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THE EFFECT OF SYNTHETIC RESIN ADHESIVES

resulting from resin impregnation and extreme veneer compression have
been the subject of thorough investigation, an arbitrary and unfounded
dividing line has segregated these modified wood products from plywood
and laminated wood fabricated in the conventional manner. The inade
quacy of this segregation has been demonstrated by at least two Ameri
can investigators (42,47), and German wood technologists (3I) have sug
gested the recognition in plywood design of the improvement in me
chanical properties accompanying the laminating process. However,
adequate information for design purposes concerning the changes in
strength and elastic properties imparted to plywood and laminated wood
by the adhesive and gluing process is largely lacking.

This paper describes an investigation designed to establish the extent
to which the tensile and flexural strength and certain elastic properties
of laminates' of thin yellow poplar (Liriodendron tulipifera L.) veneer
are influenced by the fundamental properties of synthetic resin glue
lines. Although the study is limited to the properties of veneer-resin sys
tems assembled from one species and six commercially important types
of synthetic resin adhesive, the information disclosed can be considered
basic to most veneer-resin laminates and the theories and techniques in
volved should prove useful in further fundamental glue-line studies.

2. In the remainder of this paper, plywood refers to a construction in which the grain
of adjacent veneer sheets is perpendicular, laminated wood refers to a construction in which
the grain of adjacent veneer sheets is parallel, and laminate refers to a veneer construction
in either plywood or laminated wood form.

:2



FACTORS INFLUENCING THE STRENGTH

OF VENEER-RESIN SYSTEMS

MOST of the physical and mechanical properties of commercially
important native woods are well known and the variability asso

ciated with certain environmental influences and structural characteris
tics can be reliably predicted. Inasmuch as the wood components pre
dominate in conventional plywood and laminated wood, accepted
methods of predicting the mechanical properties of these types of veneer
resin systems are based entirely on the strength and elasticity of the
wood from which they are assembled. Freas (I8), Hoff (27), Hearmon
(23), and others (I6, 20,35, 1I, 64) cite mathematical techniques for
computing the strength and elastic properties of laminates which assume
a material of composite cross section comprising well defined layers of
known mechanical properties. Freas (I8) has suggested the necessity for
incorporating a form factor in the modified flexure formula for plywood
beams to establish closer conformity between theoretical and experi
mental results. With this factor, the computed flexural strength is de
creased from that based entirely on wood components. Poletika (17) and
Norton (12) have both observed an improvement of certain strength
properties in laminated wood fabricated from ;i-inch veneer which they
attribute to the influence of the adhesive.. That this improvement has
not also been found in plywood suggests a basically different mechanical
behavior of these two types of construction.

Among the factors which may alter the properties of wood in systems
of veneer laminates are (I) polymerization of the resin in the transient
capillaries of the cell wall, (2) compression of veneer during the laminat
ing process, and (3) deposition of resin between veneer sheets and in the
gross capillary structure of the wood. In addition, mechanical factors
inherent to composite cross section assemblies of orthotropic materials
may be operative. Clues to the possible influences of certain factors
acting independently and in combination may be available through in
vestigations of the properties of modified woods.

Research directed toward improving the dimensional stability of wood
has led to impregnation of the cell walls with water-soluble synthetic
resins in a virtually unpolymerized state after which the impregnant is
polymerized within the fine capillary structure (I3,51, 56). The results
of numerous investigations (£0, I I, 52, 51, 56) indicate that resin im
pregnation, in addition to its influence in reducing hygroscopicity, im-
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proves hardness and compression perpendicular to the grain very ap
preciably, compression parallel to the grain to a somewhat lesser extent,
and modulus of elasticity and shearing strength slightly. Tensile strength,
toughness, and impact strength are significantly reduced. Erickson and
Faulkes (II) and others CJ8) have found that wood impregnated with a
given amount of phenol formaldehyde is, in general, somewhat superior
in strength to that impregnated with an equal amount of urea formalde
hyde. In several publications, Stamm and Seborg (52, 51, 56) have in
dicated that compressive strength is the only mechanical property ap
preciably improved and that cell-wall impregnation is not necessary
for this; similar results could be achieved by using any impregnant that
would form hard, solid materials in the coarse capillary structure.

Specific gravity of wood is dependent upon the amount of cell-wall
substance per unit volume and is, therefore, an index of many strength
properties (63). It is recognized that wood is plasticized by moisture
(26, 50, 5I, 59, 60) and heat, particularly above 350°F. which is the
approximate minimum temperature for lignin flow (26,50). Many in
vestigators and authors (I9, 3I, 36, 50, 52) have observed that the
strength of wood, compressed under conditions which minimize rupture
of the cell walls, is increased in approximate proportion to the increase
in density.

The advantage of dimensional stability imparted to wood by deposi
tion of resin-forming constituents in the fine capillary structure of the
cell walls has been combined with the improvement in mechanical prop
erties accompanying densification in the development of resin-impreg
nated, compressed wood. Impregnating resins facilitate compression by
plasticizing the cell walls and, after polymerization, prevent appreciable
recovery. Although most thermosetting synthetic resins have been used
for impregnation, phenol formaldehyde has proven most successful and,
consequently, has been most widely investigated for this purpose (Ia,
55). Erickson (Ia) has found that resin impregnation and compression
produce a general increase in mechanical properties both parallel and
perpendicular to the grain. Ultimate compressive strength is increased
to a greater degree than density, and tensile and flexural properties are
improved approximately in proportion to the degree of compression.
This conclusion is generally supported by other investigators and authors
(II, I2, I5, I9,36, 15).

The improvement of mechanical properties of wood by densification
through high-pressure bonding of veneer in the form of plywood and
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laminated wood has been widely investigated in the United States and
other countries. Numerous writers (4, 22, 24, 28,37, 4I, 48) have de
scribed general methods of fabricating high density plywood and have
compared its properties with those of other forms of modified wood.
Although the influence of cell-wall penetration by the adhesive is im
plied by some investigators (£9,3°, 45), the extent of true impregnation
has not been clearly established. Several investigators and authors (3,
I9, 44) have indicated that the compression of high-density laminates is
associated with the penetration of the adhesive into the veneer and that
the properties of the laminates are partially dependent upon the bonding
of cell walls which have been ruptured in the pressing process (52).
Harlow (2I), however, has shown through microscopical studies that the
zone of maximum penetration is immediately adjacent to the bonding
line with the zone of maximum compression located closer to the center
of the veneer. Most investigators agree that strength increases are con
sistent with increases in specific gravity.

That the line of distinction between conventional plywood or lami
nated veneer and the improved wood forms is poorly defined is clearly
stated by Kollmann (3I) and Gunn (£9) who point out that the German
laminated-veneer product, Scbicbtbolz, increases in uniformity, com
pression, impregnation, and density with decreasing veneer thickness,
and that mechanical properties are improved with disproportionate in
creases in density. Further, Kollmann (3I) indicates that tensile strength
of plywood is improved as a consequence of the adhesive, and that con
ventional equations for computing the tensile strength should be modi
fied by a factor dependent upon the extent of adhesive penetration. He
does not elaborate on this subject, however. Also, as previously men
tioned, both Norton (42) and Poletika (47) have observed an improve
ment over solid wood in the strength of laminated beams made up of
layers of ~-inch veneer. Experimental evidence of further improvement
in assemblies of thinner veneers is not available.
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PROCEDURE

DESIGN OF THE EXPERIMENT

SINCE 1935, when synthetic resin first attained commercial impor
tance as a wood adhesive in the United States, a great variety of

general types has been formulated, and those types which have found
acceptance in the wood-using industry have been manufactured by many
different companies. Although the principal chemical constituents of a
given type are essentially the same, the proportions of chemicals, cata
lysts, hardeners, and inert ingredients, and manufacturing variables may
differ appreciably. Consequently, it is doubtful if the chemical behavior
of any two proprietary compounds is identical.

An investigation of all commercially important synthetic resin ad
hesives would exceed the limits of practicality. Therefore, the study was
limited to the influence of one widely used representative of each of six
general types of adhesive which are of industrial importance. Although
the results apply specifically only to these adhesives used under con
ditions identical to those of the study, they should serve as indices of
the behavior of the general types which are represented.

The adhesives chosen for the study were:

1. Resorcinol-formaldehyde liquid adhesive, Penacolite G-II31, manu
factured by Koppers Company, Inc., Pittsburgh.

2. Resorcinol-phenol-formaldehyde liquid adhesive, Penacolite G-1215,
manufactured by Koppers Company, Inc., Pittsburgh.

3. Powder-type phenol-formaldehyde adhesive, Amberlite PR-14, manu
factured by Rohm and Haas, Philadelphia.

4. Film-type phenol-formaldehyde adhesive, Tego Film, manufactured
by Rohm and Haas, Philadelphia.

5. Urea-formaldehyde powder adhesive, Urac 110, manufactured by
American Cyanamid Co., New York.

6. Melamine-formaldehyde powder adhesive, Melmac 401, manu
factured by American Cyanamid Co., New York.

The formulations used were those current in 1949-50 when the ex
perimental phase of this study was conducted.

It is recognized that many species of wood differ appreciably in gluing
properties (44) and also in the rate of diffusion of impregnating resins
(56). It is, therefore, highly improbable that a given adhesive imparts
the same change in strength properties to all woods. This study is con-
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PROCEDURE

fined to the influence of the aforementioned adhesives on the strength
properties of laminated wood and plywood made from rotary-cut yellow
poplar veneer. It is reasonable to believe that trends established in this
investigation can be considered indicative of those that would result
from a similar study employing other species.

Any effect of an adhesive on the static-bending and tensile strength
and elastic properties of laminated wood and plywood should become
increasingly pronounced if, in successive panels, the veneer thickness is
decreased while the adhesive application and the bonding procedure are
held constant. In order to establish the limits of the influence of the ad
hesive and the gluing process, veneer thicknesses of 1/10, 1/20, 1/40,
and 1/60 inch were used. Three plywood and three laminated wood
panels of each veneer thickness were assembled with each adhesive. In
each, a sufficient number of veneer sheets was used to give a total panel
thickness of approximately 3/10 inch. Two static-bending and two ten
sion specimens were randomly selected from each panel. Thus, six ply
wood and six laminated-wood tension and bending specimens were pre
pared from panels of each of four veneer thicknesses. This totals 24
beams and 24 tension specimens for each type of assembly (plywood and
laminated wood) and each adhesive, representing three complete repli
cations. In all, 288 beams and 288 tension specimens were prepared for
testing. The design was selected to permit a simultaneous statistical
analysis of variance, for each strength property, between assemblies of
different veneer thicknesses and assemblies bonded with different ad
hesives. In this regard, extreme care was exercised to control to the
greatest possible extent all other sources of variation.

SELECTION OF VENEER

All veneer used in the study was rotary-cut yellow poplar from the
Southern Appalachian region. Temperatures below 212°F. were used in
drying. All veneer considered for panel construction was tight, straight
grained stock, free from visible defect and any abnormal coloring which
could be indicative of wood-staining or wood-destroying fungi (25).

In order to evaluate accurately the influence of the adhesive and the
gluing process, it was desirable to fabricate all panels from veneer sheets
of closely comparable strength and elastic properties. Inasmuch as den
sity is the most reliable non-destructive index of the strength properties
of clear wood (31,63), the specific gravity of all veneer sheets from which
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the panels were fabricated was determined so that all assemblies could
be matched in average specific gravity. This was accomplished by a
method patterned after techniques perfected at the Forest Products
Laboratory (43).

The specific gravity based on oven-dry weight and oven-dry volume
of the veneer sheets formed a normal distribution pattern with a mean
value of 0.46; hence, all panels were assembled with an average specific
gravity of 0.46. In every case, face veneers were of average density, and
interior sheets were randomly distributed with respect to specific gravity.
A complete record was retained of the specific gravity and thickness of
veneer sheets to be used in each panel.

FABRICATION OF PANELS

The length and width of the panels assembled for test purposes were
limited t~ 10 X 10 inches, the platen dimensions of the available hot
press. In order that all properties of the different assemblies could be
directly compared, all panels were constructed with a sufficient number
of veneer sheets to give an approximate panel thickness of 3/rO inch,
the minimum thickness of conventional plywood assembled from the
thickest veneer class. Three, 7, 13, and 17 plies were used respectively
in panels of 1/10-, 1/20-, 1/40-, and I/60-inch veneer.

Adhesives were mixed in accordance with instructions issued by the
manufacturers with the exception of the urea resin which was hot
pressed without the recommended hardener so that the assembly time
could be extended to prevent blistering in panels of the thinner veneers.

Adhesive properties and gluing procedures are tabulated on page 9.
The amount of liquid adhesive mix per glue line was regulated with a

calibrated ladle which was checked periodically with a torsion balance.
The adhesive was uniformly spread with a hand-operated, rubber roller,
and each successive veneer was placed on the spread surface of the pre
ceding one before the adhesive was applied to insure accurate grain
alignment and prevent excessive curling. Veneer to be bonded with the
film-type phenol resin was conditioned to 10 percent moisture content
whereas all other gluing was at approximately 7 percent. Assemblies
were separated with I-inch stickers during the closed assembly period
after which they were pressed individually in a hand-operated, hy
draulic hot press equipped with a thermostat and pressure gauge. After
the pressing operation, panels were conditioned in stickered piles for one

8
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testing, the specimens were conditioned to constant weight in a humidity
cabinet in which ?i-inch yellow poplar veneer strips attained a moisture
content of 12 percent.

PROCEDURE FOR TESTING LAMINATED WOOD

All mechanical tests were conducted with a Baldwin-Southwark,
electrically powered, hydraulically operated testing machine. Beams
were supported on sensitively self-aligning knife edges equipped with
semi-cylindrical, metal, bearing members which were designed to mini
mize crushing at the points of reaction. In all cases, spans were controlled
to maintain a constant span-to-depth ratio of approximately 27 to 1.

Loads, applied at mid-span in a direction normal to the plane of the glue
line, were imposed through a hard maple bearing block, dimensioned to
A.S.T.M. specifications, at rates computed to produce a maximum fiber
strain of 0.0015 inch per inch per minute (I). Deflections, measured di
rectly beneath the load to o.ooI-inch precision, were recorded to failure
at regular load intervals of a magnitude selected to give approximately
fifteen readings below the proportional limit. Tension specimens were
held in self-aligning Templin grips and loaded to failure at 0.07 inch per
minute. The increase in rate of loading over that specified in A.S.T.M.
Designation: 805-47 (0.035 inch per minute) was found to have no signifi
cant influence on the elasticity or the ultimate tensile strength. Infor
mation pertinent to computations of unit stress values and analysis of
results was recorded. '

Unit values were computed in the conventional manner for ultimate
tensile stress and the static-bending properties of fiber stress at propor
tional limit, modulus of rupture, modulus of elasticity, work to pro
portional limit, and work to maximum load. In addition, the specific
gravity and apparent moisture content were determined from a sample
taken from each beam in the vicinity of the failure.

THE INFLUENCE OF SHEAR ON THE

DEFORMATION OF LAMINATES IN BENDING

It is recognized that tensile, compressive, and shearing stresses are
simultaneously operative in a flexed beam (I8, 32, 39). However, in con
ventional equations expressing Young's modulus in bending, strain re
sulting from shearing stresses is not considered. The proportion of shear
ing strain to tensile and compressive strain in beams is dependent upon

10
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oprovides a simple, direct method of determining the unknown pure
Young's modulus in bending (E).

In order to evaluate the effectiveness of this direct method, each
beam for which the hyperbolic relationship of elasticity to depth-to
span ratio had been determined was loaded within one-half the com
puted proportional limit, with equal loads imposed precisely at third
points through a specially designed device. During three successive load
ings, deflections were taken to o.oool-inch accuracy at mid-span and
under each load. The difference between the deflection at the center and
the average of the deflections at load points was used as 0 in the com
putation of pure Young's modulus which is theoretically comparable to
the asymptote of the previously established hyperbola. It was found that
the similarity of values determined by the two methods was exception
ally close; discrepancies exceeded 3 percent of the directly determined
value only in the case of one control beam. Thus, the validity of the
application to glued veneer beams of the theory of strain energy rela
tions according to Timoshenko was established, and a direct method of
determining pure Young's modulus in bending was proved to be without
significant error.

The modulus of rigidity values determined from the intercepts of the
linearly transposed hyperbolas (Figure 2), which are the effective
moduli of the various composite cross sections tested, were extremely
variable. Since complex differences resulting from adhesive concentra
tion, adhesive-wood interfaces, and lathe checks undoubtedly exist be
tween different planes paralleling the neutral axis, and since Drow and
McBurney (9) observed appreciable variation in modulus of rigidity
values for solid yellow poplar, the high degree of variability shown by
this property is not considered unreasonable.

A statistical analysis of variance failed to establish significant dif
ferences in modulus of rigidity values between laminates of different
veneer thicknesses. Therefore, the most accurate expression of modulus
of rigidity for laminates of all veneer thicknesses is the mean of all
values obtained which proved to be 57,000 pounds per square inch. An
average modulus of rigidity of 85,000 pounds per square inch for de
formation in the longitudinal-radial plane caused by stresses in the
longitudinal-tangential plane was determined for the two solid wood
controls. Tests at the Forest Products Laboratory, Madison, disclosed
no correlation between specific gravity and modulus of rigidity and
provided an average modulus value of 105,000 pounds per square inch
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TABLE I. MEAN SPECIFIC GRAVITY VALUES OF PLYWOOD AND LAMINATED WOOD1

Adhesive
Powder- Film-

Resorcinol- type type
Veneer Resorcinol phenol phenol phenol Melamine Urea
crhick- resin resin resin resin resin resin
ness Construction: Laminated Wood (Lam.) or Plywood (Ply.)

(inch) Lam. Ply. Lam. Ply. Lam. Ply. Lam. Ply. Lam. Ply. Lam. Ply.

1/10 0.50 0.50 0.51 0.50 0.48 0·49 0·47 0.46 0.51 o.p 0·54 0.51

1/20 0.62 0.56 0.61 0·55 0·55 0.56 0.5 1 0·49 0.60 0.58 0.67 0·57

1/40 0.78 0.67 0.72 0.62 0.64 0.63 0·54 0·54 0·75 0·73 0.87 0.68

1/60 0·97 0.76 0.84 0.72 0.71 0.69 0·57 0·57 0.90 0·79 0.90 0·74

1. Specific gravity based on oven-dry weight and oven-dry volume.

assemblies of the thinner veneers may be partially explained by a basic
difference in the two types of construction. When veneer sheets less than
1/20 inch in thickness were spread with liquid adhesives, sufficient sol
vent was added to saturate the fibers. In laminates bonded with solvent
dispersed adhesives, the resin polymerized when the wood was in a more
or less expanded condition. Plywood panels could be expected, in some
cases at least, to retain essentially their fully swollen dimensions, whereas
laminated wood was free to shrink without the restraint imposed by
cross-ply construction during subsequent oven-drying of specific gravity
specimens. Lesser differences in specific gravity could be expected in the
case of laminates bonded with dry film or with those adhesives from
which the solvent was partially evaporated before pressing. According
to the Forest Products Laboratory, Madison (I4) and Kollmann (32),
shrinkage of plywood in depth is essentially the same as that of solid
wood. Therefore, in the oven-dry condition, the weight per unit volume
of plywood can be expected to be less than that of laminated wood by
approximately the percent of tangential shrinkage associated with
the change in moisture content from that at which the adhesive poly
merized to the oven-dry condition. Limited experimentation with as~

semblies of 1/40-inch yellow birch indicated that this theory is valid.
Inasmuch as the maximum difference in specific gravity between ply

wood and laminated wood assemblies attributable to restraint of shrink
age can be but approximately 7 percent, differences exceeding this must
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be recognized as a possible source of error in comparing the mechanical
properties of the two types of assemblies.

The loss of volatile constituents from thin veneer laminates in oven
drying and the influence of restraint on weight per unit volume of ply
wood is of significance. Specific gravity and moisture content values de
termined in the conventional manner may lead to error in computations
of strength and weight of assemblies. Perhaps specific gravity based on
weight and volume of laminates in equilibrium with the humidity con
ditions under which they are to be used and equilibrium moisture content
values based on those attained by solid wood under identical conditions
would be more suitable.

It has been demonstrated by numerous investigators that the plasticity
of wood in compression perpendicular to the grain is increased by treat
ment with impregnating resins and film-type phenolic resins (I9, 3I , 1-5,
55,56) as well as by heat and moisture (I9, 26, 3I , 37,50, 5I , 59, 60).
Consequently, it is reasonable to expect all synthetic resin adhesives to
impart to the veneer in an assembly a degree of plasticity which will
result in permanent compression of the wood components. In order to
analyze intelligently the influence of the laminating process, it is neces
sary to differentiate between the increase in specific gravity which re
sults from the addition of the adhesive and that which accompanies
veneer compression.

When the veneer of which plywood and laminated wood assemblies
were composed was segregated into specific gravity classes, the average
thickness of each sheet was determined and recorded. The thickness of
each specimen was also recorded. In order to compute the net retention
of compression and thereby to determine the average specific gravity
of the wood in each assembly, it was necessary only to determine the
effective glue-line thickness of each class of laminate. This was accom
plished by microscopical measurements of randomly selected samples
of material.

When viewed through a microscope, the surface of veneer is very ir
regular because of severed vessels and other cells and the occurrence of
torn tissue and lathe checks. Consequently, numerous voids of approxi
mately o.oo3-inch and less in depth occur between veneer surfaces.
When the assembly is compressed, a high percentage of adjacent sur
face areas is brought into intimate contact and an interlocking or dove
tailing effect is of frequent occurrence. With the exception of the urea
formaldehyde, the liquid adhesives were forced into the irregularities of
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the veneer surfaces, and consequently did not appreciably increase the
panel thickness (Plate III). The urea adhesive did not exhibit the flow
properties of the others, however. Although contact was made between
surfaces at a limited number of points, the average thickness of the ad
hesive layer was 0.001 inch in laminates of I/rO-, 1/20-, and I/40-inch
veneer, and 0.0015 inch in those of I/60-inch veneer. In the case of the
film-type phenolic resin, the microscopic examination revealed that the
tissue paper on which the adhesive is carried remained intact and
separated all parts of adjacent surfaces by an average of 0.001 inch.

The average veneer compression retained in each class of panel bonded
with each adhesive was computed by subtracting the measured thick
ness of the pressed assembly from the sum of the veneer thicknesses plus
the total effective thickness of the glue lines. The percentage compression
thus determined was considered the average percentage increase in
specific gravity of the wood component. Computed mean specific gravity
values of wood in plywood and laminated wood assemblies of each
veneer thickness bonded with each adhesive are presented in Table 2.
It may be observed that the computed specific gravity value for the
wood in plywood panels bonded with any given adhesive differs no more
than 0.03 from that of laminated wood. This indicates that the mechani
cal properties of plywood and laminated wood can be compared without
serious error being introduced by differences in compression of veneer in
the two types of assemblies.

TABLE 2. COMPUTED AVERAGE SPECIFIC GRAVITY VALUES OF WOOD IN PLYWOOD

AND LAMINATED WOOD ASSEMBLIES'

Adhesive
Powder- Film-

Resorcinol- type type
Veneer Resorcinol phenol phenol phenol Melamine Urea
'1hick- resin resin resin resin resin resin

ness Construction: Laminated Wood (Lam.) or Plywood (Ply.)
(inch) Lam. Ply. Lam. Ply. Lam. Ply. Lam. Ply. Lam. Ply. Lam. Ply.

I/IO 0.46 0.46 0·47 0·47 0·47 0.46 0·47 0·47 0·47 0·47 0·47 0·47

1/20 0·47 0·47 0·47 0·47 0·49 0.5 1 0·47 0·47 0.48 0·49 0·49 0·47

1/40 0·47 0.48 0·47 0·49 o.p 0·53 0.48 0.48 0.50 0.50 0.50 0·47

1/60 0·47 0.50 0.48 0.50 0·53 0·54 0·49 0.48 0.51 0.50 0.50 0.50

I. Specific gravity based on oven-dry weight and oven-dry volume.
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The trend of increasing veneer compression accompanying decreasing
veneer thickness suggests strongly that the synthetic resin adhesives
investigated impart a degree of plasticity to the wood components of
the assemblies. The most distinct trend was shown by both plywood and
laminated wood bonded with the powder-type phenol resin. Although
laminates bonded with other adhesives did not display pronounced dif
ferences in compression, those bonded with the melamine resin appeared
to be consistently slightly higher than assemblies bonded with the other
four adhesives. Inasmuch as the probable moisture content at the time
of pressing differed very little for laminates bonded with the powder
type phenol resin, the melamine resin, and the urea resin, and the press
ing temperature of those bonded with the powder-type phenol resin was
but 20° higher, it is strongly suggested that the phenolic resin imparted
a greater degree of plasticity to the wood than the other two adhesives.
Because of the complexity of the influence of heat and moisture content
and the slight differences in compression of veneer, definite conclusions
concerning the plasticizing effect of the other adhesives are not per
mitted.

23













MECHANICAL PROPERTIES OF LAMINATED WOOD

MODULUS OF RUPTURE

The modulus of rupture values of laminates of all veneer thicknesses
bonded with all six adhesives were appreciably superior to the average
value of yellow poplar similar indensity to the unpressed veneer (10,400
pounds per square inch), and were improved to a significantly greater
extent than was fiber stress at proportional limit. Values for laminates
bonded with the resorcinol and resorcinol-phenol adhesives could not
be separated statistically and were lower than for those bonded with
the other four adhesives. Laminates bonded with the film-type phenol,
powder-type phenol, urea, and melamine resins, in order of increasing
strength, all differed significantly. Further, statistical analysis indicated
that, except for the resorcinol-phenol-bonded laminates, strength in
creased with decreasing veneer thickness, the trend being most dis
tinctly shown by laminates bonded with melamine formaldehyde. Im
provement in modulus of rupture values by the laminating process is
shown in Table 7 in which ratios of modulus of rupture of laminated
veneer to that of unmodified wood are presented.

TABLE 7. RATIOS OF VALUES FOR MODULUS OF RUPTURE OF

LAMINATED VENEER TO THAT OF SOLID WOOD

Adhesive

Veneer Resorcinol- Powder-type Film-type
Thickness Resorcinol phenol phenol phenol Melamine Urea

(inch) resin resin resin resin resin resin

I/IO 1.14 1.23 1.27 1.20 1.3° 1.24

1/20 1.26 1.21 1·35 1.26 1.36 1.35

1/40 1.23 1.24 1.37 1.31 1.5° 1.56

1/60 1.36 1.27 1.44 1.44 1.81 1.51

Uncompressed, resin-impregnated wood, in which compressive
strength is appreciably improved and tensile strength is slightly re
duced, is equal or somewhat inferior to solid wood in modulus of rup
ture. In contrast to wood-impregnating resin systems, laminated veneer
still showed appreciable improvement over its wood components in
modulus of rupture after the influence of veneer compression had been
eliminated (Table 8). The trend of increasing strength accompanying
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TABLE 8. RATIOS OF VALUES FOR MODULUS OF RUPTURE OF LAMINATED VENEER

TO THOSE OF SOLID WOOD OF THE SAME SPECIFIC GRAVITY

AS THE VENEER IN THE LAMINATES

Adhesive

Veneer Resorcinol- Powder-type Film-type
Thickness Resorcinol phenol phenol phenol Melamine Urea

(inch) resin resin resin resin resin resin

I/IO IoU 1.20 1.27 1.17 1.26 1,20

1/20 1.23 1.18 1.23 1.22 1.28 1.23

1/40 1.23 1.21 1.15 1.24 1.33 1.38

1/60 1.33 1.20 1.18 1.31 1.55 1.34

decreasing veneer thickness was altered only for laminates bonded with
the powder-type phenol resin.

It is recognized that only stress values below the proportional limit
in a given lamina of a beam of composite cross section can be determined
accurately by equation (2). However, an equation based on this principle
is recommended for the computation of modulus of rupture of plywood
(I8), so it is reasonable to expect it to apply it to laminated wood beams
where the zones of different properties are not so clearly defined. If the
modulus of rupture of laminated veneer is limited by the outermost
fiber, equation (3),

S' = E S
E'y

should be valid when S' and E are modulus of rupture and modulus of
elasticity values from test and Sand E y are the values for unmodified
yellow poplar. Table 9 presents the percentage deviation of the theoreti
cal average modulus of rupture

from the average test value (S') for each veneer-thickness class bonded
with each adhesive.

It is of significance that in no case is the theoretical value as high as the
actual value. This indicates that factors other than an improvement in
stiffness of the assembly influenced the modulus of rupture of laminates
of all veneer thicknesses. An examination of load-deformation curves for
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The influence of the laminating process on Young's modulus was less
striking than its effect on modulus of rupture. Further, when the effect
of veneer compression was eliminated, the improvement in stiffness of
laminates bonded with the phenolic and urea adhesives was insignifi
cant. Moderate increases in modulus of elasticity which cannot be ex
plained by increased veneer density were exhibited by laminates bonded
with the other three adhesives. This is illustrated in Table I I which
presents average ratios of Young's modulus values of laminated veneer
to those of solid yellow poplar having the same specific gravity as the
wood in the assemblies.

TABLE II. RATIOS OF VALUES FOR YOUNG'S MODULUS IN STATIC BENDING AT THE

SPAN-TO-DEPTH RATIO OF 27 : I OF LAMINATED VENEER TO THOSE OF

SOLID WOOD OF THE SAME SPECIFIC GRAVITY AS THE VENEER IN

THE LAMINATES

Adhesive

Veneer Resorcinol- Powder-type Film-type
'I"hickness Resorcinol phenol phenol phenol Melamine Urea

(inch) resin resin resin resin resin resin

1/10 0.85 0·94 1.02 0·94 0·97 0.89

1/20 1.°4 L°S 1.°7 L°S L°S 1.06

1/40 1.08 1.10 1.02 1.02 I. 13 1.°4

1/60 I.I6 1.°9 1.00 1.°7 I. 18 1.°3

Inasmuch as the modulus of elasticity of the adhesives can be as
sumed to be similar to that of cast molding powders which are lower in
this property than solid wood (2,6,49), the glue film between the veneers
could be expected to reduce slightly the Young's modulus of the lami
nates. Consequently, the resin can contribute to the elasticity of the
system only by effectively filling the porous structure of the veneer or
by combining with the wood to yield a material with properties differing
from those of either component. Since impregnation of the cell wall of
wood with commonly used impregnating resins has been found to im
prove the modulus of elasticity only 4 to 10 percent, and improvements
of 16 and 18 percent were exhibited by thin veneer laminates bonded
with two of the six adhesives, a possible basic difference is indicated be
tween wood-impregnating-resin and wood-adhesive systems in Young's
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quently the development of a greater proportion of the intrinsic fiber
tensile strength.

The study indicates that the increase in strength must be attributed
to (1) veneer compression, (2) a filling of a portion of the porous structure
with the adhesive which develops sufficient strength to reinforce the
composite structure similar to filling a steel tube with brass, and (3)
an improved resistance to longitudinal shear stress without improve
ment in rigidity, by keying together the cellular elements into which the
adhesive has penetrated, probably as a result of the filling of pits and
lathe checks with the adhesive. Extensive cell-wall penetration is not
indicated.
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TABLE 23. RATIOS OF EXPERIMENTAL TO THEORETICAL FIBER STRESS AT PROPORTIONAL

LIMIT VALUES OF PLYWOOD IN WHICH THEORETICAL VALUES ARE COMPUTED BY (I)

ASSUMING OUTERMOST PLIES ARE LIMITING AND (2) ASSUMING OUTERMOST

FIBERS ARE LIMITING

Adhesive

Powder- Film-
Veneer Resorcinol- type type
'1"hick- Resorcinol phenol phenol phenol Melamine Urea

ness resin resin resin resin resin resin
(inch) (I) (2) (I) (2) (I) (2) (I) (2) (I) (2) (I) (2)

1/10 0.82 0·95 1.03 1.13 0.92 1.05 0.96 I. II 0·93 1.06 0.92 1.07

1/20 0.89 0.92 0·93 0·95 1.12 1.19 0.98 1.19 0.84 0·93 0·99 1.09

1/40 1.00 0.92 0·93 0.87 1.09 1.10 0.92 1·07 0.89 0.85 0·95 1.04

1/60 1.05 0.85 0.92 0.87 1.02 1.00 0.92 1.07 0·74 0·77 1.10 1.13

was made that the outermost fiber is limiting (column 2), a general trend
of decrease in ratios of experimental to theoretical values with decreas
ing veneer thickness for laminates of veneer less than 1/10 inch resulted
except in the case of assemblies bonded with urea formaldehyde, thus
strengthening the conclusion drawn from laminated beam data that
the area of the glue line is first to be stressed in excess of the proportional
limit. Although no trends were evident from calculations based on the
assumption that the unmodified outermost fiber is limiting, experimental
and theoretical values were too divergent to warrant the conclusion that
this assumption is valid. Either theory, however, leads to a value which
is more reliable than that computed in the conventional manner. It may
be noted that if the form factor were omitted, all ratios would be ap
preciably lower.

The ratio of theoretical values based on the properties of solid wood
for modulus of rupture to fiber stress at proportional limit for plywood
of all veneer thicknesses is 1.70. However, as in the case of laminated
wood, the ratios for experimental values for plywood increased appre;,.
ciably as veneer thickness decreased which clearly illustrates that modu
lus of rupture of plywood was improved to a much greater degree than
fiber stress at proportional limit (Table 24). Inasmuch as laminated wood
data indicated similar comparative values, it is strongly suggested that
the proportional limit of a zone in the area of the glue line is first ex
ceeded in laminates of thinner veneers whereas modulus of rupture is
dependent upon the reinforced strength of the outermost fibers.
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TABLE 25. RATIOS OF VALUES FOR MODULUS OF RUPTURE OF PLYWOOD TO

THEORETICAL VALUES BASED ON THE PROPERTIES OF SOLID WOOD

Adhesive

Veneer Resorcinol- Powder-type Film-type
<fhickness Resorcinol phenol phenol phenol Melamine Urea

(inch) resin resin resin resin resin resin

1/10 1.00 1.14 1.06 1.08 1.18 1.03

1/20 1.32 1.37 1.43 1.30 1.45 1.45

1/40 1·57 1.40 1.61 1·54 1.68 1.60

1/60 1.69 1·79 1.78 1.70 1·94 2.01

mate strength of the limiting fiber, or a combination of the two, it is not
surprising that the values for the test material so greatly exceeded the
theoretical ones computed in the conventional manner.

If the laminating process influenced the modulus of rupture of ply
wood and laminated wood similarly, it should be possible to predict
values for plywood from those of laminated wood of the same veneer
thickness bonded with the same adhesive by assuming that the outer
most fiber of plywood has the same bending strength as laminated wood
of the same components and the elasticity of the unmodified wood from
which the plywood was assembled. Since laminated-wood data did not
conclusively prove that Young's modulus was increased only in the
glue-line area, theoretical plywood values were computed for compara
tive purposes with the assumptions that the elasticity of the outermost
fiber is that of (I) laminated wood of the same veneer thickness bonded
with the same adhesive and (2) the average value for unmodified veneer
from which the plywood was assembled. In each case the strength of the
outermost fiber was considered to be that of laminated wood of the same
components and the effective Young's modulus was that from plywood
test. The agreement between values computed by each assumption and
those from tests is shown in Table 26.

Ratios presented in Table 26 strongly indicate that the improvement
in modulus of elasticity of thin veneer laminates is confined to the area
of the glue line, whereas the ultimate strength of the outermost fiber is
appreciably greater than that of solid wood. When this assumption was
made, the ratios of experimental to theoretical values exhibited no well
defined trends, and serious discrepancies between experimental and
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The modulus of rigidity in the longitudinal-radial plane of laminated
veneer and in the combined tangential-radial and longitudinal-radial
plane of plywood stressed in the plane of the glue line is independent of
veneer thickness and adhesive and is slightly lower than the value for
solid wood in similar planes.

Young's modulus of plywood in tension or in bending at any ratio of
span to depth can be computed more reliably from the elastic properties
of laminated veneer of the same thickness bonded with the same ad
hesive than from those of solid wood.

Fiber stress at proportional limit in both plywood and laminated
wood is first exceeded in a zone in the vicinity of the glue line except in
laminates bonded with the film-type phenol resin. Constructions of thin
veneer are improved only slightly in this property by the laminating
process.

When compared with values based on the properties of solid wood,
modulus of rupture of plywood and laminated veneer increases signifi
cantly with decreasing veneer thickness. Ratios of modulus of rupture
to fiber stress at proportional limit for both types of construction in
crease appreciably as veneer thickness decreases, indicating the marked
difference in the degree to which the two properties are influenced.

Modulus of rupture of veneer laminates is improved largely as the
result of lateral support in compression and tension offered to the outer
most fibers by the area of the glue line. The basic influence is similar for
laminated wood and plywood. Consequently, modulus of rupture values
for plywood can be computed with reasonable accuracy from values for
laminated wood of the same veneer thickness bonded with the same ad
hesive by assuming that the stress that can be resisted by the outermost
ply is the same as that for laminated wood, the modulus of elasticity
of the outermost fiber is unchanged by the laminating process, and the
modulus of elasticity of the assembly is that computed from the elastic
properties of laminated wood and adjusted for the influence of hori
zontal shear.

Work to proportional limit in static bending is only slightly improved
in both types of construction by some adhesives. Work to maximum load
of laminated wood, however, bonded with the six adhesives studied in
creases above that of solid wood, determined from specimens which are
2 x 2 inches in cross section, as veneer thickness decreases below 1/20

inch. Work to maximum load of plywood bonded with all adhesives
studied except the film-type phenol resin is greater than the average for
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the study increase as veneer thickness decreases. The efficiency of design
of plywood and laminated veneer structures could be greatly enhanced
by the perfection of techniques which would permit the consideration
of the improvement imparted to thin veneer laminates by fundamental
glue-line properties. This study has demonstrated that the properties
of plywood can be predicted with reasonable accuracy when the prop
erties of laminated wood of the same veneer thickness are known. Be
fore this method can be used extensively in design practice, however,
further investigation is needed to provide methods of predicting the in
fluence of fundamental glue-line properties on the strength of laminated
veneer.
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APPENDIX

TABLE 41. AVERAGE MODULUS OF ELASTICITY VALUES OF PLYWOOD IN

TENSION PARALLEL TO THE GRAIN

Adhesive
Veneer Resorcinol- Powder-type Film-type

crhickness phenol resin phenol resin phenol resin
(inch) (psi) (psi) (psi)

I/IO 1,°9°,000 I,IIO,ooo 1,180,000

1/20 1,160,000 1,270 ,000 1,180,000

1/40 1,24°,000 1,300,000 1,14°,000

1/60 1,45°,000 1,260,000 1,17°,000
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PLATE SECTION



PLATE I

Equipment for testing laminates in tension showing method for gripping speci
mens and electrical strain indicator.





2. I/ 2o-inch veneer.
4. I/ 60-inch veneer.

PLATE II

Cross sections of laminated veneer (IOX) showing the relative proportion of
resin to wood in laminates of different veneer thicknesses and the crinkling and
interlocking of rays at the glue line.

r. I/ Ia-inch veneer.
3. I/ 4o-inch veneer.





PLATE III

Photomicrograph of resorcinol glue line in laminated assembly of I/ IO-inch
veneer showing the penetration of the adhesive and the deformation and dovetail
ing of the cellular elements (150X).





PLATE IV

Typical failures of laminated veneer in tension parallel to the grain showing de
creasing splintering accompanying decreasing veneer thickness.
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