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Abstract
We propose a multiple-prior model of preferences under ambiguity that provides a

unified lens through which to understand different formalizations of ambiguity aversion,
as well as context-dependent negative and positive ambiguity attitudes documented in
experiments. This model, Boolean expected utility (BEU), represents the belief the
decision-maker uses to evaluate any uncertain prospect as the outcome of a game be-
tween two conflicting forces, Pessimism and Optimism. We prove, first, that BEU
provides a novel representation of the class of invariant biseparable preferences (Ghi-
rardato, Maccheroni, and Marinacci, 2004). Second, BEU accommodates rich patterns
of ambiguity attitudes, which we characterize in terms of the relative power allocated
to each force in the game.

1 Introduction

A central approach to modeling preferences under ambiguity is based on the idea that the
decision-maker (DM) quantifies uncertainty with a set of relevant beliefs (i.e., probability
measures) and may use a different belief to evaluate each uncertain prospect. A well-known
limitation underlying many such multiple-prior models—notably Gilboa and Schmeidler’s
(1989) maxmin expected utility model and several of its generalizations—is a restrictive
mechanism of belief selection, whereby the DM evaluates each prospect according to the
worst possible relevant belief. Behaviorally, this restriction is reflected by Schmeidler’s (1989)
uncertainty aversion axiom, which captures a negative attitude to ambiguity through a strong
form of preference for hedging. Subsequent work has questioned this formalization of ambi-
guity aversion and proposed several alternative definitions and measures.1 The experimental
∗Frick: Yale University (mira.frick@yale.edu); Iijima: Yale University (ryota.iijima@yale.edu); Le

Yaouanq: Ludwig-Maximilians-Universität, Munich (yves.leyaouanq@econ.lmu.de). This research was sup-
ported by National Science Foundation grant SES-1824324 and the Deutsche Forschungsgemeinschaft
through CRC TRR 190. We thank David Ahn, Simone Cerreia-Vioglio, Faruk Gul, Jay Lu, Fabio Mac-
cheroni, Pietro Ortoleva, Wolfgang Pesendorfer, Tomasz Strzalecki, and audiences at Caltech and University
of Tokyo for valuable feedback.

1E.g., Epstein (1999); Ghirardato and Marinacci (2002); Baillon, L’Haridon, and Placido (2011); Dow
and Werlang (1992); Baillon, Huang, Selim, and Wakker (2018).
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literature documents yet more nuanced patterns of ambiguity attitudes, with the same sub-
jects appearing ambiguity-averse in some decision problems but ambiguity-seeking in others,
depending on contextual features of each problem (for a survey, see Trautmann and van de
Kuilen, 2015).

In this note, we propose a multiple-prior model that provides a unified lens through which
to understand different formalizations of ambiguity aversion, as well as the context-dependent
negative and positive ambiguity attitudes documented in experiments. To capture a flexible
mechanism of belief selection, our model adopts a “dual self” perspective on ambiguity, by
representing the belief the DM uses to evaluate any given prospect as the outcome of a game
between two conflicting forces or selves (henceforth, Pessimism and Optimism).2

The baseline version of our model is a parsimonious generalization of Gilboa and Schmei-
dler’s (1989) maxmin expected utility representation. Under Boolean expected utility (BEU),3

there is a compact collection P of closed and convex sets of beliefs and an affine utility u
such that the DM evaluates each act f according to

WBEU(f) = max
P∈P

min
µ∈P

Eµ[u(f)]. (1)

That is, the belief used to evaluate f is the outcome of a sequential zero-sum game: First,
Optimism chooses a set of beliefs P from the collection P with the goal of maximizing the
DM’s expected utility to f ; then Pessimism chooses a belief µ from P with the goal of
minimizing expected utility. As we show (Remark 1), the specific structure of the selves’
action sets in (1) and the fact that Optimism moves first is without loss of generality. Maxmin
expected utility corresponds to the extreme special case where Optimism has no choice, while
the opposite extreme case, maxmax expected utility, provides Pessimism with no choice.
Other special cases include Choquet expected utility (Schmeidler, 1989) and α-maxmin.

Our first main result is that BEU represents the class of preferences over Anscombe-
Aumann acts that satisfy all of Gilboa and Schmeidler’s (1989) axioms except for uncertainty
aversion (Theorem 1). Equivalently, the presence of ambiguity is captured solely by relaxing
independence to certainty independence, without additionally restricting the DM’s ambigu-
ity attitude to be negative (or positive). Obtaining an easy-to-interpret representation for
this class of preferences—which are known as invariant biseparable—has been considered an

2The idea that the DM consists of multiple strategic selves with conflicting motives is employed frequently
in behavioral economics, for example to model risk preferences and intertemporal choices (e.g., Thaler and
Shefrin, 1981; Fudenberg and Levine, 2006; Brocas and Carrillo, 2008).

3We borrow this terminology from set theory: A Boolean representation of a set X consists of a family
{Xi}i∈I of sets Xi and a family {Sj}j∈J of subsets Sj of I such that X =

⋃
j∈J

⋂
i∈Sj

Xi (e.g., Ovchinnikov,
2001). By analogy, denoting the max and min operator by ∨ and ∧, respectively, (1) can be written as
W (f) =

∨
P∈P

∧
µ∈P Eµ[u(f)]; that is, as a max-min Boolean polynomial in disjunctive normal form.
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important question in the ambiguity literature. Section 4.2 contrasts BEU with existing rep-
resentations due to Ghirardato, Maccheroni, and Marinacci (2004) (generalized α-maxmin)
and Amarante (2009) (Choquet integration over beliefs).

Proposition 1 shows that any BEU preference % uniquely reveals a set of relevant priors
C =

⋃
P∈P P , which represents the possible outcomes of the belief-selection game.4 Moreover,

C admits a behavioral characterization in terms of the extent to which % departs from in-
dependence, as it coincides with Ghirardato, Maccheroni, and Marinacci’s (2004) unanimity
representation of the largest independent subrelation of %.

The second main contribution of our model is to provide a unified framework through
which to represent and contrast a wide range of theoretically and experimentally appealing
ambiguity attitudes. We begin by showing that the standard comparative notion of ambigu-
ity aversion is represented by a natural preorder over BEU representations, which captures
the relative power allocated to the second mover (Pessimism) in the belief-selection game
(Proposition 2). While for a given set of relevant priors, maxmin and maxmax expected
utility are maximal and minimal in this order, the result highlights how less extreme allo-
cations of power across the selves can generate a rich hierarchy of intermediate ambiguity
attitudes, which we proceed to characterize in Sections 3.2 and 3.3:

First, Theorem 2 shows that several different shades of ambiguity aversion—as captured
by varying degrees of preference for hedging—are characterized by the extent of overlap
of sets in P. Specifically, Ghirardato and Marinacci’s (2002) notion of absolute ambiguity
aversion (i.e., being more ambiguity-averse than some subjective expected utility preference),
which corresponds to a preference for complete hedges that fully eliminate uncertainty, is
characterized by the intersection of all sets in P being nonempty. This requires that at
least one prior is always available to Pessimism irrespective of Optimism’s choice, and is
strictly weaker than uncertainty aversion (i.e., a preference for all hedges), which requires
that all relevant priors are always available to Pessimism. While absolute ambiguity aversion
is inconsistent with experimental evidence that subjects are often ambiguity-averse for bets
involving moderate odds but ambiguity-seeking for small odds (e.g., Dimmock, Kouwenberg,
Mitchell, and Peijnenburg, 2015; Kocher, Lahno, and Trautmann, 2018), we introduce the
even weaker notion of k-ambiguity aversion (for some k = 2, 3, . . .) that can accommodate
this evidence. This notion imposes a preference for complete hedges only among any k acts
and is characterized by the requirement that the intersection of any k sets in P is nonempty.

Second, motivated by experimental findings on source dependence, whereby subjects’ am-
biguity attitudes may be negative or positive depending on their familiarity with the domain
of payoff-relevant uncertainty (e.g., Heath and Tversky, 1991), we further relax k-ambiguity

4Uniqueness holds up to convex closure and elimination of redundant (never selected) beliefs.
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aversion to a “local” analog, which characterizes the sign of an event-based ambiguity aversion
index commonly used in experimental work. While BEU can accommodate source depen-
dence by allowing the sign of this index to vary across events (Proposition 3), we show that
this is not the case for the special case of α-maxmin that is widely used in applications.

As we discuss in Section 4.1, our model can be generalized to classes of preferences that
further relax certainty independence. The resulting Boolean representations feature more
general game payoffs and can capture additional experimental findings.

2 Boolean Expected Utility

2.1 Setup

Let Z be a finite set of prizes and let ∆(Z) denote the space of probability measures over
Z. We refer to typical elements p, q ∈ ∆(Z) as lotteries. Let S be a finite set of states. An
(Anscombe-Aumann) act is a mapping f : S → ∆(Z). Let F be the space of all acts, with
typical elements f, g, h. For any f, g ∈ F and α ∈ [0, 1], define the mixture αf+(1−α)g ∈ F
to be the act that in each state s ∈ S yields lottery αf(s) + (1 − α)g(s) ∈ ∆(Z). Slightly
abusing notation, we identify each lottery p ∈ ∆(Z) with the constant act that yields lottery
p in each state s ∈ S.

Let ∆(S) denote the set of all probability measures over S, which we embed in RS and
endow with the Euclidean topology. We refer to typical elements µ, ν ∈ ∆(S) as beliefs.
Given any act f ∈ F and map u : ∆(Z) → R, let u(f) denote the element of RS given by
u(f)(s) = u(f(s)) for all s ∈ S, and let Eµ[u(f)] := µ · u(f).

The DM’s preference over F is given by a binary relation % on F . As usual, � and ∼
denote the asymmetric and symmetric parts of %.

2.2 Representation

We now introduce our baseline model, Boolean expected utility. Let 2∆(S) denote the set of
all nonempty sets of beliefs, endowed with the Hausdorff topology. A belief-set collection
is a nonempty compact collection P ⊆ 2∆(S) of sets of beliefs such that each P ∈ P is closed
and convex.

Definition 1. A Boolean expected utility (BEU) representation of preference % consists
of a belief-set collection P and a nonconstant affine utility u : ∆(Z)→ R such that

WBEU(f) = max
P∈P

min
µ∈P

Eµ[u(f)] (2)

4



represents %.5

Just as Gilboa and Schmeidler’s (1989) maxmin expected utility model, BEU is a multiple-
prior model of ambiguity: The DM has in mind a set of relevant beliefs

⋃
P∈P P , and might

use a different belief to evaluate each act. But unlike maxmin expected utility, the belief
µ used to evaluate any given act f is not necessarily worst-case among all relevant beliefs.
Instead, µ is the outcome of a sequential zero-sum game between two conflicting forces or
“selves:” First, self 1 (“Optimism”) chooses an action P ∈ P with the goal of maximizing
expected utility to act f ; then self 2 (“Pessimism”) chooses an action µ ∈ P with the goal of
minimizing expected utility to f .

As Remark 1 below shows, both the specific form of action sets and the order of moves
in (2) are without loss of generality. Note that maxmin expected utility corresponds to the
extreme special case of BEU where Optimism’s action set is trivial (i.e., P = {P} is a sin-
gleton), as in this case (2) reduces to W (f) = minµ∈P Eµ[u(f)]. Likewise, maxmax expected
utility, W (f) = maxµ∈P Eµ[u(f)], corresponds to the opposite extreme where Pessimism’s
action set is always trivial (i.e., P = {{µ} : µ ∈ P} is a collection of singletons).

Our first main result is that BEU represents the class of preferences that satisfy all subjec-
tive expected utility axioms, except that independence is relaxed to certainty independence:

Axiom 1 (Weak Order). % is complete and transitive.

Axiom 2 (Monotonicity). If f, g ∈ F and f(s) % g(s) for all s ∈ S, then f % g.

Axiom 3 (Nondegeneracy). There exist f, g ∈ F such that f � g.

Axiom 4 (Archimedean). For all f, g, h ∈ F with f � g � h, there exist α, β ∈ (0, 1) such
that

αf + (1− α)h � g � βf + (1− β)h.

Axiom 5 (Certainty Independence). For all f, g ∈ F , p ∈ ∆(Z), and α ∈ (0, 1],

f % g ⇐⇒ αf + (1− α)p % αg + (1− α)p.

Theorem 1. Preference % satisfies Axioms 1–5 if and only if % admits a BEU representa-
tion.

Thus, like maxmin expected utility, BEU captures the possible presence of ambiguity
by imposing independence only for mixtures with constant acts, i.e., mixtures that apply

5The functional (2) is well-defined since P is nonempty and compact.
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equally to all states.6 However, unlike maxmin expected utility, BEU does not additionally
impose uncertainty aversion, which reflects a negative attitude toward ambiguity through a
preference for hedging (see Axiom 6).

Theorem 1 shows that BEU provides a novel, easy-to-interpret representation of the class
of preferences that Ghirardato, Maccheroni, and Marinacci (2004) (henceforth GMM) term
invariant biseparable. In Section 4.2, we contrast BEU with existing representations due to
GMM and Amarante (2009). In addition, Section 4.1 shows that natural generalizations of
BEU represent classes of preferences that further relax certainty independence.

Our proof of Theorem 1 (Appendix B.1) first invokes the well-known fact that % sat-
isfies Axioms 1–5 if and only if there exists a constant-linear and monotonic functional
I : [−1, 1]S → R and a nonconstant affine utility u : ∆(Z) → [−1, 1] such that % is repre-
sented by I ◦ u. For sufficiency, consider the belief-set collection P∗ given by

P∗ := {P ∗φ : φ ∈ RS} with P ∗φ := {µ ∈ ∂I(0) : µ · φ ≥ I(φ)}, (3)

where ∂I(0) ⊆ ∆(S) denotes the Clarke differential of I at 0 (Clarke, 1990, see Ap-
pendix A.2). We prove that P∗ yields a BEU representation of I, i.e., for all φ ∈ [−1, 1]S,
I(φ) = maxP ∗ψ∈P∗ minµ∈P ∗ψ Eµ[φ]. A key step is to show that I can be expressed as a Boolean
representation of affine functionals (building on Ovchinnikov, 2001), where the slope of each
functional is given by its Clarke differential.

Remark 1. General action sets. The specific form of action sets for Optimism and
Pessimism in (2) is without loss of generality. Indeed, % admits a BEU representation with
utility u if and only if there exist arbitrary action sets A1, A2 and a mapping µ : A1×A2 →
∆(S) from action profiles to beliefs such that

W (f) = max
a1∈A1

min
a2∈A2

Eµ(a1,a2)[u(f)] (4)

is well-defined and represents %.7

Min-max form. While BEU takes the max-min form in which Optimism is the first
mover, it is equivalent to consider representations of the min-max form. That is, % ad-
mits a BEU representation if and only if it can be represented by the functional W (f) =

minQ∈Q maxµ∈Q Eµ[u(f)] for some belief-set collection Q. However, the collection Q need not
6See Ghirardato, Maccheroni, and Marinacci (2005), who argue why certainty independence is important

for achieving a separation of tastes and beliefs.
7To see this, suppose (P, u) is a BEU representation of %. Then (4) represents % with A1 := P, A2 :=∏
P∈P P , and µ(P, σ) := σ(P ) for all P ∈ A1, σ ∈ A2. Conversely, suppose (4) represents % for some

(A1, A2, µ, u). Then setting P := {co(µ(a1, A2)) : a1 ∈ A1} yields a BEU representation of %.
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coincide with P in general. See Appendix S.2 for more details.
Single-self interpretation. In addition to the dual-self interpretation above, BEU

admits a single-self interpretation, whereby the DM optimally selects her own ambiguity
preference from a feasible set.8 Specifically, feasible ambiguity preferences take the maxmin
expected utility form minµ∈P Eµ[u(f)] and depending on f , the DM optimally controls the
parameter P , where P represents the constraints of the subjective optimization. N

2.3 Relevant Priors

A natural way to identify the DM’s set of relevant priors under BEU is to consider the
union

⋃
P∈P P of all sets in the belief-set collection. This captures all possible outcomes of

the belief-selection game between Optimism and Pessimism. To eliminate redundant beliefs
that are never selected, we focus on the smallest closed, convex set of beliefs that can arise
under any BEU representation. Proposition 1 shows that this set is uniquely identified:

Proposition 1. If % satisfies Axioms 1–5, then there exists a unique closed, convex set
C ⊆ ∆(S) such that

C ⊆ co
⋃
P∈P

P (5)

for all BEU representations (P, u) of %, with equality for some (P, u).

We call a BEU representation tight if (5) holds with equality. To prove Proposition 1
(Appendix B.2), we show that for any BEU representation, co

⋃
P∈P P contains the Clarke

differential ∂I(0) at 0 of the functional I from the proof of Theorem 1. Since the represen-
tation P∗ in (3) satisfies co

⋃
P∈P∗ P = ∂I(0), this implies that the set of relevant priors C is

precisely ∂I(0) and that P∗ is a tight representation.
An implication of this Clarke-differential characterization of C is that our definition of the

DM’s relevant priors as the possible outcomes of the belief-selection game is equivalent to the
following behavioral definition due to GMM, which quantifies departures from independence.
For any preference % satisfying Axioms 1–5, GMM define the unambiguous preference
%∗ as the largest independent subrelation of %. Equivalently, %∗ is defined by f %∗ g if
αf + (1− α)h % αg + (1− α)h holds for all α ∈ (0, 1] and h ∈ F .

Note that %∗ is incomplete whenever % violates independence. GMM show that %∗

admits a unanimity representation à la Bewley (2002) and identify the unique closed, convex
set of priors in the unanimity representation as the DM’s relevant set of priors.9 Since GMM
show that the latter set again coincides with ∂I(0), we obtain the following corollary:

8See Sarver (2018) for an analogous model in the context of risk preferences.
9Gilboa, Maccheroni, Marinacci, and Schmeidler (2010) take an alternative approach by including %∗

as part of the primitive. Ghirardato and Siniscalchi (2012) extend GMM’s characterization of relevant
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Corollary 1. If % admits a BEU representation with utility u, then the set of relevant priors
C is the unique closed, convex set such that

f %∗ g ⇐⇒ Eµ[u(f)] ≥ Eµ[u(g)] for all µ ∈ C. (6)

Remark 2 (Uniqueness). Our results in the remainder of this paper apply to all BEU
representations of a given preference, and thus do not require unique identification of a
particular representation.

Nevertheless, standard arguments imply that the utility u under BEU is unique up to
positive affine transformation. Moreover, Supplementary Appendix S.1 shows that the belief-
set collection P is unique up to “half-space closure,” analogous to recent representations
featuring collections of sets of utilities (e.g., Hara, Ok, and Riella, 2019). N

3 Ambiguity Attitude

In this section, we highlight that BEU provides a unified framework through which to rep-
resent and contrast different attitudes toward ambiguity.

3.1 Comparative Ambiguity Attitude

We begin by noting that while the set of relevant priors C captures all possible outcomes of
the belief-selection game between Optimism and Pessimism, the same set C can correspond
to many distinct BEU preferences, as the DM’s ambiguity attitude depends on the selves’
relative “power” to determine which belief from C is used to evaluate any given act. This
is exemplified by maxmin expected utility (P = {C}) and maxmax expected utility (P =

{{µ} : µ ∈ C}), which respectively allocate all power or no power to Pessimism and capture
extreme negative and positive ambiguity attitudes.

To formalize this connection in general, we define a preorder w over belief-set collections
by P1 w P2 if

for all P1 ∈ P1 there exists P2 ∈ P2 with P1 ⊇ P2.

This captures a natural sense in which collection P1 allocates more power to the second
mover than P2: Indeed, for any potential move P1 of Optimism under P1, Optimism has a
move P2 ⊆ P1 in P2 that restricts Pessimism’s action set more. Thus, Pessimism’s relative
power to influence the DM’s belief is weaker under P2 than under P1.

priors beyond the invariant biseparable class. See Klibanoff, Mukerji, and Seo (2014) for a discussion of the
interpretation of C.
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The following result shows that this order represents the standard comparative notion
of ambiguity aversion (Ghirardato and Marinacci, 2002), whereby %1 is more ambiguity-
averse than %2 if whenever f %1 p for some f ∈ F and p ∈ ∆(Z), then f %2 p.

Proposition 2. Suppose %1, %2 admit BEU representations. The following are equivalent:

1. %1 is more ambiguity-averse than %2.

2. %1 admits a BEU representation (P1, u1) such that every BEU representation (P2, u2)

of %2 satisfies P1 w P2 and u1 ≈ u2.

Note that Proposition 2 does not assume any relationship between the sets of relevant
priors C1 and C2 associated with %1 and %2.10 The proof exhibits a representation Pi of
%i that allocates more power to the second mover than any other representation, and shows
that %1 is more ambiguity-averse than %2 if and only if P1 w P2.

While maxmin and maxmax expected utility represent the most and least ambiguity-
averse BEU representations for a given set of relevant priors, the following two subsections
proceed to characterize a hierarchy of intermediate ambiguity attitudes that BEU can ac-
commodate.

3.2 Shades of Ambiguity Aversion

Existing decision-theoretic definitions of ambiguity aversion postulate a preference for hedg-
ing, or randomization, but vary in the degree to which they impose this attitude. The
seminal axiom in this literature, Schmeidler’s (1989) uncertainty aversion, postulates that
the DM always takes up an opportunity to hedge between two equally valued prospects.

Axiom 6 (Uncertainty Aversion). If f, g ∈ F with f ∼ g, then
1

2
f +

1

2
g % f .

The second standard definition is the notion of absolute ambiguity aversion introduced
by Ghirardato and Marinacci (2002), which relies on the comparative definition considered
in the previous section. Analogous to the definition of absolute risk aversion as more risk-
averse than a risk-neutral preference, we say that % is absolutely ambiguity-averse if it
is more ambiguity-averse than some nondegenerate subjective expected utility preference.11

The following axiom can be used to provide a behavioral characterization:
10This is in contrast with GMM’s characterization of comparative ambiguity aversion, which assumes that

C1 = C2 (Proposition 12 in GMM).
11See Epstein (1999) for another approach that takes as its benchmark probabilistic sophistication instead

of subjective expected utility.
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Axiom 7 (k-Ambiguity Aversion). For all f1, ..., fk ∈ F with f1 ∼ f2 ∼ · · · ∼ fk and any
p ∈ ∆(Z),

1

k
f1 + · · ·+ 1

k
fk = p =⇒ p % f1.

Axiom 7 only imposes a preference for complete hedging between k equally valued
prospects, that is, for hedges that eliminate subjective uncertainty entirely. We say that
% satisfies ∞-ambiguity aversion if it satisfies k-ambiguity aversion for all k. This corre-
sponds to the notion of preference for sure diversification used by Chateauneuf and Tallon
(2002) to characterize absolute ambiguity aversion under Choquet expected utility. We show
that this characterization extends to BEU:12

Lemma 1. Suppose % admits a BEU representation. Then % is absolutely ambiguity-averse
if and only if % satisfies ∞-ambiguity aversion.

Theorem 2 provides an intuitive representation of the degrees of ambiguity aversion cap-
tured above, by clarifying how under BEU, these notions allocate successively less power to
Pessimism:

Theorem 2. Suppose that % admits a BEU representation (P, u).

1. % satisfies uncertainty aversion if and only if
⋂
P∈P

P = C.

2. % is absolutely ambiguity-averse if and only if
⋂
P∈P

P 6= ∅.

3. % satisfies k-ambiguity aversion if and only if
⋂

i=1,...,k

P 6= ∅ for all P1, ..., Pk ∈ P.

Uncertainty aversion corresponds to the maximal allocation of power to Pessimism, in
the sense that all relevant priors µ ∈ C are available to Pessimism irrespective of Optimism’s
choice. The game thus boils down to Pessimism choosing a belief µ ∈ C, yielding maxmin
expected utility; indeed, note that if (P, u) is tight, then % satisfies uncertainty aversion iff
P = {C}.

Absolute ambiguity aversion allocates less power to Pessimism, requiring only that there
is some prior µ ∈

⋂
P∈P P that is always available to Pessimism regardless of Optimism’s

choice. Thus, the DM’s valuation of any act f is bounded above by the expected utility
12Lemma 1 can also be obtained as a consequence of Grant and Polak (2013), who extend Chateauneuf and

Tallon’s (2002) characterization to the class of monotonic, continuous, translation-invariant, and unbounded
representations. BEU representations satisfy the first three properties, and can be extended to an unbounded
domain by positive homogeneity (i.e., scale invariance) of the functional I.
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Eµ[u(f)] of f under prior µ, which implies that % is more ambiguity-averse than the expected
utility preference with belief µ and utility u.

Finally, while absolute ambiguity aversion requires the intersection of all sets in P to be
non-empty, k-ambiguity aversion imposes this only for any k sets in P. Thus, k-ambiguity
aversion further decreases the power allocated to Pessimism, and more so the smaller k.
Indeed, whenever k-ambiguity aversion holds at P1, then any representation P2 w P1 displays
a weakly higher degree of k-ambiguity aversion.

The relevance of further relaxing the DM’s negative ambiguity attitude in this manner is
underscored by experimental evidence. Indeed, one notable pattern suggesting that subjects’
preferences might be better described by k-ambiguity aversion for small k than for large k is
ambiguity seeking for small odds, which was originally conjectured by Ellsberg (e.g., footnote
4 in Becker and Brownson, 1964; Ellsberg, 2011) and subsequently confirmed in laboratory
experiments:

Example 1 (Ellsberg urn with many colors). Consider an urn with 10 balls with unknown
composition from up to 10 different colors. A ball is drawn from the urn and its color
observed. State space S = {1, · · · , 10} represents the observed color. For each event E ⊆ S,
let fE denote the uncertain bet that pays $10 if the color of the ball belongs to E and $0
otherwise, and let pα denote the objective lottery that pays $10 with probability α and $0
otherwise.

When the cardinality of E is 5, this setting is similar to Ellsberg’s two-color urn experi-
ment, suggesting a preference for the objective lottery p0.5 over the uncertain bet fE, consis-
tent with 2-ambiguity aversion. However, when E is a singleton event, many subjects prefer
fE to the corresponding objective lottery p0.1 (e.g., Dimmock, Kouwenberg, Mitchell, and
Peijnenburg, 2015; Kocher, Lahno, and Trautmann, 2018). Assuming that f{1} ∼ . . . ∼ f{10}

by symmetry, this contradicts 10-ambiguity aversion as p0.1 =
1

10
f{1} + · · · 1

10
f{10}. N

The following simple example illustrates that BEU allows for flexible degrees of k-
ambiguity aversion and hence can accommodate the aforementioned experimental evidence.
This is a notable difference with Siniscalchi’s (2009) vector expected utility model, which
also relaxes uncertainty aversion, but for which 2-ambiguity aversion and∞-ambiguity aver-
sion are equivalent.13 The next section discusses the distinction with a special case of BEU,
α-maxmin, that can also accommodate flexible k-ambiguity aversion.

Example 2. Consider a BEU representation (P, u) of the form P = {Ps : s ∈ S} where for
13Note that 2-ambiguity aversion is equivalent to Siniscalchi’s (2009) Axiom 11, which he shows is equiv-

alent to absolute ambiguity aversion (provided utilities are unbounded).
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some fixed ε ≥ 0,
Ps := {µ ∈ ∆(S) : µ(s) ≥ ε}

for each s. For each k ≤ |S|, Theorem 2 implies that k-ambiguity aversion is satisfied if and
only if ε ≤ 1

k
.14 N

3.3 Ambiguity Aversion Index and Source Dependence

While the preceding notions of ambiguity aversion are “global,” capturing the DM’s attitude
towards any uncertainty that can be generated in S, the experimental literature commonly
takes a “local” approach, measuring the DM’s ambiguity attitude relative to specific events
or sources of uncertainty.

A primary local measure of ambiguity attitudes is based on the following idea originally
proposed by Schmeidler (1989) and subsequently employed in both theoretical work (Dow
and Werlang, 1992) and in experiments (Baillon and Bleichrodt, 2015; Baillon, Huang, Selim,
and Wakker, 2018). Given any event E ⊆ S, we first define its matching probability
m(E) ∈ [0, 1] by the indifference condition

xEy ∼ m(E)δx + (1−m(E))δy,

where x, y ∈ Z are two outcomes such that δx � δy and xEy denotes the binary act that
yields x for all s ∈ E and y otherwise.15 Based on this, define the ambiguity aversion
index associated with E by

AA(E) := 1−m(E)−m(Ec). (7)

Whereas subjective expected utility implies AA(E) = 0 for all E, AA(E) > 0 (resp. AA(E) <

0) is interpreted as a negative (resp. positive) attitude to ambiguity associated with E. Note
that this index can be defined for any event, without imposing symmetry on the state space
as is common in urn experiments.

Under BEU, the sign of AA(E) is characterized by the following local analog of the binary
intersection condition for 2-ambiguity aversion in Theorem 2:

14To see this, suppose ε ≤ 1
k . Then for any distinct s1, ..., sk, we have 1

k δs1 + · · · 1
k δsk ∈ ∩

k
i=1Psi , so that

k-ambiguity aversion holds. Conversely, if ε > 1
k , take any distinct s1, ..., sk. If µ ∈

⋂k
i=1 Psi , then µ(si) >

1
k

for all i = 1, ..., k, contradicting µ ∈ ∆(S). Thus,
⋂k
i=1 Psi = ∅, so that k-ambiguity aversion fails.

15Under Axioms 1–5, m(·) is well-defined independent of the choice of x, y.
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Lemma 2. Suppose % admits a BEU representation (P, u). Then for any E ⊆ S,

AA(E) ≥ 0 ⇐⇒ {µ(E) : µ ∈ P} ∩ {µ′(E) : µ′ ∈ P ′} 6= ∅, for all P, P ′ ∈ P.

As a result, 2-ambiguity aversion implies AA(E) ≥ 0 for all events E. As such, 2-
ambiguity aversion may still be too restrictive to accommodate the well-documented phe-
nomenon of source dependence (e.g., Heath and Tversky, 1991): While subjects are found to
display negative ambiguity attitudes for “unfamiliar” events (i.e., when they feel less compe-
tent about the relevant domain of uncertainty), attitudes are less negative, or even positive,
for familiar events. The following example illustrates this in the context of home bias (French
and Poterba, 1991):

Example 3 (Home bias). Let SH = {U,D} be a state space specifying whether the domestic
stock market goes up (“U”) or down (“D”). Similarly, let SF = {U,D} describe the state
of the stock market in a foreign country. Consider the product state space S = SH ×
SF , and let EH = {UU,UD} be the event that the domestic stock market goes up, and
EF = {UU,DU} be the corresponding event for the foreign stock market. Due to source
dependence, typical subjects are more ambiguity-averse for foreign country stock than home
country stock. Indeed, some subjects even reverse the sign, AA(EF ) > 0 > AA(EH), i.e., are
ambiguity-seeking for EH but ambiguity-averse for EF (e.g. Anantanasuwong, Kouwenberg,
Mitchell, and Peijnenberg, 2019).16 N

The following result shows that BEU can accommodate the home bias in Example 3;
indeed, it can capture source-dependent ambiguity attitudes with respect to any families E
and F of unfamiliar and familiar events:

Proposition 3. Fix any disjoint collections E and F of events, both of which are closed under
complements and do not contain S. There exists a preference % satisfying Axioms 1–5 such
that AA(E) > 0 > AA(F ) for all E ∈ E , F ∈ F .

Proposition 3 highlights an important distinction with a special case of BEU, α-maxmin
expected utility (α-MEU), which represents preferences by the functional

Wα-MEU(f) = αmin
µ∈P

Eµ[u(f)] + (1− α) max
ν∈P

Eν [u(f)] (8)

16See Figure 5 in Anantanasuwong, Kouwenberg, Mitchell, and Peijnenberg (2019), where H and F cor-
respond to local stock market index and foreign stock index, respectively. (As a caveat, we also note that
the authors mention that the population average of AA does not vary much across different sources.) A
related finding is Keppe and Weber (1995), in which the average AA of German subjects is positive for bets
concerning US geography but negative for bets concerning German geography.
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for some nonempty closed, convex set of beliefs P , α ∈ [0, 1], and nonconstant affine u.
Due to its tractability, the α-MEU model is often used in applied theoretical work or for

analyzing experimental data.17 However, while α-MEU can accommodate flexible degrees
of k-ambiguity aversion (based on the same idea as Example 2), Lemma 2 implies that this
model is inconsistent with any form of source dependence. Indeed, the sign of the ambiguity
index is the same for all events and is determined by the value of α:

Corollary 2. Suppose % admits an α-MEU representation where P is not a singleton. Then
α ≥ 1/2 (resp. α ≤ 1/2) if and only if AA(E) ≥ 0 (resp. AA(E) ≤ 0) for all E.

More strongly, one can show that α ≥ 1
2
implies 2-ambiguity aversion while α ≤ 1

2
implies

2-ambiguity seeking (as defined in Appendix S.2).
At the same time, it is worth highlighting another special case of BEU that retains

much of the tractability of α-MEU, but is enough to accommodate many forms of source
dependence, including Example 3. Specifically, consider a simple generalization of α-MEU
that allows for different sets of beliefs P1 and P2 for the max and min operator, i.e.,

W (f) = αmin
µ∈P1

Eµ[u(f)] + (1− α) max
ν∈P2

Eν [u(f)]. (9)

To capture Example 3, we can set P1 := {µ : µ(EH) = 1
2
} and P2 := {µ : µ(EF ) = 1

2
} in

(9). This implies AA(EH) = α − 1 < 0 and AA(EF ) = α > 0, thereby generating negative
ambiguity attitudes for foreign events and positive attitudes for home events.

Remark 3. While in practice index (7) is typically defined using matching probabilities on
binary partitions {E,Ec}, it can be generalized to arbitrary partitions E of S by setting

AA(E) = 1−
∑
E∈E

m(E).

Given this, k-ambiguity aversion implies that AA(E) ≥ 0 for all E with |E| ≤ k.18 Thus, the
aforementioned evidence on ambiguity seeking for small odds suggests the need to allow the
sign of AA(E) to depend on the number of events in partition E . Example 2 can accommodate
this, as the index satisfies AA(E) = 1− ε|E| for any non-trivial partition E . N

17See, e.g., Cherbonnier and Gollier (2015); Chen, Katuščák, and Ozdenoren (2007); Bossaerts, Ghirardato,
Guarnaschelli, and Zame (2010), and Ahn, Choi, Gale, and Kariv (2014).

18The proof follows from Lemma C.2 in the appendix.
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4 Discussion

4.1 Generalizations

As we have seen, our baseline model, BEU, corresponds to a relaxation of subjective expected
utility where independence is weakened to certainty independence and, equivalently, to drop-
ping uncertainty aversion from Gilboa and Schmeidler’s (1989) axioms. The representation
adds a maximization stage to Gilboa and Schmeidler (1989), admitting an interpretation in
terms of a game between Optimism and Pessimism.

We highlight that this approach generalizes beyond certainty independence, yielding in-
tuitive representations that further relax independence but still do not impose uncertainty
aversion. To illustrate, Appendix S.3 shows that replacing certainty independence with weak
certainty independence (Maccheroni, Marinacci, and Rustichini, 2006) yields a representation
of the form

W (f) = max
c∈C

min
µ∈∆(S)

Eµ[u(f)] + c(µ), (10)

where Optimism first chooses a cost function c : ∆(S) → R ∪ {∞} from a collection C
and Pessimism then chooses a belief subject to this cost. This adds a maximization stage
into Maccheroni, Marinacci, and Rustichini’s (2006) variational model, which corresponds
to the special case that additionally satisfies uncertainty aversion. An even weaker form
of independence, which applies only to objective lotteries, leads to a representation with
general game payoffs, extending Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio’s
(2011) uncertainty-averse representation (see Appendix S.4).

Further relaxing independence in this manner is motivated by additional experimental
evidence. For instance, representation (10), which relaxes the scale invariance property
implied by certainty independence while preserving translation invariance, can accommo-
date Machina’s (2009) paradoxes (see also Baillon, L’Haridon, and Placido, 2011).19 An-
other important finding is that ambiguity attitudes can differ for gains and losses, e.g., in
urn experiments subjects who are ambiguity-averse for bets with positive payoffs are often
ambiguity-seeking when the sign of the bet is reversed (Trautmann and Wakker, 2018). The
latter finding is inconsistent with any representation that displays translation invariance,
but can be accommodated by our most general model in Appendix S.4.

19This follows from the fact that Siniscalchi’s (2009) vector expected utility model can accommodate these
paradoxes and is a special case of (10).
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4.2 Related Literature

Our paper builds on the approach of modeling preferences under ambiguity through a set
of priors, from which the DM may select a different belief depending on each act. Many
important multiple-prior models impose uncertainty aversion (e.g., Gilboa and Schmeidler,
1989; Maccheroni, Marinacci, and Rustichini, 2006; Chateauneuf and Faro, 2009; Strzalecki,
2011; Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio, 2011; Skiadas, 2013), which
captures a worst-case mechanism of belief selection and is the central axiom that we relax
in this paper.

An important exception are GMM, who propose the first representation of invariant
biseparable preferences (i.e., preferences satisfying Axioms 1–5).20 Their representation takes
an act-dependent α-maxmin form,

WGMM(f) = α(f) min
µ∈C

Eµ[u(f)] + (1− α(f)) max
µ∈C

Eµ[u(f)], (11)

where C is the set of priors in the Bewley representation (6) of the unambiguous preference
%∗ and α(·) is a function from acts to [0, 1] that must satisfy several restrictions to ensure
necessity of the axioms: Specifically, α(·) must be measurable with respect to a particular
derived equivalence relation� over acts and α(·) must be such that the preference represented
by (11) is monotonic (see Remark 2 in GMM).21

We highlight two key differences between BEU and GMM: First, while (11) imposes
act dependence exogenously on ingredients of the representation, the act-dependent belief
selection under BEU can be interpreted endogenously, as the outcome of a game between
Optimism and Pessimism; moreover, under BEU, necessity of the axioms requires no ad-
ditional restrictions on the belief-set collection P. Second, our results in Sections 3.2–3.3,
which have no counterpart in GMM, highlight the value of our game-theoretic interpreta-
tion, by representing a rich hierarchy of ambiguity attitudes in terms of the relative power of
each self. At the same time, Corollary 1 shows that a common feature of BEU and GMM’s
representation is that the set of relevant priors C admits a behavioral characterization that
captures the extent of departure from independence.

Beyond models based on act-dependent belief selection, there are several complementary
approaches to modeling ambiguity (for a recent survey, see Gilboa and Marinacci, 2016). Im-

20Siniscalchi (2006) axiomatizes a special case of invariant biseparable preferences that have a piecewise
subjective expected utility form.

21GMM also characterize the special case of (11) where α(·) is constant, i.e., the subclass of α-maxmin
representations (8) whose set of priors P coincides with the induced Bewley set C. Eichberger, Grant,
Kelsey, and Koshevoy (2011) show that if the state space is finite, this representation reduces to maxmin
or maxmax. Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci, and Siniscalchi (2011) generalize (11) by
relaxing certainty independence to risk independence, which entails weaker restrictions on α(·).
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portant approaches that likewise do not impose uncertainty aversion include (i) non-additive
probabilities, as in Schmeidler’s (1989) Choquet expected utility model and subsequent work
(e.g., Chateauneuf, Eichberger, and Grant, 2007); (ii) second-order beliefs over sets of priors,
as in Klibanoff, Marinacci, and Mukerji’s (2005) smooth model (see also Segal, 1987; Seo,
2009); and (iii) preferences over utility dispersion (e.g., Siniscalchi, 2009; Grant and Polak,
2013). Amarante (2009) marries (i) and (ii), by providing an alternative representation of
invariant biseparable preferences via the functional

WAmarante(f) =

ˆ
∆(S)

Eµ[u(f)] dν(µ),

which captures a DM who holds first-order beliefs µ ∈ ∆(S) that are probability measures,
but faces second-order uncertainty over first-order beliefs that takes the form of a Choquet
capacity ν.

One important difference with the aforementioned papers is our focus on characterizing
rich patterns of intermediate ambiguity attitudes, which is motivated in part by experimental
evidence. While some of these papers provide representations of absolute ambiguity aversion,
none use their models to characterize weaker degrees of ambiguity aversion.22 We also note
that all aforementioned models are special cases of either BEU or its generalizations in
Section 4.1, suggesting that they could potentially be interpreted in terms of specific games
between Optimism and Pessimism.

Related to the structure of BEU, several recent papers employ belief-set or utility-set
collections in other contexts. While we maintain the weak order axiom and focus on relaxing
independence, Lehrer and Teper (2011) and Nascimento and Riella (2011) (resp. Hara, Ok,
and Riella, 2019) represent preferences over acts (resp. lotteries) that violate completeness
and/or transitivity. Whereas BEU is a utility representation, these papers provide general-
ized unanimity representations à la Bewley (2002) and Dubra, Maccheroni, and Ok (2004),
and the resulting proof methods are quite different. In the context of attitudes to random-
ization under ambiguity, Ke and Zhang (2019) consider preferences over lotteries over acts
and propose a representation that adds minimization over belief-set collections to maxmin
expected utility. When restricted to acts (i.e., degenerate lotteries), their representation is
equivalent to Gilboa and Schmeidler (1989).

Beyond the ambiguity literature, BEU is related to Hart, Modica, and Schmeidler (1994),
who provide a preference foundation for maxmin values in zero-sum games. They consider a

22In Klibanoff, Marinacci, and Mukerji’s (2005) smooth model, absolute ambiguity aversion is equivalent
to concavity of the function φ that aggregates expected utilities across different priors. Absolute ambiguity
aversion is also equivalent to non-emptiness of the capacity’s core under Choquet expected utility (Schmeidler,
1989) and to non-positivity of the adjustment function under vector expected utility (Siniscalchi, 2009).
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product state space S = S1×S2, where S1 and S2 are interpreted as the DM’s and opponent’s
action sets. They characterize when preferences over acts can be represented as the maxmin
value of a simultaneous-move zero-sum game,

W (f) = max
µ1∈∆(S1)

min
µ2∈∆(S2)

∑
s1,s2

µ1(s1)µ2(s2)u(f(s1, s2)),

which is formally a strict special case of BEU.

Appendix: Proofs

A Preliminaries

Throughout this section, we fix any interval23 Γ ⊆ R and let U := ΓS. For any a ∈ R, let
a denote the vector in RS with a(s) = a for all s ∈ S. For any φ, ψ ∈ RS, write φ ≥ ψ if
φ(s) ≥ ψ(s) for all s.

A.1 Properties of functionals

Fix any functional I : U → R. We call I:

• monotonic if I(φ) ≥ I(ψ) for all φ, ψ ∈ U with φ ≥ ψ;

• normalized if I(a) = a for all a ∈ Γ;

• constant-additive if I(φ+ a) = I(φ) + a for all φ ∈ U and a ∈ Γ with φ+ a ∈ U ;

• a niveloid if I(φ)− I(ψ) ≤ maxs(φs − ψs) for all φ, ψ ∈ U ;

• positively homogeneous if I(aφ) = aI(φ) for all φ ∈ U and a ∈ R+ with aφ ∈ U ;

• constant-linear if I is constant-additive and positively homogeneous.

It is easy to see that if 0 ∈ Γ, then any constant-linear functional I is normalized. Moreover,
I is a niveloid if and only if it is monotonic and constant-additive (Lemma 25 in Maccheroni,
Marinacci, and Rustichini, 2006).

23That is, Γ ⊆ R is one of [a, b], [a, b), (a, b], or(a, b), where we allow for a = −∞ and b =∞.
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A.2 Clarke derivative and differential

Consider a locally Lipschitz24 functional I : U → R. For every φ ∈ intU and ξ ∈ RS, the
Clarke (upper) derivative of I in φ in the direction of ξ is

I◦(φ; ξ) := lim sup
ψ→φ,t↓0

I(ψ + tξ)− I(ψ)

t
.

The Clarke (sub)differential of I at φ is the set

∂I(φ) := {χ ∈ RS : χ · ξ ≤ I◦(φ; ξ),∀ξ ∈ RS}.

We will frequently invoke the following properties of the Clarke differential. First, if I is
locally Lipschitz continuous, then Rademacher’s theorem yields a subset Û ⊆ intU such that
U \ Û has Lebesgue measure zero and I is differentiable on Û . Combining this with Theorem
2.5.1 in Clarke (1990), we obtain the following approximation of the Clarke differential:

Lemma A.1 (Theorem 2.5.1 in Clarke (1990)). Suppose I : U → R is locally Lipschitz
continuous. Then there exists Û ⊆ intU such that U \ Û has Lebesgue measure zero, I is
differentiable at each ψ ∈ Û , and for every φ ∈ intU , we have

∂I(φ) = co{lim
n
∇I(φn) : φn → φ, φn ∈ Û}. (12)

The next result is an “envelope theorem” for Clarke differentials:

Lemma A.2 (Theorem 2.8.6 in Clarke (1990)). Suppose functional I : U → R is given by

I(·) = sup
t∈T

It(·)

for some indexed family of functionals (It)t∈T with domain U . Assume that there exists some
K > 0 such that |It(ψ)− It(ξ)| ≤ K‖ψ− ξ‖ for every t ∈ T and ψ, ξ ∈ intU . Then for every
φ ∈ intU ,

∂I(φ) ⊆ co{ lim
i→∞
∇Iti(φi) : φi → φ, ti ∈ T, Iti(φ)→ I(φ)}.

Finally, we have the following relationship between properties of I and its Clarke differ-
ential:

Lemma A.3 (Part 1 of Proposition A.3 in GMM). If I : U → R is locally Lipschitz,
positively homogeneous, and 0 ∈ intU , then ∂I(φ) ⊆ ∂I(0) for all φ ∈ intU .

24Slightly abusing terminology, we say I is locally Lipschitz on U if it is locally Lipschitz on intU .
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Lemma A.4 (Parts 2–3 of Proposition A.3 in GMM). If I : U → R is locally Lipschitz,
monotonic, and constant-additive, then ∂I(φ) ⊆ ∆(S) for all φ ∈ intU .

A.3 Boolean representation of I

Throughout this subsection, we assume that I : U → R is monotonic, normalized, and locally
Lipschitz continuous. Let Û be the generic subset given by Lemma A.1.

Lemma A.6 below shows that, restricted to Û , we can express I as a Boolean represen-
tation of affine functionals, where the slope of each functional is given by the gradient of I.
The proofs build on ideas in Ovchinnikov (2001).

We begin with a preliminary result:

Lemma A.5. For every φ, ψ ∈ Û and ε > 0, there exists ξ ∈ Û such that

I(ξ)− I(ψ) +∇I(ξ) · (ψ − ξ) ≥ 0, I(ξ)− I(φ) +∇I(ξ) · (φ− ξ) ≤ ε.

Proof. Take any φ, ψ ∈ Û and ε > 0. Let m := I(ψ)− I(φ). If ∇I(φ) · (ψ − φ) ≥ m, we can
set ξ = φ. Likewise if ∇I(ψ) · (ψ − φ) ≥ m, we can set ξ = ψ. It remains to consider the
case

∇I(φ) · (ψ − φ),∇I(ψ) · (ψ − φ) < m. (13)

Define
H(λ) := I(φ+ λ(ψ − φ))− λm− I(φ)

for each λ ∈ R with φ+λ(ψ−φ) ∈ U . Since φ, ψ ∈ Û , H is differentiable at λ ∈ {0, 1}, with
H(0) = H(1) = 0 and H ′(0), H ′(1) < 0 by assumption (13). Hence, H is negative for small
enough λ > 0 and positive for λ < 1 close enough to 1. Thus, the set {λ ∈ (0, 1) : H(λ) = 0}
is non-empty and closed; let λ∗ denote its supremum.

Since H is locally Lipschitz continuous, we have H(λ) =
´ λ
λ∗
H ′(λ′)dλ′ for all λ. As

H(λ) > 0 for all λ ∈ (λ∗, 1), we can choose λ∗∗ ∈ (λ∗, 1) at which H is differentiable with
H ′(λ∗∗) > 0 and H(λ∗∗) ∈ (0, ε). But then

H ′(λ∗∗) = lim
t→0

I(φ+ (λ∗∗ + t)(ψ − φ))− I(φ+ λ∗∗(ψ − φ))

t
−m > 0,

which implies that

I◦(φ+ λ∗∗(ψ − φ);ψ − φ)−m ≥ H ′(λ∗∗) > 0.

Since I◦(ξ; ζ) = maxµ∈∂I(ξ) µ · ζ for any ζ, ξ (e.g., Proposition 2.1.2 in Clarke, 1990), this
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yields some µ ∈ ∂I(φ+ λ∗∗(ψ − φ)) such that

µ · (ψ − φ)−m ≥ H ′(λ∗∗) > 0.

By (12), there exists a sequence ξn → φ + λ∗∗(ψ − φ) such that ξn ∈ Û for each n and
limn∇I(ξn) = µ. Then

lim
n

(I(ξn)− I(ψ) +∇I(ξn) · (ψ − ξn)) = I(φ+ λ∗∗(ψ − φ))− I(ψ) + (1− λ∗∗)µ · (ψ − φ)

= H(λ∗∗)− (1− λ∗∗)m+ (1− λ∗∗)µ · (ψ − φ)

> (1− λ∗∗)H ′(λ∗∗) > 0,

where the inequalities use the fact that H(λ∗∗) > 0 and that µ · (ψ− φ)−m ≥ H ′(λ∗∗) > 0.
Similarly,

lim
n

(I(ξn)− I(φ) +∇I(ξn) · (φ− ξn)) = I(φ+ λ∗∗(ψ − φ))− I(φ)− λ∗∗µ · (ψ − φ)

= H(λ∗∗) + λ∗∗m− λ∗∗µ · (ψ − φ)

< ε− λ∗∗H ′(λ∗∗) < ε

where the inequalities use H(λ∗∗) < ε and µ · (ψ − φ) − m ≥ H ′(λ∗∗) > 0. Thus, for any
large enough n, ξn ∈ Û is as desired.

We now establish the Boolean representation of I:

Lemma A.6. For each φ ∈ Û , we have

I(φ) = max
ψ∈Û

inf
ξ∈Kψ

I(ξ) +∇I(ξ) · (φ− ξ),

where Kψ := {ξ ∈ Û : I(ξ) +∇I(ξ) · (ψ − ξ) ≥ I(ψ)} for all ψ ∈ Û .

Proof. For each φ, ψ ∈ Û and ε > 0, Lemma A.5 yields some ξ ∈ Kψ such that I(ξ)+∇I(ξ) ·
(φ−ξ) ≤ I(φ)+ε. Thus, infξ∈Kψ I(ξ)+∇I(ξ) ·(φ−ξ) ≤ I(φ). Moreover, by definition of Kφ,
infξ∈Kφ I(ξ) +∇I(ξ) · (φ− ξ) ≥ I(φ). Hence, I(φ) = maxψ∈Û infξ∈Kψ I(ξ) +∇I(ξ) · (φ− ξ),
as required.

B Proofs for Section 2

B.1 Proof of Theorem 1

We invoke the following standard result:
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Lemma B.1 (Lemma 1 in GMM). Preference % satisfies Axioms 1–5 if and only if there
exists a monotonic, constant-linear functional I : RS → R and a nonconstant affine function
u : ∆(Z)→ R such that for all f, g ∈ F ,

f % g ⇐⇒ I(u(f)) ≥ I(u(g)). (14)

Moreover, I is unique and u is unique up to positive affine transformation.

The necessity proof for Theorem 1 is standard and we omit it. To prove sufficiency,
suppose % satisfies Axioms 1–5. Let I and u be as given by Lemma B.1. Consider the
collection P∗ given by (3), i.e.,

P∗ := {P ∗φ : φ ∈ RS} with P ∗φ := {µ ∈ ∂I(0) : µ · φ ≥ I(φ)}.

Note that since I is monotonic and constant-linear, it is 1-Lipschitz. Thus, ∂I(0) ⊆ ∆(S) by
Lemma A.4, so that P∗ ⊆ 2∆(S). We will show that P∗ is compact and that for all φ ∈ RS,

I(φ) = max
P ∗ψ∈P∗

min
µ∈P ∗ψ

µ · φ, (15)

which by (14) ensures that (P∗, u) is a BEU representation of %.
Lemma A.1 yields a set Û ⊆ RS such that RS \ Û has Lebesgue measure zero and I is

differentiable on Û . Moreover, since I is positively homogeneous, Lemma A.3 implies that
∂I(φ) ⊆ ∂I(0) for all φ ∈ RS, so that for all φ ∈ Û , we have µφ := ∇I(φ) ∈ ∂I(0). The
proof proceeds by establishing two lemmas:

Lemma B.2. For each φ ∈ Û , I(φ) = µφ · φ.

Proof. Take any φ ∈ Û . By positive homogeneity of I, αφ ∈ Û and ∇I(φ) = ∇I(αφ) for
any α ∈ (0, 1). Thus, the function h : [0, 1] → R defined by h(α) = I(αφ) is differentiable
at every α ∈ (0, 1) and Lipschitz continuous. Hence, I(φ) = h(1) − h(0) =

´ 1

0
h′(α′)dα′ =´ 1

0
(∇I(αφ) · φ)dα′ = φ · µφ.

Lemma B.3. P ∗ψ is continuous in ψ under the Hausdorff topology.

Proof. Fix any ψ and sequence ψn → ψ, and take any ε > 0. Note that the distance between
two hyperplanes {µ ∈ RS : µ · ψ = w} and {µ ∈ RS : µ · ψ = w′} is given by |w−w′|

‖ψ‖ .
Thus, µ′ ∈ C is in the ε-neighborhood of P ∗ψ if µ′ · ψ ≥ I(ψ) − ε‖ψ‖. Take N such that
|I(ψ)− I(ψn)|, ‖ψ − ψn‖ < εmin{‖ψ‖,‖ψn‖}

2
for all n ≥ N . Then for any n ≥ N and µ′ ∈ P ∗ψn ,

µ′ · ψn ≥ I(ψn) implies µ′ · ψ ≥ I(ψ) − ε‖ψ‖, so that µ′ is in the ε-neighborhood of P ∗ψ.
Likewise any µ ∈ P ∗ψ is in the ε-neighborhood of P ∗ψn for all n ≥ N .
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To complete the proof of (15), first take any φ, ψ ∈ Û and let Kψ := {ξ ∈ Û : I(ξ) + µξ ·
(ψ − ξ) ≥ I(ψ)} be as in Lemma A.6. Then

I(φ) = max
ψ∈Û

inf
ξ∈Kψ

I(ξ) + µξ · (φ− ξ) = max
ψ∈Û

inf
ξ∈Kψ

µξ · φ, (16)

where the first equality holds by Lemma A.6 and the second by Lemma B.2. Letting Pψ :=

{µξ : ξ ∈ Û , µξ ·ψ ≥ I(ψ)}, Lemma B.2 ensures that ξ ∈ Kψ if and only if µξ ∈ Pψ. Moreover,
(12) implies that coPψ = P ∗ψ. Combining these two observations with (16) yields

I(φ) = max
ψ∈Û

inf
µ∈Pψ

µ · φ = max
ψ∈Û

min
µ∈coPψ

µ · φ = max
ψ∈Û

min
µ∈P ∗ψ

µ · φ. (17)

Next, take any φ, ψ ∈ U . Then there exist sequences φn → φ, ψn → ψ such that
φn, ψn ∈ Û . By (17), minµ∈P ∗ψn µ · φn ≤ I(φn) for each n. By Lemma B.3 and the continuity
of I, this implies

min
µ∈P ∗ψ

µ · φ ≤ I(φ).

In particular, for ψ = φ, we have minµ∈P ∗φ µ · φ ≤ I(φ) ≤ minµ∈P ∗φ µ · φ, where the final
inequality holds by definition of P ∗φ . Hence, as required, we have

I(φ) = min
µ∈P ∗φ

φ · µ = max
P ∗ψ∈P∗

min
µ∈P ∗ψ

µ · φ.

Finally, we verify that P∗ is compact. Note first that by positive homogeneity of I, each
set P ∗φ is scale-invariant, i.e., P ∗φ = P ∗aφ for every a ∈ R+. Thus, P∗ satisfies P∗ = {P ∗φ : φ ∈
[−1, 1]S}. Given this, Lemma B.3 implies that P∗ = {P ∗φ : φ ∈ [−1, 1]S} is closed and hence
compact.

B.2 Proof of Proposition 1

We begin with the following lemma:

Lemma B.4. Consider any functional I : RS → R and belief-set collection P such that
I(φ) = maxP∈P minµ∈P µ · φ for all φ ∈ RS. Then

∂I(0) ⊆ co
⋃
P∈P

P.

Proof. For each P ∈ P, let IP (φ) := minµ∈P µ · φ for each φ. Thus, I(φ) = maxP∈P IP (φ) for
each φ. Note that each IP is 1-Lipschitz continuous and ∂IP (0) = P .
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Take any convergent sequence (∇IPi(φi)) where φi → 0, Pi ∈ P, and ∇IPi(φi) exists for
each i. Then

∇IPi(φi) ∈ ∂IPi(φi) ⊆ ∂IPi(0) = Pi

where the set inclusion holds by Lemma A.3. Thus, limi∇IPi(φi) ∈ co
⋃
P∈P P . Hence, the

desired conclusion follows by applying Lemma A.2 to I.

Suppose % satisfies Axioms 1–5. Let I and u be as given by Lemma B.1. For P∗ as
in the sufficiency proof of Theorem 1, we have co ∪P∈P∗ P ⊆ ∂I(0). Thus, Lemma B.4
immediately implies that C = ∂I(0) is the unique closed, convex set satisfying (5) for all
BEU representations of %, with equality for representation P∗.

B.3 Proof of Corollary 1

Since the proof of Proposition 1 identifies the set of relevant priors as C = ∂I(0), Corollary 1
is immediate from the following result in GMM:

Lemma B.5 (Theorem 14 in GMM). Suppose % satisfies Axioms 1–5 and let I and u be as
in Lemma B.1. Then the unique closed, convex set D satisfying

f %∗ g ⇐⇒ Eµ[u(f)] ≥ Eµ[u(g)] for all µ ∈ D

is given by D = ∂I(0).

C Proofs for Section 3

C.1 Proof of Proposition 2

Consider the belief-set collection P defined by

P = {P̄φ : φ ∈ RS} with P̄φ = {µ ∈ ∆(S) : µ · φ ≥ I(φ)}. (18)

Arguments similar to those in the proof of Theorem 1 imply that (P, u) is a BEU rep-
resentation of %. We begin by noting that this representation is w-maximal among all
representations of %:

Lemma C.1. Suppose % admits a BEU representation and let P be given by (18). Then
P w P for all BEU representations P of %.
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Proof. Consider any BEU representation P of % and any P̄φ ∈ P. For I as given by
Lemma B.1, there exists Pφ ∈ P such that minµ∈Pφ µ · φ = I(φ). Thus, Pφ ⊆ P̄φ = {µ ∈
∆(S) : µ · φ ≥ I(φ)}.

To prove Proposition 2, note first that %1 is more ambiguity-averse than %2 if and only
if u1 ≈ u2 and the functionals I1 and I2 given by Lemma B.1 satisfy I1(φ) ≤ I2(φ) for all
φ ∈ RS.

To prove that (1) implies (2), consider the BEU representations Pi of %i given by (18).
The inequality I1 ≤ I2 implies P1 w P2: Indeed, for all φ, the fact that I1(φ) ≤ I2(φ) implies
P̄φ,1 ⊇ P̄φ,2, whence P1 w P2. Consider now any BEU representation (P2, u2) of %2. We have
P1 w P2 w P2, where the latter inequality comes from the w-maximality of P2. Hence, by
transitivity of w, P1 w P2, which proves (2).

To prove that (2) implies (1), consider the BEU representation (P1, u) of %1 described
in (2) and any representation (P2, u) of %2. Fix φ ∈ RS, and let P1 be any element of P1

such that I1(φ) = minµ∈P1 µ · φ. Since P1 w P2, there exists P2 ∈ P2 with P1 ⊇ P2, implying
I2(φ) ≥ minµ∈P2 µ · φ ≥ minµ∈P1 µ · φ = I1(φ). Thus, I2(φ) ≥ I1(φ) for all φ ∈ RS, implying
that %1 is more ambiguity-averse than %2.

C.2 Proof of Lemma 1

We combine the proof of Lemma 1 with the proof of Theorem 2 (part 2) below.

C.3 Proof of Theorem 2

C.3.1 Proof of part 1

To prove the “only if” direction, suppose that % satisfies uncertainty aversion. Since it
admits the maxmin expected utility representation of Gilboa and Schmeidler (1989), I(φ) =

minµ∈C µ · φ holds for all φ.
We first show that ∩P∈PP ⊇ C. If not, there exists P ∈ P such that P 6⊇ C. By the

standard property of support functions, this implies the existence of φ such that minµ∈C φ·µ <
minµ∈P φ · µ. This leads to I(φ) > minµ∈C µ · φ, a contradiction.

We now show that ∩P∈PP ⊆ C. If not, there exists µ∗ ∈ ∩P∈PP \C. Then there exists φ
such that minµ∈C φ ·µ < φ ·µ∗. But this implies I(φ) ≤ φ ·µ∗ < minµ∈C µ ·φ, a contradiction.

To prove the “ if” direction, suppose that ∩P∈PP = C. Take any φ. It suffices to show
that I(φ) = minµ∈C µ ·φ. Note that I(φ) ≥ minµ∈C µ ·φ follows by the construction of P∗ by
(3) that we used in the proof of Theorem 1. But the representation based on P yields the
inequality I(φ) ≤ minµ∈∩P∈PP µ · φ = minµ∈C µ · φ, which ensures the desired claim.
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C.3.2 Proof of part 2 and Lemma 1

We here prove the equivalence absolute ambiguity aversion ⇔ ∞- ambiguity aversion ⇔
∩P∈PP 6= ∅, which implies both part 2 of Theorem 2 and Lemma 1. We start with the
implication absolute ambiguity aversion ⇒∞- ambiguity aversion. Suppose that % is more
ambiguity-averse than some subjective expected utility preference with belief µ and utility
function u (the latter being without loss of generality by Proposition 2). Fix any k ≥ 2 and
any f1, · · · , fk, p such that f1 ∼ · · · ∼ fk and 1

k
f1 + · · ·+ 1

k
fk = p. By comparative ambiguity

aversion, for any fi we have I(u(fi)) ≤ µ · u(fi). Since I(u(fi)) = I(u(f1)) for all i, this
implies kI(u(f1)) ≤ µ·[u(f1)+· · ·+u(fk)] = µ·[ku(p)] = ku(p). As a result, I(u(f1)) ≤ u(p),
which implies f1 - p. Thus, % satisfies ∞-ambiguity aversion.

We now turn to the implication ∞- ambiguity aversion ⇒ ∩P∈PP 6= ∅. If % satisfies k-
ambiguity aversion for any finite k, by part 3 of the theorem (see the proof below) any BEU
representation (P, u) of % is such that, for any finite k, ∩i=1,··· ,kPi 6= ∅ for any P1, · · · , Pk ∈ P.
Since ∆(S) is compact, any collection of closed subsets of ∆(S) having the finite intersection
property has non-empty intersection. In other words, ∩P∈PP 6= ∅.

We conclude the proof with the implication ∩P∈PP 6= ∅ ⇒ absolute ambiguity aver-
sion. Suppose that there exists µ∗ ∈

⋂
P∈P P for some BEU representation (P, u) of %.

For any f ∈ F and any P ∈ P, this implies that minµ∈P µ · u(f) ≤ µ∗ · u(f), and hence
maxP∈P minµ∈P µ · u(f) ≤ µ∗ · u(f). As a result,

f % p =⇒ max
P∈P

min
µ∈P

µ · u(f) ≥ u(p) =⇒ µ∗ · u(f) ≥ u(p) =⇒ f %µ∗ p

where %µ∗ is the subjective expected utility preference with belief µ and utility function u.
Hence, % is more ambiguity-averse than %µ∗ , which proves the result.

C.3.3 Proof of part 3

The proof relies on the following lemma.

Lemma C.2. Preference % satisfies k-ambiguity aversion if and only if any BEU represen-
tation (P, u) of % is such that

k−1∑
i=1

max
Pi∈P

min
µi∈Pi

µi · φi ≤ min
P∈P

max
µ∈P

µ ·
k−1∑
i=1

φi

for all φ1, · · · , φk−1 ∈ RS.

Proof. To prove the “if” part, suppose the inequality in the lemma is satisfied. Consider any
f1, · · · , fk ∈ F such that f1 ∼ fi for all i and 1

k
f1 + · · · + 1

k
fk = p for some p ∈ ∆(Z). We

26



have

I(
1

k
u(fk)) = I(u(p)−

k−1∑
i=1

1

k
fi) = u(p)−min

P∈P
max
µ∈P

k−1∑
i=1

1

k
u(fi) · µ

≤ u(p)−
k−1∑
i=1

max
Pi∈P

min
µi∈Pi

1

k
u(fi) · µi

= u(p)−
k−1∑
i=1

I(
1

k
u(fi)).

Rearranging yields
k∑
i=1

I(
1

k
u(fi)) ≤ u(p)

which is simply I(u(f1)) ≤ u(p) since I(u(fi)) = I(u(f1)) for all i. This is turn implies
p % f1, and thus % satisfies k-ambiguity aversion.

To prove the “only if” part, suppose that there exists some vectors φ1, · · · , φk−1 such
that the inequality in the statement of Lemma C.2 is violated. By the constant linearity
of the max-min and min-max functionals, without loss of generality we can assume that
I(φi) = I(φ1) for all i, and that each φi belongs to [−1, 1]S.

Consider now some c ∈ R such that I(c−φ1−· · ·−φk−1) = I(φ1). Such a constant exists
by the continuity and monotonicity of I, and satisfies c ∈ [−k, k]. Let φk ∈ RS be defined
by φk = c− φ1 − · · · − φk−1, which implies φ1 + · · ·+ φk = c. Up to rescaling all the φis and
c by a common factor, this vector φk also belongs to [−1, 1]S. By definition of c, we have
I(φk) = I(φ1), and

I(φk) = I(c−
k−1∑
i=1

φi) = c−min
P∈P

max
µ∈P

µ ·
k−1∑
i=1

φi > c−
k−1∑
i=1

max
Pi∈P

min
µi∈Pi

µi · φi

= c−
k−1∑
i=1

I(φi).

Rearranging yields
∑k

i=1 I(φi) > c, which implies I(φ1) > c
k
.

To conclude the proof, consider now some best outcome z̄ and some worse outcome z in
Z. Since each φi belongs to [−1, 1]S, it is possible to find weights (εsi ) such that the act fi
that maps each state s into the lottery εsiδz + (1− εsi )δz̄ satisfies u(fi) = φi. In addition, the
fact that

∑k
i=1 u(fi) is a constant vector equal to c shows that

∑k
i=1

1
k
fi is a constant act

that delivers a lottery p supported on {z̄, z}, where u(p) = c
k
. The collection (f1, · · · , fk)

thus satisfies 1
k
f1 + · · · + 1

k
fk = p, fi ∼ f1 for all i since I(φi) = I(φ1), and f1 � p since
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I(φ1) > c
k

= u(p). Hence, % does not satisfy k-ambiguity aversion.

Let us now prove part 3 of the proposition.
Sufficiency: suppose that P1 ∩ · · · ∩ Pk 6= ∅ for all P1, · · · , Pk ∈ P. Consider any

P1, · · · , Pk and some vectors (φ1, · · · , φk−1). Let µ ∈ P1 ∩ · · · ∩ Pk. We have

min
µ1∈P1,··· ,µk−1∈Pk−1

k−1∑
i=1

µi · φi ≤
k−1∑
i=1

µ · φi ≤ max
µ∈Pk

k−1∑
i=1

µ · φi

where the first inequality is due to the fact that µ ∈ Pi for all i ≤ k − 1, and the second
inequality is due to the fact that µ ∈ Pk. Since this is true for any P1, · · · , Pk, this implies

max
(P1,··· ,Pk−1)∈Pk−1

min
µ1∈P1,··· ,µk−1∈Pk−1

k−1∑
i=1

µi · φi ≤ min
Pk∈P

max
µ∈Pk

k−1∑
i=1

µ · φi,

i.e.
k−1∑
i=1

max
Pi∈P

min
µi∈Pi

µi · φi ≤ min
P∈P

max
µ∈P

µ ·
k−1∑
i=1

φi.

Thus, by Lemma C.2 % satisfies k-ambiguity aversion.
Necessity: suppose that there exist P1, · · · , Pk ∈ P such that P1∩· · ·∩Pk = ∅. Consider

the sets A,B ⊆ RS(k−1) defined by

A = {(µ1, · · · , µk−1) : µi ∈ Pi} and B = {(µk, · · · , µk) : µk ∈ Pk}.

The sets A and B are closed and convex. In addition, A∩B = ∅ since any (µk, · · · , µk) ∈
A ∩ B would be such that µk ∈ P1 ∩ · · · ∩ Pk, which is a contradiction. By the separating
hyperplane theorem there exists a vector φ = (φ1, · · · , φk−1) ∈ RS(k−1), where each φi ∈ RS,
such that mina∈A a · φ > maxb∈B b · φ, which is equivalent to

min
µ1∈P1,··· ,µk−1∈Pk−1

k−1∑
i=1

µi · φi > max
µ∈Pk

k−1∑
i=1

µ · φi.

Hence,

k−1∑
i=1

max
Pi∈P

min
µi∈Pi

µi · φi ≥ min
µ1∈P1,··· ,µk−1∈Pk−1

k−1∑
i=1

µi · φi > max
µ∈Pk

k−1∑
i=1

µ · φi ≥ min
P∈P

max
µ∈P

µ ·
k−1∑
i=1

φi.

Thus, by Lemma C.2 % does not satisfy k-ambiguity aversion.
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C.4 Proof of Lemma 2

Note that m(E) = maxP∈P minµ∈P µ(E) while m(Ec) = 1−minP∈P maxµ∈P µ(E), and thus
AA(E) = minP∈P maxµ∈P µ(E)−maxP∈P minµ∈P µ(E). This implies that AA(E) ≥ 0 if and
only if all P, P ′ ∈ P satisfy maxµ∈P µ(E) ≥ minµ′∈P ′ µ

′(E), i.e., if and only if {µ(E) : µ ∈
P} ∩ {µ′(E) : µ′ ∈ P ′} 6= ∅.

C.5 Proof of Proposition 3

For any % with BEU representation (P, u), note that m(E) = maxP∈P minµ∈P µ(E) for
all events E. Thus, given E and F as in the proposition, it suffices to find ν ∈ ∆(S)

and a belief-set collection P such that maxP∈P minµ∈P µ(E) < ν(E) for all E ∈ E and
maxP∈P minµ∈P µ(F ) > ν(F ) for all F ∈ F .

Fix any ν ∈ ∆◦(S) and pick β > 0 with β < mins∈S ν(s). Define P by P = {PF : F ∈ F},
where for each F ∈ F ,

PF := {µ ∈ ∆(S) : µ(F ) = ν(F ) +
β

2
, µ(E) ∈ [ν(E)− β, ν(E) + β]∀E ⊆ S}.

Note that each PF is nonempty: Indeed, pick any s ∈ F and s′ ∈ F c (which exist since
F /∈ {S, ∅}). Then setting µ(s) = ν(s) + β

2
, µ(s′) = ν(s′) − β

2
, and µ(s′′) = ν(s′′) for all

s′′ 6= s, s′′ yields µ ∈ PF . Since PF is also closed and convex, P is a well-defined belief-set
collection.

By definition of P, maxP∈P minµ∈P µ(F ) ≥ ν(F ) + β
2
> ν(F ) for all F ∈ F . To complete

the proof, we show that maxP∈P minµ∈P µ(E) ≤ ν(E)− β
2
< ν(E) for all E ∈ E . Consider any

E ∈ E , F ∈ F . Since E 6= F (as E and F are disjoint), we either have (a) F \E 6= ∅ 6= E \F ;
(b) E ( F ; or (c) F ( E. In each case, we show that minµ∈PF µ(E) ≤ ν(E) − β

2
by

constructing a µ ∈ PF such that µ(E) = ν(E)− β
2
:

In case (a), pick s ∈ F \ E and s′ ∈ E \ F . Then define µ by µ(s) = ν(s) + β
2
,

µ(s′) = ν(s)− β
2
, and µ(s′′) = ν(s′′) for all s′′ 6= s, s′.

In case (b), pick s ∈ F \E, s′ ∈ E, and s′′ ∈ F c ⊆ Ec. Then define µ by µ(s) = ν(s) +β,
µ(s′) = ν(s′)− β

2
, µ(s′′) = ν(s′′)− β

2
, and µ(s′′′) = ν(s′′′) for all s′′′ 6= s, s′, s′′.

In case (c), pick s ∈ F , s′ ∈ E \F , and s′′ ∈ Ec ⊆ F c. Then define µ by µ(s) = ν(s) + β
2
,

µ(s′) = ν(s′)− β, µ(s′′) = ν(s′′) + β
2
, and µ(s′′′) = ν(s′′′) for all s′′′ 6= s, s′, s′′.
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Supplementary Appendix to “Boolean Expected Utility”

Mira Frick, Ryota Iijima, and Yves Le Yaouanq

This supplementary appendix is organized as follows. Section S.1 formalizes the unique-
ness properties of BEU representations. Section S.2 focuses on the representation obtained
by inverting the order of moves of Optimism and Pessimism and uses this to characterize
different degrees of ambiguity seeking. Sections S.3 and S.4 present two generalizations of
BEU that correspond to relaxations of certainty independence.

S.1 Uniqueness

For any φ ∈ RS and λ ∈ R, let Hφ,λ := {µ ∈ ∆(S) : µ · φ ≥ λ} denote the closed half-space
in ∆(S) that is defined by φ and λ. For any belief-set collection P, define its half-space
closure by

P := {H ⊆ ∆(S) : H is a closed half-space in ∆(S) and P ⊆ H for some P ∈ P}.

Proposition S.1.1. Suppose (P, u) is a BEU representation of %. Then (P′, u′) is a BEU
representation of % if and only if P = P′ and u ≈ u′.

Below we fix the unique functional I : RS → R associated with%, as given by Lemma B.1.
We begin with the following lemma:

Lemma S.1.1. Suppose (P, u) is a BEU representation of %. Then P = {Hφ,λ : φ ∈ RS, λ ≤
I(φ)}.

Proof. First, take any φ ∈ RS, λ ∈ R such that λ ≤ I(φ). Since (P, u) represents %, there
exists P ∈ P such that minµ∈P µ · φ = I(φ). Thus, P ⊆ Hφ,I(φ) ⊆ Hφ,λ, which implies
Hφ,λ ∈ P.

Conversely, take any P ∈ P. By definition of P, there exist φ ∈ RS, λ ∈ R, and P ′ ∈ P
such that P ′ ⊆ P = Hφ,λ. Since (P, u) represents %, I(φ) ≥ minµ∈P ′ µ · φ ≥ minµ∈Hφ,λ φ · µ.
Hence, λ ≤ I(φ).

Proof of Proposition S.1.1. For the “only if” direction, the fact that P = P′ is immediate
from Lemma S.1.1 and uniqueness of I. The proof that u ≈ u′ is standard.

For the “if” direction, by uniqueness of I, it suffices to show that maxP ′∈P′ minµ∈P ′ µ ·φ =

I(φ) for all φ ∈ RS. To show this, observe first that by Lemma S.1.1 and since P = P′,
there exists P ′ ∈ P′ such that P ′ ⊆ Hφ,I(φ). This ensures minµ∈P ′ µ ·φ ≥ I(φ). Suppose next
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that minµ∈P ′′ µ · φ − I(φ) =: ε > 0 for some P ′′ ∈ P′. Then Hφ,I(φ)+ε ⊇ P ′′, which implies
Hφ,I(φ)+ε ∈ P′. Since P′ = P, this contradicts Lemma S.1.1.

S.2 Minmax BEU representation

While BEU assumes that Optimism plays first and Pessimism plays second, this is equivalent
to a model with the opposite order of moves. We omit all proofs for this section, as they can
be obtained as minor modifications of the original proofs for BEU.

Theorem S.2.1. Preference % satisfies Axioms 1–5 if and only if % admits a minmax BEU
representation, i.e., there exists a belief-set collection Q and a nonconstant affine utility
u : ∆(Z)→ R such that

W (f) = min
Q∈Q

max
µ∈Q

Eµ[u(f)]

represents %.

Our construction of the maxmin BEU representation considered in the text uses the
belief-set collection P∗ := {P ∗φ : φ ∈ RS} with P ∗φ := {µ ∈ ∂I(0) : µ ·φ ≥ I(φ)}. Analogously,
it can be shown that the belief-set collection Q∗ := {Q∗φ : φ ∈ RS} with Q∗φ := {µ ∈
∂I(0) : µ · φ ≤ I(φ)} yields a minmax BEU representation. Paralleling Section 2.3, it is
straightforward to show that C := ∂I(0) again corresponds to the smallest set of priors that
is contained in co

⋃
Q∈QQ for all minmax BEU representations Q of %, with equality for

representation Q∗.
While the different notions of ambiguity aversion are most conveniently characterized

using the maxmin BEU representation (cf. Theorem 2), the minmax BEU representation is
useful for characterizing their ambiguity-seeking counterparts. Axioms 8 and 9 and Theo-
rem S.2.2 below provide the analogs of Axioms 6 and 7 and Theorem 2, respectively.

Axiom 8 (Uncertainty Seeking). If f, g ∈ F with f ∼ g, then
1

2
f +

1

2
g - f .

Axiom 9 (k-Ambiguity Seeking). For all f1, ..., fk ∈ F with f1 ∼ f2 ∼ · · · ∼ fk and any
p ∈ ∆(Z),

1

k
f1 + · · ·+ 1

k
fk = p⇒ p - f1.

We say that % is absolutely ambiguity-seeking if there exists a nondegenerate subjective
expected utility preference that is more ambiguity-averse than %. Analogous to Lemma 1,
this is characterized by ∞-ambiguity seeking, i.e., k-ambiguity seeking for all k.

Theorem S.2.2. Suppose that % admits a minmax BEU representation (Q, u).
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1. % satisfies uncertainty seeking if and only if
⋂
Q∈Q

Q = C.

2. % is absolutely ambiguity-seeking if and only if
⋂
Q∈Q

Q 6= ∅.

3. % satisfies k-ambiguity seeking if and only if
⋂
i=1,··· ,kQi 6= ∅ for all Q1, · · · , Qk ∈ Q.

S.3 Boolean variational representation

The variational model introduced by Maccheroni, Marinacci, and Rustichini (2006) (hence-
forth, MMR) relies on the following relaxation of certainty independence, which retains the
“location invariance” property of preferences but relaxes the “scale invariance” property; we
refer to MMR for a discussion.

Axiom 10 (Weak Certainty Independence). For any f, g ∈ F , p, q ∈ ∆(Z), and α ∈ (0, 1),

αf + (1− α)p % αg + (1− α)p =⇒ αf + (1− α)q % αg + (1− α)q.

We now show that dropping uncertainty aversion from MMR’s axioms corresponds to
adding a maximization stage into the variational model. A cost collection is a collection
of functions c : ∆(S) → R ∪ {∞} such that each c ∈ C is convex and C is grounded (i.e.,
maxc∈C minµ∈∆(S) c(µ) = 0).

Theorem S.3.1. Preference % satisfies Axioms 1–4 and Axiom 10 if and only if % admits
a Boolean variational (BV) representation, i.e., there exists a cost collection C and a
nonconstant affine utility u : ∆(Z)→ R such that

WBV (f) := max
c∈C

min
µ∈∆(S)

Eµ[u(f)] + c(µ) (19)

is well-defined and represents %.

We note that our characterization of the set of relevant priors under BEU generalizes
to the Boolean variational model. Specifically, let dom(c) := {µ : c(µ) ∈ R} denote the
effective domain of any cost function. Then there exists a unique closed, convex set C such
that C ⊆ co

(⋃
c∈C dom(c)

)
for all Boolean variational representations of %, with equality for

the representation C∗ we construct in the proof of Theorem S.3.1 below. Moreover, it can
again be shown that C is the Bewley set of the unambigous preference %∗. The argument
relies on the observation that C = co

(⋃
φ∈intU ∂I(φ)

)
, where I is the utility act functional

obtained in the proof of Theorem S.3.1. Details are available on request.
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S.3.1 Proof of Theorem S.3.1

We first recall the following result from MMR:

Lemma S.3.1 (Lemma 28 in MMR). Preference % satisfies Axioms 1–4 and Axiom 10 if
and only if there exists a nonconstant affine function u : ∆(Z) → R with U := (u(∆(Z)))S

and a normalized niveloid I : U → R such that I ◦ u represents %.

Based on this result, the necessity direction of Theorem S.3.1 is standard. We now prove
the sufficiency direction. Suppose % satisfies Axioms 1–4 and Axiom 10. Let I, u, and U be
as given by Lemma S.3.1. Since I is a niveloid, it is 1-Lipschitz. Hence, Lemma A.1 yields a
subset Û ⊆ intU with U \ Û of Lebesgue measure 0 such that I is differentiable on Û . Define
µψ := ∇I(ψ) and wψ := I(ψ)−∇I(ψ) · ψ for each ψ ∈ Û . By Lemma A.4 and the fact that
niveloids are monotonic and constant-additive, µψ ∈ ∆(S) for all ψ ∈ Û . For each ψ ∈ U ,
define

Dψ := {(µ,w) ∈ ∆(S)× R : µ · ψ + w ≥ I(ψ)} ∩ co{(µξ, wξ) : ξ ∈ Û},

and let D := {Dψ : ψ ∈ U}. The following lemma implies that each Dψ is non-empty; note
also that it is closed, convex, and bounded below.

Lemma S.3.2. For every φ, ψ ∈ U , min(µ,w)∈Dψ µ · φ+ w ≤ I(φ) with equality if φ = ψ.

Proof. First, consider any φ, ψ ∈ Û . Let Kψ := {ξ ∈ Û : µξ · ψ + wξ ≥ I(ψ)} be as in
Lemma A.6. Note that Dψ = co{(µξ, wξ) : ξ ∈ Kψ}, so that

inf
ξ∈Kψ

µξ · φ+ wξ = min
(µ,w)∈Dψ

µ · φ+ w,

where the minimum is attained as Dψ is closed and bounded below. Thus, Lemma A.6
implies that

min
(µ,w)∈Dψ

µ · φ+ w ≤ I(φ), (20)

where (20) holds with equality if ψ = φ by definition of Dψ.
Next, consider any φ, ψ ∈ U . Take sequences φn → φ, ψn → ψ such that φn, ψn ∈ Û for

each n, where we choose φn = ψn if φ = ψ. For each n, the previous paragraph yields some
(µn, wn) ∈ Dψn such that µn · φn + wn = min(µ,w)∈Dψn µ · φn + w ≤ I(φn), with equality if
φ = ψ. Since I is a niveloid, it is monotonic. Combined with normalization, this implies
that for all n, I(φn) ∈ [mins φn(s),maxs φn(s)]. Hence, |wn| ≤ maxs φn(s) − mins φn(s),
which is bounded since φn → φ. Thus, up to restricting to a suitable subsequence, we can
assume that (µn, wn)→ (µ∞, w∞) for some (µ∞, w∞) ∈ ∆(S)×R. Then (µ∞, w∞) ∈ Dψ and
µ∞ ·φ+w∞ ≤ I(φ) by continuity of I, with equality if φ = ψ. Thus, min(µ,w)∈Dψ µ ·φ+w =
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inf(µ,w)∈Dψ µ ·φ+w ≤ I(φ), with equality if φ = ψ, where the minimum is attained since Dψ

is closed and bounded below.

Finally, we obtain a Boolean variational representation of % as follows. For each D ∈ D,
define cD : ∆(S) → R ∪ {∞} by cD(µ) := inf{w ∈ R : (µ,w) ∈ D} for each µ ∈ ∆(S),
where by convention the infimum of the empty set is ∞. Note that cD is convex for all D
by convexity of D. Moreover, for all φ ∈ U , min(µ,w)∈D µ · φ + w = minµ∈∆(S) µ · φ + cD(µ).
Thus, Lemma S.3.2 implies

I(φ) = max
D∈D

min
µ∈∆(S)

µ · φ+ cD(µ) (21)

for all φ ∈ U . Since I is normalized, applying (21) to any constant vector a ∈ U , yields
I(a) = a+maxD∈D minµ∈∆(S) cD(µ) = a. Thus, collection (cD)D∈D is grounded. Hence, C∗ :=

{cD : D ∈ D} is a cost collection and (C∗, u) is a BV representation of % by Lemma S.3.1.

S.4 Rational Boolean representation

Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2011) (henceforth, CMMM) main-
tain uncertainty aversion, but further relax independence to hold only for objective lotteries:

Axiom 11 (Risk Independence). For any p, q, r ∈ ∆(Z) and α ∈ (0, 1),

p % q =⇒ αp+ (1− α)r % αq + (1− α)r.

Dropping uncertainty aversion from CMMM’s axioms yields the following Boolean gen-
eralization of their representation:

Theorem S.4.1. Preference % satisfies Axioms 1–4 and Axiom 11 if and only if % admits
a rational Boolean (RB), i.e., there exists a collection (Gt)t∈T of quasiconvex functions
Gt : R×∆(S)→ R ∪ {∞} that are increasing in their first argument and grounded25 and a
nonconstant affine utility u : ∆(Z)→ R such that

WRB(f) := max
t∈T

inf
µ∈∆(S)

Gt(Eµ[u(f)], µ) (22)

is well-defined, continuous, and represents %.
25That is, maxt∈T infµ∈∆(S)Gt(a, µ) = a for all a.
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S.4.1 Proof of Theorem S.4.1

The following result follows from a minor modification of the proof of Lemma 57 in CMMM:

Lemma S.4.1. Preference % satisfies Axioms 1–4 and 11 if and only if there exists a non-
constant affine function u : ∆(Z)→ R with U := (u(∆(Z)))S and a monotonic, normalized
and continuous functional I : U → R such that I ◦ u represents %.

Based on this result, the necessity direction of Theorem S.4.1 is standard. We now prove the
sufficiency direction. Suppose % satisfies Axioms 1–4 and 11. Let I, u, and U be as given
by Lemma S.4.1.

Define Dψ := {(µ, I(ψ) − µ · ψ) ∈ RS
+ × R : µ ∈ RS

+} for each ψ ∈ U . Note that Dψ is
non-empty and convex. Let Iψ(φ) := inf(µ,w)∈Dψ µ · φ+ w for each φ, ψ ∈ U .

Take any φ, ψ ∈ U . Observe that

Iψ(φ) = inf
α>0,s∈S

I(ψ) + α(φs − ψs) =

I(ψ) if φ ≥ ψ

−∞ if φ 6≥ ψ

Thus, I(φ) ≥ Iψ(φ) by monotonicity of I, with equality if φ = ψ. That is, for each φ ∈ U ,

I(φ) = max
ψ∈U

Iψ(φ). (23)

For each ψ ∈ U , define a function Gψ : R×∆(S)→ R ∪ {∞} by

Gψ(t, µ) = sup{Iψ(ξ) : ξ ∈ U, ξ · µ ≤ t}

for each (t, µ). The map is quasi-convex (Lemma 31 in CMMM) and increasing in t.

Lemma S.4.2. Iψ(φ) = infµ∈∆(S) Gψ(µ · φ, µ) for each φ, ψ ∈ U .

Proof. Observe that RHS = infµ∈∆(S) sup{Iψ(ξ) : ξ · µ ≤ φ · µ}. To see that LHS ≤ RHS,
observe that Iψ(φ) ≤ sup{Iψ(ξ) : ξ · µ ≤ φ · µ} holds for any µ ∈ ∆(S).

To see that LHS ≥ RHS, note first that if φ ≥ ψ then LHS = I(ψ) and RHS ∈
{I(ψ),−∞}, so the inequality clearly holds. If φ 6≥ ψ then φs < ψs for some s ∈ S.
Thus, by taking µ = δs, any ξ with ξ ·µ ≤ φ ·µ satisfies ξs ≤ φs, which implies ξ 6≥ ψ, whence
Iψ(ξ) = −∞.

Setting T = U , Lemma S.4.2 and (23) ensure that WRB given by (22) represents %

and is continuous. Finally, to check groundedness, note that since I is normalized, we have
a = I(a) = maxψ∈U infµ∈∆(S) Gψ(a, µ) for any a ∈ R.
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