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Abstract 

 

Information dissemination and aggregation are key economic functions of financial 

markets. How intelligent do traders have to be for the complex task of aggregating diverse 

information (i.e., approximate the predictions of the rational expectations equilibrium) in a 

competitive double auction market? An apparent ex-ante answer is: intelligent enough to perform 

the bootstrap operation necessary for the task—to somehow arrive at prices that are needed to 

generate those very prices. Constructing a path to such equilibrium through rational behavior has 

remained beyond what we know of human cognitive abilities. Yet, laboratory experiments report 

that profit motivated human traders are able to aggregate information in some, but not all, market 

environments (Plott and Sunder 1988, Forsythe and Lundholm 1990).   Algorithmic agents have 

the potential to yield insights into how simple individual behavior may perform this complex 

market function as an emergent phenomenon.  We report on a computational experiment with 

markets populated by algorithmic traders who follow cognitively simple heuristics humans are 

known to use. These markets, too, converge to rational expectations equilibria in environments in 

which human markets converge, albeit slowly and noisily. The results suggest that high level of 

individual intelligence or rationality is not necessary for efficient outcomes to emerge at the 

market level; the structure of the market itself is a source of rationality observed in the outcomes.  
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… social variables, not attached to particular individuals, are essential in studying the 

economy or any other social system and that, in particular, knowledge and technical 

information have an irremovably social component … 

Kenneth Arrow (1994, p. 8). 

 

To survive in a world where knowledge is limited, time is pressing, and deep thought is 

often an unattainable luxury, decision-makers must use bounded rationality. In this 

precis of Simple Heuristics That Make Us Smart, we explore fast and frugal heuristics—

simple rules for making decisions with realistic mental resources. These heuristics enable 

smart choices to be made quickly and with a minimum of information by exploiting the 

way that information is structured in particular environments. Despite limiting 

information search and processing, simple heuristics perform comparably to more 

complex algorithms, particularly when generalizing to new data—simplicity leads to 

robustness. 

Peter Todd and Gerd Gigerenzer (1999). 

 

1. Introduction 

 Hayek (1945) characterized markets as social mechanisms that disseminate and aggregate 

information dispersed among people and coordinate allocation of resources in the economy. 

Higher efficiency of market-driven allocations arises from the ability of markets to aggregate 

more information beyond the access or capability of a central planner. Yet the process by which 

markets carry out these aggregation and dissemination functions is not well understood. Muth’s 

(1961) rational expectations (RE) framework has been influential in economic theorizing about 

market equilibrium by imposing a consistency requirement between expectations and outcomes 

generated by actions based on those expectations. The fixed point argument of RE models, 

however, depends on making the right conjectures; it does not propose a path for even perfectly 

rational optimizing agents to reliably arrive at equilibrium. Critics question the descriptive 

validity of the RE model in a world where individuals’ cognitive capacities fall short of 

optimization and are better described by bounded rationality (Simon 1969).  
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In this study, we employ algorithmic trading to explore the apparent contradiction 

between sophisticated and efficient aggregate outcomes in markets populated with boundedly 

rational agents. We simulate markets with algorithmic traders who use simple heuristics to 

examine conditions under which the outcomes do or do not converge to the RE equilibria. We 

find that algorithmic markets do (and do not) converge under the same conditions in which 

laboratory markets populated with incentives-motivated human markets do (and do not) 

converge. Success of such simple algorithmic traders in replicating outcomes of human traders 

suggests that institutional properties of double auction markets is an important determinant of 

convergence to equilibria. Conversely, success of these simple heuristic strategies implies that 

the information processing necessary to attain theoretical equilibria in market institutions are far 

weaker than what is routinely assumed in deriving the equilibria mathematically. 

Derivations of rational expectations equilibria require individuals to conjecture state-

price correspondence which is fulfilled when they optimally act on those conjectures, learn 

others’ preferences or strategies, and arrive at unbiased estimates of the underlying parameters of 

the economy by observing market variables. In theory, in order to disseminate information and to 

aggregate diverse information held by individuals, they are assumed to be able to bootstrap their 

way to make assessments necessary to arrive in equilibrium; yet such assessments require 

observation of equilibrium outcomes.  This circular dependence gives rise to the importance of 

arriving at the right conjectures in Muth’s RE model. 

In Sciences of the Artificial, Simon (1969, p. 47) questioned the plausibility of human 

agents, with their limited cognition, forming rational expectations by intuition. Simon’s 

boundedly rational individual traders are unlikely to have the memory or reasoning power 

required to act in a manner consistent with the requirements of rational expectations models. 
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Tversky and Kahneman (1974) reinforced the behavioral critique of economic models by 

identifying a series of simple judgment heuristics (e.g., representativeness, anchor-and-adjust) 

which people use to make decisions, though theses heuristics generate sub-optimal results in 

single-shot experiments.  

 In this paper we push the argument a step further to ask if rational outcomes at 

market level (specifically aggregation of information) are consistent with individuals using 

simple heuristics documented by Newell and Simon (1973) and Tversky and Kahneman (1974). 

Market experiments by Plott and Sunder (1988) and Forsythe and Lundholm (1990) with profit-

motivated human agents revealed that they can aggregate diverse information to converge near 

RE equilibria, albeit slowly and imperfectly, under some circumstances but not in others. 

Likewise, prior experiments using simulated computer traders have reported that markets can 

yield efficient outcomes even when populated by minimally-intelligent traders in environments 

without uncertainty (Gode and Sunder 1993), with shared uncertainty (Jamal and Sunder 1996,) 

and even with asymmetric information (Jamal, Maier and Sunder 2016). The present paper 

examines markets with asymmetric distribution of information across traders typical of stock 

markets, and reports that simple biased heuristic behavior of individuals can also generate RE 

equilibria in double auctions through Hayekian aggregation of diverse bits of information in 

possession of individual traders. 

 We populate the markets with algorithmic traders who follow simple heuristics 

(means-ends analysis from Newell and Simon 1973, henceforth ME; and representativeness 

heuristic from Tversky and Kahneman 1974, henceforth R) which is widely considered to be 

suboptimal. In specified circumstances, outcomes of such markets also tend to converge to the 

neighborhood of the predictions of RE equilibria derived from assuming optimal agent behavior.   
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The present paper considers Plott and Sunder (1988, henceforth PS1988) double auction 

market environments in which individual agents are imperfectly but partially informed about the 

resolution of state uncertainty in a way that their aggregated information resolves all uncertainty. 

PS1988, using profit-motivated human traders,  had reported that double auctions with 3 states of 

nature can also converge to rational expectations equilibria when either (1) they have 

homogeneous preferences and markets are incomplete, or (2) they have heterogeneous 

preferences provided that the markets are complete.1 Forsythe and Lundholm (1990) experiment 

showed that even incomplete markets with heterogeneous preferences can aggregate information 

provided that the all preferences are common knowledge and traders get sufficient experience 

trading in that environment. 

The paper is organized in four sections. Section 2 describes the minimally-

intelligent algorithmic agents using two heuristics: a simple Means Ends heuristic 

(Newell and Simon 1973) and a representativeness heuristic (Tversky and Kahneman 

1974) in combination with “zero-intelligence” behavior in a double auction market.    In 

the third section, we implement these heuristics in incomplete and complete market 

environments in which all traders have diverse partial information, and compare the 

results with PS1988 data from parallel human experiments. The fourth section presents 

the implications of the findings and some concluding remarks. 

                                                           
1 PS1988 report on three series of markets (A, B and C). In Series A markets, traders have 

diverse dividends in each of 3 states. If the state is X, half the traders get a ~Y signal, and half get 

a ~Z signal. Markets do not reliably converge to the predictions of rational expectations 

equilibria. In Series B markets, traders have diverse dividends but they can trade three state-

contingent (i.e., Arrow-Debreu) securities simultaneously. These markets reliably converge to 

rational expectations predictions. In Series C markets, traders have homogenous dividends and 

rational expectations equilibria are attained; however, human subjects need considerable 

experience (learning) before results approach the RE equilibrium. 
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2.0 Design of Minimally-Intelligent Algorithmic Agents 

Algorithmic agents employed in this paper are a combination of three simple 

elements: means-ends heuristic (ME) to iteratively adjust current aspiration levels (CALs) 

in light of observed market prices, representativeness heuristic (R) to use conjecture-the-

state instead of expected value mode to set CALs, and zero-intelligence (ZI) to generate 

bids and asks using CALs as the anchor. We refer to this composite algorithm as a 

minimally-intelligent agent in the present context.    

2.1 Means-Ends Heuristic (ME) 

Simon (1955) proposed bounded rationality as a process model to understand and 

explain how humans, with their limited knowledge and cognitive capacity, behave in 

complex settings.  Humans develop and use simple heuristics to attain satisfactory, not 

optimal, outcomes. To understand human problem solving Newell, Shaw and Simon 

(1957) developed a general problem solving program (GPS) of which means-ends 

heuristic of iteratively reducing differences is a key element. It can be summarized in 

four steps: (i) compare the current knowledge state a with a goal state b to identify 

difference d between them; (ii) find an operator o that will reduce the difference d; (iii) 

apply the operator o to the current knowledge state a  to produce a new current 

knowledge state a* that is closer to b than a was; and (iv) repeat this process until the 

current knowledge state a* is satisfactorily close to the goal state b. Knowledge states of 

traders can be represented as aspiration levels (Simon 1956) that adjust in response to 

experience.  An ME heuristic for a trader thus requires a mechanism for setting an initial 

aspiration level, and a method for adjusting aspiration levels based on experience (e.g., 

Jamal and Sunder 1996).  

At the beginning of each period, the initial aspiration level of each trader (CAL0) 

is set equal to the expected value of that trader’s dividends conditional on the information 
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the trader has.  For a 3-state {X, Y, Z} security, if a trader has information Not X {~X), it 

calculates the expected value from conditional probabilities of states Y and Z. 

E (D ǀ ~X) =   Prob (Y ǀ ~X) * Div (Y) + Prob (Z ǀ ~X) * Div (Z)). (1) 

After each market transaction (generated by a process described below) the ME heuristic 

is activated to make gradual adjustments to each subject’s price aspirations by placing a weight 

(0 ≥ γ ≤ 1) on new price Pt, and weight (1- γ) on the most recent CALt-1 . This can be represented 

as a first order adaptive process: 

CALt+1 = (1 - γ) CALt   + γ Pt. (2) 

Starting with CAL0 as the initial value, through substitution we obtain:  

CALt+1 = (1 - γ)t+1 CAL0   + γ ((1 - γ)tP1 + (1 - γ)t-1 P2 + … + (1 - γ) Pt-1 + Pt). (3) 

2.2 Representativeness Heuristic (R) 

Maximization of expected values, expected utilities, or maximin are well-known 

approaches to deciding under uncertainty. Instead, the R heuristic (Tversky and 

Kahneman 1974) picks the most probable outcome under uncertainty as if it is the one 

which will occur. For example, if the state space  X, Y, and Prob. (X) > Prob. (Y), X 

being more likely, is considered the representative outcome of the process. Suppose the 

subject receives an imperfect signal si from set S =s1, s2 such that Prob. (X |s1) > Prob 

(Y |s1).  A subject who sees signal s1 infers the state to be X because this state is more 

likely to generate the observed signal.  The R heuristic is insensitive to base rates and 

uncertainty, rests on an extreme assumption about the learning or adjustment process, and 

is generally considered to be a cause of biased and irrational individual behavior. 

According to Tversky and Kahneman (1974), the R heuristic is used by individuals to 

make a conjecture about a state and to treat this conjecture as being certain.  For any 

trader i at any time t, the aspiration level generated by heuristic R is the dividend closest 

to the most recently observed transaction price Pt.  

For example, consider a dividend vector for states X, Y and Z (0.1, 0.3, 0.6) with 

a last traded price of 0.4.  Suppose that the true state is X.  If the trader has been told that 

the true state is not Y, then the closest dividend corresponds to state Z, and so the trader 
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would set their CAL to 0.6; however, if the trader were told that the true state is not Z, 

then they would select Y with a CAL of 0.3. 

  

2.3 Zero-intelligence (ZI) Heuristic 

Minimally intelligent algorithmic agents deployed in the markets reported here 

apply ZI heuristic (Gode and Sunder 1993) to CAL anchors set by either the ME and R 

heuristics (in a manner described below) for generating bids and asks  —bidding below 

and asking above the CAL, using random numbers.  When called upon to generate a bid, 

ZI picks a uniformly distributed random number ~U (0, CAL); when called upon to 

generate an ask, it picks a uniformly distributed random number ~U (CAL, U) when U is 

an exogenously specified constant (the upper limit of prices) for the entire simulation.    

2.4 Integration of Three Heuristics into Market Simulation 

Each period consists of I (= 5,000) iterations, and starts out with a clean slate (i.e., 

nothing is carried over from the past periods in the memory) The only difference among 

periods is the realized state of the world—X, Y, or Z—that determine the dividends the 

securities pay to various traders.   

Algorithmic agents deployed in these markets use an ME and R heuristics to estimate 

their CAL, and use it to implement a Zero-Intelligence (ZI) strategy after Gode and Sunder 

(1993) consisting of bidding randomly below and asking above their aspiration levels.  Traders 

draw a uniformly distributed random number between 0 and an upper limit of 1. If number 

drawn is less than or equal to 0.5, the trader will generate a bid.  If the number drawn is greater 

than 0.5, an ask is generated.  If the action is a bid, then the amount of the bid is determined by 

drawing a second randomly generated number between a lower bound of 0 and an upper bound 

of the individual trader’s CAL.  This bid is then compared to the highest bid that currently exists 
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in the market.  If the new bid is higher than the existing highest bid, the new bid becomes the 

new highest bid in the market.  Correspondingly, if the action is an ask, then the amount of the 

ask is determined by generating a second random number in the range having a lower bound of 

the traders CAL and an upper bound of 1.  This newly generated ask is then compared to the 

existing lowest ask in the market.  If the new ask is less than the existing ask, then the new ask 

becomes the new lowest ask in the market.   Bids and asks are generated randomly, distributed 

independently, identically, and uniformly over these ranges (see Figure 1). These algorithmic 

agents are myopic, making no attempt to anticipate, backward induct, or theorize about the 

behavior of other traders. They simply use the knowledge of observable past market events 

(transaction prices) to estimate their opportunity sets, and choose randomly from these sets.  

Insert figure 1 about here 

These markets are populated by traders of each payoff type who all have some partial 

information about the realized state of world. As shown in (1) and Figure 2, all traders of type j 

use their expected dividend conditional on their partial information to set their initial CAL using 

the prior state probabilities. As each trade occurs, they update their CALs after each transaction 

using the ME heuristic (i.e., first order adaptive process) specified in (2) above and a given 

randomly chosen value of the adaptive parameter   for the simulation (see Section 3.4 below).  

Submission of bids and asks continues with the updated CALs serving as constraints on the 

opportunity sets of traders until the next transaction occurs, and this process is repeated for 500 

iterations (phase 1 of each period).  

In each iteration of phase 2 (iterations 501 to 5,000) which lasts until the end of the 

period, first a value of parameter ρ is drawn independently ~U(0, 0.1). Second, the realized value 

of ρ is used to make a binary random draw between heuristics R with probability ρ and ME with 
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probability (1- ρ). The heuristic chosen in this second step is used to set the CAL in this iteration. 

The two independent draws in each iteration in the second phase mean that at any stage in phase 

2, the number of traders using CAL based on the R heuristic can vary between 0 and 12 traders 

(as compared to being fixed at 0 in phase 1). 

At the end of each period, the realized state is revealed, dividends are paid to their 

accounts, and each trader’s security endowment is refreshed for the following period. CALs of all 

traders are re-initialized to their respective expected values conditional on their new signal using 

(1); in the spirit of minimally intelligent algorithms, nothing is carried over from the preceding 

period 2  

------------------------------------------------------------------------------------------- 

Insert Figure 2 about here 

------------------------------------------------------------------------------------------- 

3.1 Market Environments 

PS1988 report results for three sets of markets labeled Series A (heterogeneous 

preferences, incomplete market), Series B (heterogeneous preferences, complete market), 

and Series C (homogeneous preferences, incomplete market). The state space  = {X, Y, 

Z} consists of three states. At the beginning of the period the state is realized, and the 

traders receive a private signal as follows: If the state is X, half the traders learn that the 

state is Not Y, and the other half learn that the state is Not Z. Similar information is 

provided under state Y (Not X and Not Z) and state Z (Not X and Not Y).  No trader 

knows the state of nature but if they could pool their information, the state would be 

known with certainty. Traders are not allowed to communicate with one another except 

through trading.  The current paper also reports the results for two markets of each of the 

same three series simulated with parameters given in Tables 1 and 2. We present single as 

                                                           
2  At this stage, it would have been possible for the agents to keep track of the prices associated with each realized 

state and use this information in subsequent periods. In the spirit of minimal intelligence, our agents do not do so, 

and uninformed agents simply carry forward their CAL from the end of one period to the beginning of the next 

period. The CAL of informed agents responds to a perfect signal about the state realized in each period and is not 

dependent on experience in previous periods. 
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well as 100-replications charts for each of the six markets (Markets 6 and 11 from Series 

A, Markets 4 and 5 from Series B, and Markets 7 and 8 from Series C).  In each market, 

there are 12 traders who trade three-state, single period assets.  Before trading is started 

in each period, a random state of nature (X, Y, or Z) was drawn in PS1988 human subject 

experiments. In the simulations presented in the current paper, the same sequence of 

states is assumed to have been realized in each market session.  

At the beginning of each period, each of the 12 algorithmic traders is endowed 

with k (= 2 or 8) securities of each type.  Following PS1988, each security pays a single 

state-contingent dividend that varies across three groups within the 12 traders in Series A 

and B, and is identical in Series C.  The vector of state-contingent dividends for each 

trader is known privately by each trader.  These dividend values define the maximum 

(minimum) amount the trader should be willing to pay to buy (sell) a certificate.  

As described above, in the simulated markets, the ME, R and ZI heuristics are 

combined to define the minimally intelligent algorithmic agents in a continuous double 

auction market. Again, the algorithmic traders are completely myopic and make no 

attempt to infer the knowledge of other traders. At the end of the period, the actual state 

(X , Y, or Z) is revealed, dividends are paid, and profit for each trader is computed. 

In Series A and C, they trade a single security which pays the individual trader’s 

X dividend if state X is realized, Y dividend if state Y is realized, and Z dividend if state Z 

is realized. Under state X, six traders learn information Not Y and six learn Not Z; and 

similarly for states Y and Z. In Series B, they simultaneously trade X, Y, and Z-contingent 

Arrow-Debreu securities in three different markets. 

 

3.2 Asset Markets Series A, B, and C 

In simulations of PS1988 all traders have some information, nobody has all the 

information, but the information dispersed among the traders, if aggregated, is perfect.  

Since Series A and C consist of single security markets, each trader i initializes its CALi 

to one of the three possible signal-contingent expected dividend values as follows using 

(1):   

CALi = (E(D)/ Signal not X) = (Pr(Y) * (DYi) + Pr(Z) * (DZi))/(Pr(Y) + Pr(Z)); 

or     = (E(D)/ Signal not Y) = (Pr(X) * (DXi) + Pr(Z) * (DZi))/(Pr(X) + Pr (Z)); 

or    = (E(D)/ Signal not Z) = (Pr(Y) * (DYi) + Pr(X) * (DXi)/( Pr(X) + Pr(Y)). (4) 
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 Since Series B consists of three markets (for X-contingent, Y-contingent, and Z-

contingent securities), each trader has memory for three signal-contingent CALs (CAL(X)/ 

Signal not X, CAL(X)/ Signal not Y, and CAL(X)/ Signal not Z for X-contingent market) 

for each market for a total of nine CALs. At the beginning of the first period of trading, 

each trader calculates its expected values of the securities as follows: 

Signal Not X: CALi(X) = 0;  

CALi(Y) = Pr(Y)/( Pr(Y) + Pr(Z))*DYi; 

CALi(Z) = Pr(Z)/( Pr(Y) + Pr(Z))*DZi; 

Signal Not Y: CALi(X) = Pr(X)/( Pr(X) + Pr(Z))*DXi;  

CALi(Y) = 0; 

CALi(Z) = Pr(Z)/( Pr(X) + Pr(Z))*DZi; 

Signal Not Z: CALi(X) = Pr(X)/( Pr(X) + Pr(Y))*DXi;  

CALi(Y) = Pr(Y)/( Pr(X) + Pr(Y))*DYi; 

CALi (Z) = 0.     (5) 

 Starting with these signal-contingent CALs at the beginning of the first period of 

the market, each trader updates them using ME heuristic in phase one and ME or R 

heuristic in phase 2 described after each transaction.  

In Series B (Contingent Claims), representativeness is implemented in phase two 

with probability ρ in each iteration, by exploiting knowledge that at least some traders 

know that a particular state will not occur (and therefore set their CAL = 0 for that one 

state). No trader gets a signal to set the true state at 0, but some get a signal to set CAL= 0 

for the other two states. Prices in these two (not true) states may drift downward under 

the pressure of market bids and offers.  In this instance, traders view the vector of 

observed prices from trades in each security from the remaining two possible states and 

then choose the state which corresponds to the observed maximum price. This state is 

then treated as occurring with certainty (CAL= Dividend of this state). The 

representativeness CAL is used for the current iteration only; whether R is used in the 

next iteration is determined by a fresh independent draw with probability ρ (otherwise 

CAL from ME is used).  This procedure is repeated for 5,000 iterations until the end of 

the period. At the end of the period, the state is revealed, dividends are credited to 

accounts according to the number of securities traders hold at the time. The number of 
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securities are then reset to the starting endowments (either 2 or 8 per trader) for the next 

period. 

4.0 Results 

 As benchmarks for comparison, PS1988 results with human traders revealed that 

(a) Series A (heterogeneous preferences and incomplete) markets did not aggregate 

information; (b) Series B (heterogeneous preferences and complete) markets and (c) 

Series C (homogeneous preferences and incomplete) markets did aggregate information 

to approximate RE equilibrium outcomes. In each of Figures 3-8, Panel A reproduces the 

price charts from PS1988.  

4.1 Series A (Single Security, Heterogeneous Preferences, PS1988 Mkts 6 and 11)  

 Panels B and C of Figure 3 show the simulation results of Series A Market 6 for a single 

run and for 100 replications (with median price in red), respectively. The solid horizontal line in 

each period shows the RE equilibrium price for the period (depending on the realized state of the 

world). Similar to human markets in Panel A, in the single run Panel B, prices do not get 

anywhere near the REE price in any of the periods 3, 5, 6, and 13 when the realized state was Z. 

The same is true of the cloud of transaction prices from 100 independent replications shown in 

Panel C, suggesting that the failure of the single market in Panel B to approximate REE is not a 

fluke. 

 ------------------------------------------------------------------------------------------- 

Insert Figure 3 about here 

------------------------------------------------------------------------------------------- 

 

 Forsythe and Lundhom (1990) reported that making heterogeneous preferences 

common knowledge and more trading experience resulted in even incomplete markets 

achieving REE in laboratory experiments with human traders. In our simulations, we 

cannot make information common knowledge, but we repeated Market 6 by increasing 

the endowment per trader from 2 to 8 in order to have a larger volume of trading each 

period. These results are shown in Figure 3 Panels D and E; they do not reveal a tendency 
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of the simulated markets to get closer to REE with increased trading volume. Both human 

and simulated traders show little learning effects. Human subjects struggle throughout the 

experiment with incorrect price convergence (and low efficiency levels?) right to the end 

of the experiment. 

 Figure 4 shows the results for a second randomly chosen Market 11 from Series A 

of PS1988.  These results are similar to the results for Market 6 in all respects for both 

Token 2 as well as Token 8 markets.  

------------------------------------------------------------------------------------------- 

Insert Figure 4 about here 

------------------------------------------------------------------------------------------- 

 

 The middle four bars for each period in Fig. 9, show that the allocative efficiency 

of markets 6 and 11 with 2- as well as 8-token endowment simulations remains around 

60%, falling far short of 100% observed in Series B and Series C markets.  

------------------------------------------------------------------------------------------- 

Insert Figure 9 about here 

------------------------------------------------------------------------------------------- 

 

4.2 Series B Complete Markets for Arrow-Debreu State-Contingent Securities 

(PS1988 Markets 4 and 5) 

 Three panels of Figure 5 show the results of eight periods of Series C Market 4 as 

follows: Human markets in Panel A, single-run simulation in Panel B and 100 

replications of simulation (with median) in Panel C.  

------------------------------------------------------------------------------------------- 

Insert Figure 5 about here 

------------------------------------------------------------------------------------------- 

 

 A review of Figure 5, panel B shows that in a single run all three state-contingent 

market prices converge near the respective RE equilibrium (which is equal to the highest 

of the state-contingent trader dividends in the market corresponding to the state which is 
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realized, and zero in the other two markets). This is quite comparable to the behavior of 

markets populated with human traders in Panel A. The cloud of 100 replications of the 

simulation shown in Panel C (along with the median prices) confirms that this single-run 

result is not just a happenstance.  

 Three panels of Figure 6 (for PS1988 Series B Market 5) essentially support the 

same observations about Market 4 above. 

------------------------------------------------------------------------------------------- 

Insert Figure 6 about here 

------------------------------------------------------------------------------------------- 

Human subjects need the first two periods to learn about the market, but then in 

later periods converge reliably to the RE equilibria (see Figure 4, panel B). Our simulated 

markets converge faster to RE equilibria (right from Period 1) but then don’t have any 

capacity to learn from period to period, simulated results are thus a noisier version of the 

human data.  

The left two bars for each period in Fig. 9 show that the successful aggregation of 

information in Series B markets is also reflected in high allocative efficiency. With only a 

couple of exceptions where the efficiency falls short by two or three percent, all other 

periods achieve 100% allocative efficiency.  

 

4.3 Series C (Single Security, Homogeneous Preferences, PS1988 Mkts 7 and 8)  

Three panels of Figure 7 show the results of fourteen periods of Series C Market 7 

from PS1988. Panel A shows the results from human traders, B for a single run of a 

market populated with minimally-intelligent traders,  and Panel C shows combined data 

from 100 independent replications of minimally-intelligent market with identical 

sequence of state realizations (with median price).  

------------------------------------------------------------------------------------------- 

Insert Figure 7 about here 

------------------------------------------------------------------------------------------- 
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As seen in Panel A, convergence to RE in human markets takes many periods of 

trading and occurs reliably only in the later part of the session. In the single-run chart in 

Panel B, the markets converge to RE in all except period 8. This difficulty in conjecturing 

the right state to arrive in REE is even clearer in Panel C which shows a cloud of 100 

simulations. Even though the market ultimately converges to the REE price for the 

realized state for most of the runs, there are non-trivial number of runs in which the 

market initially conjectures the state to be Y when in fact it is Z; and the market initially 

conjectures the state to be Z, when in fact it is X. These results suggests that derivation of 

REE outcomes from these simple heuristics cannot be taken for granted, and a close 

scrutiny is needed about the interaction between the individual behavior defined by these 

heuristics and the market rules and environment in which trading takes place.  However, 

it is noteworthy that, in most cases, the market is ultimately able to abandon the wrong 

conjectures in favor of the right conjectures by the end of the trading periods.  

Figure 8 shows the results for seven periods of another Series C market 8. These 

simulated results are similar to the Plott and Sunder (1988) human data (panel A) though 

human subjects are able to converge more reliably and less noisily to RE equilibria across 

all 3 states. Human subjects need much less time to learn how to infer the correct state. 

The single run the market converges close to the RE equilibrium in all three states.  These 

Series C simulated results are also less noisy than for Series A (diverse dividends) and 

there are no off-equilibrium trades occurring late in the period. For our simulated traders, 

Panel C shows that a 100-period run average exhibits the same pattern of behavior as a 

single run, and wrong conjectures about the state of the world are ultimately corrected by 

the end of the periods. Simulated markets converge close to RE equilibria in all states.   

------------------------------------------------------------------------------------------- 

Insert Figure 8 about here 

------------------------------------------------------------------------------------------- 

As seen in the two right-most bars for each period in Figure 9, allocative 

efficiency of the simulated incomplete markets with homogeneous preferences is always 

100 percent, that is, all securities end up in the hands of the traders who value them most 

in the actually realized state of the world.  
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5. Concluding Remarks 

The evidence presented in this paper shows that in fairly complex market 

environments, individual behavior described by simple heuristics can accomplish market-

level outcomes whose formal derivation is based on strong optimization assumptions. 

Even if a key assumption (individual optimization) of the theory is descriptively invalid, 

it does not necessarily undermine the predictive value of the theory at the aggregate level. 

Our findings are consistent with Gigerenzer et al. (1999) who built on Simon’s paradigm 

by proposing that individuals use “fast and frugal” heuristics to accomplish complex 

tasks. 

The limited computational or other “cognitive” abilities with which these 

algorithmic traders are endowed do not exceed the documented abilities of human 

cognition. In fact, by most measures, they fall short of human faculties by a long shot. 

Yet, these simulated markets with dispersed information converge to close proximity of 

rational expectations equilibria and attain high allocative efficiency in Series B 

(heterogeneous preferences and complete markets) and Series C (homogeneous 

preferences and incomplete markets). Allocative efficiency is much lower (about 60%) in 

Series A markets (heterogeneous preferences and incomplete markets).  

In the cognitive psychology literature (e.g., Tversky and Kahneman 1974), use of 

representativeness (R) and other such heuristics is often depicted as a counterpoint to the 

rationality assumptions frequently used in economic theory. In our simulations, we found 

it difficult for security markets to achieve REE without the use of the R heuristic. The 

leap of faith involved in this heuristic turned out to help make the right conjectures about 

the state of the world, and thus complete the bootstrap process necessary for arriving at 

the REE fixed point. In other words, in at least this market setting, the R heuristic is 

functional and assists the market to aggregate information and yield outcomes close to 

the REE.  

We interpret the results to suggest that, even in these relatively complex 

environments, allocative efficiency of markets remains largely a function of their 

structure, not intelligence or behavior of agents. Perhaps it would be appropriate to 

recognize this structural rationality independent of rationality we attribute to individual 

agents.  Out inability to construct a path from either rational or boundedly-rational 
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individual behavior to efficient aggregate level outcomes does not mean that such 

outcomes cannot emerge from complex interactions among simple agents within the 

constraints of markets and other social institutions. 
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Figure 1: Bid, Ask, and Transactions Algorithm 

 

 
 

The algorithmic traders in our simulated markets send a message by first drawing a random number from a uniform distribution bounded 

by 0 and 1. If the number is less than or equal (greater than) to 0.5, the message is a bid (ask).  If the message is a bid, the trader draws a 

second random number from a uniform distribution bounded by 0 and the current aspiration level (CAL).  If the message is an ask, the 

second random number is drawn from a uniform distribution between CAL and 1.  If the trader’s bid is more than the highest current bid in 

the market, the former becomes the current bid. If the trader’s ask is less than the current (lowest) ask, then the former becomes the current 

ask in the market. When the current bid is equal to (or exceeds) the current ask, a trade occurs at the mid-point of the bid and ask. Visit 

www.zitraders.com for outline of the code. 

http://www.zitraders.com/
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Figure 2a: Means-End (ME) Heuristic for Setting Current Aspiration Levels (CAL’s) 

 

 
 

Figure 2b: Representativeness (R) Heuristic for Setting Current Aspiration Levels (CAL’s) 

 

 
 

Traders set a current aspiration level (CAL) to generate bids and asks. For the first phase of each period the traders use the ME algorithm 

(Panel a) exclusively to adjust their CAL after each trade. In the second phase, an individual trader may use the R algorithm (Panel b) on 

any iteration with probability ρ by setting CAL = closest possible dividend given the last transaction price, and then continue to use the 

ME algorithm after each transaction. Traders do not carry forward CAL from previous periods.  
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Figure 3: Information Aggregation in Series A Markets (Incomplete, Heterogeneous Preferences)  

Panel A: PS1988 Human Market 6 (2 token endowment) 

 
Fig. 3 Panel B: Simulated Market 6 Single Run (2-token endowment) 
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Fig. 3 Panel C: Simulated Market 6 100 runs plus median (2-token endowment) 
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Fig. 3 Panel D: Simulated Market 6 Single Run (8-token endowment) 

 
Fig. 3 Panel E: Simulated Market 6 100 runs plus median (8-token endowment) 

 



26 

 

Figure 4: Information Aggregation in Series A Markets (Incomplete, Heterogeneous Preferences),  

Panel A: PS1988 Human Market 11 (2 token endowment) 

 
 

 

Fig. 4 Panel B: Simulated Market 11 Single Run (2-token endowment) 
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Fig. 4 Panel C: Simulated Market 11 100 runs plus median (2-token endowment) 
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Fig. 4 Panel D: Simulated Market 11 Single Run (8-token endowment) 
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Fig. 4 Panel E: Simulated Market 11 100 runs plus median (8-token endowment) 
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Figure 5: Information Aggregation in Series B Markets (Complete, Heterogeneous Preferences), PS1988 Market 4  

Panel A: PS1988 Human Market 4 (2 token endowment) 
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Fig. 5 Panel B: Simulated Market 4 Single Run (2-token endowment) 
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Fig. 5 Panel C: Simulated Market 4 100 runs plus median (2-token endowment) 
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Figure 6: Information Aggregation in Series B Markets (Complete, Heterogeneous Preferences) 

Panel A: PS1988 Human Market 5 (2 token endowment) 
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Fig. 6 Panel B: Simulated Market 5 Single run plus median (2-token endowment) 
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Fig. 6 Panel C: Simulated Market 5 100 runs plus median (2-token endowment) 
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Figure 7: Information Aggregation in Series C Markets (Incomplete, Homogeneous Preferences) 

Panel A: PS1988 Human Market 7 (2 token endowment) 

 
 

Fig. 7 Panel B: Simulated Market 7 Single Run (2-token endowment) 
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Fig. 7 Panel C: Simulated Market 7 100 runs plus median (2-token endowment) 
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Figure 8: Information Aggregation in Series C Markets (Incomplete, Homogeneous Preferences  

Panel A: PS1988 Human Market 8 (2 token endowment) 

 
Fig. 8 Panel B: Simulated Market 8 Single Run (2-token endowment) 
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Fig. 8 Panel C: Simulated Market 8 100 runs plus median (2-tokens) 
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Table 1 – Market Parameters 

  

Series Corresponding Market State Probability 

 

Dividends 

 RE Price Prediction 

        

Type 

I 

Type 

II 

Type 

III 

1 

Security  

X 

Security 

Y 

Security 

Z 

Security 

Series B Plott and Sunder 1988 

Market 4 
X 0.35 0.07 0.23 0.1  0.23 0 0 

Complete  Y 0.2 0.13 0.09 0.16  0 0.16 0 

Hetero. Z 0.45 0.3 0.06 0.2  0 0 0.3 

                   

Series B Plott and Sunder 1988 

Market 5 

  

X 1/3 0.14 0.46 0.2  0.46 0 0 

Complete  Y 1/3 0.26 0.18 0.32  0 0.32 0 

Hetero.  Z 1/3 0.6 0.12 0.4  0 0 0.6 

                   

Series A Plott and Sunder 1988  

Market 6 and 11 

  

X 0.333 0.5 0.17 0.31 0.5    

Incomplete  Y 0.333 0.24 0.45 0.19 0.45    

Hetero.  Z 0.333 0.59 0.11 0.39 0.59    

                   

Series C Plott and Sunder 1988 

Market 7 

  

X 1/3 0.05 0.05 0.05 0.05    

Incomplete  Y 1/3 0.24 0.24 0.24 0.24    

Homo.  Z 1/3 0.59 0.59 0.59 0.59    

                   

Series C Plott and Sunder 1988 

Market 8 

  

X 1/3 0.125 0.125 0.125 0.125    

Incomplete  Y 1/3 0.375 0.375 0.375 0.375    

Homo.  Z 1/3 0.525 0.525 0.525 0.525    
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Table 2: Simulation Parameters 

 

Simulation Parameter Value 

Number of Traders 12 

Number of Endowed Tokens per Trader (at the beginning of each period) 2 or 8 

Token Short Sale Constraint Yes 

Cash Endowment 0 

Borrowing Constraint (i.e., Negative Cash Balance Constraint) None 

Total Number of Iterations per Period 5,000 

Number of Iterations in Phase 1 and 2 of Each Period 500 and 4,500 

Adaptive Parameter for ME Heuristic (γ) U ~ (0,05, 0.15) 

Probability (ρ) of R Heuristic in Phase 1  0  

Probability (ρ) of R Heuristic in Phase 2 (Drawn in Each Iteration) U ~ (0, 0.1) 
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