlator integrals (1.5):

∑
f∈Σ8, 9

CorH (G0, Gf−1 (1) , Gf−1 (2) , . . . , Gf−1 (8+ 9) ) = 0.

The shuffle relations may be considered “easy” because they hold on the level of the sum over trees of the

integrands in (1.3).

We found another relation on the Hodge correlators. Together, the two relations form the double shuffle

relations. To state the new relations, we must introduce some notation.

Because of the multiplicative invariance (in weight > 1) of Hodge correlators, it is possible and convenient

to introduce an inhomogeneous notation for them, where the arguments are represented by the quotients

between successive nonzero values and the number of 0s between them. That is, given F0, . . . , F: ∈ C∗ such
that F0F1 . . . F: = 1, define

Cor∗H (F0 |=0, F1 |=1, . . . , F: |=: ) :=

= CorH (0, . . . , 0︸   ︷︷   ︸
=0

, 1, 0, . . . , 0︸   ︷︷   ︸
=1

, F1, 0, . . . , 0︸   ︷︷   ︸
=2

, F1F2, . . . , 0, . . . , 0︸   ︷︷   ︸
=:

, F1 . . . F: ). (2.3)

This definition is illustrated in Figure 2.1.

The depth of an expression CorH (I0, . . . , I=) is one less than the number of arguments in themultiplicative

notation, that is, : in the formula above.

Our new shuffle relation states:

∑
f∈ΣA,B

Cor∗H (Ff−1 (1) |=f−1 (1) , . . . , Ff−1 (A+B) |=f−1 (A+B) , F0 |=0) + lower-depth terms = 0. (2.4)
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I0

I1 I2

0

00

0

00

=0=1

=2

··· ︸   ︷︷
  
 ︸···

︸
   ︷︷

   ︸

· · ·︸   ︷︷   ︸

=1

=2

=0
F1

F2

F0

F8 =
I8
I8−1

Figure 2.1. Definition of Cor∗H : CorH (I0, 0, . . . , 0︸   ︷︷   ︸
=1

, I1, 0, . . . , 0︸   ︷︷   ︸
=2

, I2, 0, . . . , 0︸   ︷︷   ︸
=0

) ≡ Cor∗H (F1 |=1, F2 |=2, F0 |=0).

That is, we shuffle two ordered sets of expressions (F8 | =8), while leaving the segment (F0 | =0) fixed. For
example the (1, 1)-shuffle relation begins:

=1

=2

=0F1

F2

F0
=2

=1

=0F2

F1

F0

Cor∗H (F1 |=1, F2 |=2, F0 |=0) + Cor∗H (F2 |=2, F1 |=1, F0 |=0)

We explicitly describe the lower-depth terms in (2.4). They come in two kinds:

(1) Terms coming from the (A, B)-quasishuffles that are not proper shuffles (see §1.2.3). Whenever the

segments (F8 | = 9 ) and (F 9 | = 9 ) collide, we get a new segment (F8F 9 | =8 + = 9 + 1) in their place – a 0

is inserted – and the term picks up a negative sign.

For the (1, 1)-shuffle relation, there is only one quasishuffle that is not a shuffle. In this quasishuffle, the

two segments (F1 | =1) and (F2 | =2) collide:

=1 + =2 + 1

=0

F1F2

F0

−Cor∗H (F1F2 |=1 + =2 + 1, F0 |=0)
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(2) Two additional terms: one where the segments F1, . . . , FA appear in order and the remaining seg-

ments FA+1, . . . , FA+B , F0 collapse; another where the segments FA+1, . . . , FA+B appear in order and

F1, . . . , FA , F0 collapse. These terms come with a negative sign.

For the (1, 1)-shuffle relation:

=2 + =0 + 1

=1

F2F0

F1

=1 + =0 + 1

=2

F1F0

F2

−Cor∗H (F1 |=1, F2F0 |=2 + =0 + 1) − Cor∗H (F2 |=2, F1F0 |=1 + =0 + 1)

In summary, the (1, 1)-shuffle relation states, for F0, F1, F2 ∈ C∗ and F0F1F2 = 1,

Cor∗H (F1 |=1, F2 |=2, F0 |=0) + Cor∗H (F2 |=2, F1 |=1, F0 |=0)

− Cor∗H (F1F2 |=1 + =2 + 1, F0 |=0)

− Cor∗H (F1 |=1, F2F0 |=2 + =0 + 1)

− Cor∗H (F2 |=2, F1F0 |=1 + =0 + 1) = 0.

It is already a nontrivial relation which is not easy to prove from the definition (1.3) even for =0 = =1 = =2 = 0.

By formula (1.10), Hodge correlators in weight 2 are expressed in a simple way in terms of the Bloch-

Wigner function L2. The (1, 1)-shuffle relation with =0 = =1 = =2 = 0 is equivalent to the five-term

relation,

L2

(
1 − F1

1 − F1F2

)
+ L2

(
1 − F2

1 − F1F2

)
+ L2 (1 − F1F2) + L2 (F1) + L2 (F2) = 0.

According to [B5], this is essentially the only functional equation forL2. It follows that the dihedral symmetry

and shuffle relations are the only relations between the Hodge correlators in weight 2.

For further illustration, let us write out the (2, 1)-shuffle relation for the Hodge correlator

Cor∗H (F1 |0, F2 |1|F3 |1, F4 |0),

where F1 and F2 will be shuffled with F3:

(0) There are three terms from the shuffles:
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F1 F2 F3 F1 F3 F2 F3 F1 F2

1

F1

0 F1F2

0

F1F2F3 1

F1

0 F1F3

0

F1F2F3 1

0

F3 F1F3

0

F1F2F3

(1) There are two terms from the quasishuffles that are not shuffles:


F1

F3


F2 F1


F2

F3


1

0

0 F1F3

0

F1F2F3 1

F1

0 0

0

F1F2F3

(2) There are two additional terms:

1

F1

0 F1F2

0

0 1

0

F3 0

0

0

The full relation is then

Cor∗H (F1 |0, F2 |1, F3 |1, F4 |0) + Cor∗H (F1 |0, F3 |1, F2 |1, F4 |0) + Cor∗H (F3 |1, F1 |0, F2 |1, F4 |0)

− Cor∗H (F1F3 |2, F2 |1, F4 |0) − Cor∗H (F1 |0, F2F3 |3, F4 |0)

− Cor∗H (F1 |0, F2 |1, (F1F2)−1 |2) − Cor∗H (F3 |1, F−1
3 |3) = 0,

where the 3 + 2 + 2 terms in the three rows match the 3 + 2 + 2 pictures above.

We now write out the general relation:

Theorem 2.1. (a) Suppose that A, B > 1 and that not all =8 = 0 or not all F8 = 1. Then the Hodge correlators

satisfy the relation:

∑
f∈ΣA,B

(−1)A+B−"fCor∗H (Ff−1 (1) |=f−1 (1) , . . . , Ff−1 ("f ) |=f−1 ("f ) , F0 |=0)

− Cor∗H (F1 |=1, . . . , FA |=A , F {A+1,...,A+B,0} |={A+1,...,A+B,0})

− Cor∗H (FA+1 |=A+1, . . . , FA+B |=A+B , F {1,...,A ,0} |={1,...,A ,0}) = 0,
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where

=� =
∑
8∈�
(=8 + 1) − 1, F� =

∏
8∈�

F8 .

(b) The Hodge correlators satisfy all specializations of this relation as any subset of the F8 (1 ≤ 8 ≤ =)
approaches 0.

Applications

Theorem 2.1 gives simple proofs of certain results of [GR].

Corollary 2.2 ([GR], Proposition 2.8). For = > 2, every Hodge correlator of weight = is a linear combination

of Hodge correlators of weight = and depth at most = − 2. Explicitly, for I1, . . . , I= ∈ C∗, we have

CorH (I1, . . . , I=, 0) =
=∑
8=1

CorH
(
I1, . . . , I8−1, I8 , I8

I1
I=
, . . . , I=−1

I1
I=
, I=

I1
I=

)

−
=∑
8=2

CorH
(
I1, . . . , I8−1, 0, I8

I1
I=
, . . . , I=−1

I1
I=
, I=

I1
I=

)

− CorH
(
I1, I1

I1
I=
, 0, . . . , 0

)
. (2.5)

In weight 3, we deduce the Hodge correlator version of relations (27) and (29) from [GR].

Corollary 2.3. The Hodge correlators in weight 3 satisfy the relations:

CorH (1, 0, 0, G) + CorH (1, 0, 0, 1 − G) + CorH (1, 0, 0, 1 − G−1) = CorH (1, 0, 0, 1), (2.6)

CorH (0, G, 1, H) = −CorH (1, 0, 0, 1 − G−1) − CorH (1, 0, 0, 1 − H−1) − CorH
(
1, 0, 0,

H

G

)

− CorH
(
1, 0, 0,

1 − H
1 − G

)
+ CorH

(
1, 0, 0,

1 − H−1

1 − G−1

)
+ CorH (1, 0, 0, 1). (2.7)

We have noted that the double shuffle and dihedral symmetry relations give all relations between Hodge

correlators in weight 2. In weight 3, the Hodge correlators of depth 1 are expressed in terms of the single-

valued trilogarithm L3 (see the end of §1.2.3). By the results of [GR], the relations (2.7) imply the general

functional equation for L3 ([G1]). We conclude that the double shuffle relations for Hodge correlators imply

all functional equations for L2 and L3.
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G0
G1

G=

G8 G8+1

X↦→

G0
G=

G8+1

∧
G0

G1

G8

Figure 2.2. The typical term of the coproduct in the cyclic Lie coalgebra.

2.1.3 Quasidihedral Lie coalgebras

Let � be an abelian group. We use the multiplicative notation for �; the identity element is 1 ∈ �. Typically,
� will be the multiplicative group of a field �× or the group of #-th roots of unity `# . We adjoin to � a

formal element 0, where 0 · 6 = 0 for 6 ∈ � ∪ {0}.
We define the quasidihedral Lie coalgebra D(�). It generalizes the dihedral Lie coalgebra of [G4]. The

aim of the construction of D(�) is twofold:

(1) It is the main combinatorial ingredient in the proof of the double shuffle relations for correlators.

(2) The Lie coalgebra D(�) describes the coproduct of motivic correlators.

Cyclic Lie coalgebra

Let + be the Q-vector space with basis indexed by � ∪ {0}.
Let ) (+) = ⊕

=≥0+
⊗= be the tensor algebra of + over Q. We impose a grading by weight, where + ⊗=

has weight = − 1. Then define the cyclic Lie coalgebra, as a vector space, by

C(�) = ) (+)
cyclic symmetry

.

It is positively graded and generated in weight = by elements G0 ⊗ · · · ⊗ G= modulo the relation G0 ⊗ · · · ⊗ G= =
G1 ⊗ · · · ⊗ G= ⊗ G0. We can represent these elements by elements of � ∪ {0} written counterclockwise at

marked points on a circle.

The coproduct on C(�) is defined on such a generator by splitting the circle into two arcs that share

exactly one point. That is, consider a line inside the circle, starting at a marked point and ending between

two marked points. It splits the circle into two parts, representing generators G ′ and G ′′, and the coproduct of

G0 ⊗ · · · ⊗ G= is the sum of G ′ ∧ G ′′ over all such cuts (Figure 2.2).
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To be precise, the coproduct is defined by

X (G0 ⊗ · · · ⊗ G=) =
∑
cyc

=−1∑
8=1
(G0 ⊗ G1 ⊗ · · · ⊗ G8) ∧ (G0 ⊗ G8+1 ⊗ · · · ⊗ G=) . (2.8)

It respects the weight grading and satisfies the co-Jacobi identity.

We will write elements of C(�) as

� (G0, . . . , G=) = G0 ⊗ · · · ⊗ G=.

Also introduce a notation, analogous to that for Hodge correlators, for F0, . . . , F: ∈ � with F0 . . . F: = 1:

�∗ (F0 |=0, F1 |=1, . . . , F: |=: ) :=

= � (0, . . . , 0︸   ︷︷   ︸
=0

, 1, 0, . . . , 0︸   ︷︷   ︸
=1

, F1, 0, . . . , 0︸   ︷︷   ︸
=2

, . . . , F1 . . . F:−1, 0, . . . , 0︸   ︷︷   ︸
=:

, F1 . . . F: ).

Relations

A first shuffle in C(�) is an element of the form

∑
f∈ΣA,B

� (G0, Gf−1 (1) , Gf−1 (2) , . . . , Gf−1 (A+B) ).

Define

D̃(�) = C(�)
first shuffles, scaling relations, distribution relations

.

The scaling relations we impose are:

(1) In weight 1, we have � (0, 0) = 0 and � (01, 02) = � (0, 0) + � (1, 2) for 0 ∈ �.

(2) In weight > 1, multiplicative invariance:

� (G0, . . . , G=) = � (0G0, . . . , 0G=), 0 ∈ �.

The distribution relations are the following. For ; ∈ Z>0, let �; denote the ;-torsion of �. Suppose that

�; is finite and ; divides |�; |, and suppose G0, . . . , G= ∈ � ∪ {0} are divisible by ; (note 0 is always divisible

by ;). Let < be the number of 0s among the G8 . Then the relation is

� (G0, . . . , G=) = ;<

|�; |
∑
H;
8
=G8

� (H0, . . . , H=), (2.9)
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except in the case that = = 1 and G0 = G1.

The following is immediate from the constructions of [G4] (Theorem 4.3).

Theorem 2.4. The first shuffles, scaling relations, and distribution relations generate a coideal in C(�). The
coproduct on C(�) descends to a well-defined coproduct on D̃∨ (�).

Abusing notation, denote also by � and �∗ the images in D̃(�) of the elements �,�∗ in C(�).
A second shuffle in C(�) is an element of the form suggested by Theorem 2.1:

∑
f∈ΣA,B

(−1)A+B−"f�∗ (Ff−1 (1) |=f−1 (1) , . . . , Ff−1 ("f ) |=f−1 ("f ) , F0 |=0)

− �∗ (F1 |=1, . . . , FA |=A , F {A+1,...,A+B,0} |={A+1,...,A+B,0})

− �∗ (FA+1 |=A+1, . . . , FA+B |=A+B , F {1,...,A ,0} |={1,...,A ,0}),

where

=� =
∑
8∈�
(=8 + 1) − 1, F� =

∏
8∈�

F8 .

Define the quasidihedral Lie coalgebra

D(�) = D̃(�)
second shuffles

.

Then we prove:

Theorem 2.5. The second shuffles form a coideal in D̃(�). The coproduct on D̃(�) descends to a well-

defined coproduct on D(�).

Theorem 2.5 provides us with a Lie coalgebra generated by sequences of elements of� ∪ {0} that satisfies
dihedral symmetry, scaling, and the two shuffle relations.

Let C◦ (�) the subspace of C(�) generated by elements � (G0, . . . , G=) where not all G8 are equal. It is a
subcoalgebra, which we call the restricted cyclic Lie coalgebra. The image of C◦ (�) inD(�) is the restricted
quasidihedral Lie coalgebra, denoted D◦ (�).

The Hodge correlators satisfy cyclic symmetry, first shuffle, distribution, and scaling relations. Equiva-

lently, the function Cor∗H factors through D̃(C∗) and a map

�∗ (F0 |=0, . . . , F: |=: ) ↦→ Cor∗H (F0 |=0, . . . , F: |=: ).

An equivalent form of Theorem 2.1 is that, restricted to the set of arguments where not all F8 = 1 or not all
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=8 = 0, this function factors through the quotient D◦ (C∗).

Depth filtration

The Lie coalgebra D(�) is filtered by the depth, where a generator has depth 3 if it includes 3 + 1 elements

of � (not counting 0s). In the associated graded coalgebra gr�D(�), the second shuffle relations lose their

lower-depth terms.

2.1.4 Relations for Hodge and motivic correlators

Hodge correlators

Recall from §1.2 that the Hodge correlators are objects in the fundamental Lie coalgebra of the category of

R-mixed Hodge structures, and are Hodge-theoretic upgrades of the Hodge correlator functions. Specifically,

given any collection of complex numbers I0, . . . , I=, the Hodge correlators CorH (I0, . . . , I=) were upgraded
to elements of the Tannakian Lie coalgebra Lie∨HT of the category of R-mixed Hodge structures:

CorHod (I0, . . . , I=) ∈ Lie∨HT. (2.10)

The upgraded Hodge correlators (2.10) satisfy the dihedral and first shuffle relations, and their coproduct in

the coalgebra Lie∨HT has a simple combinatorial description (1.12).

One of the main results of this chapter is that the elements (2.10) satisfy the second shuffle relations. In

other words, they provide a map of Lie coalgebras D◦ (C∗) → Lie∨HT. Last us state the main result for the

Hodge correlators, on the level of the map CorHod. Here we use the multiplicative notation Cor∗Hod, whose

definition is analogous to that of Cor∗H (see (2.3)).

Theorem 2.6. (a) Restricted to the subspace of CL∨
-,(,E∞ generated by elements (G0 ⊗ · · · ⊗ G=) (1) with not

all G8 equal, the map CorHod factors through D◦ (C∗). (Here ( ⊂ P1 (C) is any finite set of punctures

containing all points appearing in the relation in (b).)

(b) Suppose that A, B > 1 and that not all =8 = 0 or not all F8 = 1. Then the Hodge correlators satisfy the

relation:

∑
f∈ΣA,B

(−1)A+B−"fCor∗Hod (Ff−1 (1) |=f−1 (1) , . . . , Ff−1 ("f ) |=f−1 ("f ) , F0 |=0)

− Cor∗Hod (F1 |=1, . . . , FA |=A , F {A+1,...,A+B,0} |={A+1,...,A+B,0})

− Cor∗Hod (FA+1 |=A+1, . . . , FA+B |=A+B , F {1,...,A ,0} |={1,...,A ,0}) = 0,
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where

=� =
∑
8∈�
(=8 + 1) − 1, F� =

∏
8∈�

F8 .

(c) The Hodge correlators satisfy all specializations of this relation as any subset of the F8 (1 ≤ 8 ≤ =)
approaches 0.

While Theorem 2.1 was an equality between functions, Theorem 2.6 is a relation in the fundamental Lie

coalgebra of mixed Hodge-Tate structures. Theorem 2.1 follows immediately from Theorem 2.6 by applying

the period map.

Motivic correlators over a number field

We are ready to state the most general version of the result by upgrading the constructions of the previous

section from mixed Hodge structures to mixed motives over a number field.

Theorem 2.7. Let � be a number field and - = P1.

(a) Restricted to the subspace of
(
CLMot

-,(,E∞

)∨
generated by elements (G0 ⊗ · · · ⊗ G=) (1) with not all G8 equal,

the map CorMot factors through D◦ (�×). (Here ( ⊂ P1 (�) is any finite set of punctures containing all

points appearing in the relation in (b).)

(b) Suppose that A, B > 1 and that not all =8 = 0 or not all F8 = 1. Then the motivic correlators satisfy the

same relation as in Theorem 2.6, with Cor∗Hod replaced by Cor∗Mot.

(c) The motivic correlators satisfy all specializations of this relation as any subset of the F8 (1 ≤ 8 ≤ =)
approaches 0.

2.2 Construction of the quasidihedral Lie coalgebra

2.2.1 Definitions

For an abelian group�, we defined the Lie coalgebra D̃(�) as the quotient of the tensor algebra ofQ[�∪{0}]
by cyclic symmetry, first shuffle, distribution, and scaling relations.

Recall Theorem 2.5:

Theorem. The second shuffles form a coideal in D̃(�). The coproduct on D̃(�) descends to a well-defined
coproduct on D(�).
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F0 . . . F:−1 = G:−1

0

0
F1 . . . F: = G:

00
G0 = 1
0

0

G1 = F1

G8−1 = F1 . . . F8−1
0 0

F1 . . . F8 = G8

=:

=0

=1

=8

(F: | C:)
(F0 | C0)

(F1 | C1)

(F8 | C8)

··· ︸   ︷︷
  
 ︸

···
︸   ︷︷   ︸

···
︸

   ︷︷
   ︸

· · ·︸   ︷︷   ︸

· · · · · ·

Figure 2.3. Definition of the generating function �∗ (2.11).

The proof of this theorem is the goal of this section.

The extra term in the scaling relation in weight 1, and the presence of terms of lower depth in the coproduct

formula (2.8), makes the proof more difficult than that in [G4]’s construction of the dihedral Lie coalgebra.

We find Theorem 2.5 to be a small combinatorial miracle. Unfortunately, we do not know a simpler proof.

Generating functions

The second shuffle relations can be expressed in a compact form in terms of generating functions. This

simplifies their proof.

We package the elements of D̃(�) into a generating function as follows:

�∗
(
F0, . . . , F: | C0, . . . , C:

)
:=

∑
=8≥0

�∗ (F0 |=0, . . . , F: |=: )
:∏
8=0

C=8
8
, (2.11)

where
∏:
8=0 F8 = 1 and the C8 are formal variables (Figure 2.3).

We allow multisets of variables to appear in place of the C8: if (8 =
{
C8,1, . . . , C8,38

}
, then

�∗
(
F0, . . . , F: | (1, . . . , (:

)
=

∑
=8≥0

∑
=8, 9 ≥0∑38

9=1 =8, 9==8−38+1

�∗ (F0 |=0, . . . , F: |=: )
:∏
8=0

38∏
9=1
C
=8, 9

8, 9

=
∑
=8, 9 ≥0

�∗ (F0 |#0, . . . , F: |#: )
:∏
8=0

38∏
9=1
C
=8, 9

8, 9
, (2.12)

where in the last expression #8 = =8,1 + 1 + =8,2 + 1 + · · · + 1 + =8,3 9 . The corresponding operation on the
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0 0 0 0 0

=8,1 =8,2

(F=,1 | C=,1) (F=,2 | C=,2)

(
F=,1F=,2 | {C=,1, C=,2})

· · ·︸   ︷︷   ︸ · · ·︸   ︷︷   ︸
Figure 2.4. Definition of the generating function with multiset arguments.

correlator coefficients is combining adjacent segments of 0s, with additional 0s being inserted between them,

such as
(=8,1 0s indexed by C8,1)
(=8,2 0s indexed by C8,2) → (=8,1 + 1 + =8,2 0s indexed by

{
C8,1, C8,2

}).
(See Figure 2.4.)

There is a useful identity

Lemma 2.8.

�∗
(
. . . , F, · · · | . . . , {C} t ), . . . ) − �∗ ( . . . , F, · · · | . . . , {D} t ), . . . )

= (C − D)�∗ ( . . . , F, · · · | . . . , {C, D} t ), . . . ) . (2.13)

Proof. Clear by comparing the coefficients of CADB . �

Theorem 2.5 can then be expressed in terms of the generating functions:

Theorem. The subspace of D̃(�) [[ C1, . . . , C: ]] generated by elements of the form

∑
f∈ΣA,B

(−1)A+B−"f�∗
(
Ff−1 (1) , . . . , Ff−1 ("f ) , F0 | (f−1 (1) , . . . , (f−1 ("f ) , (0

)

− �∗ (F1, . . . , FA , F {A+1,...,A+B,0} | (1, . . . , (A , ({A+1,...,A+B,0}
)

− �∗ (FA+1, . . . , FA+B , F {1,...,A ,0} | (A+1, . . . , (A+B , ({1,...,A ,0} ) = 0,

where

(� =
⊔
8∈�

(8 , F� =
∏
8∈�

F8

forms a coideal.

Coproduct

Let us write down the formula defining the coproduct (2.8) in terms of the elements �∗.
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G0

G8−1

G8= =
8

= ′
8 + = ′′

8

G:G0

G8−1

G8= =
8

= ′
8 + = ′′

8

=0 =
=′′0 + =′0 − 1

(a) (b)

Figure 2.5. The two types of cuts contributing terms to X�.

Lemma 2.9. Let � = �∗ (F0 |=0, . . . , F: |=: ) and suppose wt(�) > 2. Then

X� =
∑
cyc

( :∑
8=0

∑
=′
8
+=′′
8
==8

�∗ (F8 . . . F: |=′8 , F0 |=0, . . . , F8−1 |=8−1)∧

∧ �∗ (F8+1 |=8+1, . . . , F: |=: , F0F1 . . . F8 |=′′8 )
)

(2.14)

+
∑
cyc

( :∑
8=1

∑
=′
8
+=′′
8
==8

=′0+=′′0==0+1

�∗ (F1 |=1, . . . , F8−1 |=8−1, F8 . . . F:F0 |=′8 + =′′0 )∧

∧ �∗ (F0 . . . F8 |=′0 + =′′8 , F8+1 |=8+1, . . . , F: |=: )
)

(2.15)

+
:∑
8=0

!8 ∧ � (0, F8), (2.16)

where

!8 =



�∗ (F0 |=0, . . . , F8 |=8 − 1, . . . , F: |=: ), =8 > 0,
�∗ (F0 |=0, . . . , F8−1F8 |=8−1, F8+1 |=8+1, . . . , F: |=: )
+�∗ (F0 |=0, . . . , F8−1 |=8−1, F8F8+1 |=8+1, . . . , F: |=: ) , =8 = 0

, (2.17)

and the sums are taken over cyclic permutations of the indices 0, . . . , : .

If wt(�) = 2, this formula holds modulo terms of the form � (0, 0) ∧ � (0, 1).

Proof. Classify the terms � ′ ∧ � ′′ of X� by the common point of the two resulting parts � ′ and � ′′. Let

G8 = F1 . . . F8 be the point counterclockwise from the segment F8 . Up to cyclic symmetry, any cut is either:

(a) a cut from G0 to the segment F8 (between G8−1 and G8) (Figure 2.5(a));

(b) cut from a 0 on the segment F0 (between G: and G0) to the segment F8 (Figure 2.5(b)).

We first write the terms arising from these cuts modulo elements of form � (0, G).
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Case (a) contributes the terms (2.14) and case (b) contributes the terms (2.15), noting that modulo elements

of the form � (0, 0) the �∗ have cyclic symmetry.

Nowwe handle the terms (2.16). LetF = =0+=1+· · ·+=: +: be the weight. Consider the (weight F − 1)∧
(weight 1) terms of the coproduct.

Such elements, of form �F−1 ∧ �, fall into two cases, depending on which point is present in � but not

in �F−1.

(1) 0 on the segment F8 (from G8−1 to G8).

(2) G8 .

If F > 2, the �F−1 are invariant under scaling. If F = 2, then the cyclic permutation of the arguments

F0, . . . , F8−1F8 , F8+1, . . . , F: and F0, . . . , F8−1, F8F8+1, . . . , F: in (2.17) modifies those terms by an element

of weight 1, so the expressions in (2.16) are determined up to (weight 1) ∧ (weight 1).
In case (1), we have

�F−1 = (F0 |=0, . . . , F8 |=8 − 1, . . . , F: |=: ).

The only nonzero terms that appear are (�F−1 ∧ (−� (0, G8)) (cut clockwise of G8) and �F−1 ∧� (0, G8−1) (cut
counterclockwise of G8).

On the other hand, (2.14) produces no terms for these two cuts (they correspond to to 8 = 1 and 8 = :).

Thus this case contributes the terms

�F−1 ∧ (� (0, G8) − � (0, G8−1)) = �F−1 ∧ � (0, F8),

which are the =8 > 0 terms in (2.16).

In case (2),

�F−1 = �
∗ (G0 |=0, . . . , G8G8+1 |=8 + =8+1, . . . , G: |=: ).

Let� ′1 and�
′′
1 be the elements formed by G8 and the point clockwise and counterclockwise from G8 , respectively.

Then the resulting terms are −�F−1 ∧ � ′1 and �F−1 ∧ � ′′1 .
If =8 = 0, then � ′1 = � (G8 , G8−1) = �∗ (F8 |0, F−1

8
|0) +� (0, G8), while (2.14) contributes �∗ (F−1

8
|0, F8 |0) ∧

�F−1. Thus we get an added term

−�F−1 ∧ (� (0, G8) − � (0, F8)).

If =8 ≠ 0, then � ′1 = � (0, G8), while (2.15) contributes 0. Thus we get a term −�F−1 ∧ � (0, G8).
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Similarly, we get terms �F−1 ∧ (� (0, G8) + � (0, F8+1)) if =8+1 = 0 and �F−1 ∧ � (0, G8) if =8+1 > 0.

Collecting terms, the total contribution from this case is �F−1 ∧ (" ′8 + " ′′8 ), where

" ′8 =



� (0, G8) =8 = 0,

0 =8 ≠ 0
, " ′′8 =



� (0, G8+1) =8+1 = 0,

0 =8+1 ≠ 0
. (2.18)

Reindexing, we get exactly the =8 = 0 terms of (2.16). �

We remark that if a cyclic permutation is applied to the arguments in (2.14), so that it is written

�∗ (F0 |=0, . . . , F8−1 |=8−1, F8 . . . F: |=′8)∧

∧ �∗ (F0F1 . . . F8 |=′′8 , F8+1 |=8+1, . . . , F: |=: )
)
,

then the =8 = 0 terms in (2.16) disappear.

Then there is the following formula for the coproduct of generating functions:

Lemma 2.10. Suppose : > 2 and let - = �∗
(
F0, . . . , F: | C0, . . . , C:

)
. Then

X- =
∑
cyc

( :∑
8=0

�∗
(
F8 . . . F: , F0, . . . , F8−1, | C8 , C1, . . . , C8−1

)

∧ �∗ (F8+1, . . . , F: , F0 . . . F8 | C8+1, . . . , C: , C8
) )

(2.19)

+
∑
cyc

( :∑
8=1
C0�
∗ (F1, . . . , F8−1, F8 . . . F:F0 | C1, . . . , C8−1, {C8 , C0}

)

∧ �∗ (F0 . . . F8 , F8+1, . . . , F: | {C8 , C0} , C8+1, . . . , C:
)

(2.20)

+
:∑
8=1
!8 ∧ logF8 , (2.21)

where

!8 =C8�
∗ (F0, . . . , F: | C0, . . . , C:

)
(2.22)

+ �∗ (F0, . . . , F8−1F8 , F8+1, . . . , F: | C1, . . . , C8−1, C8+1, . . . , C:
)

(2.23)

+ �∗ (F0, . . . , F8−1, F8F8+1, . . . , F: | C1, . . . , C8−1, C8+1, . . . , C:
)
. (2.24)

If : = 2, this formula holds modulo terms of the form � (0, 0) ∧ � (0, 1).

Proof. Directly reinterpret Lemma 2.9 via the definition (2.11) by summing the expressions (2.14), (2.15),

42



(2.16) over choices of {=8}:8=0 taken with a monomial
∏
8 C
=8
8
.

The expressions (2.14) and (2.15) yield (2.19) and (2.20) in an obvious manner.

The =8 > 0 cases in (2.17) give the terms with (2.22), and the =8 = 0 cases give (2.23)-(2.24). �

We also remark that if a cyclic permutation is applied to the arguments in (2.19), so that it is written

�∗
(
F0, . . . , F8−1, F8 . . . F: | C1, . . . , C8−1, C8

)
∧ �∗ (F0 . . . F8 , F8+1, . . . , F: | C8 , C8+1, . . . , C:

)

then the terms (2.23) and (2.24) disappear.

Dual generating function and homogeneity

For a more complete analogy with the generating functions !, !∗ for multiple polylogarithms (§1.2.3), we

define a dual generating function �:

�
(
G0, . . . , G: | C0, . . . , C:

)
:=

∑
=8≥0

� (G0, 0, . . . , 0︸   ︷︷   ︸
=0

, G1 . . . , G: , 0, . . . , 0︸   ︷︷   ︸
=:

)
:∏
8=0
(C0 + · · · + C8)=8 , (2.25)

where the formal variables C8 satisfy the relation
∑:
8=0 C8 = 0. The pair of generating functions �∗,� resemble

those used by [G4] in the definition of the dihedral Lie coalgebra.

The duality is made clear by the following statement:

Lemma 2.11. (a) The generating functions are related by

�∗
(
F0, . . . , F: | C0, . . . , C:

)
= �

(
1, F0, . . . , F0 . . . F:−1 | C0, C1 − C0, . . . , C: − C:−1

)
. (2.26)

(b) For : > 1, the generating functions �∗ are homogeneous in the C8 (invariant under a shift C8 ↦→ C8 + C),
and the � are homogeneous in the G8 (invariant under a shift G8 ↦→ G8 · G).

(c) Both generating functions are invariant under cyclic permutation of the indices.

Proof. Part (a) is clear from the definitions. For �∗, (c) is clear from the scaling relations imposed in D̃(�).
For �, (b) is also immediate. Part (c) for � would follow easily from (a) and (b,c) for �∗, recalling that

C1 + · · · + C: = 0.

The nontrivial part is (b) for �∗. We must show

�∗
(
F0, . . . , F: | C0 + C, . . . , C: + C

)
= �∗

(
F0, . . . , F: | C0, . . . , C:

)
.
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Consider the coefficient of C= ·∏8 C
=8
8

on each side. If : = 0, the coefficients on both sides are equal. If : > 0,

the coefficient on the left side is precisely a first shuffle relation (where the = 0s indexed by the variable C are

shuffled with all other points, with the point 1 remaining fixed), while the right side is 0. �

The first shuffle relation imposed in D̃(�) can be expressed in terms of the �:

Lemma 2.12. The generating functions � obey a shuffle relation for A, B > 1:

∑
f∈ΣA,B

�
(
Gf−1 (1) , . . . , Gf−1 (A+B) , G0 | Cf−1 (1) , . . . , Cf−1 (A+B) , C0

)
= 0. (2.27)

Proof. Similar to the previous lemma. It follows from the shuffle relation on the coefficients, where we fix G0

and shuffle the G1, . . . , GA and the zeros indexed by C1, . . . , CA with the other points. �

2.2.2 Proof of Theorem 2.5

Summary of the proof

The proof of the Theorem 2.5 will be by induction on the depth of the second shuffles.

Define

QShA ,B (F1 |(1, . . . , F= |(=, F0 |(0) =

=
∑
f∈ΣA,B

(−1)A+B−"f�∗
(
Ff−1 (1) , . . . , Ff−1 ("f ) , F0 | (f−1 (1) , . . . , (f−1 ("f ) , (0

)
,

where F8 ∈ � with
∏
8 F8 = 1, and

QSh
A ,B (F1 |(1, . . . , F= |(=, F0 |(0) = QShA ,B (F1 |(1, . . . , F= |(=, F0 |(0) (2.28)

− �∗ (F1, . . . , FA , F {A+1,...,A+B,0} | (1, . . . , (A , ({A+1,...,A+B,0}
)

(2.29)

− �∗ (FA+1, . . . , FA+B , F {1,...,A ,0} | (A+1, . . . , (A+B , ({1,...,A ,0} ) . (2.30)

We must show that the elements QSh form a coideal, i.e., their coproducts vanish modulo other elements of

this form.
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To make the notation more transparent, when A and B are fixed, we will relabel

)1, . . . , )A = (1, . . . , (A ,

*1, . . . ,*B = (A+1, . . . , (A+B ,

+ = (0,

01, . . . , 0A = F1, . . . , FA

11, . . . , 1B = F1, . . . , FA+B ,

2 = F0,

so that we consider elements

QSh
A ,B (01 |)1, . . . , 0A |)A , 11 |*1, . . . , 1B |*B , 2 |+).

The main steps will be the following:

Step 0. Fix the 08 and 1 9 . Show that it suffices to assume |)8 | = |*8 | = |+ | = 1. Denote the three terms (2.28),

(2.29), (2.30) by &, '�, and '�, respectively.

Step 1. Show that X(& − '� − '�) is zero modulo shuffle relations of lower depth and elements of the form

� (0, G) (Lemma 2.14).

(a) Group the terms of X& according to a combinatorial classification and reduce them using shuffle

relations of lower depth (Lemma 2.16).

(b) Group the terms of X('�) and X('�) in the same way and show that they coincide with the terms

found in (a) (Lemma 2.22).

Step 2. Show that the (weight 1)∧(weight ≥ 1) component of X(& − '� − '�) is 0, modulo shuffle relations

of lower depth (Lemma 2.15).

Throughout the proof, in a term �∗
(
F1, . . . , F: , F0 | B1, . . . , B: , B0

)
appearing in the definition of QSh,

call the segment
(
F0 | B0

)
the distinguished segment (i.e.,

(
2 | E) in (2.28) and the collapsed segments in

(2.29) and (2.30)). In the following lemmas, we will always use the following classification of terms of the

coproduct of a generating function (see Figure 2.6).

(1) Terms 6 ∧ ℎ where one of the parts 6 or ℎ contains the distinguished segment (i.e., the distinguished

segment is not cut). In this case, we always write the term in the form ±6 ∧ ℎ, where 6 contains the

distinguished segment.
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G0 G:

G8

G 9−1

G 9
6

Ă

−6 ∧ Ă

G0 G:

G8

G8+1

G 9
6

Ă

6 ∧ Ă

G0 G:

G8

G8+1 G 9−1

G 9
6

Ă

−6 ∧ Ă

G0 G:

G8

G8+1 G 9−1

G 9
6

Ă

6 ∧ Ă

(1a) (1b) (1c) (1d)

G0 G:

G8

6 Ă

−6 ∧ Ă

G0 G:

G8G8−1

6 Ă

−6 ∧ Ă

G0 G:

G8G8−1

6 Ă

6 ∧ Ă

(2a) (2b) (2c)

Figure 2.6. Classification of terms in the coproduct used in the proof of Theorem 2.5.

(a) Cut from a point G8 to the segment
(
F 9 | B 9

)
(0 ≤ 8 < 9 ≤ :).

(b) Cut from a point G 9 to the segment
(
F8+1 | B8+1

)
(0 ≤ 8 < 9 ≤ :).

(c) Cut from a 0 on the segment
(
G8+1 | CB+1

)
to the segment

(
F 9 | C 9

)
(0 ≤ 8 < 9 ≤ :).

(d) Cut from a 0 on the segment
(
G 9 | B 9

)
to the segment

(
F8+1 | C8+1

)
(0 ≤ 8 < 9 ≤ :).

(2) Terms 6∧ℎwhere the distinguished segment is cut. In this case, we always write ±6∧ℎ, where 6 contains
the point G0 and ℎ the point G: .

(a) Cut from a point G8 to the distinguished segment.

(b) Cut from a 0 on the segment
(
F8 | B8

)
to the distinguished segment (0 < 8 < :).

(c) Cut from a 0 on the distinguished segment to the segment
(
B8 | C8

)
(0 < 8 < :).

Step 0

As stated in Step 0 above, we fix < > 0 and = > 0, the 08 , 1 9 , 2, and the )8 , * 9 , + , and let &, '�, '� be the

three terms of the expression defining QSh: (2.28), (2.29), and (2.30), respectively.

We may assume )8 = {C8},* 9 =
{
D 9

}
, and + = {E}, by the following:

Lemma 2.13 (Step 0). The shuffle relations for |)8 | =
��* 9 �� = |+ | = 1 imply the shuffle relations for general

index sets.

Proof. Obvious by induction using (2.13). �
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Lemma 2.14 (Step 1). Modulo shuffle relations of lower depth and elements � (0, G), X(& − '� − '�) = 0.

Lemma 2.15 (Step 2). Modulo lower-depth shuffle relations and terms � (0, G) ∧ � (0, H),

X(& − '� − '�) =

<∑
8=1

� (0, 08) (C8 − E) +
=∑
9=1
� (0, 1 9 ) (D 9 − E)


∧ (& − '� − '�). (2.31)

Proof of Step 1

Lemma-Computation 2.16 (Step 1(a)). Modulo shuffle relations of lower depth and elements � (0, G), X& is

given by the sum of expressions (2.74)-(2.78) below.

Group all terms of X& by the type of cut as defined in the outline above. Some computational lemmas

will simplify the contributions to X& coming from the cuts of each type. The contribution of cuts (1a/b/c/d)

is computed in Lemma 2.17, and cuts (2a/b/c) are dealt with in Lemma 2.21.

Lemma-Computation 2.17. The contribution of cuts of type (1a/b/c/d) to X&, modulo shuffle relations of

lower depth and elements � (0, G), is given by (2.57) below.

The cuts of types (1a) and (1b) contribute terms of the form (2.19), while cuts of types (1c) and (1d)

contribute terms of the form (2.20) below.

Consider the upper parts 6 of terms ±6 ∧ ℎ as shown in Figure 2.6; by cyclic invariance modulo � (0, G)
we may write

6 = �∗
(
F1, . . . , F; , 2 | (1, . . . , (; , +

)
.

Let
(
F? | (?

)
be the new segment arising from the cut (that is, the bracketed segment in (2.19) or (2.20)).

We say that 08 appears in 6 if either the segment
(
08 | C8

)
or some

(
081 9 |

{
C8 , D 9

} )
is present in 6 as one

of the
(
F; | (;

)
(; ≠ 8), and similarly for 1 9 . Then the set of segments that do not appear in 6 (“appear below

g”) is determined by the F1, . . . , F̂? , . . . , F; and consists of consecutively indexed elements 08 and 1 9 , i.e.,

080 , . . . , 081 and 1 90 , . . . , 1 91 , where by convention 80 = 81 + 1 if no 08 appear, and likewise for 90, 91.

Group the terms 6 ∧ ℎ by the sequence of segments F1, . . . , F̂? , . . . , F; . To shorten notation, write

6̃ (() = �∗
(
F1, . . . , F? , . . . , F; , 2 | (1, . . . , (? = (, . . . , (; , +

)
.

There are three cases:

(1) 81 − 80 > 0 and 91 − 90 > 0: at least two 08 and two 1 9 appear below 6 (Lemma-Computation 2.18).
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(2) 81 − 80 = −1 or 91 − 90 = −1: only 08’s or only 1 9 ’s appear below 6 (Lemma-Computation 2.19).

(3) 81 − 80 = 0 or 91 − 90 = 0: only one 08 or only one 1 9 appear below 6 (Lemma-Computation 2.20).

We compute the contribution of each case in the next three lemmas.

Lemma-Computation 2.18. Case 1 (81 − 80 > 0 and 91 − 90 > 0) contributes 0 to X&.

Proof. Consider a term 6 ∧ ℎ coming from a cut in Case 1. Let 8′0 ≥ 80 be minimal such that 08′0 appears in ℎ,

and 8′1 ≤ 81 be maximal such that 08′1 appears in ℎ. Define 9
′
0, 9
′
1 in the analogous way. For example, for cuts

of type (1a), 8′0 = 80; for cuts of type (1c),

8′0 =



80 if

(
F | () is (

180 | D80
)

80 + 1 if
(
F | () is (

080 | C80
)
or

(
080180 |

{
C80 , D 90

} ) ,

where
(
F | () is the segment that contains the vertex of the cut. Notice that 8′0 − 80 ≤ 1 and 90 − 9 ′0 ≤ 1, and

81 − 80 > 0 implies 8′1 − 8′0 ≥ −1.

Group all terms of X& coming from Case 1 by the type of cut and by 8′0, 9
′
0, 8
′
1, 9
′
1. These groups can be

expressed in terms of

6̃ ((1) ∧ QSh
(
08′0 , . . . , 08

′
1
, 1 9′0 , . . . , 1 9

′
1
,
(
08′0 . . . 08

′
1
· 1 9′0 . . . 1 9′1

)−1
|

C8′0 , . . . , C8
′
1
, D 9′0 , . . . , D 9

′
1
, (2

)

for some (1, (2. Indeed, the arrangements of segments that may occur in the lower part of the cut, given

80, 90 and 8′1, 9
′
1, are precisely the quasishuffles. Applying the lower-weight shuffle relations, this expression

becomes

6̃ ((1) ∧
(
�∗

(
08′0 , . . . , 08

′
1
,
(
08′0 . . . 08

′
1

)−1
| C8′0 , . . . , C8′1 ,

{
D 9′0 , . . . , D 9

′
1

}
t (2

) )

+ 6̃ ((1) ∧
(
�∗

(
1 9′0 , . . . , 1 9

′
1
,
(
1 9′0 . . . 1 9

′
1

)−1
| D 9′0 , . . . , D 9′1 ,

{
C8′0 , . . . , C8

′
1

}
t (2

) )
. (2.32)

Fix 8′0, 8
′
1, 9
′
0, 9
′
1, and introduce the notation

5̃�(8′0, 8′1, () = �∗
(
08′0 , . . . , 08

′
1
,
(
08′0 . . . 08

′
1

)−1
| C8′0 , . . . , C8′1 ,

{
D 90+1, . . . , D 91−1

} t () ,
5̃� ( 9 ′0, 9 ′1, () = �∗

(
1 9′0 , . . . , 1 9

′
1
,
(
1 9′0 . . . 1 9

′
1

)−1
| D 9′0 , . . . , D 9′1 ,

{
C80+1, . . . , C81−1

} t () .

The expressions in (2.32) can be rewritten with 5̃� and 5̃�.
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Now let us collect these terms coming from different cuts and show that they yield 0. By symmetry, it

suffices to show this for three kinds of terms 5̃�(8′0, 8′1, 9 ′0, 9 ′1, (2): where 8′0 = 80 and 8′1 = 81; where 8′0 = 80 and
8′1 = 81 − 1; and where 8′0 = 80 + 1 and 8′1 = 81 − 1.

Look at the terms with 8′0 = 80 and 8′1 = 81 (all 08 that are not in 6 are in 5�). They arise from cuts (1a)

and (1b) where the cut segment is 180+1 or 181−1 and from cuts (1c) and (1d) where the cut segment and the

segment containing the vertex are 180+1 and 181−1, or vice versa. These cases give:

−6̃ (
D 91

) ∧ 5̃�(80, 81, {D 90} t {
D 91

}),
6̃

(
D 90

) ∧ 5̃�(80, 81, {D 91} t {
D 90

}),
(D 91 − D 90 )6̃

({
D 90 , D 91

}) ∧ 5̃�(80, 81, {D 90 , D 91}),

the sum of which is 0 by (2.13).

The terms with 8′0 = 80 and 8
′
1 = 81 − 1 (all 08 that are not in 6, except the last, are in 5�) come from three

sources:

– cuts of type (1a) where the cut segment G2 is either 081 or 0811 91 ;

– cuts of type (1c) and (1d) where the segment G1 containing the vertex and the segment G2 that is cut are 1 90

and 081 , or vice versa;

– cuts of type (1c) and (1d) where the segment G1 containing the vertex and the segment G2 that is cut are 1 90

and 0811 91 , or vice versa.

A similar computation shows their total contribution is 0.

Finally, consider terms with 8′0 = 80 + 1 and 8′1 = 81 − 1 (all 08 not in 6 except the first and last are in 5�).

They arise from cuts of type (1c) and (1d), where the segment G1 is either 080 or 0801 90 and the segment G2 is

either 081 or 0811 91 , yielding four cases:

(G1, G2) = (080 , 0 91 ), (0801 90 , 0 91 ), (080 , 0 911 91 ), (0801 90 , 0811 91 ).

The sum of their contributions is also 0. �

Lemma-Computation 2.19. The contribution of Case 2 (81−80 = −1) to X& is given by the sum of expressions

(2.33)-(2.36) below.
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Proof. Suppose that 81 − 80 = −1. The cuts of types (1a), (1b), (1c), and (1d) contribute

−6̃ (
D 91

) ∧ 5̃� ( 90, 91 − 1, D 91 ), (2.33)

6̃
(
D 90

) ∧ 5̃� ( 90 + 1, 91, D 90 ), (2.34)

−D 90 6̃
({
D 90 , D 91

}) ∧ 5̃� ( 90 + 1, 91 − 1,
{
D 90 , D 91

}), (2.35)

D 91 6̃
({
D 90 , D 91

}) ∧ 5̃� ( 90 + 1, 91 − 1,
{
D 90 , D 91

}), (2.36)

respectively. �

By symmetry, analogous expressions will result if 91 − 90 = −1.

Lemma-Computation 2.20. The contribution of Case 3 (81 − 80 = 0) to the X& is given by the sum of

expressions (2.45) and (2.46) below.

Proof. Suppose 81 − 80 = 0, so only one segment 08 occurs below 6.

If 91 − 90 = 0, then it is easy to see that only cuts of type (1a) and (1b) contribute nonzero terms, and that

the (1a) terms cancel with the (1b) terms. So assume 91 − 90 > 0.

The cuts of type (1a) fall into three classes depending on which segment is cut: (i) 080 , (ii) 1 91 , or (iii)

0801 91 . The first two contribute

−6̃ (
C80

) ∧ 5̃� ( 90, 91, C80 ), (2.37)

−6̃ (
D 91

) ∧ QSh1, 91− 90 (080 , 1 90 , . . . , 1 91−1,
(
0801 90 . . . 1 91−1

)−1 |

C80 , D 90 , . . . , D 91−1, D 91
)

≡ −6̃ (
D 91

) ∧ (
5̃� ( 90, 91 − 1,

{
C80 , D 91

})
+ �∗ (080 , 0−1

80
| C80 ,

{
D 90 , . . . , D 91

} ))
, (2.38)

respectively, where we have used that the sequences that may occur in the lower part of the cut are precisely

the shuffles of 08 and 1 9 appearing below 6, except the cut segment 1 91 . Finally, the third class gives

1
C80 − D 91

(
6̃

(
C80

) ∧ 5̃� ( 90, 91 − 1, C80 )

−6̃ (
D 91

) ∧ 5̃� ( 90, 91 − 1, D 91 )
)
, (2.39)

where we have applied (2.13) to break the generating functions with
{
C80 , D 91

}
into ones with only C80 or D 91 .

The cuts of type (1c) fall into five classes, depending on the segment where the vertex of the cut lies and
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the segment that is cut: (i) vertex on 080 and 1 91 is cut, (ii) vertex on 1 90 and 1 91 is cut, (iii) vertex on 1 90 and

080 is cut, (iv) vertex on 1 90 and 0801 91 is cut, (v) vertex on 0801 90 and 1 91 is cut. They contribute the following

terms:

−C80 6̃
({
C80 , D 91

}) ∧ 5̃� ( 90, 91 − 1,
{
C80 , D 91

}), (2.40)

−D 90 6̃
({
D 90 , D 91

}) ∧ QSh1, 91− 90−1 (080 , 1 90+1, . . . , 1 91−1,
(
0801 90+1 . . . 1 91−1

)−1 |

C80 , D 90+1, . . . , D 91−1,
{
D 90 , D 91

} )
≡ −D 90 6̃

({
D 90 , D 91

}) ∧ (
5̃� ( 90 + 1, 91 − 1,

{
C80 , D 90 , D 91

})
+ �∗ (080 , 0−1

80
| C80 ,

{
D 90 , . . . , D 91

} ))
, (2.41)

−D 90 6̃
({
D 90 , C80

}) ∧ 5̃� ( 90 + 1, 91,
{
D 90 , C 90

}), (2.42)

1
C80 − D 91

(
D 90 6̃

({
D 90 , C80

}) ∧ 5̃� ( 90 + 1, 91 − 1,
{
D 90 , C80

})
−D 90 6̃

({
D 90 , D 91

}) ∧ 5̃� ( 90 + 1, 91 − 1,
{
D 90 ; D 91

})) , (2.43)

1
C80 − D 90

(
C80 6̃

({
C80 , D 91

}) ∧ 5̃� ( 90 + 1, 91 − 1,
{
C80 , D 91

})
−D 90 6̃

({
D 90 , D 91

}) ∧ 5̃� ( 90 + 1, 91 − 1,
{
D 90 , D 91

})) . (2.44)

The cuts (1b) and (1d) contribute antisymmetric terms, i.e., D 90 and D 91 are exchanged and 5̃� ( 90 + 30, 91−
31, () becomes − 5̃� ( 90 + 31, 91 − 30, ().The entire contribution of case 3 is then the symmetrization of the

sum of expressions (2.37)-(2.44).

The expression (2.37) with its symmetrization cancels to 0.

The remaining terms form the contribution of Case 3, and are simplified to

6̃
({
C80 , D 91

}) ∧ 5̃� ( 90, 91 − 1, D 91 ) − 6̃
({
C80 , D 90

}) ∧ 5̃� ( 90 + 1, 91, D 90 ) (2.45)

−(D 91 − D 90 )6̃
({
C, D 90 , D 91

}) ∧ 5̃� ( 90 + 1, 91 − 1,
{
D 90 , D 91

}). (2.46)

Analogous expressions result if 91 − 90 = 0. �

Proof of Lemma 2.17. Let us collect the terms obtained from cases 2 and 3: (2.33)-(2.36), (2.45), and (2.46).

Consider first the expressions of the form 5̃� ( 90, 91 −1, D 91 ), arising from (2.33) and (2.45). (The notation

5̃� (), which by definition depends on 80 and 81, is unambiguous here since no 08 appear in the expression for
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5̃� () when 81 − 80 ≤ 0.) We claim that for fixed 90 and 91, the sum of these terms over all 6 is precisely

−QSh<,=−( 91− 90)
(
01, . . . , 0A , 11, . . . , 1 90 . . . 1 91 , . . . , 1B , 2 |

C1, . . . , CA , D1, . . . , D 91 , . . . , DB , E
) ∧ 5̃� ( 90, 91 − 1, D 91 ). (2.47)

Indeed, the term that appears on the left side for a fixed 6 is −6̃ (
D 91

)
if 81 − 80 = −1 and 6̃

({
C80 , D 91

})
if

81 − 80 = 0 . The quasishuffles for which the underlined segment collides with no 08 provides the terms with

81− 80 = −1, while the quasishuffles for which the underlined segment collides with some 08 provide the terms

with 80 = 81 = 8.

In a similar way, the expressions with D 90 5̃� ( 90 + 1, 91 − 1,
{
D 90 , D 91

}), coming from (2.46) and (2.35),

yield

−D0QSh<,=−( 91− 90)
(
01, . . . , 0A , 11, . . . , 1 90 . . . 1 91 , . . . , 1B , 2 |

C1, . . . , CA , D1, . . . ,
{
D 90 , D 91

}
, . . . , DB , E

) ∧ 5̃� ( 90 + 1, 91 − 1,
{
D 90 , D 91

}). (2.48)

The expressions with 5̃� ( 90 + 1, 91, D 91 ) and D 91 5̃� ( 90 + 1, 91 − 1,
{
D 90 , D 91

}) give the antisymmetric terms.

Applying the shuffle relations of lower depth to (2.47) and (2.48), we get the total contribution of cases 2

and 3 for fixed 90 and 91:

−
(
�∗

(
01, . . . , 0A , 11 . . . 1B · 2 | C1, . . . , CA ,

{
D1, . . . , D 90−1, D 91 , D 91+1, . . . , DB , E

} )
+ �∗ (11, . . . , 1 90 . . . 1 91 , . . . , 1B , 01 . . . 0A · 2 | D1, . . . , D 91 , . . . , DB , {C1, . . . , CA , E}

) )

∧ �∗
(
1 90 , 1 90+1, . . . , 1 91−1,

(
1 90 . . . 1 91−1

)−1 | D 90 , D 90+1, . . . , D 91−1, D 91
)

(2.49)

+
(
�∗

(
01, . . . , 0A , 11 . . . 1B · 2 | C1, . . . , CA ,

{
D1, . . . , D 90−1, D 90 , D 91+1, . . . , DB , E

} )
+ �∗ (11, . . . , 1 90 . . . 1 91 , . . . , 1B , 01 . . . 0A · 2 | D1, . . . , D 91 , . . . , DB , {C1, . . . , CA , E}

) )

∧ �∗
(
1 90+1, . . . , 1 91−1, 1 91 ,

(
1 90+1 . . . 1 91

)−1 | D 90+1, . . . , D 91−1, D 91 , D 90
)

(2.50)

+ (D 91 − D 90 )
(
�∗

(
01, . . . , 0A , 11 . . . 1B · 2 | C1, . . . , CA ,

{
D1, . . . , D 90−1, D 90 , D 91 , D 91+1, . . . , DB , E

} )
+ �∗ (11, . . . , 1 90 . . . 1 91 , . . . , 1B , 01 . . . 0A · 2 | D1, . . . ,

{
D 90 , D 91

}
, . . . , DB , {C1, . . . , CA , E}

) )

∧ �∗
(
1 90+1, . . . , 1 91−1,

(
1 91 . . . 1 91−1

)−1 | D 90+1, . . . , D 91−1,
{
D 90 , D 91

} )
. (2.51)

Notice that this expression does not depend on 80, 81, and all but one of the segments in each generating
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function 5 depends only on the 08 or only on the 1 9 .

Reindexing leads to cancelation of all terms 5 (01, . . . , 0A , . . . ) except the term in (2.49) where 90 = 1 and

the term in (2.50) where 91 = =. That is, if 90 ≠ 1 and 91 ≠ =, then this expression becomes

� ( 90, 91) := −
(
�∗

(
11, . . . , 1 90 . . . 1 91 , . . . , 1B , 01 . . . 0A · 2 | D1, . . . , D 91 , . . . , DB , {C1, . . . , CA , E}

)
∧ �∗

(
1 90 , 1 90+1, . . . , 1 91−1,

(
1 90 . . . 1 91−1

)−1 | D 90 , D 90+1, . . . , D 91−1, D 91
) )

(2.52)

+
(
�∗

(
11, . . . , 1 90 . . . 1 91 , . . . , 1B , 01 . . . 0A · 2 | D1, . . . , D 90 , . . . , DB , {C1, . . . , CA , E}

)
∧ �∗

(
1 90+1, . . . , 1 91−1, 1 91 ,

(
1 90+1 . . . 1 91

)−1 | D 90+1, . . . , D 91−1, D 91 , D 90
) )

(2.53)

+
(
�∗

(
11, . . . , 1 90 . . . 1 91 , . . . , 1B , 01 . . . 0A · 2 | D1, . . . ,

{
D 90 , D 91

}
, . . . , DB , {C1, . . . , CA , E}

)
∧ �∗

(
1 90+1, . . . , 1 91−1,

(
1 91 . . . 1 91−1

)−1 | D 90+1, . . . , D 91−1,
{
D 90 , D 91

} )) (D 91 − D 90 ). (2.54)

If 90 = 1 or 91 = B, the following terms remain, respectively:

�! ( 91) := − �∗ (01, . . . , 0A , 11 . . . 1B · 2 | C1, . . . , CA ,
{
D 91 , D 91+1, . . . , DB , E

} )
∧ �∗

(
11, . . . , 1 91−1,

(
11 . . . 1 91−1

)−1 | D1, . . . , D 91−1, D 91
)
, (2.55)

�' ( 90) :=�∗
(
01, . . . , 0A , 11 . . . 1B · 2 | C1, . . . , CA ,

{
D1, . . . , D 90 , E

} )
∧ �∗

(
1 90+1, . . . , 1B ,

(
1 90+1 . . . 1B

)−1 | D 90+1, . . . , DB , D 90
)
. (2.56)

Identical terms � (80, 81), �! (81), �' (80) with the
(
08 | C8

)
and

(
1 9 | D 9

)
exchanged appear in the cases

91 − 90 = 0 or −1.

So the total contribution of cuts of type 1 is

∑
1≤ 90 , 91≤B
91− 90≥−1

� ( 90, 91) +
∑

1≤80 ,81≤A
81−80≥−1

� (80, 81)

+
∑

1≤ 91≤B
�! ( 91) +

∑
1≤ 90≤B

�' ( 90) +
∑

1≤81≤A
�! (81) +

∑
1≤80≤A

�' (80) (2.57)

finishing the computation. �

Lemma-Computation 2.21. The contribution of cuts of type (2) to X& is given by the sum of expressions

(2.73)-(2.77) below, plus symmetrical terms.

Proof. A cut of type (2a/b/c) divides the circle into a left part 6 and a right part ℎ (see Figure 2.6). Let 80 be
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maximal such that 080 appears in 6 and 81 minimal such that 081 appears in ℎ, with 80 = −1 or 81 = < + 1 if the

corresponding segments do not appear. Define 90, 91 in the same manner, for the 1 9 .

Let

5! (80, 90, () = �∗
(
01, . . . , 080 ,

(
01 . . . 080

)−1 | C1, . . . , C80 ,
{
D1, . . . , D 90

} t () ,
5' (81, 91, () = �∗

(
081 , . . . , 0A ,

(
081 . . . 0A

)−1 | C81 , . . . , CA ,
{
D 91 , . . . , D<

} t () ,

and define 6! (80, 90, () and 6' (81, 91, () in a similar way for the
(
1 9 | D 9

)
. (As usual, one interprets these

expressions as 0 if the index set is empty.) Also let

@! (80, 90, () = QSh80 , 90
(
01, . . . , 080 , 11, . . . , 1 90 ,

(
01 . . . 080 · 11 . . . 1 90

)−1 | C1, . . . , C80 , D1, . . . , D 90 , (
)
,

= 5! (80, 90, () + 6! (80, 90, ()

@' (81, 91, () = QShA−81+1,B− 91+1
(
081 , . . . , 0A , 1 91 , . . . , 1B ,

(
081 . . . 0A · 1 91 . . . 1B

)−1 | C81 , . . . , CA , D 91 , . . . , DB , (
)

= 5' (81, 91, () + 6' (81, 91, ().

Consider cuts (2a) for fixed 80, 81, 90, 91. For such cuts,

81 − 80 = 91 − 90 = 1, −1 ≤ 80 ≤ A, −1 ≤ 90 ≤ B.

The 6 that occur in the resulting terms are exactly the quasishuffles of {08 : 8 ≤ 80} and
{
1 9 : 9 ≤ 90

}
. The

analogous statement holds for ℎ. The contribution of cuts (2a) is

−@! (80, 90, E) ∧ @' (80 + 1, 90 + 1, E). (2.58)

Now look at cuts (2b) and (2c). The non-distinguished segment containing the vertex or the cut is either

080+1 (80 < A), 1 90+1 ( 90 < B), or 080+11 90+1 (80 < A, 90 < B). The terms coming from the sum of (2b) and (2c)

are, for these three cases respectively,

(E − C80+1)@! (80, 90,
{
C80+1, E

}) ∧ @' (80 + 2, 90 + 1,
{
C80+1, E

}), (2.59)

(E − D 90+1)@! (80, 90,
{
D 90+1, E

}) ∧ @' (80 + 1, 90 + 2,
{
D 90+1, E

}), (2.60)

−1
C80+1 − D 90+1

(
(E − C80+1)@! (80, 90,

{
C80+1, E

}) ∧ @' (80 + 2, 90 + 2,
{
C80+1, E

})
−(E − D80+1)@! (80, 90,

{
D 90+1, E

}) ∧ @' (80 + 2, 90 + 2,
{
D 90+1, E

})) . (2.61)
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Let us assemble the terms of the form 5!∧6' and 6!∧6' coming from application of the shuffle relations

to the @! and @'. (The terms 6! ∧ 5' and 5! ∧ 5' are symmetrical.)

The terms 5! ∧ 6', for −1 ≤ 80 < A and −1 ≤ 90 < B, are:

− 5! (80, 90, E) ∧ 6' (80 + 1, 90 + 1, E)

+(E − C80+1) 5! (80, 90,
{
C80+1, E

}) ∧ 6' (80 + 2, 90 + 1,
{
C80+1, E

}),
+(E − D 90+1) 5! (80, 90,

{
D 90+1, E

}) ∧ 6' (80 + 1, 90 + 2,
{
D 90+1, E

}),
− 1
C80+1 − D 90+1

(
(E − C80+1) 5! (80, 90,

{
C80+1, E

}) ∧ 6' (80 + 2, 90 + 2,
{
C80+1, E

})
−(E − D80+1) 5! (80, 90,

{
D 90+1, E

}) ∧ 6' (80 + 2, 90 + 2,
{
D 90+1, E

}))

= 5! (80, 90, C80+1) ∧ 6' (80 + 1, 90 + 1, E)

− 5! (80, 90 + 1, C80+1) ∧ 6' (80 + 1, 90 + 2, E).

Summing this over 90 leaves

5! (80, 0, C80+1) ∧ 6' (80 + 1, 1, E) − 5! (80, B, {DB , E}) ∧ 6' (80 + 1, B + 1, E) (2.62)

= 5! (80, 0, C80+1) ∧ 6' (80 + 1, 1, E) = −�! (80 + 1). (2.63)

If 80 = A, 90 < B, then from (2.58) and (2.60) we also have the terms

− 5! (A, 90, E) ∧ 6' (A + 1, 90 + 1, E), (2.64)

(E − D 90+1) 5! (A, 90,
{
D 90+1, E

}) ∧ 6' (A + 1, 90 + 2,
{
D 90+1, E

})
= 5! (A, 90 + 1, E) ∧ (

6' (A + 1, 90 + 2, E) − 6' (A + 1, 90 + 2, D 90+1)
)
. (2.65)

The last term 5! (A, 90 + 1, E) ∧ 6' (A + 1, 90 + 2, D 90+1) is �' ( 90 + 1). The remaining term and (2.64) mostly

cancel when summed over 90, leaving only

/ := − 5! (A, 0, E) ∧ 6' (A + 1, 1, E) + 5! (A, B, E) ∧ 6' (A + 1, B + 1, E)

= −�∗ (01, . . . , 0A ,
∏
9

1 9 · 2 | C1, . . . , CA , E
) ∧ �∗ (11, . . . , 1B ,

∏
8

08 · 2 | D1, . . . , DB , E
)
. (2.66)

55



If 90 = B, 80 < A, there are terms

− 5! (80, B, E) ∧ 6' (80 + 1, B + 1, E) = 0,

(E − C80+1) 5! (80, B,
{
C80+1, E

}) ∧ 6' (80 + 2, B + 1,
{
C80+1, E

}) = 0. (2.67)

Finally, 80 = A, 90 = B also produces 0.

Thus the sum of terms 5! ∧ 6' is

/ −
A−1∑
80=0

�! (80 + 1) −
B−1∑
90=0

�' ( 90 + 1). (2.68)

Similarly, terms of the form 6! ∧ 5' give

−/ −
B−1∑
90=0

�! ( 90 + 1) −
A−1∑
80=0

�' (80 + 1). (2.69)

The terms 6! ∧ 6' where 80 < A, 90 < B are, similarly:

−6! (80, 90, C80+1) ∧ 6' (80 + 2, 90 + 1,
{
C80+1, E

})
+6! (80, 90,

{
C80+1, D 90+1

}) ∧ 6' (80 + 2, 90 + 2,
{
C80+1, E

}). (2.70)

If 80 = A, 90 < B, we get the terms

−6! (A, 90, E) ∧ 6' (A + 1, 90 + 1, E),

(E − D 90+1)6! (A, 90,
{
D 90+1, E

}) ∧ 6' (A + 1, 90 + 2,
{
D 90+1, E

}). (2.71)

If 90 = B, 80 < A, there are terms

−6! (80, B, E) ∧ 6' (80 + 1, B + 1, E) = 0,

(E − C80+1)6! (80, B,
{
C80+1, E

}) ∧ 6' (80 + 2, B + 1,
{
C80+1, E

}) = 0. (2.72)

The case 80 = A , 90 = B again contributes 0.

The terms 5! ∧ 5' are symmetrical.
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Assembling (2.69)-(2.71), the total contribution of cuts (2a/b/c) is

−
A∑
8=1

�! (8) −
B∑
9=1

�' ( 9) (2.73)

+
A−1∑
80=0

B−1∑
90=0

(
−6! (80, 90, C80+1) ∧ 6' (80 + 2, 90 + 1,

{
C80+1, E

}) (2.74)

+6! (80, 90,
{
C80+1, D 90+1

}) ∧ 6' (80 + 2, 90 + 2,
{
C80+1, E

})) (2.75)

+
B−1∑
90=0

(
−6! (A, 90, E) ∧ 6' (A + 1, 90 + 1, E) (2.76)

+(E − D 90+1)6! (A, 90,
{
D 90+1, E

}) ∧ 6' (A + 1, 90 + 2,
{
D 90+1, E

})) , (2.77)

plus symmetrical terms. �

Proof of Lemma 2.16. Cancellation of (2.57) with (2.73) leaves

∑
1≤ 90 , 91≤B
91− 90≥−1

� ( 90, 91) (2.78)

plus the symmetrical term.

Thus X& is the symmetrized sum of expressions (2.74)-(2.78). �

Lemma-Computation 2.22 (Step 1(b)). Modulo elements � (0, G), X'� and X'� are given by expression

(2.91) below and its symmetric expression, respectively.

Proof of Lemma 2.22. We compute X'�.

Recall that the distinguished segment of '� is
∏
9 08 · 2. We use the above classification of cuts of type

(1a/b/c/d) and (2a/b/c).

Consider first the terms 5 ∧ 6 coming from cuts of type (1). For each such term, let 90, 91 be the minimal

and maximal indices of 1 9 that do not appear in 6. For fixed 90, 91, the cuts of type (1a), (1b), and (1c/d)

produce precisely the expressions (2.52), (2.53), and (2.54) above. Thus the contribution of cuts of type (1)

is � ( 90, 91), and the total contribution is

∑
0≤ 90 , 91≤B
91− 90≥−1

� ( 90, 91). (2.79)

Next, we look at cuts of type (2). We will need a simplified formula for terms where either the vertex or

the cut are on a segment indexed with ( = {B1, . . . , B: }. If : = 1 and the vertex is at a nonzero point, we get
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terms of the form

�∗
( · · · | . . . , B1) ∧ �∗ ( · · · | B1, . . . ) .

Applying (2.13), it is easy to show by induction that, for general : , the resulting terms are

:∑
8=1

�∗
( · · · | . . . , {B1, . . . , B8} ) ∧ �∗ ( · · · | {B8 , . . . , B: } , . . . ) . (2.80)

For example, if : = 2, this becomes

�∗
( · · · | . . . , B1) ∧ �∗ ( · · · | {B1, B2} , . . . ) + �∗ ( · · · | . . . , {B1, B2} ) ∧ �∗ ( · · · | B2, . . . )

=
1

B1 − B2

(
�∗

( · · · | . . . , B1) ∧ �∗ ( · · · | B1, . . . ) + �∗ ( · · · | . . . , B2) ∧ �∗ ( · · · | B2, . . . )
)
,

agreeing with the formula following directly from (2.13) that has been used in the previous computations.

Similarly, if the vertex is on some segment B′, the term for : = 1,

B′�∗
( · · · | . . . , {B1, B′} ) ∧ �∗ ( · · · | {B1, B′} , . . . ) ,

expands into

B′
:∑
8=1

�∗
( · · · | . . . , {B1, . . . , B8 , B′} ) ∧ �∗ ( · · · | {B8 , . . . , B: , B′} , . . . ) . (2.81)

Finally, if the vertex is at a 0 on the segment B8 and the cut is on the segment B′, we get terms

:∑
8=1

B8�
∗ ( · · · | . . . , {B1, . . . , B8 , B′} ) ∧ �∗ ( · · · | {B8 , . . . , B: , B′} , . . . )

+
:−1∑
8=1

�∗
( · · · | . . . , {B1, . . . , B8 , B′} ) ∧ �∗ ( · · · | {B8+1, . . . , B: , B′} , . . . ) . (2.82)

These identities can also be shown combinatorially, by interpreting the definition of themultiple generating

functions in terms of collapsing segments.

For a term 5 ∧ 6 coming from a cut of type (2), let 90 be the maximal index of 1 9 appearing in 5 and 91

the minimal index in 6, so 91 − 90 = 1 for cuts (2a) and 91 − 90 = 2 for cuts (2b/c). By (2.80), for fixed 90, the

cuts of type (2a) contribute

−
<∑
8=1

6! (8, 90, ∅) ∧ 6' (8, 90 + 1, E) (2.83)

+ 6! (A, 90, E) ∧ 6' (A + 1, 90 + 1, E). (2.84)
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By (2.81), the cuts of type (2b) contribute

−
<∑
8=1

D 90+16! (8, 90, D 90+1) ∧ 6' (8, 90 + 2,
{
D 90+1, E

}) (2.85)

− D 90+16! (A, 90,
{
D 90+1, E

}) ∧ 6' (A + 1, 90 + 2,
{
D 90+1, E

}). (2.86)

By (2.82), the cuts of type (2c) contribute

<∑
8=1

C86! (8, 90, D 90+1) ∧ 6' (8, 90 + 2,
{
D 90+1, E

}) (2.87)

+ E6! (A, 90,
{
D 90+1, E

}) ∧ 6' (A + 1, 90 + 2,
{
D 90+1, E

}) (2.88)

+
<∑
8=1

6! (8, 90, D 90+1) ∧ 6' (8 + 1, 90 + 2,
{
D 90+1, E

}). (2.89)

The sum of expressions (2.85), (2.87), and (2.89) simplifies to

6! (8, 90, D 90+1) ∧ 6' (8, 90 + 2, E). (2.90)

Then, letting �� ( 90) be the sum of expressions (2.83), (2.84), (2.86), (2.88), and (2.90), the coproduct of '�

is ∑
0≤ 90 , 91≤B
91− 90≥−1

� ( 90, 91) +
B−1∑
9=0

�� ( 9). (2.91)

The coproduct of '� is the symmetric expression. �

Proof of Lemma 2.14. We now compare the results of the computations in Lemmas 2.16 and 2.22.

We have computed that X& is the symmetrization of

(2.74) + (2.75) + (2.76) + (2.77) + (2.78)

and X'� + X'� is the symmetrization of

(2.79) +
=−1∑
9=0

[(2.83) + (2.84) + (2.86) + (2.88) + (2.90)] .

Obviously (2.79) = (2.78). Now

(2.74) =
∑
(2.83), (2.75) =

∑
(2.90), (2.76) =

∑
(2.84), (2.77) =

∑
[(2.86) + (2.88)] ,
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which finishes the proof. �

Proof of Step 2

Here we show the terms of weight (1) ∧ (F − 1) coming from X& − X'� − X'� are 0.

Proof of Lemma 2.15. We first examine the relevant terms of X&. Let us compute the coefficient !�
8
occurring

with � (0, 08). These come from shuffles containing segment
(
08 | C8

)
, a segment

(
081 9 |

{
C8 , D 9

} )
, and the

segment
(
2 | E) (where we write 2 = ∏

8 0
−1
8

∏
9 1
−1
9
).

Inspect the generating functions of depth 1 �∗
(
F, F−1 | B1, B2

)
that appeared in the proof of Lemma 2.14.

All generating functions in the lower half of cuts (1a/b/c/d) were written in a form where
(
F | B1

)
is the first

segment counterclockwise of the distinguished segment, rather than with the segment counterclockwise of

the vertex of the cut as in (2.19)).

So, by the remark following Lemma 2.10, the terms (2.24) vanish in the coproduct, so the terms arising

from these cuts are canceled by the lower-depth shuffle relations in Lemma 2.14. Similarly, for cuts of type

(2), we only have terms (2.22) contributing the coefficient of � (0, 0−1
8
).

For quasishuffles inwhich
(
08 | C8

)
appears, the terms (2.23)where some 1 9 appears immediately clockwise

of 08 gives terms

QShA ,B(8 9)
(
01, . . . , 08 , . . . , 0A , 11, . . . , 1 9 , 2 |C1, . . . , ∅, . . . , CA , D1, . . . , D 9 , . . . , DB , E

)
, (2.92)

where QShA ,B(8 9) denotes the sum over only those quasishuffles where 08 collapses with 1 9 .

The terms (2.23) where either 08−1 or some 08−11 9 appears immediately clockwise of 08 sum to

QShA−1,B (01, . . . , 08−108 , 08+1, . . . , 0A , 11, . . . , 1B , 2 | C1, . . . , C8−1, C8+1, . . . , CA , D1, . . . , DB , E
)
. (2.93)

Finally, the terms (2.22) contribute to !�
8
the terms

C8QShA ,B(8)
(
01, . . . , 0A , 11, . . . , 1B , 2 | C1, . . . , CA , D1, . . . , DB , E

)
(2.94)

where QSh(8) denotes the the quasishuffles in which 08 does not collapse with any 1 9 .

For quasishuffles in which some
(
081 9 |

{
C8 , D 9

} )
appears, the terms (2.23) contribute 0, since they arise
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from cuts of segments containing no 0s.The terms (2.22) give

−1
C8 − D 9

(
C8QShA ,B(8 9)

(
01, . . . , 08 , . . . , 0A , 11, . . . , 1 9 , . . . , 1B , 2 |C1, . . . , C8 , . . . , CA , D1, . . . , ∅, . . . , DB , E

)

−D 9QShA ,B(8 9)
(
01, . . . , 08 , . . . , 0A , D1, . . . , D 9 , . . . , DB , E |C1, . . . , ∅, . . . , CA , D1, . . . , D 9 , . . . , DB , E

) )

= −C8QShA ,B(8 9)
(
01, . . . , 08 , . . . , 0A , 11, . . . , 1B , 2 |C1, . . . , C8 , . . . , CA , D1, . . . , D 9 , . . . , DB , E

)
(2.95)

−QShA ,B(8 9)
(
01, . . . , 08 , . . . , 0A , 11, . . . , 1B , 2 |C1, . . . , ∅, . . . , CA , D1, . . . , D 9 , . . . , DB , E

)
. (2.96)

For the segment
(
2 | E) , which includes a factor of 0−1

8
, we get a contribution of

−EQShA ,B
(
01, . . . , 0A , 11, . . . , 1B , 2 | C1, . . . , CA , D1, . . . , DB , E

)
= −E&. (2.97)

from (2.22) and

−QShA−1,B (01, . . . , 0<−1, 11, . . . , 1B , 0A 2 |C1, . . . , CA−1, D1, . . . , DB , CA
)

−QShA ,B−1 (01, . . . , 0A , 11, . . . , 1=−1, 1B2 |C1, . . . , CA , D1, . . . , DB−1, DB
)

+QShA−1,B−1 (01, . . . , 0<−1, 11, . . . , 1=−1, 0A1B2 |C1, . . . , CA−1, D1, . . . , DB−1, {CA , DB}
)
,

from (2.23), with three terms, depending on which segment (0A , 1B , or 0A1B) appears clockwise of 2. By the

lower-depth shuffle relations, this simplifies to

−�∗ (01, . . . , 0A ,
∏
9

1 9 · 2 |C1, . . . , CA , {D1, . . . , DB}
)

(2.98)

−�∗ (11, . . . , 1B ,
∏
8

08 · 2 |D1, . . . , DB , {C1, . . . , CA }
)
. (2.99)

The terms (2.92) cancel with (2.96). Summing (2.95) over 9 and adding to (2.94) results in

C8QShA ,B
(
01, . . . , 0A , 11, . . . , 1B , 2 | C1, . . . , CA , D1, . . . , DB , E

)
= C8&. (2.100)

Thus !�
8
is the sum of (2.93), (2.97), (2.98), (2.99) and (2.100). Applying lower-depth shuffle relations and
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(2.13), this sum simplifies to

!�8 = �∗
(
01, . . . , 08−108 , 08+1, . . . , 0A ,

∏
9

1 9 · 2 |C1, . . . , C8−1, C8+1, . . . , CA , {D1, . . . , DB} t {E}
)

(2.101)

−�∗ (01, . . . , 0A ,
∏
9

1 9 · 2 |C1, . . . , CA , {D1, . . . , DB}
)

(2.102)

+(C8 − E) (& − '�). (2.103)

Now let us compute the coefficient "�
8
occurring with � (0, 08) in X('�). For the segment

(
08 | C8

)
in '�,

(2.22) and (2.23) contribute the terms

C8�
∗ (01, . . . , 08 , . . . , 0A ,

∏
9

1 9 · 2 |C1, . . . , C8 , . . . , CA , {D1, . . . , DB} t {E}
)

= C8'�, (2.104)

�∗
(
01, . . . , 08−108 , 08+1, . . . , 0A ,

∏
9

1 9 · 2 |C1, . . . , C8−1, C8+1, . . . , CA , {D1, . . . , DB} t {E}
)
, (2.105)

where the second term appears only if 8 > 1.

The distinguished segment
( ∏

8 0
−1
8
| {D 9}t {E} ) contributes only a term (2.22). By an argument similar

to that in Lemma 2.22, this term can be written

−E'� − �∗
(
01, . . . , 0A ,

∏
9

1 9 · 2 | C1, . . . , CA , {D1, . . . , DB}
)
. (2.106)

Combining (2.101)-(2.106), we find that

(!�8 − "�
8 ) = (C8 − E) (& − '� − '�).

Therefore, adding the symmetric terms for the � (0, 1 9 ),

X(& − '� − '�) =

A∑
8=1

� (0, 08) (C8 − E) +
B∑
9=1
� (0, 1 9 ) (D 9 − E)


∧ (& − '� − '�)

modulo lower-depth shuffle relations and elements (weight 1) ∧ (weight 1). �

Conclusion

We are ready to use the coproduct we have computed to reduce the proof of the relations to a simple base case.

Proof of Theorem 2.5(a). We induct on the depth A + B. When A = 0 or B = 0, QSh
A ,B

is identically 0.

62



If A, B > 0, taking coproduct on both sides of (2.31) and using that X2 = 0, one deduces that X(&−'�−'�) =
0 modulo shuffle relations of depth < A + B and terms (weight 1) ∧ (weight 1).

When no terms � (0, G) ∧ � (0, H) are present in the coproduct, Lemma 2.13 and Lemma 2.15 imply that

X(& − '� − '�) lies in the ideal generated by lower-depth relations.

These terms appear only in a base case: the constant term of the shuffle relation for A = B = 1. Showing

the coproduct of this term is 0 amounts to proving the identity

X ( [�∗ (0 |0, 1 |0, 2 |0) + �∗ (1 |0, 0 |0, 2 |0) − �∗ (01 |1, 2 |0)] − �∗ (0 |0, 12 |1) − �∗ (1 |0, 02 |1)) = 0. (2.107)

We compute directly that the left side of (2.107) is

� (1, 0) ∧ � (1, 01) + � (1, 01) ∧ (� (1, 1) + � (0, 0)) + (� (1, 1) + � (0, 0)) ∧ � (1, 0)

+� (1, 1) ∧ � (1, 01) + � (1, 01) ∧ (� (1, 0) + � (0, 1)) + (� (1, 0) + � (0, 1)) ∧ � (1, 1)

−� (1, 01) ∧ � (0, 01) + � (1, 0) ∧ � (0, 0) + � (1, 1) ∧ � (0, 1)

= � (1, 01) ∧ � (0, 0) + � (0, 0) ∧ � (1, 0)

+� (1, 01) ∧ � (0, 1) + � (0, 1) ∧ � (1, 1)

−� (1, 01) ∧ � (0, 01) + � (1, 0) ∧ � (0, 0) + � (1, 1) ∧ � (0, 1) = 0.

The theorem is proved. �

2.3 Specialization theorem for Hodge correlators

We now study how the Hodge correlators over a base � behave when the sections collide. This will require

extending the theory of Hodge correlators to nodal curves.

The correlator Lie coalgebra for nodal curves

Recall the moduli space M ′0,= of = distinct points and a distinguished tangent vector on P1. Its Deligne-

Mumford compactificationM ′0,= consists of the nodal curves of genus 0, i.e., those whose dual graph is a

tree and in which every component is a punctured projective line. with = marked points and a distinguished

tangent vector E∞.

Let - =
⋃
8 -8 be a genus 0 nodal curve with a set of punctures (. Let ) be the dual tree of - , with vertices

indexed by 8 corresponding to -8 , rooted at the component 0 with the base point B0 ∈ -0, oriented away from

the root (write 8 → 9 if (8, 9) is an edge). Choose a coordinate I8 on each -8 such that the point joining the
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component to its parent - 9 is (I8 = ∞, I 9 = E 98), and the base point on -0 is at I0 = ∞ with tangent vector

E∞. Let (8 be the set of punctures on -8 . Let #8 =
{
E8 9 : 8 → 9

}
.

We define the correlator Lie coalgebra for the nodal curve - by

CL∨-,(,E∞ =
⊕
8

CL∨-8 ,(8∪#8 ,E8 , (2.108)

where E8 is the tangent vector −1
I2
8

m
mI8

at I8 = ∞.
It coincides with the usual definition if - is smooth, justifying the notation. If - is not smooth, it is

different from C̃L∨-,(,B0 , the coalgebra naively defined as the tensor algebra of ( modulo cyclic symmetry

and shuffle relations with a �2 (-) coefficient. They are related in the following way. For each 8, there is a

surjective coalgebra morphism to the component of the direct sum corresponding to -8:

C̃L∨-,(,B0
c8−−→ CL∨-8 ,(8∪#8 ,E8 .

To define it on a generator (G1 ⊗ · · · ⊗ G=) ⊗ [-8], let ? be the common parent of the components containing

the G 9 . If ? ≠ 8, the 8-th component of the map is 0. Otherwise, set

c8 (G) =


G, G ∈ -8

I8 = E8 9 ∈ #8 , G ∈ -: , where ∃ path 8 → 9 → · · · → :

,

extended to preserve the tensor product. That is, points in -8 remain, while points in components below -8

collapse to the nearest node on -8 . Evidently this map preserves the coproduct and defining relations. Taking

the direct sum of the maps c8 , we have produced a coalgebra morphism:

c : C̃L∨-,(,E∞ → CL∨-,(,E∞ .

It preserves the decomposition of the domain by �2 (-) =
⊕

8 �2 (-8).
In particular, if (-, (, E0) vary over a base � → M ′0,=, and the variation extends to � → M ′0,=, with

� = � \ �, then we have a degeneration map

c� : CL∨
-/�,(,E∞ → C̃L

∨
-/�,(,E∞ → CL∨-/�,(,E∞ , (2.109)

where the first map simply applies the induced map on �2 and the second map is the quotient defined above.

The composition forgets the way in which the sections in ( collided at boundary of �.
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Specialization theorem

Recall that an element of CL∨
-/�,(,E∞ over a base � →M ′0,= determines, by the map CorHod, a variation of

Hodge structures over �, and, by the period map ?, a smooth function on �. The maps CorHod and ? also

exist for - a nodal curve, extended by linearity from the definition (2.108).

Theorem 2.23. Suppose �→M ′0,= is a family of curves (-, (, E∞) extending to �→M
′
0,=, with � = � \ �

a normal crossings divisor, and suppose G ∈ CL∨
-/�,(,B0 of weight = > 1.

(a) The Deligne’s canonical extension to � of the variation of framed mixed Hodge structures determined

by CorHod (G) is independent of the normal vector to �. Thus there is a specialized map Spec� CorHod :(
CL-/�,(,E∞ → Lie∨HT/�

)
F>1

.

(b) This specialized map coincides with the Hodge correlator of the degeneration map:

(
CL∨

-/�,(,E∞

)
F>1

c� //

CorHod
��

(
CL∨

-/�,(,E∞

)
F>1

CorHod
��

(Lie∨HT/�)
Spec� // (Lie∨HT/�).

.

(c) Let C = 0 be a local equation for �. Then

lim
C→0

?(CorHod (GC )) = ?(�>AHod (GC=0)).

Proof. Let G ∈ CL∨
-/�,(,E∞ be a generator of weight F > 1. For any E a normal vector to �, we get the

specialized framed mixed Hodge-Tate structure SpecE
�
CorHod (G).

We must show that:

(1) The periods of CorHod (G) extend continuously to �.

(2) The coproduct of SpecE
�
CorHod (G) does not depend on the direction of specialization E at any smooth

point of �.

(3) The periods of the specializations (i.e., the limits of the periods at �) coincide with the periods of the

degeneration to �.

We will prove (1)-(3) by induction on the weight. First, let us see how they imply the result.

Assuming (2), the coproduct of SpecE
�
CorHod (G) is independent of E. Because the coproduct commutes

with SpecE
�
, this element is independent of E up to Ext1 (R(0),R(=)), which is 1-dimensional and controlled
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by the period. By (1), the period is independent of the direction of specialization, which gives (a). By (3), it

coincides with the period of the degeneration, which gives (b). Then (c) follows by the definitions from (b).

To show (1), we let {Y8 = 0} be a set of smooth local equations for � and prove that ?(CorHod (G)) can
be represented locally as a polynomial in the log Y8 such that the terms with log Y8 appearing in positive

degree have coefficients vanishing along {Y8 = 0} (tame logarithmic singularities). This will follow from the

differential equations on the periods. Note that in weight 1, the period of � (G, H) has a (not tame) logarithmic

singularity along G = H. In weight > 1, we proceed by induction.

Consider a simple element G = G0 ⊗ · · · ⊗ G= ∈ CL∨-/�,(,E∞ (= > 1). Suppose that not all G8 collide on �,

so we must only consider the summand of the nodal CL∨
-/�,(,B0 corresponding to the component containing

the base point. The terms of X(G) can be grouped into those of two forms:

(i) G ′ ∧ G ′′, where not all sections in G ′ and in G ′′ collide to the same section on �;

(ii) G ′ ∧ (G ′′1 − G ′′2 ), where not all sections in G ′ collapse on �, but G ′′1 and G ′′2 coincide on �.

By the inductive hypothesis, the specialization of X(G) does not depend on the direction of specialization:
for terms (i), G ′ and G ′′ satisfy (2), while in terms (ii) the G ′′1 − G ′′2 vanish under specialization to �. This gives

(2).

For (1), from the differential equations on the periods (1.14), we see that 3�?(CorHod (G)) is a sum of

terms that are smooth over �with logarithmic singularities along � (from type (i)) and terms that vanish along

� by the inductive hypothesis (from type (ii)). We conclude that ?E∞ (G) has tame logarithmic singularities

along �.

If all G8 collide on �, we simply pass to their common parent component and apply the same argument.

We conclude with (3). We have shown that the specializations of CorE0Hod and its coproduct to � exist at

every point and their periods are independent of E, and thus the specialized period map ? ◦CorHod is equal to
the period of the degeneration up to adding a constant for each smooth component of the smooth locus of �.

We must show the constant 0.

It is enough to show this for � a lowest-codimension boundary stratum inM ′6,=. We are done by the next

lemma. �

Lemma 2.24. Let � be a proper subset of {0, 1, . . . , =} (= > 1) and G0, . . . , G= ∈ C∗ with G8 ≠ G 9 if 8 ≠ 9 and

either 8, 9 ∈ � or 8, 9 ∉ �. Let

G8 (C) =


CG8 8 ∈ �,

G8 8 ∉ �

.
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Then

CorH (G0 (C), G1 (C), . . . , G= (C))

is continuous at C = 0.

Proof. For = = 2, this amounts to continuity of L2 at 1.

In the proof of Theorem 2.23 it was established that

lim
C→0

CorH (G0 (C), G1 (C), . . . , G= (C)) − CorH (G0 (0), G1 (0), . . . , G= (0))

is independent of the G8 , for generic G8 . Let us integrate this difference over (G0, . . . , G=) ∈ ((1)=+1, with
respect to the standard measures `(G8) of volume 1 on (1 = {|I | = 1} ⊂ C.

The limit is uniform in the directions G8 (8 ∈ �), and so

∫
lim
C→0

CorH (G0 (C), G1 (C), . . . , G= (C))
∏

3`(G8) = lim
C→0

∫
CorH (G0 (C), G1 (C), . . . , G= (C))

∏
3`(G8).

To conclude, it suffices to show that

∫
CorH (G0 (C), G1 (C), . . . , G= (C))

∏
3`(G8) = 0. (2.110)

for all C.

For any tree) entering into the Feynman integral expression for (2.110), choose a pair of boundary vertices

(without loss of generality, labeled G0 and G1) incident to a common internal vertex E with corresponding

variable GE , and let GF be variable corresponding to the third vertex incident to E. Then the integral over the

G8 contains the term

∫
G0 ,G1

(∫
L2

(
GF − G0 (C)
GF − G1 (C)

)
∧ (terms independent of G0 (C), G1 (C))

)
3`(G0) 3`(G1).

Exchanging the two integrals and noting that L2 ( I−0I−1 ) changes sign under the involution

0 ↦→ 0
I2

|I |2
, 1 ↦→ 1

I2

|I |2
,

we conclude that this expression is 0. �

The specialization theorem states that when the punctures labeling an element of CL∨ collide, only the

component nearest to the base point of the resulting nodal curve determines the limit Hodge correlator. We
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obtain as a corollary Theorem 1.6:

Theorem. The Hodge correlators CorH (I0, . . . , I=) are continuous on C=+1 \ {I0 = · · · = I=}.

For example, L2 is continuous with a tame logarithmic singularity at 1, but L2
(
0−2
1−2

)
has no limit as

0, 1, 2 → 0.

2.4 The second shuffle relations

2.4.1 Proofs of Theorems 2.1, 2.6, and 2.7

In this section we will prove the second shuffle relations for Hodge and motivic correlators.

Proof for Hodge correlators

Recall Theorem 2.6:

Theorem. (a) Restricted to the subspace of CL∨
-,(,E∞ generated by elements (G0 ⊗ · · · ⊗ G=) (1) with not

all G8 equal, the map CorHod factors through D◦ (C∗). (Here ( ⊂ P1 (C) is any finite set of punctures

containing all points appearing in the relation in (b).)

(b) Suppose that A, B > 1 and that not all =8 = 0 or not all F8 = 1. Then the Hodge correlators satisfy the

relation:

∑
f∈ΣA,B

(−1)A+B−"fCor∗Hod (Ff−1 (1) |=f−1 (1) , . . . , Ff−1 ("f ) |=f−1 ("f ) , F0 |=0)

− Cor∗Hod (F1 |=1, . . . , FA |=A , F {A+1,...,A+B,0} |={A+1,...,A+B,0})

− Cor∗Hod (FA+1 |=A+1, . . . , FA+B |=A+B , F {1,...,A ,0} |={1,...,A ,0}) = 0,

where

=� =
∑
8∈�
(=8 + 1) − 1, F� =

∏
8∈�

F8 .

(c) The Hodge correlators satisfy all specializations of this relation as any subset of the F8 (1 ≤ 8 ≤ =)
approaches 0.

Proof. For fixed A, B, and =8 , consider the (A, B)-second shuffle relation in (b). It is a family of framed mixed

Hodge-Tate structures over

( =
{(F0, . . . , F=) ∈ (C∗)=+1 : F0 . . . F= = 1

}
.
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To show (b), it suffices to show the family is trivial as an element of Lie∨HT over every point of (, except at

(1, . . . , 1) if all =8 = 0. This is equivalent to (a) by the definitions, as the Hodge correlators are already known

to satisfy the defining relations in D̃◦ (C∗).
Each term of this relation is an element

CorHod (1, I1, . . . , I=),

where each I: is either 0 or monomial in the F8 . By Theorem 1.5, it is a variation V of framed mixed

Hodge-Tate structures over

) = {(I1, . . . , I=) ∈ (C∗)=} \ (diagonals) .

We first show by induction on the weight = that all such variations is trivial.

In the base case = = 1, there are no second shuffle relations.

For the induction hypothesis, suppose = > 1 and (b) holds in weights 1 < F < =. Fix A , B, and =8 and let

V be the variation defined above. By the induction hypothesis, XCorHod (V) vanishes, and thus, by rigidity, V

is a constant variation, determined pointwise as an element of Ext1 (R(0),R(=)) by the period. We show the

period is 0.

The specialization theorem (§2.3) implies that the period of V is continuous away from the main diagonal

in C=+1. Unless all =8 = 0 or all F8 = 1, in no term of the relation (b) do all points collide to the main diagonal.

By Corollary 1.6, the specialization of the period at F1, . . . , F= = 0 is equal to the substitution F8 = 0. Under

this substitution, the period of each term of the relation becomes

CorH (1, 0, . . . , 0) = 0.

Therefore, V is trivial over ) .

Because ) is dense in C=, the relation at all points – except F1 = · · · = F= = 1 if all =8 = 0 – follows by

the specialization theorem. This completes the proof of (b) and (c). �

Applying the period map, we immediately obtain Theorem 2.1:

Theorem. (a) Suppose that A, B > 1 and that not all =8 = 0 or not all F8 = 1. Then the Hodge correlators

69



satisfy the relation:

∑
f∈ΣA,B

(−1)A+B−"fCor∗H (Ff−1 (1) |=f−1 (1) , . . . , Ff−1 ("f ) |=f−1 ("f ) , F0 |=0)

− Cor∗H (F1 |=1, . . . , FA |=A , F {A+1,...,A+B,0} |={A+1,...,A+B,0})

− Cor∗H (FA+1 |=A+1, . . . , FA+B |=A+B , F {1,...,A ,0} |={1,...,A ,0}) = 0,

where

=� =
∑
8∈�
(=8 + 1) − 1, F� =

∏
8∈�

F8 .

(b) The Hodge correlators satisfy all specializations of this relation as any subset of the F8 (1 ≤ 8 ≤ =)
approaches 0.

Proof for motivic correlators

Recall Theorem 2.7:

Theorem. Let � be a number field and - = P1.

(a) Restricted to the subspace of
(
CLMot

-,(,E∞

)∨
generated by elements (G0 ⊗ · · · ⊗ G=) (1) with not all G8 equal,

the map CorMot factors through D◦ (�×). (Here ( ⊂ P1 (�) is any finite set of punctures containing all

points appearing in the relation in (b).)

(b) Suppose that A, B > 1 and that not all =8 = 0 or not all F8 = 1. Then the motivic correlators satisfy the

same relation as in Theorem 2.6, with Cor∗Hod replaced by Cor∗Mot.

(c) The motivic correlators satisfy all specializations of this relation as any subset of the F8 (1 ≤ 8 ≤ =)
approaches 0.

Proof. Fix an embedding � A−→ C. It induces a map D◦ (�×) → D◦ (�×), which we also denote by A .

Denoting by CL∨◦ the subalgebras generated by elements (G1 ⊗ · · · ⊗ G=) (1) where not all G8 are equal,
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we have the diagram

(
CLMot

-,(,E∞

)∨◦ CorMot //

A

��

&&

Lie∨MT/�

A

��

D◦ (�×)

::

A

��

CL∨◦
-,(,E∞

&&

CorHod // Lie∨HT
? // R

D◦ (C∗)

99

,

where the lower half commutes by Theorem 2.6 and the vertical maps are induced by A .

It is necessary to show the dashed arrow is well-defined, i.e., that CorMot vanishes on the kernel of the

map
(
CLMot

-,(,E∞

)∨◦
→ D◦ (�×).

Commutativity of the diagram for every embedding A implies the result. We argue by induction.

In weight 1, then there are no first or second shuffles, and the shuffle relations are mapped to 0 by CorMot.

Indeed, we have CorMot (0, 0) = 0 and CorMot (01, 02) = CorMot (0, 0) + CorMot (1, 2), since

CorMot (0, 1) = (0 − 1) ∈ (LieMT/� )∨F=1 � �
× ⊗ Q.

For the inductive step, if G ∈
(
CLMot

-,(,E∞

)∨◦
, homogeneous of weight > 1, vanishes in D◦ (�×), then

CorHod (A (G)) = 0 ∈ Lie∨HT under every embedding A, and mCorMot (G) = 0 by the inductive hypothesis. By

Lemma 1.8, CorMot (G) = 0. �

2.4.2 Applications

Additive shuffle relation

Specializing all F8 to 1 in the second shuffle relation, where all =8 = 0, we extract an additive second shuffle

relation, which does not have lower-depth terms:

Corollary 2.25. Let <, = > 0. The additive shuffle

∑
f∈Σ<,=

CorH (Yf−1 (1) , Yf−1 (1) + Yf−1 (2) , . . . , Yf−1 (1) + · · · + Yf−1 (<+=) , 0).

is a constant independent of (Y1, . . . , Y=) ∈ C= \ 0.
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Proof. This is a specialization of the second shuffle relation with F8 = 1 + CY8 as C → 0. The terms are the

specializations of those in the second shuffle relation arising from proper shuffles. The specializations of the

lower-depth terms are independent of the Y8 , as not all arguments of the correlators are equal at C = 0. �

It is easy to see that this constant is 0 if < + = is even. If < + = is odd, it is equal, in particular, to a sum of

Hodge correlators at roots of unity.

Proofs of Corollaries 2.2 and 2.3

Recall Corollary 2.2:

Corollary ([GR], Proposition 2.8). For = > 2, every Hodge correlator of weight = is a linear combination of

Hodge correlators of weight = and depth at most = − 2. Explicitly, for I1, . . . , I= ∈ C∗, we have

CorH (I1, . . . , I=, 0) =
=∑
8=1

CorH
(
I1, . . . , I8−1, I8 , I8

I1
I=
, . . . , I=−1

I1
I=
, I=

I1
I=

)

−
=∑
8=2

CorH
(
I1, . . . , I8−1, 0, I8

I1
I=
, . . . , I=−1

I1
I=
, I=

I1
I=

)

− CorH
(
I1, I1 · I1

I=
, 0, . . . , 0

)
. (2.111)

Proof. By multiplicative invariance, we may assume I1 = 1. Then this is precisely the (= − 1, 1)-second
shuffle relation applied to the segments

(I2/I1 | 0) , (I3/I2 | 0) , . . . , (I=/I=−1 | 0)

and

(I1/I= | 0) ,

where the segment (1 | 0) is left fixed. Indeed, the two summations come from the = shuffles and the = − 1

additional quasishuffles, with the remaining terms giving the left side and the last summand.

All terms on the right side have at least two coinciding arguments. After an additive shift, they have at

least two arguments equal to 0, so they are equal to those of depth at most = − 2. �

Recall Corollary 2.3:
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Corollary. The Hodge correlators in weight 3 satisfy the relations:

CorH (1, 0, 0, G) + CorH (1, 0, 0, 1 − G) + CorH (1, 0, 0, 1 − G−1) = CorH (1, 0, 0, 1), (2.112)

CorH (0, G, 1, H) = −CorH (1, 0, 0, 1 − G−1) − CorH (1, 0, 0, 1 − H−1) − CorH
(
1, 0, 0,

H

G

)

− CorH
(
1, 0, 0,

1 − H
1 − G

)
+ CorH

(
1, 0, 0,

1 − H−1

1 − G−1

)
+ CorH (1, 0, 0, 1). (2.113)

Proof. Apply the (1, 1)-second shuffle relation to the segments (G | 0) and (
G−1 | 1) , keeping the segment

(1 | 1) fixed:

CorH (1, G, 0, 0) + CorH (1, 0, G−1, 1) − CorH (1, 0, 0, 1)

− CorH (1, G, 0, 0) − CorH (1, 0, G−1, 0) = 0.

Multiplicative invariance and the first shuffle relation imply

−CorH (1, G, 0, 0) − CorH (1, 0, G−1, 0) = Cor(1, 0, 0, G).

Rearranging terms and applying additive invariance gives (2.112).

Now apply (2.111) to CorH (G, 1, H, 0) and apply the dihedral symmetry and additive invariance to change

all terms to the form CorH (1, 0, 0, I):

CorH (0, G, 1, H) = CorH
(
1, 0, 0,

1 − H
G − H

)
+ CorH

(
1, 0, 0,

1 − G−1

1 − H−1

)
+ CorH

(
1, 0, 0,

G − 1
G − H

)

− CorH
(
1, 0, 0, 1 − H−1

)
− CorH

(
1, 0, 0, G−1

)
− CorH

(
1, 0, 0,

G

H

)
.

Finally, by (2.112),

CorH
(
1, 0, 0,

1 − H
G − H

)
+ CorH

(
1, 0, 0,

G − 1
G − H

)
= CorH (1, 0, 0, 1) − CorH

(
1, 0, 0,

1 − G
1 − H

)
,

which gives the result. �
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Chapter 3

Motivic c1 of CM elliptic curves and

geometry of Bianchi hyperbolic

threefolds

The results of this chapter have appeared in [M1].

3.1 Introduction and main results

In this chapter we describe a connection between the realizations of motivic fundamental groups of CM

elliptic curves and the geometry of Bianchi hyperbolic threefolds. The first instance of this connection was

described by Goncharov in [G8].

3.1.1 Summary

Motivation

We aim to study the action of the motivic Galois group on the motivic fundamental group of an elliptic curve

punctured at the p-torsion points with tangential base point E0:

GalMot � cMot
1 (� − � [p], E0). (3.1)
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The objects in (3.1) are still conjectural, but we can study them in their realizations. The results of this chapter

are in the Hodge realization. However, the picture is easiest to introduce in the ℓ-adic realization.

As a running example, take � to be the CM elliptic curve � = C/(Z + Z[8]) and p ⊂ Z[8] an ideal. The

ℓ-adic realization of the motivic fundamental group, c (ℓ)1 (� −� [p], E0), is simply the pro-ℓ completion of the

topological fundamental group c1 (� − � [p], 0). It is equipped with an action of the absolute Galois group

Gal(Q/Q) by automorphisms.

The Maltsev construction ([D3], §9) makes out of c (ℓ)1 (� − � [p], E0) a pro-ℓ Lie algebra ��,p over Qℓ ,
generated by �1 (� ;Z) and loops around the punctures in � [p]. It carries two filtrations: by weight and by

depth. The increasing weight filtration , (see [D1]) is invariant under the Galois action, and the geometric

Frobenius element acts on grF ��,? with eigenvalues of norm ℓF/2. The decreasing depth filtration � is

defined by the lower central series of the linearization of

ker
(
c (ℓ)1 (� − � [p], E0) → c (ℓ)1 (�, E0)

)
.

The filtrations, and � induce filtrations on End(��,p), and, by restriction, on the image of the action of

Gal(Q/Q). Taking its associated graded Lie algebra for the weight filtration, we obtain a graded Lie algebra

Lie(ℓ) (�, � [p]), the elliptic Galois Lie algebra. We study the quotient of this Lie algebra induced by the

quotient of ��,p by the adjoint action of �1 (� ;Z), and take the coinvariants of the translation action of

� [p] on � (amounting to averaging the base point).This quotient is called the symmetric Galois Lie algebra

Liesym
(ℓ) (�, � [p]).
The structure of the depth-3 graded quotients of Liesym

(ℓ) (�, � [p]) is well understood in depths 0 and 1. In
depth 0, this algebra simply vanishes. In depth 1, it is abelian, and spanned over Qℓ by the classes constructed

by Beilinson [B2] and in a different way by Beilinson and Levin [BL]. These classes are parametrized by a

p-torsion point of � and an element of the symmetric algebra of �1 (� ;Z). These constructions work in the

Hodge realization as well as in the ℓ-adic one, and the mechanism of motivic correlators (described in §2)

gives alternative proofs of these statements. In particular, Beilinson and Levin’s elliptic polylogarithms can

be expressed in terms of the depth-1 Hodge correlator integrals – Kronecker-Eisenstein series ([BL], §3).

In this chapter, we focus on the depth 2, the first case in which there is a nonzero Lie bracket. To describe

the structure of the elliptic Galois Lie algebra, we can consider its standard cochain complex. Recall that the

standard cochain complex of a Lie algebra ! is a complex of the exterior powers of its dual !∨, where the

coboundary map X is the dualization of the Lie bracket [ , ] : ! ∧ ! → !:

CE• (!∨) =
(
0→ !∨

X−→ !∨ ∧ !∨ → !∨ ∧ !∨ ∧ !∨ → . . .
)
.
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If !∨ is a graded Lie coalgebra, then CE• (!∨) is also graded. Applying the construction to the associated

graded for the depth filtration of Liesym
(ℓ) (�, � [p]), we obtain a cochain complex that is graded by weight and

depth. In depth 1 the complex is concentrated in degree 1. However, the depth-2 part of this complex has a

nontrivial coboundary map: the depth-2 elements map to wedge products of Beilinson-Levin classes:

gr�=2Liesym
(ℓ) (�, � [p])∨ →

(
gr�=1Liesym

(ℓ) (�, � [p])∨
)∧2

. (3.2)

We connect (the Hodge analogue of) this complex to the geometry of Bianchi hyperbolic threefolds.

Bianchi tessellation

Now let us describe the other side of the story. The Bianchi tessellation of the upper half-space H3 for the

ring Z[8] is the 3-dimensional version of the famous modular triangulation of the upper half-plane; the latter

is the restriction of the Bianchi tessellation to the plane in H3 lying above the real line (see Figure 3.1). This

beautiful construction was given by Bianchi in 1892 [B4]; see [G8] for a modern review. The fundamental

domain is an octahedron with vertices at 0, 1, 8, 8 + 1, 1+8
2 ,∞). Through the standard action of GL2 (C) on

H3, the group GL2 (Z[8]) acts transitively on the cells of the tessellation. If p is a prime ideal in Z[8] and
Γ1 (p) ⊂ GL2 (Z[8]) is the congruence subgroup

Γ1 (p) =


©«
0 1

2 3

ª®®¬
≡

©«
1 0

∗ 1

ª®®¬
mod p



,

the quotient Γ1 (p) \ H3 is a finite-volume hyperbolic manifold with cusps.

We build the following local system on this manifold. The group �1 (� ;Z) has the structure of a Z[8]-
module, giving �1 (� ;Z) ⊕ �1 (� ;Z) the structure of a GL2 (Z[8])-module. We take its symmetric algebra

Sym• (�1 (� ;Z)⊕�1 (� ;Z)). ThisGL2 (Z[8])-module determines an infinite-dimensional graded local system

on Γ1 (p) \ H3. Denote this local system by )2.

Consider the chain complex of the Bianchi tessellation, placed in the cohomological degrees [0, 2]. It

is generated by the octahedral cells in degree 0, by ideal triangles in degree 1, and by geodesics in degree

2. Tensoring over Γ1 (p) with Sym• (�1 (� ;Z) ⊕ �1 (� ;Z)), we get the chain complex of Γ1 (p) \ H3 with

coefficients in the local system )2.
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Figure 3.1. Left: The fundamental octahedron of the Bianchi tessellation for Z[8].
Right: The modular triangulation of the upper half-plane.

The main construction

There is a Hodge analogue of Liesym
(ℓ) (�, � [p]), denoted Liesym

Hod (�, � [p]). In §3.3.3 (Theorem 3.13), we

construct a surjective morphism of complexes of graded Z[8]-modules:

(
chain complex of the Bianchi orbifold

Γ1 (p) \ H3 with coefficients in )2

)
→

(
Hodge analogue of

the complex (3.2)

)
(3.3)

In particular, we get surjective homomorphisms:

�8 (Γ1 (p) \ H3, )2) → �8 (gr�Liesym
Hod (�, � [p]),Q)�=2.

A key idea of Goncharov [G8], which we develop further in this chapter, is to map the cusps of the Bianchi

orbifold Γ1 (p) \H3 to p-torsion points of � . This itself generalizes a similar picture for modular curves, first

described in [G2], where cusps of modular curves are identified with ?-torsion points of G< in the study of

the double logarithm at roots of unity. When we advance to depth 2, the geodesics of the Bianchi tessellation

map to wedge products of elements parametrized by p-torsion points, and the triangles must map to certain

elements parametrized by three p-torsion points.

Let us elaborate the map (3.3) in each degree. In degree 2, we map a geodesic (U, V) of the Bianchi

tessellation modulo Γ1 (p), with a coefficient in the described local system to a wedge product of two depth-1

classes in the Galois Lie coalgebra. The data parametrizing a geodesic with a coefficient in Sym• (�1 (� ;Z) ⊕
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�1 (� ;Z)) � Sym• (�1 (� ;Z))⊗2 is identical to the data parametrizing a pair of classes in the image. In degree

1, the domain is generated by triangles in the Bianchi tessellation with a coefficient in the local system. Thus

the image should be described in terms of elements depending on three p-torsion points and three elements

of Sym• (�1 (� ;Z)). These elements are motivic correlators, which we introduce in the remainder of the

introduction and in §2. These elements can be visualized as a sequence of p-torsion points and 1-forms on �

written around a circle, modulo some relations. Their coproduct has a simple combinatorial description, and

their real Hodge periods can be explicitly computed via Feynman integrals.

In summary, the maps are constructed as follows:

ideal triangle (U, V, W) ↦→ element in gr�=2Liesym (�, � [p]) depending on p-torsion points U, V, W,

geodesic (U, V) ↦→ wedge product of Beilinson-Levin elements determined by U and V.

Remarkably, the combinatorial structure of the Bianchi tessellation is preserved in the space of motivic

correlators, and thus the chain complex of the Bianchi orbifold maps surjectively onto the standard cochain

complex of a quotient of the Galois Lie algebra of � \ � [p].

Hodge realization

Now we will sketch this picture in the Hodge realization, which is the focus of this chapter.

Let � be a complex elliptic curve and ( ⊂ � a finite set of punctures. The pronilpotent completion

of the fundamental group cnil1 (� − (, E0), with tangential base point at E0, is a Lie algebra in the category

of mixed Q-Hodge structures. The category of mixed Q-Hodge structures is canonically equivalent to the

category of representations of a graded Lie algebra overQ. Let us take its image in the representation defining

cnil1 (� − (, E0), and consider the graded dual Lie coalgebra Lie∨Hod (�, ().
The Hodge correlators, introduced by Goncharov in [G9], are canonical elements

CorHod (Ω0, I0, . . . ,Ω=, I=) ∈ Lie∨Hod (�, (), (3.4)

where I0, . . . , I= ∈ ( and Ω1, . . . ,Ω= are elements in the tensor algebra of �1 (� ;C). The coalgebra

Lie∨Hod (�, () carries a filtration by depth; the element (3.4) has depth =. These elements describe the real

mixed Hodge structure on cnil1 (� −(, E0) ⊗R. Their canonical real periods are the Hodge correlator functions,
functions of = + 1 points on � . We find new linear relations among the elements (3.4).

At a cusp on the modular curve, as � degenerates to the nodal projective line, these relations specialize

to known relations among periods of the mixed Tate motive associated with P1 punctured at a finite set of
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points. If = = 2, our elliptic relations specialize to the full set of double shuffle relations, the most general

known relations, which were described in Chapter 2 using Hodge correlators.

Suppose that � is one of the CM elliptic curves C/(Z + Z8) or C/(Z + Z
(

1+√−3
2

)
), O = End� , and

p is a prime in O. The subalgebra Liesym
Hod (�, � [p]) of LieHod (�, () is constructed as in the ℓ-adic case.

We construct the morphism (3.3) in this setting, where the object standing on the right is the complex

CE•
(
gr�Liesym

Hod (�, � [p])
)

2
.

Our construction simultaneously generalizes several results of Goncharov:

(1) The relation between Voronoi complexes and mixed Tate motives: The Bianchi complexes are the

higher-degree analogues of the Voronoi complexes, complexes of GL: (Z)-modules from tessellations of

the upper half-plane H2. A map from the Voronoi complexes to motivic objects associated with rational

curves punctured at roots of unity constructed for : = 2, 3, 4, using either multiple polylogarithms ([G3])

or motivic correlators ([G10]), which satisfy the double shuffle relations. The relations we found for

elliptic motivic correlators in depth 2 are deformations of the second shuffle relations.

(2) Euler complexes: The map from the Bianchi complexes to a space of motivic theta functions on elliptic

curves constructed by [G8] in depth 2 and weight 4. We generalize this construction to all weights: [G8]’s

map is the restriction of our map to the trivial local system.

Structure

In §3.1.2 we explain our results on the level of Hodge correlator integrals.

In §3.2 we establish some properties of motivic correlators on elliptic curves. The main new result of this

section is the dihedral symmetry relation for depth 2 correlators (Theorem 3.8).

In §3.3 we review the definitions of the Bianchi complexes, define the modular complexes for imaginary

quadratic fields, and construct a map between the two in the Gaussian and Eisenstein cases. In §3.3.3 we

combine the results of the two preceding sections to prove the main results relating Bianchi complexes and

the elliptic Galois Lie algebra.

In §3.4, we show how our results generalize those of [G3, G8] and those in Chapter 2.

3.1.2 Relations for correlators

Recall from §1.1.1 that the Hodge correlators satisfy a first shuffle relation, and that in Chapter 2 we describe

a family of second shuffle relations for correlators on P1, the terms of which were formed by permuting

quotients of successive arguments. One of the main results of this chapter is that the Hodge correlators on an

elliptic curve satisfy second shuffle relations in depth 2.
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Figure 3.2. The highest-depth terms of the second shuffle relation on an elliptic curve.

For Hodge correlators of depth 2 on an elliptic curve with arbitrary base point, this new relation has the

form:

CorH ((=0 ,=
′
0
, 0, (=1 ,=

′
1
, 0, (=2 ,=

′
2
, 0+1)+CorH ((=0 ,=

′
0
, 0, (=2 ,=

′
2
, 1, (=1 ,=

′
1
, 0+1)+lower-depth terms = 0, (3.5)

where an argument (=,=′ indicates that we sum over all possible ways to insert in some order the arguments

l, . . . , l︸    ︷︷    ︸
=

, l, . . . , l︸    ︷︷    ︸
=′

.

The highest-depth terms in these relations arise from shuffles of the differences between successive arguments,

G8 − G8−1, together with the 1-forms between those arguments. For example, in (3.5) we have shuffled 0 (with

=1 copies of l and =′1 of l) with 1 (with =2 l’s and =′2 l’s). See Figure 3.2) for an illustration.

We describe the lower-depth correction terms in §3.2.2. In the simplest case – weight 4 – the full relation

is:

CorH (0, 0, 0 + 1) + CorH (0, 1, 0 + 1) − (CorH (0, l, l, 0 + 1) + CorH (0, l, l, 0 + 1))

−1
2

(
CorH (0, 0, l, l) − CorH (0, 0, l, l)

+ CorH (0, 1, l, l) − CorH (0, 1, l, l)

+ CorH (l, l, 0, 0 + 1) − CorH (l, l, 0, 0 + 1)

+ CorH (l, l, 1, 0 + 1) − CorH (l, l, 1, 0 + 1)
)

= 0.

The relation (3.5) can be formulated simply as a functional equation on biperiodic functions of three complex

variables. It states that a sum of several integrals over an elliptic curve is equal to 0, modulo correlators of

depth 1 (which are expressed by Kronecker-Eisenstein series). However, this functional equation is difficult

to prove. To understand it, we will need to upgrade it to the Hodge-theoretic or motivic setting.

The second shuffle relations have a prehistory. The first objects known to satisfy a system of first and
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second shuffle relations of this form were the multiple polylogarithms (see §1.2.3 and [G3]): these relations

follow from two alternative expressions for multiple polylogarithms: as power series and as iterated integrals.

In Chapter 2, for - = P1, we found second shuffle relations for Hodge correlators, in every depth, and

described the lower-depth terms. In depth 2, these relations depend on integers =0, =1, =2 ≥ 0 and points

0, 1 ∈ G< \ {1}. They state:

CorH (0, . . . , 0︸   ︷︷   ︸
=0

, 1, 0, . . . , 0︸   ︷︷   ︸
=1

, 0, 0, . . . , 0︸   ︷︷   ︸
=2

, 01) + CorH (0, . . . , 0︸   ︷︷   ︸
=0

, 1, 0, . . . , 0︸   ︷︷   ︸
=2

, 1, 0, . . . , 0︸   ︷︷   ︸
=1

, 01)

+ lower-depth terms = 0. (3.6)

The highest-depth terms in these relations arise from shuffles of the quotients between successive arguments,
G8
G8−1

, together with the 0s between those arguments. For example, in (3.6) we have shuffled 0 (with =1 0s) with

1 (with =2 0s).

Conjecturally, the first and second shuffle relations give all linear relations among the Hodge correlators on

P1. While the first shuffle relations emerge from the trivalent tree construction – they hold on the level of the

integrands in (1.4) – the proof of the second shuffle relations is difficult, requiring motivic or Hodge-theoretic

arguments even in depth 2.

Note the similarity between (3.6) and (3.5). In fact, as an elliptic curve degenerates to a nodal projective

line, a variant of the second shuffle relation (3.5) specializes to (3.6).

In §3.2.3 (Theorem 3.8) we will prove these relations, as well as their upgrades to the Hodge correlator

coalgebra. Assuming the motivic formalism, all results of this chapter should hold in the ℓ-adic realization as

well.

3.2 Motivic correlators on elliptic curves

3.2.1 Main properties

Definitions

We work with a complex elliptic curve � . Recall ( ⊂ � is a finite set of punctures. Let O = End(�), so
either O = Z or a lattice in an imaginary quadratic field.
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Let l, l be a symplectic basis for �1 (� ;C). CL∨
�,(,E0

is generated by elements

�B (Ω0, B0, . . . ,Ω=, B=) =l0,1 ⊗ · · · ⊗ l0,:0︸                 ︷︷                 ︸
Ω0

⊗ {B0}

⊗ l1,1 ⊗ · · · ⊗ l1,:1︸                 ︷︷                 ︸
Ω1

⊗ {B1}

⊗ · · ·

⊗ l=,1 ⊗ · · · ⊗ l=,:=︸                  ︷︷                  ︸
Ω=

⊗ {B=}

B8 ∈ ( and Ω8 range over the basis of )Z (�1 (�,C)) consisting of elements
⊗:8

9=1 l8, 9 with l8, 9 ∈ {l, l}.
This generator lies in the component of CL∨

�,(,B
of depth = and weight 2= +∑=

8=0 :8 .

Suppose a tangent vector EB has been chosen at each B ∈ (. We assemble the CL∨
�,(,EB

as the base point

B ranges over ( into a Lie coalgebra

C̃L∨�,( :=
⊕
B∈(
CL∨�,(,EB .

All direct summands are isomorphic, but the maps CorHod on different components do not coincide. We will

write CorB as a short notation for the map CorHod on the component corresponding to B, extended so that

CorB (B, . . . ) = 0, i.e., the correlator of an element that contains the base point vanishes.

Generating series

We will package the correlators of depth = into generating series in 2(= + 1) commuting formal variables

C0, C0, C1, C1, . . . , C=, C=. We identify C8 , C8 with generators of �1 (�,Z) dual to l, l. That is, the monomials in

the C8 , C8 are identified with the generators of
⊗=

8=0 Sym(�1 (�,Z)).
For G0, . . . , G= ∈ ( and B ∈ (, define the generating series

ΘB
(
G0 : G1 : · · · : G= | C0 : C1 : · · · : C=

)
=

∑
Ω0 ,...,Ω=

CorB (Ω0, G0, . . . ,Ω=, G=)) (Ω∗0 ⊗ · · · ⊗ Ω∗=), (3.7)

where the sum is taken over the basis of )Z (�1 (�,C)) as above. The coefficient of
∏
8 C
<8
8
C
<′
8

8
is the sum of

all generators where <8 copies of l and <′
8
copies of l appear between B8 and B8+1. Letting (<,<′ be the

sum of generators of the degree-(<, <′) component of )Z (�1 (�,C)), i.e., the sum of all permutations of

l⊗< ⊗ l⊗<′ , this sum can be written

CorB
(
(<0 ,<

′
0
⊗ (G0) ⊗ (<1 ,<

′
1
⊗ (G1) ⊗ · · · ⊗ (<= ,<′= ⊗ (G=)

)
. (3.8)
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These coefficients are called the symmetric Hodge correlators.

We also define, for F0, . . . , F= ∈ � with F0 + · · · + F= = 0� ,

Θ∗B
(
F0, F1, . . . , F= | C0 : C1 : · · · : C=

)
= ΘB

(
0 : F1 : F1 + F2 : · · · : F1 + · · · + F= | C0 : C1 : · · · : C=

)
,

and, for D0 + · · · + D= = 0,

ΘB
(
G0 : G1 : · · · : G= | D0, D1, . . . , D=

)
= Θ

(
G0 : G1 : · · · : G= | 0 : D1 : D1 + D2 : . . . , D1 + · · · + D=

)
.

The subspace generated by the elements of CL∨
�,(

having the form of the argument of (3.8) is dual to a

certain quotient of the Lie algebra Der( (gr, cnil
1 (� − (, E0)). This is the quotient by the image of the adjoint

action of �1 (� ;Z) mentioned in the introduction. In depth 0 and weight > 1, the elements (3.8) vanish, by

the shuffle relations. In depth 0 and weight 1 – i.e., elements Cor(l1, B0) – the elements are identified with

elements [B0] − [B] in the Jacobian of � (see [G9], §10.5), and, in particular, vanish if B and B0 are torsion

points. As we will see below, modulo the depth filtration, the symmetric correlators form a subcoalgebra, as

the terms XCas of the coproduct vanish.

Now let us establish some basic properties of the generating series.

Lemma 3.1. (a) For = > 0, the generating series Θ
(

: | : )
are homogeneous in the C8 and satisfy the dihedral

symmetry relations:

ΘB
(
G0 : · · · : G= | C0 : · · · : C=

)
=ΘB

(
G0 + G : · · · : G= + G | C0 + C : · · · : C= + C

)
(homogeneity)

=ΘB
(
G1 : · · · : G= : G0 | C1 : · · · : C= : C0

)
(cyclic symmetry)

= (−1)=+1ΘB
(
G= : · · · : G1 : G0 | C= : · · · : C1 : C0

)
. (reflection)

(b) For an automorphism q ∈ Aut(�),

ΘB
(
G0, . . . , G= | C0 : · · · : C=

)
= ΘB

(
q(G0), . . . , q(G=) | q · C0 : · · · : q · C=

)
,

where q acts on the C8 by the adjoint action on �1 (�,Z).
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(c) The elements ΘB
(
G0 : G1 : · · · : G= | D0, D1, . . . , D=

)
satisfy the first shuffle relations:

∑
f∈Σ8, 9

ΘB
(
Gf−1 (1) : · · · : Gf−1 (8+ 9) : G0 | Df−1 (1) , . . . , Df−1 (8+ 9) , D0

)
= 0. (3.9)

Proof. The dihedral symmetry relations in (a) and the relation (b) are clear from the definition of Hodge

correlators.

The difficult part is homogeneity in C8 and the first shuffle relation. For the former, it is enough to show

ΘB
(
G0 : · · · : G= | 0 : C1 : · · · : C=

)
= ΘB

(
G0 : · · · : G= | C0 : C0 + C1 : · · · : C0 + C=

)
.

Consider the coefficient of
∏
8 C
<′
8

8
C8
<′
8 in the sum defining each side (3.7). For each 8, fix an an ordering

l8,1 . . . l8,<8+<′8 of the word l
<8l<

′
8 and look at the terms in this coefficient in which the elements indexed

by C8 appear in the order specified by the word.

If <0 = <′0, then both sides have exactly one such term

CorHod (G0, 1, G1,
⊗
8

l1,8 . . . , G=,
⊗
8

l=,8)),

and they coincide. Otherwise, the coefficient on the left side is 0, while the terms on the right side are exactly

the first shuffle relation on

CorHod (G0,
⊗

l0,8︸    ︷︷    ︸, G1,
⊗

l1,8 . . . , G=,
⊗

l=,8)︸                                 ︷︷                                 ︸,

which is 0. This proves homogeneity in the C8 .

Finally, (c) also follows from the first shuffle relation on the coefficients. To obtain the relation where

{1, . . . , 8} are shuffled with {8 + 1, . . . , 8 + 9}, we keep G0 fixed and shuffle the G1, . . . , G8 and the forms

indexed by D1, . . . , D8 with the other elements. (The proofs are identical for those for correlators on P1; see

Lemma 2.12.) �

Coproduct

The coproduct of the generating function ΘB is in general difficult to write down. However, we can describe

the terms of highest depth, which come from the X( component of the coproduct.
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Lemma 3.2. The coproduct of the generating functions ΘB is given by

XΘB
(
G0 : · · · : G= | C0 : · · · : C=

)
=

=
∑
cyc

=∑
:=0

ΘB
(
G0 : · · · : G: | C0 : · · · : C:

) ∧ ΘB (G: : G:+1 : · · · : G= | C0 : C:+1 : · · · : C=
)

+ lower depth terms.

The coproduct of the generating functions Θ∗B is given by

XΘ∗B
(
G0, . . . , G= | C0 : · · · : C=

)
=

=
∑
cyc

=∑
:=0

Θ∗B
( − (G1 + · · · + G: ), G1 : . . . , G: | C0 : C1 : · · · : C:

) ∧ Θ∗B (G0, G:+1, . . . , G= | C0 : C:+1 : · · · : C=
)

+ lower depth terms. (3.10)

The lower-depth terms are Hodge correlators of elements that do not depend on B.

Proof. The formula for the coproduct of ΘB arises from the definition of the X( term of the coproduct. The

formula for the coproduct of Θ∗B would follow immediately from that for ΘB if the ΘB were invariant under an

additive shift of the arguments G8 . This is Theorem 3.5 below, which is independent of (3.10). �

These formulas for the coproduct formally coincide with those for the dihedral Lie coalgebra, defined by

Goncharov in [G4] in order to study multiple polylogarithms, as well as in the quasidihedral Lie coalgebra

modulo the depth filtration, defined in Chapter 2 to study Hodge correlators on P1.

3.2.2 Symmetric correlators modulo depth

In this section, �1 (-) always refers to �1 (-;C).

Change of base point formula

Fix ? ∈ (. Let us define a map d? : ) (�1 (-)) → ) (�1 (-) ⊕ Q[(]) as follows.
For a word l1 ⊗ · · · ⊗ l= ∈ ) (�1 (-)),

d? (l1 ⊗ · · · ⊗ l=) =
∑
:

(−1):
∑

81<82 ,···<8:<=
8 9+1>8 9+1

l1 ⊗ · · · ⊗ (
〈
l8 9 , l8 9+1

〉 (?)) ⊗ · · · ⊗ l=,

where 〈, 〉 is the skew-symmetric pairing: 〈l, l〉 = − 〈l, l〉 = 1. That is, it is the sum over all possible
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replacements of pairs (l ⊗ l) and (l ⊗ l) by the puncture ?, taken with appropriate sign. For example, we

have:

d? (1) = 1,

d? (l) = l,

d? (l ⊗ l) = l ⊗ l,

d? (l ⊗ l) = (l ⊗ l) − (?),

d? (l ⊗ l ⊗ l) = (l ⊗ l ⊗ l) − (? ⊗ l) + (l ⊗ ?),

d? (l ⊗ l ⊗ l ⊗ l) = (l ⊗ l ⊗ l ⊗ l) − (? ⊗ l ⊗ l) − (l ⊗ l ⊗ ?) + (l ⊗ ? ⊗ l) + (? ⊗ ?).

For 0 ∈ (, define d? (0) = (0) − (?), extended by linearity to Q[(]. Then, extend d? to �) (�1 (-) ⊕Q[(]):
if G0, . . . , G: ∈ Q[(], and Ω0, . . . ,Ω: ∈ ) (�1 (-)), then

d? (Ω0 ⊗ G0 ⊗ · · · ⊗ Ω: ⊗ G: ) = d? (Ω0) ⊗ d? (G0) ⊗ · · · ⊗ d? (Ω: ) ⊗ d? (G: ).

Lemma 3.3 (Change of base point formula). Suppose that ? ≠ @. Then the following relation holds for Hodge

correlators in weight > 2:

Cor? (G) = Cor@
(
d? (G)

)
. (3.11)

On the right side stands a sum of correlators obtained from the one on the left by taking all possible

replacements of punctures and pairs of adjacent cohomology classes with (?), taken with the appropriate

sign.

Before proceeding to the proof, let us illustrate the formula on some examples. In weight 4,

Cor? (0, 1, 2) = Cor@ (0, 1, 2) − Cor@ (?, 1, 2) − Cor@ (0, ?, 2) − Cor@ (0, 1, ?),

Cor? (0, 1, l, l) = Cor@ (0, 1, l, l)

− Cor@ (?, 1, l, l) − Cor@ (0, ?, l, l) − Cor@ (0, 1, ?) + Cor@ (?, ?, l, l),

Cor? (0, l, l, l, l) = Cor@ (0, l, l, l, l)

− Cor@ (?, l, l, l, l) − Cor@ (0, ?, l, l) + Cor@ (0, l, ?, l) − Cor@ (0, l, l, ?)

+ Cor@ (?, ?, l, l) − Cor@ (?, l, ?, l) + Cor@ (?, l, l, ?).
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If the left side of the expression only contains punctures, we recover a formula identical to the one found by

[GR], Theorem 2.6, for Hodge correlators on the punctured P1. More generally, for symmetric correlators,

we have:

Corollary 3.4. Suppose that ? ≠ @. Then we have the relation in weight > 2:

Cor? ((<0 ,<
′
0
⊗ G0 ⊗ (<1 ,<

′
1
⊗ G1 ⊗ · · · ⊗ (<= ,<′= ⊗ G=)

= Cor@ ((<0 ,<
′
0
⊗ ((G0) − (?)) ⊗ · · · ⊗ (<= ,<′= ((G=) − (?)))

=
∑
:

(−1):
∑

81< · · ·<8:
Cor@ ((<0 ,<

′
0
⊗ G0 ⊗ · · · ⊗ ? ⊗ · · · ⊗ ? ⊗ · · · ⊗ (<= ,<′= ⊗ G=),

where on the right the punctures G81 , . . . , G8: are replaced with @.

Proof. For all <, <′ ≥ 0, d? ((<,<′) = (<,<′ . �

Proof of Lemma 3.3. We first prove the change of base point formula in the real Hodge realization, i.e, that it

holds on the level of the Hodge correlator functions CorH .

The Green’s functions associated to the points ? and @ are related by

� ? (G, H) = �@ (G, H) − �@ (G, ?) − �@ (H, ?) + �,

where � is a constant that depends on the choices of tangent vectors at ? and @. Now consider any tree

contributing to the Hodge correlator of Ω0 ⊗ (G0) ⊗ · · · ⊗ Ω: ⊗ G: . Write the Green’s function � ? (G, H)
assigned to each edge in terms of the�@ , and examine the contribution of the three terms in� ? (G, H)−�@ (G, H):
�@ (G, ?), �@ (H, ?), and � for a given edge �. There are three cases:

(1) An external edge � decorated by a puncture 0, assigned the function � ? (G, 0). Assigning the form

−�@ (G, ?) to � gives the correlator where 0 has been replaced by −(?). The terms � and �@ (0, ?) are
constants. Because the Hodge correlator has weight > 2, there is at least one internal edge in the tree, so

the correlator where a constant has been placed on � is the integral of an exact form 3C (. . . ).

(2) An internal edge � that splits the tree into two parts, one of which is decorated by two 1-forms. Suppose

that in � ? (G, H), the vertex assigned the variable G is adjacent to external vertices labeled l1 and l2.

Then the terms �@ (G, ?) and � are independent of H, and the integral splits into a product; the integrand

for the subtree growing from H is an exact form, so we get 0. For the term −�@ (H, ?), the integral also
splits into a product of

∫
�
l1 ∧ l2 and the correlator with G replaced by an external vertex −(?).
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(3) An internal edge � that splits the tree into two parts, each of which is decorated by at least one puncture.

Then, as in the previous case, each term in the expression for � ? (G, H) is independent of either G or H.

The integral splits into a product of two factors, one of which is 0.

We conclude that the change of base point is computed by adding all possible replacements of external

punctures 0 by −(?) and pairs l1 ⊗ l2 by − 〈l1, l2〉 (?). This implies the lemma.

(Note that the assumption of weight > 2 was crucial to all arguments involving integration of the exact

form.)

One easily checks by induction that the coproducts of the two sides of (3.11) are equal. This implies the

result on the level of the Hodge correlators CorHod. �

Independence of base point

In this part, we prove the following important result.

Theorem 3.5. The symmetric Hodge correlators in weight > 2 are independent of the base point modulo the

depth filtration.

Formally, let G ∈ �) (�1 (-) ⊕ Q[(]). Then there exists G̃, equal to G modulo lower-depth terms, such

that Cor? (G̃) is independent of ?.

In terms of generating functions, this theorem implies:

Corollary 3.6. The generating functions Θ∗ satisfy the dihedral symmetry relations of Lemma 3.1:

Θ∗B
(
F0, . . . , F= | C0 : · · · : C=

)
=Θ∗B

(
F1, . . . , F=, F0 | C1 : · · · : C= : C0

)
= (−1)=+1Θ∗B

(
F=, . . . , F1, F0 | C= : · · · : C1 : C0

)

modulo lower-depth terms that are independent of B.

Proof. By the cyclic symmetry and dihedral relations on correlators, these expressions are equal up to an

additive shift in the correlators’ arguments, equivalently, a change in base point. �

Notice that all terms on the right side of (3.11) have higher or equal depth to the left side. It will be

necessary to find correction terms of lower depth to obtain a formula of the form

Cor? (ℎ0 ⊗ G0 ⊗ · · · ⊗ ℎ: ⊗ G: ) + Cor? (lower depth) = Cor@ (ℎ0 ⊗ G0 ⊗ · · · ⊗ ℎ: ⊗ G: ) + Cor@ (l.d.)
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when each ℎ8 a symmetric expression (<,<′ .

The proof of the theorem relies on a key construction. We will find elements:

(<0 ,<
′
0
∗ (<1 ,<

′
1
∗ · · · ∗ (<= ,<′= ∈ ) (�1 (-))

such that

d? ((<0 ,<
′
0
∗ (<1 ,<

′
1
∗ · · · ∗ (<= ,<′= ) = (3.12)

=
∑
:

∑
81< · · ·<8:

(
(<0 ,<

′
0
∗ · · · ∗ (<81−1 ,<

′
81−1

)
⊗ (?) ⊗

(
(<81 ,<

′
81
∗ · · · ∗ (<82−1 ,<

′
82−1

)
⊗ (?) ⊗ . . . .

Before showing how to construct these elements, let us prove the theorem, assuming these elements exist.

Proof of Theorem 3.5. Consider an element

G = (<0 ,<
′
0
⊗ G0 ⊗ (<1 ,<

′
1
⊗ G1 ⊗ · · · ⊗ (<= ,<′= ⊗ G=.

Let � be a proper subset of {0, . . . , =}. Write � as the union of its cyclically contiguous subsets, each of the

form {8, 8 + 1, . . . , 8 + :} (indices modulo = + 1). Let G/� be the element formed by replacing each

(<8 ,<′8 ⊗ G8 ⊗ · · · ⊗ G8+: ⊗ (<8+: ,<′8+:

by (<8 ,<′8 ∗ · · · ∗ (<8+: ,<′8+: .
Now consider the corrected element:

G̃ =
∑
�

(−1) |� |G/� .

It is equal to G modulo the depth filtration. Also, let

H@ = (<0 ,<
′
0
⊗ @ ⊗ (<1 ,<

′
1
⊗ @ ⊗ · · · ⊗ (<= ,<′= ⊗ @,

and define H̃@ in the same way. By a standard inclusion-exclusion argument, the property (3.12) implies that

d? (G̃ + H̃@) = G̃ + (terms containing @).
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Because the correlator with base point @ is zero for the terms containing @, this gives

Cor? (G̃ + H̃@) = Cor@ (G̃).

On the other hand, the Hodge correlator Cor? ( H̃@) depends only on ? − @, and thus ? ↦→ Cor? (G̃) − Cor0 (G̃)
provides a group homomorphism � → R, and must be 0. Therefore, Cor? (G̃) is independent of ?. �

Lemma 3.7. There exist elements, independent of choice of symplectic basis of �1 (-), satisfying (3.12).

Proof. We produce such elements explicitly:

(<0 ,<
′
0
∗ · · · ∗ (<: ,<′: =

1
2:

∑
=0 ,=

′
0 ,...,=: ,=

′
:

±(=0 ,=
′
0
⊗ (=1 ,=

′
1
⊗ · · · ⊗ (=: ,=′: ,

where the sum is taken over the =8 , =′8 ≥ 0 such that:

=8 + =′8 =


<8 + <′8 + 1 8 = 0, :

<8 + <′8 + 2 0 < 8 < :
,

(=0 − =′0) + · · · + (=: − =′: ) = (<0 − <′0) + · · · + (<: − <′: ).

A term is taken with the sign − if there is an odd number of 8 (8 = 0, . . . , : − 1) such that

(=0 − =′0) + · · · + (=8 − =′8) < (<0 − <′0) + · · · + (<8 − <′8),

otherwise with the sign +.
Examples:

(0,0 ∗ (0,0 =
1
2
(ll − ll) ,

(0,0 ∗ (1,0 =
1
2
(lll + lll − lll) ,

(0,0 ∗ (0,0 ∗ (0,0 =
1
4
(llll + llll − llll − llll + llll + llll) .

We explain the construction by picture. The basis elements of ) (�1 (-)) of a given weight are in bijection
with lattice paths: a word l1 ⊗ · · · ⊗ l= corresponds to the path whose 8-th step is (1, 0) if l8 = l and

(0, 1) if l8 = l. The elements of ) (�1 (-) ⊕ Q[?]) are lattice paths that also allow the diagonal step (1, 1),
corresponding to (?). (The points of the lattice path are simply the Hodge bidegrees of the initial subwords.)
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−

+

(<0 ,<
′
0
⊗ (?) ⊗ (<1 ,<

′
1

(<0 ,<
′
0
∗ (<1 ,<

′
1

Figure 3.3. Construction of the element (<0 ,<
′
0
∗ (<1 ,<

′
1
: the paths crossing the rays marked − and + are

taken with the corresponding sign.

−

+

Figure 3.4. The point of nonconcavity contributing a term to the right side of (3.12).

The map d? replaces a path by the sum of all paths obtained by replacing steps (up, right) or (right, up) with

diagonal steps, in the latter case changing the sign.

To construct the element, we first consider the concatenation of paths in (<0 ,<
′
0
, . . . , (<: ,<′: , with a

step (1, 1) inserted between successive pairs. Draw a diagonal line ℓ8 bisecting the step that was inserted

between (<8−1 ,<
′
8−1

and (<8 ,<′8 . Any path of the Hodge bidegree
(∑
<8 + :,

∑
<′
8
+ : ) appears in a unique

term (=0 ,=
′
0
⊗ · · · ⊗ (=: ,=′: , and each (=8 ,=′8 is the sum of paths between the lines ℓ8 and ℓ8+1. The sign of a path

is a product of factors determined by the rays on which it crosses the diagonal lines: +1 if below the step, −1

if above. (See Figure 3.3.)

Now fix a choice of a ray of each such diagonal, and consider the terms coming from lattice paths crossing

these rays. We claim that any such term satisfies (3.12) modified by a factor of 1
2: . Indeed, these are the lattice

paths lying in a certain rectilinear region (right part of the figure). Most terms in d? are canceled; the only

terms remaining are those with segments (1, 1) at the points of nonconcavity of this region. This is precisely
the expression on the right of (3.12). (See Figure 3.4.) �
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The simplest example of the corrected correlator, for (0) ⊗ (1) ⊗ (2):

(0) ⊗ (1) ⊗ (2) − 1
2
(l ⊗ l − l ⊗ l) ⊗ (1) ⊗ (2)

− 1
2
(0) ⊗ (l ⊗ l − l ⊗ l) ⊗ (2)

− 1
2
(0) ⊗ (1) ⊗ (l ⊗ l − l ⊗ l) .

(The terms where two points were replaced are 0, because of the reflection relations.)

3.2.3 Second shuffle relations

The depth 2 case: Dihedral symmetry

Theorem 3.8. The corrected symmetric Hodge correlators in depth 2 satisfy the second shuffle (dihedral

symmetry) relations modulo terms of lower depth that are independent of the base point.

The corrected element for

(<0 ,<
′
0
⊗ (0) ⊗ (<1 ,<

′
1
⊗ (G1) ⊗ (<2 ,<

′
2
⊗ (G1 + G2)

+ (<0 ,<
′
0
⊗ (0) ⊗ (<2 ,<

′
2
⊗ (G2) ⊗ (<1 ,<

′
1
⊗ (G1 + G2) (3.13)

lies in the kernel of the map CorB for every B.

Proof. The corrected element for (3.13 changes sign under the map G ↦→ (G1 + G2 − G) and reflection. On the
other hand, it is invariant under this operation up to an additive shift (i.e., change in base point). �

Relations in higher depth

The second shuffle relations are relations of the form

∑
f∈Σ8, 9

Θ∗
(
G0, Gf−1 (8) , Gf−1 (2) , . . . , Gf−1 (8+ 9) ) | C0, Cf−1 (1) , Cf−1 (2) , . . . , Cf−1 (8+ 9)

) + . . . ,

perhaps with additional terms of lower depth. The Hodge correlators on P1 are known to obey such relations,

in addition to the first shuffle relations, the structural relations in CL∨
-,(,E0

; the lower-depth terms were

described precisely in Chapter 2.

The relation of Theorem 3.8 is a special case of a second shuffle relation. In depth > 2, the second shuffle

relations are not equivalent to dihedral symmetry. However, one hopes for a generalization.
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Conjecture 3.9. The second shuffle relations for symmetric elliptic Hodge correlators hold modulo the depth

filtration. The lower-depth terms are independent of the base point B.

The lower-depth correction terms in depth > 2 are not known. In particular, the corrected correlators

do not satisfy the second shuffle relations in higher depth. However, calculations in low weight support this

conjecture. We may expect the elliptic relations to be deformations of the relations for P1 (see §3.4.2).

3.3 Bianchi hyperbolic threefolds and modular complexes

3.3.1 Bianchi tessellations and orbifolds

Definition

Let  = Q[
√
−3] be an imaginary quadratic field with lattice of integers O. The Bianchi tessellation ([B4])

is an ideal polyhedral tessellation of the upper half-space H3 associated with O, whose cell complex has a

natural structure of a complex of GL2 (O)-modules. We define it now.

Let F be the space of positive semidefinite Hermitian forms on (O2 ⊗O C)∗. The subset F of positive

definite forms is a dense open subset of F . We identify H3 and its compactification H3
= H3 ∪ P1 (C) with

the real projectivizations of F and F , respectively. The action of GL2 (C) on C2 provides an action on F that

descends to an action on H3.

Every E ∈ O2 provides a positive semidefinite form |〈−, E〉|2 ∈ mF . The convex hull of the set

{ |〈−, E〉|2 : E a primitive vector in O2}

is a polyhedron in F with vertices on the boundary. The polyhedron projects to an ideal tessellation of H3

with vertices on P1 (O) ⊂ P1 (C). Let �• be the polyhedral cell complex over Z of this ideal tessellation. We

will shift this complex in degree so that the space of 8-dimensional cells it in degree 3 − 8 (8 = 0, 1, 2, 3). We

get a cohomological complex

�0 m−→ �1 m−→ �2 m−→ �3.

The group GL2 (O) acts on the Bianchi tessellation, giving �• the structure of a complex of left GL2 (O)
modules.

The quotient GL2 (O) \ H3 is a finite-volume hyperbolic threefold with cusps in bijection with the ideal

class group of O. If Γ is a finite-index subgroup of GL2 (O), the quotient Γ \ H3 is also a finite-volume

hyperbolic threefold with a finite map to GL2 (O) \ H3.
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A right GL2 (O)-module ) provides a local system on Γ \H3, which we also denote by ) . Then the chain

complex of GL2 (O) \ H3 with coefficients in ) is

) ⊗Γ �• � (Z[Γ \ GL2 (O)] ⊗ )) ⊗GL2 (O) �
•. (3.14)

The Gaussian and Eisenstein cases

Following [G8], for 3 = 1 (O = Z[8]) and 3 = 3 (O = Z[d]) we have the following description of the Bianchi
complexes in degrees 1 and 2.

The action of GL2 (O) is transitive on the 8-dimensional cells for each 8. Choose GL2 (O)-generators
�8 ∈ �8: we may take

�1 = (the ideal triangle (1, 0,∞))

�2 = (the geodesic (0,∞))

where (E1, . . . , E=), E8 ∈ P1 (O) = P(+2 (O)), denotes the oriented cell with ideal vertices at E1, . . . , E= under

the identification of P1 (C) with the boundary of H3. Let �8 be the subgroup of GL2 (O) stabilizing �8 .
The group �1 stabilizing the triangle (0, 1,∞) is isomorphic to

(3 × O×.

The first component (3 acts on (E, F) ∈ O ⊕O by permutations of the triple (E, F,−E−F), i.e., the generators
of (3 are represented by

(123) ↦→
©«
0 −1

1 −1

ª®®¬
, (12) ↦→

©«
0 1

1 0

ª®®¬
.

The second component acts by scalars. There is a sign homomorphism j1 : �1 → Z keeping track of the

action of �1 on the orientation, with j1 ((123)) = 1 and j1 ((12)) = −1. So the space of 2-cells is

�1 = Z[�!2 (O)] ⊗�1 j1.

The group �2 stabilizing the geodesic (0,∞) is isomorphic to

(2 n (O× × O×),

with (2 acting on O××O× by permutation of the factors. The nontrivial element of (2 acts by (E, F) ↦→ (F, E)
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and O× × O× acts diagonally. There is a sign homomorphism j2 : �2 → Z, and the space of 1-cells is

�2 = Z[�!2 (Z[8])] ⊗�2 j2.

Let p be a prime ideal in O. The group GL2 (O) acts on the quotient (Z[8]/p)2. Let Γ1 (p) be the stabilizer
in GL2 (O) of the vector (0, 1) ∈ (Z[8]/p)2. The action on the vector (0, 1) provides an isomorphism of

GL2 (O)-modules

Z[Γ1 (p) \ GL2 (O)] � Z[F2
p − 0], Fp = O/p.

The chain complex (3.14) of Γ1 (p) \ H3 with coefficients in a local system ) is then identified in degrees

1 and 2 with

) ⊗Γ1 (p) �
• � (Z[Γ1 (p) \ GL2 (O)] ⊗ )) ⊗GL2 (O) �

•

�
(
Z[F2

p − 0] ⊗ )
)
⊗GL2 (O)

(
Z[GL2 (O)] ⊗�• j•

)
.

This space is generated in degree 8 by elements

((U, V) ⊗ C) ⊗ (�8), (U, V) ∈ F2
p − 0, C ∈ ).

3.3.2 Modular complexes

Definition

Let O = Z or the lattice of integers in an imaginary quadratic field. We are going to define the modular

complexes"•
:
, complexes of leftGL: (O)-modules that generalize the complexes defined by [G3] forGL: (Z).

Fix a :-dimensional O-vector space + . An extended basis of + is a sequence of vectors 〈E0, E1, . . . , E:〉,
E8 ∈ + , such that E0 + · · · + E: = 0 and E1, . . . , E: form a basis of + . (Consequently, any other set of : vectors

in this sequence form a basis.) We also use the notation

[E1, . . . , E: ] = 〈−E1 − · · · − E: , E1, E2, . . . , E:〉 ,

[E1 : · · · : E: ] = [E2 − E1, E3 − E2, . . . , E: − E:−1,−E: ] .

The set �+ of extended bases of + is a principal homogeneous space for GL(+).
The complex of left GL: (O)-modules "•

:
lies in the degrees 1, . . . , =. The module "1

:
is the quotient of
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Z[�+ ] by the double shuffle relations

∑
f∈Σ8, 9

[
Ef−1 (1) : · · · : Ef−1 (8+ 9)

]
= 0, (first shuffle) (3.15)

∑
f∈Σ8, 9

[
Ef−1 (1) , . . . , Ef−1 (8+ 9)

]
= 0. (second shuffle) (3.16)

Lemma 3.10 ([G3], Theorem 4.1). The double shuffle relations imply the dihedral symmetry relations:

〈E0, E1, . . . , E:〉 = 〈E1, . . . , E: , E0〉 = (−1):+1 〈E: , . . . , E1, E0〉 = 〈−E0,−E1, . . . ,−E:〉 . (3.17)

The module "=
:
is generated by elements

[E1, . . . , E:1 ] ∧ · · · ∧ [E:=−1+1, . . . , E:= ],

where each block
[
E:8−1+1, . . . , E:8

]
is an extended basis of a sublattice +8 in + , and + = +1 ⊕ · · · ⊕ += (from

which is follows that :1 + · · · + := = :). The double shuffle relations are imposed on each of the blocks, and

the blocks anticommute.

The coproduct X : "1
:
→ "2

:
is defined by

X 〈E0, E1, . . . , E:〉 =
∑
cyc

:∑
8=1
[E0, . . . , E8−1] ∧ [E8+1, . . . , E: ]

with the outer cyclic sum is over {0, 1, . . . , :}. The coproduct is extended by the Leibniz rule to the higher

degrees, i.e.,

X(G1 ∧ · · · ∧ G=) =
=∑
8=1
(−1)8+1G1 ∧ · · · ∧ X(G8) ∧ · · · ∧ G=.

We will also consider the relaxed modular complex "̃=
:
, in which impose only the first shuffle relations

(3.15) and the dihedral symmetry relations (3.17). By the lemma, the modular complex is the quotient of the

relaxed modular complex by the second shuffle relations (3.16).

Relating the Gaussian and Eisenstein Bianchi and modular complexes for : = 2

In this section, suppose O = Z[8] or Z[d]. We will construct an isomorphism between the modular complex

"•2 and the Bianchi complex �• in degrees 1 and 2.

Recall that �• is generated by the ideal triangle (1, 0,∞) in degree 1 and the geodesic (0,∞) in degree 2,
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with the boundary map given by

(1, 0,∞) ↦→ (1, 0) + (0,∞) + (∞, 1).

The modular complex "•2 is generated in degree 1 by the extended basis [41, 42], with the coproduct

[41, 42] ↦→ [−41 − 42] ∧ [42] + [41] ∧ [−41 − 42] + [42] ∧ [41] .

Making as before the identification of P1 (O) with P1 (+), define the map k : "•2 → �• by

k (〈E1, E2, E3〉) = the triangle (E1, E2, E3), k ( [E1] ∧ [E2]) = the geodesic (E1, E2).

Lemma 3.11. The map k is an isomorphism of complexes of GL2 (O)-modules.

Proof. By construction, k is a surjective map of abelian groups. We must verify (1) k commutes with the

action of GL2 (O), (2) k commutes with the coproduct, (3) k respects the double shuffle relations, and the

images of the double shuffle and anticommutation relations are all relations in �•.

(1) holds by construction. For (2), notice that

X [41, 42] = [−41 − 42] ∧ [42] + [41] ∧ [−41 − 42] + [42] ∧ [41] .

= [42] ∧ [41] +
©«
0 −1

1 −1

ª®®¬
[42] ∧ [41] +

©«
0 −1

1 −1

ª®®¬

2

[42] ∧ [41]

and that
©«
0 −1

1 −1

ª®®¬
acts by cyclic permutation on (0, 1,∞).

For (3), double shuffle relation in"1
2 is just equivalent to dihedral symmetry, which is precisely the relation

imposed by ⊗�1 j1. The only relations in "2
2 are the anticommutation relation and the relation [E1] = [−E1],

whose images are the only relations among the 1-cells in �2. �

As a consequence, the chain complex of Γ1 (p) \H3 with coefficients in a local system ) is identified with

(
Z[F2

p − 0] ⊗ )
)
⊗GL2 (O) "

•
2

and generated in degree 8 by

((U, V) ⊗ C) ⊗ [E1, E2], (U, V) ∈ F2
p − 0, C ∈ ).
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3.3.3 Relating the modular and Bianchi complexes to the Galois Lie coalgebra

Motivic correlators at torsion points and averaged base point Hodge correlators

Let � be an elliptic curve, ? a prime, p ⊂ End� a prime over ?, and ( = � [p]. There is an canonical up

to root of unity choice of tangent vector E0 at 0 ∈ � , given by the Dedekind eta function. Extend it to a

translation-invariant vector field on � and take EB to be its fiber at B.

Recall that we packaged the Lie coalgebras CL∨
�,(,EB

into a coalgebra CL∨
�,(

=
⊕

B CL∨�,(,EB . The

CL∨
�,(,EB

for different B are canonically isomorphic, so there is a natural diagonal � ⊂ CL∨
�,(

. The

image of � under CorHod is the space of averaged base point correlators. Equivalently, it is the image

of the averaged base point correlator map Corav = 1
|� [p] |

∑
B CorB . The image of the restriction to the

space of symmetric correlators is called the coalgebra of symmetric averaged base point Hodge correlators

and denoted Lie∨sym (�, � [p]). It is the dual to the quotient of LieHod (�, � [p]) induced by the quotient of

gr, cnil
1 (� − � [p], E0) by the adjoint action of �1 (� ;Z) and the translation action of � [p] on � .

Relaxed modular complexes and Hodge correlators

Suppose that � is an elliptic curve, and O its endomorphism ring, and suppose p is a prime in O.p.
Let ): denote the graded right GL: (O)-module Sym

(
�1 (� ;Z)⊕: ) ⊗ Q, identified with the algebra

of polynomials in the variables C1, C1, . . . , C: , C: , and let Γ1 (p) ⊂ GL: (O) be the stabilizer of the vector

(0, . . . , 0, 1) ∈ (O/p): . We will define a map \ from the relaxed modular complex with coefficients in ): to

the depth : component of the standard cochain complex of the Lie coalgebra gr�Lie∨sym (�, � [p]):

\ : ): ⊗Γ1 (p) "̃
•
: → CE•

(
gr�Lie∨sym (�, � [?])

)
�=:

.

Fix an extended basis 〈E1, . . . , E: , E0〉 of +: (O). Also fix an identification of Fp with � [p].We will abuse

notation and identify U ∈ Fp with U ∈ � [?]. Last, we identify the domain of \ with

(
Z[F:p − 0] ⊗ ):

)
⊗GL2 (O) "

•
: .

In the degree 1 component, define the map on the level of generating series by

∑
=1 ,=

′
1 ,...,=: ,=

′
:

(
(U1, . . . , U: ) ⊗ C=1

1 C
=′1
1 . . . C=:

:
C
=′
:

:

)
⊗ [E1, . . . , E: ]

↦→ 1
|� [p] |

∑
B∈� [p]

Θ∗B
(
U1, . . . , U: ,− (U1 + · · · + U: ) | C1 : · · · : C: : 0

)
. (3.18)
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The maps in higher degrees are given by

(
Z[Fp − 0] ⊗ ):

) ⊗GL2 (O) "
=
: →

(
=∧
gr�Lie∨sym (�, � [?])

)
�=:

,

∑
=1 ,=

′
1 ,...,=: ,=

′
:

(
(U1, . . . , U: ) ⊗ C=1

1 C
=′1
1 . . . C=:

:
C
=′
:

:

)
⊗ ( [

E1, . . . , E:1

] ∧ · · · ∧ [
E:=−1+1, . . . , E:=

] )

↦→ 1
|� [p] |

∑
B∈� [p]

Θ∗B
(
U1, . . . , U:1 ,−(U1 + · · · + U:1 ) | C1 : · · · : C:1 : 0

) ∧ · · · ∧
∧ Θ∗B

(
U:=−1+1, . . . , U:= ,−(U:=−1+1 + · · · + U:= ) | C:=−1+1 : · · · : C:= : 0

)
.

Theorem 3.12. The map \ is a well-defined surjective morphism of complexes of graded O-modules.

Proof. The map \ is a morphism of graded GL: (O)-modules by construction (recall the C8 , C8 are dual to the

cohomology generators l, l), and is surjective by construction. We need to verify that the map \ respects (1)

the first shuffle relations, (2) the dihedral symmetry relations, (3) the coproduct. We show the three in order.

The first shuffle relation on the image holds termwise – for each B ∈ � [?] – and is equivalent to the

relation on the dual generating series (Lemma 3.1(c)):

∑
f∈Σ8, 9

ΘB
(
Vf−1 (1) : · · · : Vf−1 (:) : 0 | Df−1 (1) , Df−1 (2) , . . . , Df−1 (8+ 9) ,−(D1 + · · · + D8+ 9 )

)
,

where C8 = D1 + · · · + D8 , U8 = V8 − V8−1. This is the first shuffle relation on the generating series ΘB
(

:|, ) ,
which holds a priori.

The images of the dihedral symmetry relations are exactly the relations of Corollary 3.6, which hold

modulo the correlators of elements that are independent of B.

Finally, the map \ intertwines the coproduct. The general case follows from the degree 1. Set C0 = 0. By

(3.10), we have

X\

( ∑
=1 ,=

′
1 ,...,=: ,=

′
:

(
(U1, . . . , U: ) ⊗ C=1

1 C
=′1
1 . . . C=:

:
C
=′
:

:

)
⊗ [E1, . . . , E: ]

)
=

=
1���p��

∑
B∈� [p]

(∑
cyc

:∑
8=0
Θ∗B

(
U1, . . . , U8 ,−(U1 + · · · + U8) | C1 : · · · : C8 : C0

)∧
∧ Θ∗B

(
U8+1, . . . , U: ,−(U8+1 + · · · + U: ) | C8+1 : · · · : C: : C0

) + lower depth terms
)
,

(3.19)

where the lower-depth terms are correlators of elements independent of B, and the cyclic sum is over indices
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modulo : + 1. On the other hand, we have

X

( ∑
=1 ,=

′
1 ,...,=: ,=

′
:

(
(U1, . . . , U: ) ⊗ C=1

1 C
=′1
1 . . . C=:

:
C
=′
:

:

)
⊗ [E1, . . . , E: ]

)

=

( ∑
=1 ,=

′
1 ,...,=: ,=

′
:

(
(U1, . . . , U: ) ⊗ C=1

1 C
=′1
1 . . . C=:

:
C
=′
:

:

)
⊗

∑
cyc

:∑
8=0
−[E1, . . . , E8] ∧ [E8+1, . . . , E: ]

)
.

(3.20)

The cyclic shift in GL: (O), which maps E0 ↦→ E1 ↦→ E2 ↦→ · · · ↦→ E: ↦→ E0, acts by the transpose action on

the C8 by C8 ↦→ C8+1 − C1 (indices modulo : + 1; recall C:+1 = C0 = 0). Thus the image of (3.20) under \ agrees

with (3.19) in each summand of the cyclic sum, except with an additive shift of the arguments. It remains to

apply the homogeneity of the Θ∗B . �

Remark

Why do we define the map \ using averaged base point correlators? It would have been possible to define the

map to Lie∨Hod (�, � [p]) using the correlators with fixed base point, CorB . However, this map would be zero.

Indeed, any correlator with base point B vanishes modulo the depth filtration in Lie∨Hod (�, � [p]) induced by

CorB , since any correlator can be written modulo those of lower depth by the change of base point formula

(3.11). Those correlators of lower depth depend on B, so this does not imply the image of Corav is zero.

On the other hand, the map \ can be modified, replacing � [p] by its subgroup of order ? (if |� [p] | = ?2).

We will use this when we specialize \ to the nodal projective line.

Bianchi complexes and Hodge correlators in depth 2

Let : = 2 and � one of the CM elliptic curves with endomorphism ring O = Z[8] or Z[d]. According to

Lemma 3.11, there is an isomorphism k : �• → "•2 from the Bianchi complex to the modular complex. The

relaxed modular complex "̃•2 is canonically isomorphic to the modular complex "•2 , since the second shuffle

relations are equivalent to the dihedral symmetry relations. Thus we have a map

\ ◦ k : )2 ⊗Γ1 (p) �
• → CE•

(
gr�Lie∨sym (�, � [p])

)
�=2

.

The complex of the left side is the chain complex with coefficients in the local system )2 on the orbifold

Γ1 (p) \ H3. We arrive at the following important result:
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Theorem 3.13. Let � be one of the CM elliptic curves � = C/Z[8] or � = C/Z[d]. Then

\ ◦ k : CE•
(
gr�Lie∨av (�, � [p])

)
�=2

is a surjective morphism of complexes.

It is tempting to extend Theorem 3.12 to higher depth by showing the map \ descends to the modular

complex "•
:
. This requires showing the second shuffle relations for the averaged base point Hodge correlators

modulo the depth filtration. The following would follow from Conjecture 3.9:

Conjecture 3.14. The map \ descends to a morphism of complexes

\ : ): ⊗Γ1 (p) "
•
: → CE•

(
gr�Lie∨sym (�, � [p])

)
�=:

.

3.4 Applications

3.4.1 The weight 4 case: Euler complexes

Let us show how the map in Theorem 3.13 generalizes those constructed by [GL, G8]. To be consistent with

those sources, we use the motivic language in this section, but the same results hold in the Hodge realization

as well.

The elements \�

For torsion points 0, 1, 2 ∈ � with 0 + 1 + 2 = 0, elements \� (0, 1, 2) are constructed by [G8] as follows.

For � an elliptic curve over a field : , p ⊂ End� a prime over ?, and I a nonzero p-torsion point of � ,

there are elements \� (I), which are ?-torsion elements in :
∗
I ⊗ Z

[
1
?

]
, where :I is the extension generated

by the coordinates of I. They are identified with weight-2 elements in the mixed Tate Lie coalgebra Lie∨
MT/: .

The real period of the motive \� (I) is − log |\� (I) |.
The elements \� (0 : 1 : 2) lie in the Bloch group of : , which is identified with the weight-4 part of

Lie∨
MT/: . We also use the notation \� (0, 1, 2) = \� (0 : 0 + 1 : 0 + 1 + 2), which is unambiguous when

0+1+ 2 = 0 because the \� (0 : 1 : 2) are invariant under translation. They are characterized by the following
properties:

(1) The coproduct is given by

X\� (0, 1, 2) = \� (0) ∧ \� (1) + \� (1) ∧ \� (2) + \� (2) ∧ \� (0).
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(2) The real period of \� (0 : 1 : 2) is given up to a constant multiple by the averaged Chow dilogarithm

([G7]). The latter can be rewritten as

1
?5

∑
G∈� [?]

∫
� (�)

log
�� 50,G �� 3C log

�� 51,G �� ∧ 3C log
�� 52,G �� , (3.21)

where 50,1 is a function on � with div 50,1 = ?({0} − {1}).

The elements \� and motivic correlators

According to [G9], §10.5.5, for 0, 1 ∈ � [?], the elements \� (0 − 1) are equal up to a constant multiple to

Corav (0, 1). There is a version for the depth 2 elements.

Lemma 3.15. Let � be an elliptic curve over a number field. Then, for 0, 1, 2 ∈ � [p] \ {0} with 0 + 1 + 2 = 0,

the elements \� (0 : 1 : 2) are equal up to a constant multiple to Corav (0, 1, 2).

Proof. The coproduct formulas for the \� and the Corav coincide ([G9], Lemma 10.9). It remains to see the

periods are equal. Indeed, we take 50,G such that log
�� 50,G (I)�� = ?�G (0, I), and likewise for 1 and 2. Then

the formula (3.21) is evidently a constant multiple of the Hodge correlator

1
|� [p] |

∑
G∈� [p]

CorH,G (0, 1, 2),

where CorH,G denotes the Hodge correlator function computed using the Green’s function with base point G,

as desired. �

The map constructed by [G8], for O = Z[8] or Z[d] is:

\ ′ : Z[Γ1 (p) \ GL2 (O)] ⊗Γ1 (p) "
•
2 → Lie∨Mot (�, � [p]),

(U1, U2) ⊗ [E1, E2] ↦→ \� (U1, U2,−(U1 + U2)),

(U1, U2) ⊗ ([E1] ∧ [E2]) ↦→ \� (U1) ∧ \� (U2).

Theorem 3.16. The map \ ′ is a constant multiple of the component of \ ◦ k corresponding to the constant

term of the local system )2.

Proof. After unraveling the definitions, in degree 1, this is exactly Lemma 3.15, while in degree 2 it amounts

to showing that

Corav (0, 0) ∧ Corav (0, 1) = 1
|� [p] |

∑
B∈� [p]

CorB (0, 0) ∧ CorB (0, 1).
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Expanding the sums and using that CorB (G, H) ∼ \� (G − H) − \� (G − B) − \� (H− B) (where we set \� (0) = 0),

this simplifies to

∑
B

\� (B) ∧ \� (1 − B) +
∑
B

\� (0 − B) ∧ \� (B) +
∑
B

\� (0 − B) ∧ \� (1 − B) = 0.

The three sums are both symmetric and antisymmetric under the involutions B ↦→ 1 − B, B ↦→ 0 − B, and
B ↦→ 0 + 1 − B, respectively, so the sum is 0. �

A slight abuse of notation has taken place: \ maps to gr�Lie∨sym (�, � [p]) and \ ′ to Lie∨MT (�, � [p]).
However, there is no discrepancy, as the second shuffle relation in weight 4 and depth 2 holds without the

lower-depth correction terms, and so the constant term of \ can be viewed as a map to Lie∨sym (�, � [p]), by
the following lemma.

Lemma 3.17. For � any elliptic curve and 0, 1 ∈ � [p],

Corav (0, 1, (0,0 ∗ (0,0) = 0,

Corav (0, (0,0 ∗ (0,0 ∗ (0,0) = 0.

Proof. For the first equality, recall that

(0,0 ∗ (0,0 = −1
2
(l ⊗ l − l ⊗ l).

It is easily verified that the coproduct is 0. For the periods, there are two trees contributing to the integral

expansion of the correlator. For the tree where l, l are not incident to a common interior vertex, the terms

with l ⊗ l and with l ⊗ l sum to 0. The other tree contributes a constant multiple of

∑
B∈� [p]

∫
�

�B (I, F) 3C�B (F, 0) ∧ 3C�B (F, 1) ∧ l(I) ∧ l(I)

=
∑

B∈� [p]

∫
�

�Ar (B − F) 3C�B (F, 0) ∧ 3C�B (F, 1)

=
∑

B∈� [p]

∫
�

�Ar (B − F) 3C (�Ar (0 − F) − �Ar (B − F)) ∧ 3C (�Ar (1 − F) − �Ar (B − F)) = 0.

This follows from the distribution relations for the function �Ar, which state that

∑
B∈� [p]−0

�Ar (B) = 0.
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The second equality follows simply from dihedral symmetry. �

3.4.2 Degeneration to rational curves: Voronoi complexes and multiple Z-values

In this section we study the behavior of the motivic correlators at the boundary of the moduli spaceM ′1,= of
elliptic curves with = marked points and a distinguished tangent vector. The results here are a new case of the

specialization theorem for correlators on rational curves (§2.3), and the definitions and proof are analogous.

(We envision a similar picture for other boundary strata and for higher-genus curves, which can be regarded

as the higher-weight version of the results of Wentworth [W] about degeneration of Green’s functions. We do

not expand this subject here.)

Setup

It will be enough for us to consider the top boundary stratum inM ′1,= in which the elliptic curve � degenerates

to nodal P1. On an open subset of this stratum, all marked points remain distinct. Furthermore, we will

consider degeneration along the direction g = 8C, C →∞ on the modular curve.

Consider an elliptic curve � over l� → M ′1,=, with an open subset � → M ′1,=, whose complement

� = � \ � is a normal crossings divisor. A Hodge correlator on � determines a variation of mixed Hodge

structures over �, which has a canonical extension along every normal vector to �. We will describe this

canonical extension in the aforementioned case.

The curve �g � C/(Z + Zg) has canonical coordinate I, and the nonsingular locus of nodal P1 has

coordinate I (with the node at I = 0,∞) such that

B0 =



I = 0 g ≠ 0

I = 42c80 g = 0
,

for 0 ∈ C, is a smooth section over C ∈ (0,∞]. Also fix the relative 1-forms l = 1√
Img

3I, l = 1√
Img

3I on � ,

which have limit 0 on P1.

Let E0 be a relative tangent vector at B0 and /( ⊂ C∗, ( = {B0 : 0 ∈ /(}. Let D ⊂ CL∨
�/�,(,E0 be the

subcoalgebra generated by the sections B0, where all the B0 factors are distinct, and the relative 1-forms l, l.

Also fix the tangent vector E0 = m
mI

at 1 ∈ P1.

Let us define a degeneration map

c� : D → CL∨
P1 ,/(∪{0},E0 ⊕ CL

∨
P1 ,/(∪{∞},E0 .
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LetD) be the subspace ofD generated by the B0 and elements l ⊗l and l ⊗l, which we call the elements

of Tate type. If G ∈ D is not of Tate type, we set c� (G) = 0. Otherwise, we set

c� (B0) = 42c80,

c� (l ⊗ l) = −c� (l ⊗ l) = 1
2
((0) + (∞)) ,

extended to preserve the tensor product.

(One can verify, using straightforward but cumbersome combinatorics, that this map is well-defined,

i.e., respects the first shuffle relations. This is not required for the results below, since we only require the

composition of c� with the Hodge correlator map, a fortiori well-defined.)

Lemma 3.18. The map c� is a morphism of coalgebras.

Proof. Each term in the coproduct of a generator not of Tate type clearly has a factor that is not of Tate type,

because the coproduct preserves the weight. So it is enough to see the map respects the coproduct on the

generators of Tate type, considering only the terms of the coproduct where both generators are of Tate type.

Let us do this for the first component of the map, to CL∨
P1 ,/B∪{0},E0 ; the other is analogous. Let G be a

generator in D) . The coproduct of G has two types of terms:

(1) the cuts with vertex at some B0 (the term X(;

(2) the cuts that give the terms XCas.

The coproduct of c� (G) has two types of terms:

(1′) the cuts with vertex at some 0 ≠ 0;

(2′) the cuts with vertex at a 0.

The terms (1) that have both factors of Tate type are in obvious bijection with the (1’): observe that the

segment that is cut must have the same number ofl andl factors on each side – see Figure 3.5, left. Similarly,

the terms (2) that have both factors of Tate type are in bijection with the (2’) – see Figure 3.5, right. �

Suppose now that �, � are as above and � maps to the boundary stratum inM ′1,=. Let Spec∞ CorHod (G)
denote the canonical extension of the variation CorHod (G) on � to a normal vector to �. We then have the

following result.

Theorem 3.19. Suppose G ∈ D is of weight = > 2.
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00 ︸ ︷︷ ︸︸
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Figure 3.5. Bijection used in the proof of Lemma 3.18

(a) This specialization of the Hodge correlator CorHod (G) coincides with the Hodge correlator of the degen-

eration:

DF>2
c� //

CorHod
��

(
CL∨

P1 ,/(∪{0},E0 ⊕ CL
∨
P1 ,/(∪{∞},E0

)
F>2

CorHod
��

Lie∨Hod/�
Spec� // Lie∨Hod

.

(b) The Hodge correlator functions on � specialize to the Hodge correlators on P1. That is, if G ∈ D and

g = 8C, then

lim
C→∞Cor

(�g )
H (G) ∼ CorP

1

H (c� (G)).

With an appropriate choice of tangent vector on �g , this also holds in weight 2.

Proof. We may letM be the moduli space of sets /( of = ordered points in C∗ and � = (0,∞] ×M. We then

simultaneously show the following:

(1) The periods of CorHod (G) extend continuously to �.

(2) The periods of the specialization of CorHod (G) (i.e., the limits of the periods at �) coincide with the

periods of the degenerations 3 (G).

The proof is by induction on F. Let us see how these imply the result.
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Because the coproduct commutes with specialization, the mixed Hodge structure Spec� CorHod (G) −
CorHod (c� (G)) lies in Ext1� (R(0),R(?, @)), which is one-dimensional and controlled by the period. By (2)

it coincides with the period of the degeneration, which immediately gives (1). This implies (a) and (b) in

weight F.

To show (1), let @ = 42c8g = 4−2cC be a parameter at the cusp. We show that for G ∈ D, CorH (G)
can be represented as a polynomial in log @, where the coefficient of log @ appearing in positive degree has

coefficients vanishing at @ = 0 (tame logarithmic singularities). This is shown by induction: if G is of weight

F > 2, then 3CCorH (G) is expressed in terms of periods of XG. The latter has logarithmic singularities, by

the inductive hypothesis and the fact that the Hodge correlators in weight 1 have logarithmic singularities (see

the lemma that follows). Therefore, CorH (G) has tame logarithmic singularities.

By rigidity of Ext1, we conclude that the difference limC→∞ Cor(�g )H (G) − Cor(P1)
H (c� (G)) is independent

of the point on �, that is, of the choice of /( . The following lemma implies (3). �

This lemma comprises the analytic ingredients in the preceding proof:

Lemma 3.20. (a) Let G be an element of D of weight 2. Then CorH (G) has a logarithmic singularity at

@ = 0, and there are constants 2, � such that limC→∞ Cor(�g )H (G) − �
C
− 2Cor(P1)

H (c� (G)) = 0.

(b) Let G = G0 ⊗ · · · ⊗ G=, where each G8 ∈ {B0, l, l}, be a generator in D of weight F > 2. Suppose

limC→∞ Cor(�g )H (G) − Cor(P1)
H (c� (G)) is independent of the choice of /( . Then this difference is 0.

Proof. (a) There are three main cases to consider (the remaining ones are symmetric): G = (B0) ⊗ (B1),
G = (B0) ⊗ l ⊗ l, G = (B0) ⊗ l ⊗ l. The last of those is trivial. For the first two, we use the fact that
there is a constant � such that

lim
C→∞

(
� (�8C )Ar (0) −

�

C

)
= log

���(1 − 42c8 (0)
) (

1 − 4−2c8 (0)
)��� .

Therefore, for an appropriate choice of tangent vector EC at 0 ∈ �8C , we have

lim
C→∞�

�8C
EC
(0, 1) = log

�����
(
1 − 42c8 (0−1) ) (

1 − 4−2c8 (0−1) )(
1 − 42c80 ) (

1 − 4−2c80 ) (
1 − 42c81 ) (

1 − 4−2c81 )
�����

= 2 log
���� 42c80 − 42c81(

1 − 42c80 ) (
1 − 42c81 )

���� = 2� (P
1)

E0 (0, 1),

where E0 = m
mI

is a tangent vector at 1 ∈ P1. This completes the case G = (B0) ⊗ (B1).
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For the case G = (B0) ⊗ l ⊗ l, notice that Cor(�8C )H (G) = −� (�8C )Ar (0), so

lim
C→∞Cor

(�8C )
H (G) = − log

��(1 − 42c80) (1−2c80)
�� .

On the other hand, we also have

� (P
1)

E0 (I, 0) = log
���� I

1 − I

���� ,
� (P

1)
E0 (I,∞) = log

���� 1
1 − I

���� ,
� (P

1)
E0 (I, 0) + � (P

1)
E0 (I,∞) = log

���� I

(1 − I)2
���� = − log | (1 − I) (1 − 1/I) | .

So we have shown that

lim
C→∞Cor

(�8C )
H (G) = 2

2

(
� (P

1)
E0 (42c80, 0) + � (P1)

E0 (42c80,∞)
)
= 2Cor(P

1)
H (c� (G)).

(b) Let B0 be one of the factors in G (without loss of generality, G0 = B0). We will integrate over 0 on the

segment [0, 1]. For arbitrary g, we have

∫ 1

0=0
Cor(�g )H (G) 30 = 0,

since
∫ 1
0=0�

(�g ) (0, I) 30 = 0 for all I by the properties of the Arakelov Green’s function, and

∫ 1

0=0
Cor(P

1)
H (c� (G)) 30 = 0,

since
∫
|I |=1 Cor

(P1)
H (I, 1, 2) = L2

(
I−1
I−2

)
= 0 by the properties of the dilogarithm. Therefore,

∫ 1

0=0

(
lim
C→∞Cor

(�g )
H (G) − Cor(P1)

H (c� (G))
)
30 = 0.

The integrand is independent of 0, so it is 0.

�
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Shuffle relations in depth 2

Let G0, . . . , G: ∈ � and <0, . . . , <: ≥ 0. Define

�<0 ,...,<: (G0, . . . , G: ) := (0,0 ∗ · · · ∗ (0,0︸             ︷︷             ︸
<0

⊗(G0) ⊗ · · · ⊗ (0,0 ∗ · · · ∗ (0,0︸             ︷︷             ︸
<:

⊗(G: ).

There is a version of the corrected correlator for this element, where subsets of {G0, . . . , G: } are replaced by

“∗”. We write it in depth 2:

�<0 ,<1 ,<2 (G0, G1, G2) := �<0 ,<1 ,<2 (G0, G1, G2) − �<0 ,<1+<2 (G0, G2) − �<1 ,<2+<0 (G1, G0) − �<2 ,<0+<1 (G2, G1)

+ �<0+<1+<2 (G0) + �<0+<1+<2 (G1) + �<0+<1+<2 (G2).

We have the following variant of Theorem 3.8:

Lemma 3.21. For <0, <1, <2 ≥ 0 and 0, 1, 2 ∈ � with 0 + 1 + 2 = 0,

Cor
(
�<0 ,<1 ,<2 (0, 0 + 1, 0 + 1 + 2) + �<0 ,<2 ,<1 (0, 0 + 2, 0 + 1 + 2)

)
= 0.

This is a different version of a second shuffle relation. The proof is identical to that of Theorem 3.8 (we

may suppose 0 = 0).

Now suppose 0, 0 + 1, 0 + 2, 0 + 1 + 2 are distinct and take the correlator with base point 0 over a family

with varying g:

Cor
(
�<0 ,<1 ,<2 (B0, B0+1 , B0+1+2) + �<0 ,<2 ,<1 (B0, B0+2 , B0+1+2)

)
= 0. (3.22)

An abuse of notation has taken place: the definition of � is assumed to use the relative 1-forms l, l as in the

previous section.
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The specialization of the correlator of �<0 ,<1 ,<2 (B0, B0+1 , B0+1+2) as g → 8∞ is easily seen to be

Cor(c� (�<0 ,<1 ,<2 (BG0 , BG1 , BG2 ))) = Cor(E0)<0 ,<1 ,<2 (42c8G0 , 42c8G1 , 42c8G2 )

− 1
2

(
Cor(E0)<0 ,<1+<2 (42c8G0 , 42c8G2 )

+ Cor(E0)<1 ,<2+<0 (42c8G1 , 42c8G0 )

+ Cor(E0)<2 ,<0+<1 (42c8G2 , 42c8G1 )
)

+ Cor(E0) (terms with∞).

(recall E0 is the tangent vector at 1 ∈ P1). In particular, by varying 0 and applying an automorphism of P1,

we find that the specialization of the relation (3.22) holds for any choice of base point at P1 \ {0,∞}. When

it is specialized to∞, the terms with∞ in the specialized correlator vanish. We obtain the relation:

Cor<0 ,<1 ,<2 (42c80, 42c8 (0+1) , 42c8 (0+1+2) ) − 1
2

(
Cor<0 ,<1+<2 (42c80, 42c8 (0+1+2) )

+ Cor<1 ,<2+<0 (42c8 (0+1) , 42c80)

+ Cor<2 ,<0+<1 (42c8 (0+1+2) , 42c8 (0+1) )
)

+ Cor<0 ,<1 ,<2 (42c80, 42c8 (0+2) , 42c8 (0+1+2) ) − 1
2

(
Cor<0 ,<1+<2 (42c80, 42c8 (0+1+2) )

+ Cor<1 ,<2+<0 (42c8 (0+2) , 42c80)

+ Cor<2 ,<0+<1 (42c8 (0+1+2) , 42c8 (0+2) )
)

correlators now taken with base point at ∞. Finally, fix 1 = 42c80 and let U = 42c81 , V = 42c82 . Rescaling,

we arrive at

Cor<0 ,<1 ,<2 (1, U, UV)+Cor<0 ,<2 ,<1 (1, V, UV)−Cor<0 ,<1+<2 (1, UV)−Cor<2+<0 ,<1 (1, U)−Cor<1+<0 ,<2 (1, V).

This is precisely the relation (3.6) in depth 2.

Remark

Let `? ⊂ G< denote the ?-th roots of unity. In [G10] (§2.7), a map from the modular complex for GL2 (Z) to
the standard cochain complex of gr�Lie∨Hod (G<,G< − `?) is defined using motivic correlators, by a formula
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similar to (3.18):

W•2 : "•2 ⊗Γ1 (p) Q→ CE•
(
gr�Lie∨Hod

)
2
.

Alternatively, we can obtain such amap by specializing themap \. For a generic elliptic curve � = C/(Z+Zg),
we have O = Z. We use the variant of the map \ (3.18) defined using an order-? subgroup of � [p] (see the
remark at the end of §3.3.3). For a family of elliptic curves �g degenerating to nodal P1 as g → +8∞, make a

continuous choice of identification of an order-? subgroup of � [p] with the set of points with real coordinates{
0, 1

?
, 2
?
, . . . , ?−1

?

}
. Thus we get a family of sections B8 (8 ∈ Fp) that specialize to the ?-th roots of unity on

P1. We recover the map W•2 by specializing (3.18).
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