11-1-2012

The Federal Reserve's Term Asset Backed Securities Loan Facility

Adam Ashcraft
Malz Allan
Pozsar Zoltan

https://elischolar.library.yale.edu/ypfs-documents/18

This resource is brought to you for free and open access by the Yale Program on Financial Stability and EliScholar, a digital platform for scholarly publishing provided by Yale University Library.
For more information, please contact yfps@yale.edu.
The Federal Reserve’s Term Asset-Backed Securities Loan Facility

1. Introduction

In the fall of 2008, investors stopped participating in securitization markets. They fled not only the residential mortgage-backed securities that triggered the financial crisis, but also consumer and business asset-backed securities (ABS), which had a long track record of strong performance, and commercial mortgage-backed securities (CMBS).

The rapid disintermediation of money market funds following the collapse of Lehman Brothers had a dramatic impact on the investor base for structured credit, which included short-term funding from money funds through repurchase agreements and asset-backed commercial paper (ABCP) issuance. With no buyers and plenty of distressed sellers, the price of structured credit bonds quickly incorporated large liquidity premiums, which significantly increased the cost of new issues and, consequently, the cost of originating new loans. The unprecedented widening of structured credit spreads rendered new issuance uneconomical, and the shutdown in term funding markets for issuers contributed to a contraction in credit that threatened to exacerbate the downturn in the economy.

Programs such as the U.S. Treasury’s guarantee of money funds and the Federal Reserve’s Asset-Backed Commercial Paper Money Market Mutual Fund Liquidity Facility (AMLF) supported the orderly liquidation of prime money market funds.

• The securitization markets for consumer and business ABS and CMBS came to a near-complete halt in the fall of 2008, when investors stopped participating in these markets.

• ABS markets supply a substantial share of credit to consumers and small businesses, so their disruption threatened to exacerbate the downturn in the economy.

• On November 25, 2008, the Federal Reserve announced the creation of the TALF program to address the funding liquidity problem in securitization markets.

• Under the program, the Federal Reserve extended term loans collateralized by securities to buyers of certain high-quality ABS and CMBS, with the intent of reopening the new-issueABS market.

• Through the TALF program, the Federal Reserve was able to prevent the shutdown of lending to consumers and small businesses, while limiting the public sector’s risk.

Adam Ashcraft is a senior vice president in the Federal Reserve Bank of New York’s Credit and Payments Risk Group; Allan Malz is a vice president and senior analytical advisor in the Bank’s Markets Group and former head of policy and analytics for TALF; Zoltan Pozsar was a senior trader/analyst in the Markets Group when this article was written.

Correspondence: adam.ashcraft@ny.frb.org, allan.malz@ny.frb.org

The authors thank, without making them responsible for any errors, their colleagues who provided help with this article Tobias Adrian, Elizabeth Caviness, Kevin Clark, Andrew Haughwout, Preeti Jain, Jordan Pollinger, Ira Selig, Natasha Zabka, and Alessandro Zori. These and many other colleagues at the New York Fed, the Federal Reserve Board, and a number of District banks also invested countless hours and endless ingenuity in making the TALF program work—a contribution far more important than this modest attempt to document their work.
positions. However, it was the Term Asset-Backed Securities Loan Facility (TALF) and Commercial Paper Funding Facility (CPFF) that helped stabilize funding markets for issuers. TALF extended term loans, collateralized by the securities, to buyers of certain high-quality asset-backed securities and commercial mortgage-backed securities.

Without support by the public sector, it could have taken considerable time for a market-clearing price of leverage to reemerge, and that likely would have initially occurred only at financing rates and other terms that would have made funding costs prohibitive for well-underwritten structured credit. TALF endeavored to fill the balance sheet vacuum left in the wake of the withdrawal of levered ABS investors and to short-circuit the seemingly endless cycle of ABS spread-widening, by providing term asset-backed funding otherwise unavailable to investors. By reopening the new-issue ABS market, the regular flow of assets from loan originators to loan warehouses and to new-issue ABS and finally ABS investors would be restored, ultimately supporting the provision of credit to consumers and small businesses.

An important liquidity effect of the shutdown of securitization markets was the disappearance of price observations. In the absence of benchmark securitization transactions and secondary-market trading, lenders had poor information about their cost of funding. By promoting the new issue and trading of structured credit, TALF aimed to reduce uncertainty to issuers about their funding costs, making it more attractive to originate new loans.

TALF loans could be secured by certain newly issued ABS and CMBS as well as by certain previously issued, or “legacy,” CMBS. The legacy CMBS program was intended to support new-issue CMBS by facilitating trading and price discovery, while also reducing liquidity premiums. Secondary-market spreads constitute hurdle rates for new issuance, since potential investors have the choice of buying bonds in the secondary market rather than the new-issue market. These spreads were wide enough in late 2008 to make ultimate loan rates uneconomical. Even after accounting for investors’ distaste for the low underwriting standards associated with late-vintage CMBS deals, secondary-market spreads were an impediment to making the economics of new issuance work. To the extent that the market was expressing aversion to legacy CMBS assets as opposed to the CMBS asset class as a whole, the legacy program could address this by funding leveraged investors’ purchases of even the safest bonds from otherwise toxic CMBS deals. Tighter legacy CMBS would reduce the cost of new loans by reducing investors’ opportunity costs.

In an environment of impaired funding liquidity, many investors wished to have drastically lower leverage, but were unwilling to sell assets at distressed prices. Some potential investors would be hindered from buying new securitization bonds if they could not first reduce the size of their balance sheets, and they could not do so without a levered bid for the assets. The legacy program was also intended to reverse the depletion of capital caused by market illiquidity for institutions holding these bonds, thus directly reducing their leverage and better positioning them to issue new commercial real estate loans.

TALF played a significant role in the policy response to the financial crisis. This article suggests that TALF made an important contribution to preventing the securitization markets from shutting down entirely and abruptly. The program appears to have done so through its intended effects on market and funding liquidity, which in turn restored pricing levels that were compatible with continued credit intermediation through the securitization channel, albeit at lower volumes. While TALF was successful in reviving securitization markets where liquidity was the fundamental problem, it did not prevent a significant collapse in the amount of credit intermediation. The collapse in credit provided by both banks and nonbank investors through securitization has declined dramatically, owing in part to lower demand for credit and in part to a reduction in the supply of credit by lenders, each related to the severe economic downturn.

Because of its unusual features compared with the Federal Reserve’s other emergency liquidity programs, TALF touches on a number of interrelated research and policy issues in economics and finance, including the scope of the central bank’s lender-of-last-resort function, the monetary policy transmission mechanism, the nature of liquidity, and the risk management of complex products. While this article cannot address them all, it does at least call attention to the wide range of issues that the TALF experience has raised.
Our study proceeds as follows. We begin by reviewing the crisis events to which the TALF responded. We then describe the thinking behind the design of the facility. Finally, we attempt to measure the extent to which the program succeeded.

2. Background to the Collapse

Securitization involves the sale of a pool of loans or receivables, generally referred to as collateral, to a bankruptcy-remote trust, which issues bonds called asset-backed securities, or ABS. If the loans are mortgages secured by residential or commercial real estate, the securities are called residential mortgage-backed securities, or RMBS, or commercial mortgage-backed securities, or CMBS.1 The process generally involves tranching, which allocates principal and/or losses from the collateral in a certain order to those bonds, with those receiving principal first and losses last being the most senior. In the development of securitization markets, the fineness of ABS tranching increased and the investor base for ABS shifted from traditional buy-and-hold investors (such as pensions) to investors relying on short-term borrowing (such as structured investment vehicles, or SIVs).

In this sketch of the securitization markets’ evolution up until the crisis, we highlight two key features: 1) in aggregate financial intermediation, the share of nonbanks, which rely more heavily than banks on ABS for funding, grew, and 2) to finance purchases of ABS, investors increasingly relied on short-term funding markets, which were disrupted following the collapse of Lehman.

2.1 Nonbanks Have Become an Important Part of the Origination of Credit

Over the prior quarter-century, securitization has played an increasing role in credit intermediation. Chart 1 plots credit intermediation by commercial banks and ABS issuers. These data on net issuance of securitized credit products include residential mortgages as well as consumer and small-business debt and commercial mortgages. The chart illustrates that, from near zero in 1984, ABS issuance reached levels on a par with bank lending by the beginning of the last decade. When the recent credit crunch hit, ABS issuance dropped much more rapidly than bank lending. New issuance disappeared, and net issuance, which excludes amortization and repayment of outstanding bonds, turned negative in 2008.

The types of institutions that supplied consumers and small businesses with credit have changed since the 1980s. Banks became less and less important intermediaries of auto loans, student loans, and equipment loans—to name the largest categories—and were displaced by finance companies2 as the main originators of these types of credit. There are also several other niche loan types, such as auto dealer floorplan loans and franchise loans, which finance dealer inventories or the purchase of a franchise. In these categories as well, finance companies have taken over from banks as the main lenders.

Among the primary providers of different types of credit just prior to the financial crisis, auto finance companies and the captive finance arms of foreign auto manufacturers topped banks in terms of the total volume of auto loans, leases, and dealer floorplan loans. Nonbank lenders dwarfed banks in the volume of student loans originated. The captive finance arms of big-ticket equipment manufacturers had overtaken banks in the issuance of equipment loans, leases, and diversified floorplan loans. Equipment finance companies had become

1 The term ABS generally refers to bonds backed by both mortgage and nonmortgage loans and receivables, but is sometimes used more narrowly to mean only bonds backed by nonmortgage loans. In this article, we generally use the term ABS in this narrower sense and write “ABS and CMBS” to indicate bonds backed by both nonmortgage loans and commercial-mortgage loans. But to reduce redundancy, we sometimes use the term “ABS” in its more generic sense.

2 Finance companies are nonbank credit intermediaries. Like banks, finance companies lend; however, unlike banks, they are not funded with deposits, but in wholesale funding markets. Furthermore, finance companies’ funding sources are not insured by the Federal Deposit Insurance Corporation (FDIC) and their rollover risks are not backed by the Federal Reserve’s discount window. Examples of finance companies include Ford Motor Credit, AmeriCredit, and (prior to its conversion to a bank holding company) American Express.
The types of institutions that supplied consumers and small businesses with credit have changed since the 1980s. Banks became less and less important intermediaries of auto loans, student loans, and equipment loans—to name the largest categories—and were displaced by finance companies as the main originators of these types of credit.

2.2 Nonbanks Rely on Securitization for Funding

Funding for these nonbank lending activities came mainly through wholesale channels, including unsecured corporate debt, bank loans, and term ABS. Different loan types and lenders depended on these wholesale funding sources to varying degrees. In general, an investment-grade finance company has access to diversified funding sources, while a noninvestment-grade finance company generally has access only to secured forms of funding.

While term ABS was not the only source of funding that financed nonbank credit intermediation, it was the single largest form of funding for the finance company universe as a whole. Just prior to the financial crisis, in 2007, annual issuance of nonmortgage credit funded through the term ABS market reached about $250 billion.³ Of this total, $90 billion was for credit card loans (originated mainly by banks), $70 billion was for auto loans and leases, $50 billion was for student loans, and nearly $10 billion was for equipment loans and leases. The non-credit-card categories were originated mainly by finance companies.

Throughout the securitization boom of 2003-07, the annual volume of nonmortgage ABS remained relatively stable at roughly $230 billion, in sharp contrast to residential mortgages, where annual origination volumes doubled over the same period. This suggests that, unlike the mortgage market, the nonmortgage ABS market did not experience rapid volume growth driven by a collapse in underwriting standards over the period. A key reason for the maintenance of standards was that nonmortgage ABS were issued on an originate-to-fund basis, where issuers generally retain a first-loss piece in the deal. Thus for finance companies, the primary motivation behind securitization was funding, not arbitrage, risk transfer, or capital relief.

During the securitization boom, commercial real estate (CRE) lending also became materially dependent on securitization. Commercial mortgages had traditionally been issued by banks, insurance companies, and wealthy households. Then, in the mid-1980s, real estate investment trusts, which were introduced in 1960, began to take on a significant share of commercial property investing. Securitization of commercial mortgages through CMBS was introduced in the mid-1980s and was first used extensively in the early 1990s by the Resolution Trust Company as a means of liquidating the CRE assets of failed savings and loan associations. CMBS assumed an increasing share of the intermediation of CRE credit over the next two decades, accounting for more than 25 percent at the peak in 2007 (Chart 2).

Unlike the forms of credit underlying consumer and commercial ABS, CMBS is an originate-to-distribute business, where loans are originated by banks that use securitization as a way to arbitrage differences in prices between whole loan and bond markets. Like the market for residential lending, there was a credit cycle in commercial real estate, driven by deterioration in underwriting standards. In particular, CMBS investors accepted higher leverage ratios and the use of estimated future (rather than current) rental income to determine appropriate leverage, which therefore became more

³ Figures cited here and in the following paragraph are drawn from the Asset-Backed Alert issuance database.
Sources of Commercial Mortgage Lending
Amount and Share of Commercial Real Estate Funding Outstanding

Billions of dollars

<table>
<thead>
<tr>
<th>Source</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial mortgage-backed securities</td>
<td>(65-75)</td>
</tr>
<tr>
<td>Households, real estate investment trusts, and other</td>
<td>(75-85)</td>
</tr>
<tr>
<td>Insurance and pension funds</td>
<td>(85-95)</td>
</tr>
<tr>
<td>Banks</td>
<td>(95-100)</td>
</tr>
</tbody>
</table>

Percent

<table>
<thead>
<tr>
<th>Source</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial mortgage-backed securities</td>
<td>(65-75)</td>
</tr>
<tr>
<td>Households, real estate investment trusts, and other</td>
<td>(75-85)</td>
</tr>
<tr>
<td>Insurance and pension funds</td>
<td>(85-95)</td>
</tr>
<tr>
<td>Banks</td>
<td>(95-100)</td>
</tr>
</tbody>
</table>

Source: Federal Reserve Statistical Release Z.1, “Flow of Funds Accounts of the United States, Table L.220.”
Note: Share of total commercial mortgage assets, NSA.

common in the mortgage loans backing CMBS. As in the RMBS market, the historically important role of due diligence by junior tranche investors was increasingly short-circuited by the sale of junior tranches into collateralized debt obligations, which facilitated greater leverage and minimal “skin in the game.”

However, while underwriting standards deteriorated, there was less overbuilding of commercial real estate prior to 2007, compared with residential real estate and with earlier commercial real estate cycles. The vulnerability of the CRE sector to financial distress was therefore somewhat less acute than that of residential real estate.

2.3 Many Term ABS Investors Employed Maturity Mismatch

The investor base of ABS has undergone a profound change and expansion since the 1980s. While the initial ABS deals of the mid-1980s were sold mainly to real-money investors such as insurance companies and pension funds, ABS deals issued twenty years later at the onset of the crisis also relied on a diverse set of nonbank levered ABS investors. These new investors were drawn into the market through the increasing importance and acceptance of complex vehicles (SIVs and ABCP conduits), instruments (prime money market mutual funds), and transactions (tri-party repo and securities lending).

A significant part of the investor base for term ABS prior to the financial crisis engaged in maturity mismatch, with SIVs accounting for 8 to 15 percent, securities lenders for 15 to 25 percent, and money market mutual funds for 8 to 10 percent.

that facilitated the use of short-term funding to leverage the relatively low yields of long-term high-quality assets. As shown in Table 1, a significant part of the investor base for term ABS prior to the financial crisis engaged in maturity mismatch, with SIVs accounting for 8 to 15 percent, securities lenders for 15 to 25 percent, and money market mutual funds for 8 to 10 percent.

In the residential and commercial real estate markets, banks and broker-dealers using their balance sheets for warehouse lending were important indirect “investors.” Anticipating that they would be in the “moving” but not the “storage” business, banks and investment banks not only accumulated billions of dollars of mortgage loans intended for securitization, but also provided financing for the warehouses of third-party originators.

Since all of these ABS investors conducted maturity transformation, they were exposed to rollover risk and spread-widening. The rapid deterioration of subprime mortgages triggered such a rollover event. In response, there was a run on funding for all complex vehicles such as SIVs and ABCP conduits, given limited transparency about their individual subprime exposures. Until the fall of 2008, these vehicles had
The Federal Reserve’s Term Asset-Backed Securities Loan Facility

been absorbed by their parents, avoiding large forced sales of ABS. In the process, the vehicles were put into runoff mode—that is, they stopped purchasing new-issue ABS. The disappearance of this bid from the ABS market, which represented at least 50 percent of investor demand, was reflected in a 100-basis-point widening in new-issue ABS spreads between September 2007 and August 2008. The widening in ABS spreads was initially welcomed by real money accounts (traditional ABS investors such as insurance companies, pension funds, and money market funds), which could once again get their hands on new-issue ABS at relatively rich spreads and were not outbid by levered investors. Demand from real-money investors sustained the new-issue ABS market until the Lehman bankruptcy.

Table 1
Traditional and 2009 Asset-Backed-Security (ABS) Investor Composition

<table>
<thead>
<tr>
<th>Investor Type</th>
<th>Share of Market (Percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Securities lenders</td>
<td>15-25</td>
</tr>
<tr>
<td>Asset managers</td>
<td>15-20</td>
</tr>
<tr>
<td>Money market mutual funds</td>
<td>8-10</td>
</tr>
<tr>
<td>Insurance companies</td>
<td>10-20</td>
</tr>
<tr>
<td>Bank portfolios</td>
<td>10-15</td>
</tr>
<tr>
<td>Structured investment vehicles</td>
<td>8-15</td>
</tr>
<tr>
<td>Sovereign wealth funds</td>
<td>8</td>
</tr>
<tr>
<td>Pension funds</td>
<td>8</td>
</tr>
<tr>
<td>Corporate accounts</td>
<td>5</td>
</tr>
<tr>
<td>Hedge funds</td>
<td>2-5</td>
</tr>
</tbody>
</table>

2009 Consumer ABS Investor Composition

<table>
<thead>
<tr>
<th>Investor Type</th>
<th>Share of Market (Percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset managers</td>
<td>42</td>
</tr>
<tr>
<td>Hedge funds/private equity</td>
<td>32</td>
</tr>
<tr>
<td>Insurance companies</td>
<td>11</td>
</tr>
<tr>
<td>Pension funds</td>
<td>7</td>
</tr>
<tr>
<td>Bank portfolios</td>
<td>4</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
</tr>
<tr>
<td>Corporate accounts</td>
<td>1</td>
</tr>
</tbody>
</table>

Sources: Pre-crisis shares—Federal Reserve Bank of New York; Barclays; Citigroup; J.P. Morgan Chase; Bank of America/Merrill Lynch; 2009 shares—Federal Reserve Bank of New York; Citigroup.

2.4 Lehman’s Collapse Severely Reduced Investor Demand for Securitization

The bankruptcy of Lehman Brothers caused a cardiac arrest in the financial system, including a complete freeze-up in ABS issuance. Levered investors who relied on funding through repurchase agreements (“repo lines”) and securities lending arrangements were the main link between the seizure in ABS issuance and Lehman’s bankruptcy. Following the Lehman event, these repo lenders, like all financial institutions, became extremely protective of their balance sheets and sought aggressively to raise cash. Those who relied on short-term funding suddenly faced far more stringent credit terms on pledged high-quality assets. The inability of levered investors to continue funding on stricter terms led to the surrender and liquidation of collateral, pushing spreads across several types of ABS wider by several hundred basis points (Chart 3, top panel). The decline in prices associated with these liquidations put further pressure on margins, which led to further liquidations.

With loan warehouses full and securitization markets closed, some finance companies were close to the point where they would have to decline otherwise creditworthy consumers seeking credit because they could not secure refinancing from banks or capital markets.

Unlike the run on term ABS, investors’ aversion to the CMBS asset class increased steadily from 2007 and reached staggering proportions in late 2008. It reflected anxiety over a possible rapid increase in commercial mortgage loan defaults driven by the decline in credit standards and high leverage of many properties in CMBS loan pools as well as the potential for a severe economic downturn. Following the bankruptcy of Lehman, which was driven by concerns about the credit quality of its CRE loan warehouse, CMBS prices were also driven lower by liquidity-driven selling and the desire to sell early in what increasingly looked like an asset “fire sale.” Spreads for bonds with extremely high credit enhancement, which had been near 20 basis points in 2006, reached approximately 1,500 basis points immediately following the Lehman bankruptcy.

The rapid widening of securitization spreads kept even real money accounts—money market and fixed-income mutual funds—from the new-issue market, as they had to mark their
recent purchases to the wider spreads, forcing them to report diminishing net asset values and exposing them to greater risk of redemptions. Unsure about potential fire sales stemming from the forced liquidation of levered accounts, real money accounts stopped buying new-issue ABS altogether, clogging a crucial channel of credit to the real economy and an important source of funding for finance companies and credit card programs.

The introduction of the Commercial Paper Funding Facility (CPFF) by the Federal Reserve and the Term Liquidity Guarantee Program (TLGP) by the FDIC supported continued issuance of highly rated short-term debt and of unsecured
long-term debt by banks. However, these programs did not address the needs of nonbank finance companies whose funding relied predominantly on term ABS. While these finance companies were mainly noninvestment grade, they were also specialist lenders, operating in niches (auto loans and leases, for example) no other lender would have been able to enter or ramp up at short notice.

The lack of funding for these finance companies threatened the real economy with a seizure in the flow of credit. A look under the hood at the shadow banking system’s securitization funding infrastructure suggested that this threat could materialize with only a short lag following Lehman’s demise. With securitization markets frozen, finance companies had no outlet for loans that had accumulated in their loan warehouses, and banks were unwilling to expand these warehouse lines because of their own balance sheet concerns. With loan warehouses full and securitization markets closed, some finance companies were close to the point where they would have to decline otherwise creditworthy consumers seeking credit because they could not secure refinancing from banks or capital markets. Given the importance of consumer and small-business spending in the economy, and the fact that finance companies were more important providers of certain types of credit than banks, support of securitization markets became of paramount importance from a macroeconomic stability perspective.

3. The Design of the TALF Program

TALF was intended to mitigate the impact of the rapid decline of term funding liquidity for nonbank issuers of ABS and CMBS and to avert a collapse of new issuance through the injection into the financial system of balance sheet capacity for high-quality ABS and CMBS. Policymakers were concerned that in the absence of action to maintain issuance, the supply of credit to consumers and mortgage borrowers would freeze up. The Federal Reserve aimed to head off this event by offering loans to finance purchases of ABS and CMBS, collateralized by the securities.

The Fed’s work on potential programs to support the ABS market began in immediate response to the cessation of ABS issuance, the exit of AAA investors, and the drastic widening of secondary-market spreads. By mid-November 2008, a small number of viable approaches had been identified and discussed. Created under the authority of Section 13(3) of the Federal Reserve Act, the TALF program and its initial terms and conditions were announced on November 25, 2008. Under the TALF, the Federal Reserve Bank of New York was authorized to make loans totaling up to $200 billion to investors in eligible ABS. The U.S. Treasury committed $20 billion of Troubled Asset Relief Program (TARP) funds as credit protection to the Federal Reserve.

Even before the TALF program was officially announced, staff work on its implementation had already commenced. Over the next four months, Fed staff set up the complex operational apparatus of the program, drafted the Master Loan and Security Agreement (MLSA), and refined the terms and conditions based on extensive consultations with market participants. The first TALF subscription followed these intense efforts on March 17, 2009. (Key events in the program’s life are listed in Table 2.)

Normally, the monetary authorities would have approached the funding liquidity problem in securitization markets by reducing the cost of funding for depository institutions. But this was not a viable course of action in October 2008 because short-term interest rates were already near zero. More important, depository institutions, like other financial

<table>
<thead>
<tr>
<th>Event Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 25, 2008</td>
<td>Initial program announcement</td>
</tr>
<tr>
<td>March 19, 2009</td>
<td>First new-issue asset-backed-security (ABS) subscription</td>
</tr>
<tr>
<td>March 19, 2009</td>
<td>Expansion to equipment, servicing advance, fleet lease, nonauto floorplan</td>
</tr>
<tr>
<td>March 19, 2009</td>
<td>Joint U.S. Treasury/Federal Reserve announcement of expansion of TALF up to $1 trillion and plans to study inclusion of legacy commercial mortgage-backed securities (CMBS) and residential mortgage-backed securities</td>
</tr>
<tr>
<td>May 1, 2009</td>
<td>Expansion to new-issue CMBS and insurance premium receivables</td>
</tr>
<tr>
<td>May 1, 2009</td>
<td>Announcement of five-year TALF loans, carry cap</td>
</tr>
<tr>
<td>May 16, 2009</td>
<td>First new-issue CMBS subscription</td>
</tr>
<tr>
<td>May 19, 2009</td>
<td>Expansion to legacy CMBS</td>
</tr>
<tr>
<td>July 16, 2009</td>
<td>First legacy CMBS subscription</td>
</tr>
<tr>
<td>November 3, 2009</td>
<td>First ABS subscription applying Fed credit risk assessment</td>
</tr>
<tr>
<td>November 17, 2009</td>
<td>First TALF-eligible new-issue CMBS deal</td>
</tr>
<tr>
<td>March 4, 2010</td>
<td>Last ABS subscription date</td>
</tr>
<tr>
<td>March 19, 2010</td>
<td>Last legacy CMBS subscription date</td>
</tr>
<tr>
<td>June 18, 2010</td>
<td>Last new-issue CMBS subscription date</td>
</tr>
<tr>
<td>July 20, 2010</td>
<td>Reduction of TARP capital in TALF LLC</td>
</tr>
</tbody>
</table>

The TALF program was structured with private investors taking a first-loss position and the public sector taking a tail-risk position.

4 In another example of the Fed using capital market discipline over borrowers to minimize the risks of its crisis policy tools, when it expanded counterparties in March 2008 by extending discount window access to primary dealers through the Primary Dealer Credit Facility, the Fed accepted only securities, and not whole loans, as collateral.

5 The U.S. Treasury’s Legacy Securities PPIP program employed a more complicated form of risk sharing with both public-sector-supplied leverage and an equity stake. However, that program involved less than a dozen private investors.
amount of leverage. Public sector funding would thus have a
greater impact if deployed in a senior rather than junior
position within the capital structure.

Collateralized margin lending by the Federal Reserve to
new-issue ABS investors emerged clearly as a program form
that would implement three necessary elements: use of
securitization, sale of term ABS to third parties, and provision
of leverage. The challenge was to fill in the details in a way that
provided adequate funding liquidity to issuers as well as
adequate returns to investors, while limiting the public sector’s
risk to an acceptable level.

3.1 Overview of the TALF Program

The basic features of the TALF program can be categorized
under two headings: program structure and risk management.
The basic structure of the program specified the following:

- TALF made term loans to eligible borrowers
collateralized by eligible securities.

- Eligible securities were defined as those in certain “asset
classes,” such as auto loans or commercial real estate,
among other qualifications.

- TALF was a standing (rather than auction) facility with
monthly subscription dates.

- A broad range of ABS types, but only those types, were
eligible collateral:
 - newly issued ABS backed by credit card, auto,
small-business, dealer floorplan, equipment, and
student loans, and by insurance premium and
residential mortgage servicing advance
receivables;
 - newly issued CMBS secured by fixed-rate
commercial real estate loans; and
 - structurally senior legacy CMBS secured by fixed-
rate commercial real estate loans.

- TALF loans had maturities of three or five years.

- TALF made fixed-rate or floating-rate loans. Fixed rates
were set prior to each subscription for each eligible
collateral type, basis, and loan maturity as a spread over
an index. The level of the index, but not the spread,
varied by subscription month.

- TALF agents, most of which are also primary dealers,
acted as agents for all TALF loans, responsible, among
other functions, for crediting or debiting borrowers’
accounts for loan proceeds, for making interest and loan
repayments, and for delivering and receiving collateral.

The market, credit, and compliance risks of the program
to the public sector were managed through these program
features:

- To be eligible collateral for a TALF loan, ABS had to be
of high credit quality, as evidenced by AAA ratings
and a Federal Reserve risk assessment.

- A haircut, the amount by which the loan proceeds are
lower than the value of collateral, was applied to each
item of collateral accepted against a TALF loan, ensuring
that investors would bear the first loss. Loans were not
subject to remargining; that is, the haircut would not be
altered during the life of the loan.

- TALF loans were nonrecourse—meaning that, should
the borrower fail to repay, the Federal Reserve would
keep the collateral. But if proceeds from the sale of the
collateral were insufficient to repay the loan, there is no
further recourse to other assets of the borrower.

- If a TALF loan were not repaid and the proceeds could
not be recouped through sale of the collateral, the
U.S. Treasury would bear the next loss, after the
borrower’s haircut, up to a specified amount, beyond
which the Federal Reserve would bear any further losses.

- Risk- and revenue-sharing between the Fed and the
U.S. Treasury, and administration of any collateral
retained by the facility because of nonrepayment
of the loans, were implemented through a special-
purpose vehicle called TALF LLC.

- TALF borrowers were to be U.S. persons or companies,
and they could not have a material interest in the
collateral.

The program is described in great detail in the terms and
conditions, frequently asked questions, MLSA, and other
documents posted on the New York Fed’s website. While
TALF loan subscriptions have ended for all asset classes, the
program remains in operation, administering payments of
principal and interest as well as overseeing TALF LLC.

3.2 The Importance to Issuers of Placing
the Senior Bonds

The TALF program was limited to providing funding
liquidity for AAA-rated bonds. Since AAA bonds form the
bulk of the liabilities of most securitizations, reducing the
liquidity premium in AAA-rated ABS and CMBS yields
would be the most effective means of reducing issuers’ cost of
originating loans.

To illustrate how crucial the senior bonds are, we use a simple example of a two-tranche ABS. The example will also help explain the risk management of the program later on. We need to specify its key elements: the assets in the collateral pool and the liability structure. We assume the pool is a granular (highly diversified and with little exposure to any single borrower) and static set of identical one-year loans or mortgages paying a fixed rate of 9.5 percent. If a loan defaults, recovery is zero.\(^7\)

Assume that the liabilities consist of just two tranches of securities: One is an equity or first-loss tranche, held by the originator of the underlying loans and amounting to 12.5 percent of the securitization liabilities. The other is a senior bond with a maturity of one year and an annual fixed-rate coupon of 4 percent. It has an attachment point or credit enhancement of 12.5 percent, since the equity tranche bears the first 12.5 percent of losses.\(^3\) The bond has a first-priority claim on principal and interest. The equity tranche earns the residual, if any, of principal and interest on the underlying loans once the senior tranche has been paid off in full and suffers credit write-downs prior to the bonds. We assume that there are no underwriting and management fees.

The granularity assumption permits us to apply the single-factor credit risk model, in which defaults are driven by a systematic (“market” or economy-wide) factor and idiosyncratic random shocks that are specific to the individual loan. We assume each loan has an unconditional probability of default—the default probability one would estimate knowing nothing about the state of the economy—of \(\pi = 3.5\) percent per annum. The default correlation—the extent to which loan defaults coincide—is set by \(\beta\), a parameter that drives the relative strength of systematic and idiosyncratic shocks in determining defaults. When \(\beta\) is high, systematic shocks dominate, the creditworthiness of the loans is highly dependent on overall economic conditions, and default correlation is high. We assume \(\beta = 0.35\). The expected equity return is then 18.5 percent, which we assume is the issuer’s hurdle rate for engaging in the business of originating loans and then securitizing the pools.\(^9\)

To show how a large increase in senior bonds’ liquidity premiums affects the economic viability of securitization, we carry out a comparative statics exercise in which we drastically increase the required senior yield, then compute how the underlying loan rate would have to adjust to maintain an equity return of 18.5 percent, given the increased cost of term funding.

Increasing the required bond yield by 650 basis points to 10.5 percent, a widening comparable to that in the fall of 2008, even with no change in the expected default rate, reduces the equity return to a loss of nearly 27 percent. By comparison, that impact on the equity return is about the same as a tripling of the expected default rate. In order for one to restore the equity return to the hurdle rate, the “breakeven” loan rate would have to nearly double from 9.5 to 15 percent. An increase in loan rates of this magnitude would have substantially limited consumers’ and businesses’ demand for credit.

Following the Lehman bankruptcy, of course, all of the parameters investors focused on were moving: Default rates were expected or feared to be rising, and required rates of return were increasing. Thus, the example is a relatively benign case. But it suggests that spreads on AAA bonds would have a disproportionate effect on the overall economics of securitization. That is, providing funding that reduced the liquidity premium component of AAA spreads could restore the economic viability of the securitization channel.

It was not obvious at the time the TALF was created that reducing AAA bond yields, and thus the breakeven loan rate, would suffice to keep originators from reducing credit supply. Increasing the required bond yield by 650 basis points to 10.5 percent, a widening comparable to that in the fall of 2008, even with no change in the expected default rate, reduces the equity return to a loss of nearly 27 percent. By comparison, that impact on the equity return is about the same as a tripling of the expected default rate. In order for one to restore the equity return to the hurdle rate, the “breakeven” loan rate would have to nearly double from 9.5 to 15 percent. An increase in loan rates of this magnitude would have substantially limited consumers’ and businesses’ demand for credit.

Following the Lehman bankruptcy, of course, all of the parameters investors focused on were moving: Default rates were expected or feared to be rising, and required rates of return were increasing. Thus, the example is a relatively benign case. But it suggests that spreads on AAA bonds would have a disproportionate effect on the overall economics of securitization. That is, providing funding that reduced the liquidity premium component of AAA spreads could restore the economic viability of the securitization channel.

It was not obvious at the time the TALF was created that reducing AAA bond yields, and thus the breakeven loan rate, would suffice to keep originators from reducing credit supply. Apart from the funding costs of the loans, originators planning to securitize loans faced two additional balance sheet constraints. First, issuers had historically sold term subordinated (sub-AAA) ABS in addition to the senior bonds. The market for these subordinated tranches disappeared during the post-Lehman panic, so lenders would have to fund the rest of the capital structure on balance sheet. It was unclear

\(^7\) The granularity assumption is reasonable for some asset classes that are typically financed through ABS, such as auto loans, but less so for other asset classes, such as credit cards, for which the collateral pool is usually a revolving pool of loans. As these loans are paid off or discharged after default, they are replaced by new loans. It is a poor representation of CMBS, in which many, if not all, the mortgages in the collateral pool are typically large relative to the total size of the pool; accordingly, a small but surprising cluster of defaults can be a threat even to relatively senior bonds.

\(^8\) The boundary between two securitization tranches, expressed as a percentage of the total liabilities, is called the attachment point of the more senior tranche and the detachment point of the more junior tranche.

\(^9\) The single-factor model was introduced by Vasicek (1977). The model enables us to compute the probability distribution of collateral losses, as a fraction of the pool, for any parameter pair \(\pi\) and \(\beta\). Each collateral loss leads to an associated bond and equity return. The expected bond and equity returns can then be computed as the average return, weighted by the probabilities of the associated collateral losses.
if they had adequate capital or alternative funding sources to do so at a cost that would permit them to continue lending. Second, given the dire economic outlook, the amount of credit enhancement an issuer had to provide to achieve a AAA term ABS rating had increased significantly, reducing the share of the lower-cost AAA proceeds in the securitization liability mix. A significant uncertainty of program design was thus whether issuers could continue supplying credit while facing this reduction in their ability to fund new loans even if the AAA bonds could be sold, or whether the market would eventually rediscover its appetite for subordinate bonds. In the event, it was not until early 2010 that issuers were able to regularly issue subordinate bonds.

3.3 The TALF Loan

While it was clear that the right design of the program would be margin lending to investors by the Federal Reserve, investors had little appetite during the crisis for the typical repo contract. TALF credit extensions therefore took the form of long-term nonrecourse loans secured by eligible collateral, not subject to mark-to-market or remargining requirements.

The Nonrecourse Provision

Broker-dealer repo would typically be at maturities from overnight to ninety days, would require both initial margin and daily marking-to-market, and might involve recourse to the borrower or to the borrower’s other positions with the same dealer. For a levered investment fund, recourse would in effect grant the lender a call on the fund’s remaining net asset value at loan maturity. At maturity, a repo lender could decline to refinance those positions or increase haircuts, subjecting the borrower to refinancing risk. With remargining or recourse, a transitory but sharp price decline could force a levered fund to close out its position at a loss. These funding risks were fresh in potential investors’ minds following the collapse of Lehman, when broker-dealers increased haircuts and forced widespread unwinding of positions amid extreme volatility.

While recourse and remargining are significant risk mitigants for a secured lender, they would have been potentially expensive for the borrower given the recent volatility in term ABS markets. Not only would these features have reduced the investor base, but they would have prompted investors to demand higher returns to compensate for refinancing risk, which ultimately would have reduced program efficacy. A meaningful recourse provision was in any event impractical without a regime (which the Federal Reserve lacks the ability and resources to institute) to verify borrower financial condition.

The TALF borrower was also not required to cross-collateralize its total liability to the Federal Reserve with all the ABS pledged and thus had the option of putting one bond but not another. While such cross-collateralization might have provided some risk mitigation, it was deemed too easy for borrowers to circumvent by setting up multiple borrowers as well as impractical given the low level of TALF-eligible issuance.

TALF Loan Term to Maturity

The loan term was a key design element of the TALF program. Levered investors were eager to avoid the refinancing risk associated with funding longer-dated collateral with a shorter-dated loan. Most TALF collateral was eligible only for a three-year loan term, but longer-dated collateral (such as ABS secured by student loans, loans guaranteed by the U.S. Small Business Administration [SBA], or commercial real estate loans) was eligible for a five-year loan term.

Bonds issued by revolving master trusts, common for credit card ABS, do not amortize and are intended to be refinanced at maturity, so a trust’s revolving period and the bond maturities can be adapted to a three-year TALF loan term. The maturities of bonds issued by amortizing trusts are more tightly connected to the amortization of the underlying collateral. The maturities of the longest senior tranches of most amortizing trusts are close to three years. Five-year loans were introduced in order to promote lending in the SBA loan, student loan, and CRE sectors, in which securities have longer maturities (seven to ten years, fifteen years, and ten years, respectively). While the TALF loan term was shorter than the bond maturities, investors could reasonably assume that market conditions would have normalized by the time the TALF loan matured, permitting them to either finance their positions in the private market or unwind them in an orderly way.

Haircuts

The advance rate, or loan amount, was determined by the market value of the ABS and the haircut applied. Haircuts varied by asset class and the bond’s average life (see Table 3 for details on haircuts and Table 4 for prepayment assumptions). The average life of a security is the average timing of principal repayment, which in turn depends on assumptions about prepayment for ABS, since they are amortizing securities. In
order to prevent issuers from gaming TALF haircuts by asserting high prepayment rates and thus short average lives for the securities they wished to pledge, the program set standardized prepayment assumptions by asset class. This permitted the issuer to calculate the TALF average life of each security and investors to know the haircut on a TALF loan. The haircut was measured as a percent of value for new-issue ABS and CMBS and as a percent of par for legacy CMBS. A haircut measured as a fraction of par instead of price implies a market-value haircut that is higher for lower-value collateral, adding an additional protection against adverse selection in the legacy program.

An investor could present new-issue, TALF-eligible collateral either at issue, when the price is typically at par, or at any subsequent subscription. Underwriters of TALF-eligible ABS generally set the pricing date close to the TALF subscription date. Otherwise, between the issue and subscription dates, investors would have to seek alternative financing and face the risk of securing lower TALF loan proceeds if the bond price dropped. In the event, secondary-market TALF-eligible ABS have generally been presented at a premium to par, as spreads have narrowed since issue.

While the value of a new-issue ABS or CMBS bond for purposes of determining the loan amount was based on its price on the subscription date, the value of a legacy CMBS was based on the minimum of the investor’s acquisition price and the price on subscription date, exposing the TALF investor to market risk in the period between the transaction date and the subscription date.

Table 3
TALF Haircuts by Asset Class

<table>
<thead>
<tr>
<th>Sector</th>
<th>Subsector</th>
<th>ABS Weighted Average Life (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0<1</td>
</tr>
<tr>
<td>Auto</td>
<td>Prime retail lease</td>
<td>10</td>
</tr>
<tr>
<td>Auto</td>
<td>Prime retail loan</td>
<td>6</td>
</tr>
<tr>
<td>Auto</td>
<td>Subprime retail loan</td>
<td>9</td>
</tr>
<tr>
<td>Auto</td>
<td>Motorcycle/other RV</td>
<td>7</td>
</tr>
<tr>
<td>Auto</td>
<td>Commercial and government fleets</td>
<td>9</td>
</tr>
<tr>
<td>Auto</td>
<td>Rental fleets</td>
<td>12</td>
</tr>
<tr>
<td>Credit card</td>
<td>Prime</td>
<td>5</td>
</tr>
<tr>
<td>Credit card</td>
<td>Subprime</td>
<td>6</td>
</tr>
<tr>
<td>Equipment</td>
<td>Loans and leases</td>
<td>5</td>
</tr>
<tr>
<td>Floorplan</td>
<td>Auto</td>
<td>12</td>
</tr>
<tr>
<td>Floorplan</td>
<td>Nonauto</td>
<td>11</td>
</tr>
<tr>
<td>Premium finance</td>
<td>Property and casualty</td>
<td>5</td>
</tr>
<tr>
<td>Servicing advances</td>
<td>Residential mortgages</td>
<td>12</td>
</tr>
<tr>
<td>Small business</td>
<td>SBA loans</td>
<td>5</td>
</tr>
<tr>
<td>Small business</td>
<td>Student loan</td>
<td>8</td>
</tr>
<tr>
<td>Student loan</td>
<td>Government-guaranteed</td>
<td>5</td>
</tr>
<tr>
<td>CMBS</td>
<td>New-issue</td>
<td>15</td>
</tr>
<tr>
<td>CMBS</td>
<td>Legacy</td>
<td>15</td>
</tr>
</tbody>
</table>

Notes: For asset-backed securities (ABS) benefiting from a government guarantee with average lives of five years and beyond, haircuts increase by 1 percentage point for every two additional years (or portion thereof) of average life at or beyond five years. For all other ABS with average lives of five years and beyond, haircuts increase by 1 percentage point for each additional year (or portion thereof) of average life at or beyond five years. For newly issued and legacy commercial mortgage-backed securities (CMBS) with average lives beyond five years, collateral haircuts increase by 1 percentage point of par for each additional year of average life. No CMBS may have an average life of more than ten years.
TALF Loan Interest Rate

The TALF loan rate was set as a spread, fixed over the life of the program but varying by asset class and loan term, over an index (Table 5). The index for fixed-rate loans was the Libor swap rate, generally with a maturity equal to that of the TALF loan. For most asset classes, the index for floating-rate loans was the one-month Libor rate, but for some the index was the prime rate or target federal funds rate. The indexes were chosen to correspond to bond pricing conventions at issue, thus minimizing the role of interest rate risk in the borrower’s put-option decision. For example, new-issue CMBS are typically priced relative to the swap curve, so the five-year TALF loan rate was the five-year swap rate on the subscription date plus 100 basis points. A five-year loan against SBA Pool Certificate collateral, in contrast, was set at a spread of 75 basis points over the target federal funds rate, which is highly correlated with the prime rate originators use to price loans to borrowers (since the prime rate is generally 300 basis points above the target federal funds rate).

3.4 TALF-Eligible Asset Classes

TALF contained three subprograms, distinguished by the type of collateral supported: new-issue nonmortgage ABS, new-issue CMBS, and legacy CMBS. The program avoided undercutting market mechanisms for allocating credit to different sectors of the economy by defining eligible collateral broadly within these general classes of underlying loans. Other asset classes, such as nonagency residential mortgages, were considered, but it was ultimately concluded that the TALF program structure was not applicable and would not revive lending in those sectors. (Eligible asset classes are summarized in Table 6.)
New-Issue ABS and CMBS

The first subscription of the new-issue ABS program was held in March 2009 and the last in March 2010. The ABS program provided loans to investors against eligible new-issue ABS collateral, limited to AAA-rated tranches secured by consumer or small-business loans. The underlying nonmortgage credit exposures were as follows (see Table 6 for more specific requirements for each asset class):

- retail auto loans;
- commercial, rental car company, and government fleet leases;
- business equipment loans and leases;
- floorplan loans, by which, for example, auto dealers finance inventories;
- federally guaranteed and private student loans;
- credit card receivables;
- insurance premium finance loans, by which businesses finance lump-sum insurance premium payments;
- small-business loans, fully guaranteed as to principal and interest by the U.S. government, originated under the SBA’s 7(a) (“Pool Certificates”) and 504 (“Development Company Participation Certificates”) programs; and
- servicing advance receivables, which arise from residential mortgage servicing advances.

New-Issue ABS and CMBS

Table 6

<table>
<thead>
<tr>
<th>Asset Class</th>
<th>Description</th>
<th>Origination Date</th>
<th>Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto, credit card receivables, student loans, small business</td>
<td>Auto loans include retail loans and leases relating to cars, light trucks, motorcycles, and other recreational vehicles; commercial and government fleet leases; and commercial loans secured by vehicles and the related fleet leases and subleases of such vehicles to rental car companies. Credit card receivables include both consumer and corporate credit card receivables. Student loans include federally guaranteed student loans (including consolidation loans) and private student loans. Small business loans include loans, debentures, or pools originated under the SBA’s 7a and 504 programs, provided they are fully guaranteed as to principal and interest by the full faith and credit of the U.S. government.</td>
<td>After October 1, 2007</td>
<td>After January 1, 2008</td>
</tr>
<tr>
<td>Mortgage servicing advances, business equipment, vehicle fleet, floorplan</td>
<td>Mortgage servicing advances are receivables created by principal and interest, tax and insurance, and corporate advances made by Fannie Mae- or Freddie Mac-approved residential mortgage servicers. Equipment loans include retail loans and leases relating to business equipment. Vehicle fleet includes commercial and government fleets and commercial loans secured by vehicles and the related fleet leases and subleases of such vehicles to rental car companies. Floorplan loans include revolving lines of credit to finance dealer inventories.</td>
<td>After January 1, 2007</td>
<td>NA</td>
</tr>
<tr>
<td>Insurance premium finance, new-issue CMBS, legacy CMBS</td>
<td>Insurance premium finance includes loans originated for the purpose of paying premiums on property and casualty insurance originated on or after January 1, 2009. New-issue CMBS are commercial mortgage-backed securities issued on or after January 1, 2009. Legacy CMBS include structurally senior fixed-rate conduit commercial mortgage-backed securities.</td>
<td>After January 1, 2009</td>
<td>After January 1, 2009</td>
</tr>
</tbody>
</table>

aAsset-backed securities (ABS) must have an average life of five years or less.
bMust refinance maturing ABS through 2010Q1 or be new master trust with originations after January 1, 2009. Eligible premium finance ABS may also be issued out of an existing or newly established master trust in which all or substantially all of the underlying exposures were originated on or after January 1, 2009.
The first subscription of the new-issue CMBS program was held in June 2009 and the last in June 2010. The program provided loans to investors against AAA tranches of eligible new-issue CMBS. To be eligible, the CMBS were required to be privately issued and structurally senior, to bear a fixed interest rate, and to be secured by first-lien, fixed-rate amortizing commercial real estate loans. In the event, only one TALF-eligible new-issue CMBS was issued.

TALF-eligible, new-issue ABS and CMBS had to have been issued on or after January 1, 2009; have AAA credit ratings from two eligible nationally recognized statistical rating organizations (NRSROs); and have no lower rating from any NRSRO. The AAA rating had to be attained on the strength of the securitization collateral and structure itself, rather than through a financial guarantee or “wrap” provided by an insurance company or other third party.

Legacy CMBS

The first legacy CMBS subscription was held in July 2009 and the last in March 2010. The legacy CMBS program provided loans to investors against structurally senior, AAA fixed-rate conduit CMBS issued before January 1, 2009 (hence the term “legacy”). Since the purchase price factored into the determination of the loan amount, borrowers had to have purchased the legacy CMBS in recent secondary-market transactions between unaffiliated parties, executed on an arm’s-length basis at prevailing market prices.

3.5 Eligible TALF Borrowers

Any U.S. company that owned eligible collateral could borrow from the TALF through an account relationship with a TALF agent. Eligible borrowers included firms organized in the United States, but excluded firms controlled or managed by an entity owned by a foreign government. TALF borrowers ceded all governance rights under an ABS, including voting, consent, or waiver rights, to the New York Fed.

In order to prevent conflicts of interest that could lead to collateral being presented at inflated prices, borrowers could not borrow against ABS if they had a material economic interest in the securitization’s underlying collateral pool. For the same reason, as noted above, a borrower against legacy

CMBS had to acquire the CMBS through an arm’s-length transaction.

TALF agents were primary dealers or designated broker-dealers, operating under the New York Fed’s TALF Master Loan Security Agreement to carry out specified administrative, payments processing, and compliance responsibilities. These agents were tasked with processing TALF applications; disbursing loan proceeds, as well as principal and interest generated by the collateral, to TALF borrowers; and remitting TALF loan principal and interest to the New York Fed. Borrowers worked through a TALF agent during the loan application process and throughout the life of their TALF loan, if they received one. TALF agents were required to ensure that no conflicts of interest existed in any party’s participation in TALF and to demonstrate that they knew a potential borrower and could vouch for its reputation. They also were required to subject applicants to a “Know Your Customer” program based on provisions of the Patriot Act.

3.6 TALF Operations

Apart from the TALF agents, a number of other private entities helped administer the TALF program:

- Bank of New York Mellon, the program custodian, was responsible for holding collateral, collecting and distributing payments and administrative fees, verifying

11 A precise definition is contained in the “Eligible Borrowers” section of the General Terms and Conditions, available at http://www.newyorkfed.org/markets/talf_terms.html: “An entity is a U.S. company if it is (1) a business entity or institution that is organized under the laws of the United States or a political subdivision or territory thereof (U.S.-organized) and conducts significant operations or activities in the United States, including any U.S.-organized subsidiary of such an entity; (2) a U.S. branch or agency of a foreign bank (other than a foreign central bank) that maintains reserves with a Federal Reserve Bank; (3) a U.S. insured depository institution; or (4) an investment fund that is U.S.-organized and managed by an investment manager that has its principal place of business in the United States. An entity that satisfies any one of the requirements above is a U.S. company regardless of whether it is controlled by, or managed by, a company that is not U.S.-organized. Notwithstanding the foregoing, a U.S. company excludes any entity, other than those described in clauses (2) and (3) above, that is controlled by a foreign government or is managed by an investment manager, other than those described in clauses (2) and (3) above, that is controlled by a foreign government.”

12 As stated in the “Eligible Collateral” section of the General Terms and Conditions, “ABS will not be eligible collateral for a particular borrower if that borrower, or any of its affiliates, is the manufacturer, producer or seller of any products, or the provider of any services, the sale, provision, or lease of which is financed by the loans or leases in the pool supporting that ABS unless the loans or leases relating to such products or services constitute no more than 10% of the aggregate principal balance of the loans and leases in the pool supporting such ABS as of the issuance date of such ABS. For purposes of this requirement, products include financial products such as insurance, and services include education. In the case of leases, the term ‘aggregate principal balance’ refers to the securitization value of the leases in the pool.”
the data provided by the TALF agents, and validating the pricing and ratings submitted for pledged securities.

- Collateral monitors provided data and modeling services used in risk assessments and also validated pricing and ratings. \(^{13}\)

The New York Fed held separate monthly TALF loan subscription and settlement dates for non-CMBS ABS and for new-issue and legacy CMBS. \(^{14}\) On each subscription date, it set interest rates for each type of loan, and TALF agents submitted loan request packages to the New York Fed that included:

- the requested loan amount ($10 million minimum);
- the maturity date of the loan;
- the type of interest rate (fixed or floating), corresponding to the type of collateral offered;
- filing documents, including the prospective uses and offering documents of the securities to be pledged;
- proof of purchase for the ABS and CMBS being offered as collateral;
- the CUSIPs of the securities; and
- an attestation from an accounting firm stating that the proposed collateral meets TALF’s eligibility criteria, or a signed, agreed-upon procedures report from a nationally recognized accounting firm (for newly issued CMBS).

The New York Fed reserved the right to reject any request for a loan, in whole or in part, at its discretion. It also assessed an administrative fee of 10 basis points of the loan amount for nonmortgage-backed ABS collateral and 20 basis points for CMBS collateral.

The borrower (through its agent) had to deliver eligible loan collateral and administrative fees to the custodian on the TALF loan’s settlement date. If the New York Fed deemed the collateral eligible, it determined the loan amount based on the haircut for the asset class, the security’s average life computed under the TALF prepayment speed, and its price.

Cash Flow Waterfall

In the typical case, in which the TALF borrower does not surrender the collateral, the custodian uses cash flows from the collateral in order to make all loan principal and interest payments on behalf of the TALF borrower. The residual is delivered to the borrower through the TALF agent. The custodian holds the collateral throughout the life of the loan.

\(^{13}\) Trepp (as of June 2009) and BlackRock (as of January 2010) were collateral monitors for CMBS. PIMCO (as of July 2010) was collateral monitor for the program as a whole.

\(^{14}\) The first CMBS subscription (June 2009) was for new-issue CMBS only.

In general, the remittance of principal on eligible collateral is used immediately to reduce the principal amount of the TALF loan in proportion to the loan’s original haircut. In other words, if the original haircut was 10 percent, 90 percent of any remittance of principal is immediately repaid to the New York Fed. This allocation of principal prevents the leverage of the TALF transaction from changing over time. Requiring deleveraging would have made the program less effective by significantly reducing investor returns and penalizing amortizing asset classes relative to asset classes with bullet structures.

For nonmortgage ABS collateral priced at a premium to par, the borrower makes an additional principal payment calculated to adjust for the expected reversion of market value toward par value as the ABS matures. The above-par payment is calculated at the inception of the TALF loan. This payment simply amortizes the premium on the bond over its expected average life.

A “carry cap” ensured that the borrower will not receive any upside from the transaction until the loan is repaid in full. It limited cash flow during the term of the TALF loan to a maximum equal to the haircut capital invested by the borrower—an important mechanism used to mitigate adverse selection.

A “carry cap” ensured that the borrower will not receive any upside from the transaction until the loan is repaid in full. It limited cash flow during the term of the TALF loan to a maximum equal to the haircut capital invested by the borrower—an important mechanism used to mitigate adverse selection.

For five-year TALF loans, the excess of interest and any other distributions (excluding principal distributions) on the ABS in excess of TALF loan interest payable (the “net carry”) was to be remitted to the TALF borrower only up to 25 percent per annum of the original haircut amount in the first three loan years, 10 percent in the fourth year, and 5 percent in the fifth year; the remainder of the net carry repays TALF loan principal. If, for example, the TALF loan amount against collateral priced at par was $94, and the haircut was $6, any net carry in excess of $1.50 during the first year of the loan would be applied toward reduction of the TALF loan. For a three-year TALF loan, net carry was to be remitted to the borrower each year only up to 30 percent per
annum of the original haircut amount, with the remainder applied to loan principal.

Exercise of the Put Option and TALF LLC

As TALF loans are nonrecourse, borrowers effectively own a put option on the collateral; they can surrender the collateral in exchange for extinguishing the loan. In this case, borrowers would surrender their collateral through a TALF agent, which would submit a collateral surrender form to the New York Fed.

A number of conditions must be fulfilled in order for the TALF borrower to optimally exercise the put. The ABS cannot have been fully paid down, and there must be credit impairment or loss of market value of the bond in excess of the haircut—that is, the outstanding loan amount must exceed the value of the collateral. An additional condition must prevail for the put to be optimally exercised prior to the TALF loan maturity: The interest on the TALF loan must exceed the interest paid by the ABS—in other words, the borrower has negative carry. If the borrower does not repay the loan and instead surrenders the collateral, the Treasury and Federal Reserve ultimately bear the risk of loss and have no right to pursue the borrower in the courts, even if the value of the bonds is less than the loan amount.

The New York Fed created TALF LLC, a special-purpose vehicle, to purchase and manage any assets surrendered by TALF borrowers. It was initially funded by a $100 million drawing on the U.S. Treasury’s $20 billion commitment. Just under $16 million of these funds is set aside to defray administrative expenses in the event a TALF borrower exercises the put.

TALF LLC also holds the accumulated interest from TALF loans in excess of the interest earned by the New York Fed. The Fed retains a portion of TALF loan interest equal to its cost of funds—the overnight indexed swap (OIS) rate plus 25 basis points. The accumulated excess interest from TALF loans and the Treasury funding are invested to earn interest income.

The funds in TALF LLC are used for ongoing administrative expenses, which are small relative to the flows into the LLC, and would be the first funds used if collateral were purchased from a TALF borrower exercising a put. If the New York Fed were to receive notice of collateral surrender, it would sell the collateral at par to TALF LLC, which would then fund the purchase of the collateral in the following way:

- It would first draw on the funds in TALF LLC (approximately $757 million as of July 20, 2011). Although TALF borrowers with more than one loan outstanding do not cross-collateralize the loans, the accumulated interest from all TALF loans protects the public sector against losses on any of the loans.
 - If these funds were exhausted, TALF LLC would borrow from the U.S. Treasury against its $20 billion commitment.15
 - Once the $20 billion TARP loan commitment is fully funded, TALF LLC would ask the New York Fed, which committed up to $180 billion for this purpose, for a loan, which would be senior to the $20 billion Treasury loan.

If surrendered collateral is liquidated, the order in which loan repayments and the proceeds from possible asset sales from TALF LLC are distributed is defined in a credit agreement among the Treasury, the New York Fed, and TALF LLC requiring them to:

- pay general TALF program administrative expenses,
- repay the $16 million Treasury loan made to TALF LLC to cover administrative expenses,
- repay outstanding principal on any New York Fed senior loans,
- fund the cash collateral account,
- repay outstanding principal on any Treasury loans,
- repay New York Fed loan interest,
- repay Treasury loan interest,
- repay any other obligations that may arise that have not been specified by the agencies, and
- distribute to the Treasury and the New York Fed (in shares of 90 percent and 10 percent, respectively) any remainder after the above requirements are satisfied.

4. Limiting Risk to the Public Sector to an Acceptable Level

The terms of the TALF loan contract—the long terms to maturity and nonrecourse leverage without margin calls—were generous to investors and therefore required parameters on collateral, haircuts, and loan rates that limited risk to the public sector to an acceptable level. One way to define the public sector’s risk appetite is that the program should be constructed in such a way that a loss occurs only in an economic downturn so severe that avoiding such losses is a subordinate goal to economic recovery.

15 In July 2010, this commitment was reduced to $4.3 billion, or approximately 10 percent of the $43 billion in TALF loans outstanding at that time. See http://www.federalreserve.gov/newsevents/press/monetary/20100720a.htm.
The major risks to the program and to public funds fall into three broad categories: operational risk, fraud risk, and market and credit risks. Although we focus here on market and credit risks, much effort was made to identify operational, fraud, and compliance risks and to design mitigants against them.

As TALF loans are without recourse to the borrower, the market and credit risks borne by the lender depend entirely on the risks of the bonds used as collateral. If, at the maturity of the TALF loan, the value of the bonds is less than the loan amount, the borrower has an incentive to abandon the collateral and not repay the loan. The borrower is therefore said to be “long a put” on the collateral struck at the loan amount.

Credit risk is the risk that a bond will suffer a write-down or impairment as a result of defaults and low recoveries on the underlying loans. Credit risk is thus measured as a loss of par value, but may be realized prior to maturity by writing down both the value of the assets in the trust and the value of the liabilities that are affected by the asset loss. Market risk is the risk that changes in market prices—interest rates and credit spreads—will reduce the value of the bond prior to maturity, even if the bond ultimately is repaid at par. The public sector faced market risk from fluctuations in the value of its collateral and from mark-to-market losses on any collateral put by TALF borrowers in lieu of TALF loan repayment.

Mark-to-market losses may occur because the market anticipates or is more wary of credit losses, but unless those losses are actually realized and result in write-downs, the bond’s value will recover over its remaining life. Credit write-downs cannot be recovered once they are realized, but mark-to-market losses can be recovered until the position is sold.

Market risk introduces the possibility that collateral might be “put to the Fed” even in the absence of severe credit losses. If the mark-to-market losses occur within the term of the TALF loan, while public funds would ultimately be recovered, there would be a transitory but nonetheless real portfolio value loss, as one asset, the TALF loan, is replaced with a bond of lower value. If large credit losses do not materialize, and the bond price recovers before eventually being sold, there is ultimately no long-term loss to the public sector.

The key mitigants to credit and market risks are:

- terms and conditions regarding collateral eligibility,
- credit enhancement provided by the issuer,
- haircuts,
- borrower payments, and
- risk review of collateral.

4.1 Risk Mitigation from Program Terms and Conditions

Program terms and conditions defined eligible collateral for TALF loans. Eligibility was limited to certain asset classes and, within each sector, to structurally senior, AAA-rated bonds. Eligible new-issue collateral was generally limited to nonmortgage ABS asset classes with a strong performance history. New-issue CMBS were eligible provided certain further criteria were met, such as collateral pools excluding large loans and floating-rate or second-lien mortgages as well as pooling and servicing agreements containing certain protections for the senior bonds. These additional terms and conditions for CMBS avoided a number of features that had contributed to poor underwriting standards and poor performance prior to the financial crisis.

Not eligible were ABS asset classes with historically poor performance (for example, timeshares, aircraft leasing, and manufactured housing) that were not central to the goal of averting a deeper recession.
Among legacy securities, only structurally senior CMBS were made eligible for TALF.

Ratings of nonmortgage ABS have held up well relative to those in other structured credit asset classes. A recent study indicates that the three-year cumulative loss rate for original AAA-rated ABS is only 8 basis points. Downgrades have recently outpaced upgrades for the first time since 2003, but primarily in the student loan sector, driven by negative carry from auction-rate securities and by regulatory and other fundamental changes in the private student loan business.

There are several reasons for the better ABS performance relative to CMBS and RMBS. Loan originators generally retain significant unhedged first-loss positions. Mortgage loans may be used speculatively, since they are based on real estate assets that can appreciate in value and have high refinancing risk at maturity. ABS credit enhancement is recalibrated based on observed delinquency more frequently, as the securities generally have shorter maturities. Underwriting standards for consumer and commercial loans did not deteriorate as much as those for real estate loans in the years leading up to the financial crisis. Major consumer ABS sectors are generally structured to withstand severe unemployment stress. The risk of a breakdown of the historical relationship between unemployment and loan performance introduces some systematic risk, but the idiosyncratic issuer funding or solvency risk is more significant.

The terms and conditions also called for a AAA rating from two nationally recognized statistical rating organizations and no NRSRO having downgraded or placed the bond on negative watch. This requirement significantly affected which issuers have been able to issue TALF-eligible ABS. For example, given uncertainty over the financial condition of the Big Three auto manufacturers in 2009, major NRSROs were reluctant to permit captive auto finance companies to issue auto dealer floorplan ABS with AAA ratings until it became clear that the bankruptcies of Chrysler and GMAC would proceed in an orderly fashion. Similarly, the rating agencies’ uncertainty over how the FDIC’s “safe harbor” from repudiation would operate in the FAS 166/167 accounting regime shut down the issue of TALF-eligible credit card ABS for several months in late 2009 until the FDIC grandfathered new-issue transactions through the end of TALF in March 2010. As a final example, no rental fleet lease ABS came to TALF, as the weak condition of issuers in that very cyclical industry made them unable to meet the TALF rating requirement.

In addition to the rating requirement, legacy CMBS that were junior in credit to any other bond were excluded. From about 2005 on, AAA-rated CMBS had been divided into tranches labeled AJ, AM, and AS; the latter is often referred to as “super-senior.” While all were rated AAA, the AJ and AM tranches take write-downs before the super-seniors and so, being at nontrivial risk of downgrade or default, were excluded from the TALF legacy CMBS program.

4.2 Risk Mitigation from Bond Credit Enhancement

Credit enhancement takes hard and soft forms. Hard credit enhancement is funded up front, in contrast to soft enhancement, which accumulates over time. Hard credit enhancement refers to the presence of subordinated tranches sold to investors or retained by the issuer, or overcollateralization obtained by issuing an amount of debt smaller than the loan pool, or through reserve accounts funded at the time of issue. The typical soft credit enhancement is excess spread—the difference between interest on the loan pool and on the bonds.

Hard credit enhancement refers to the presence of subordinated tranches sold to investors or retained by the issuer, or overcollateralization obtained by issuing an amount of debt smaller than the loan pool, or through reserve accounts funded at the time of issue. The typical soft credit enhancement is excess spread—the difference between interest on the loan pool and on the bonds.

five times a baseline level of expected loss over the life of the pool. A higher multiple is generally applied to a lower level of baseline loss. When loss expectations rise in response to a deteriorating economic environment, as occurred in 2009, additional credit enhancement could be as much as three to five times the increase in baseline loss expectation. For example, the senior class of CarMax 2008-2 had initial loss expectations of 2.75 percent and hard credit support of 10.25 percent, providing loss coverage of 3.73x. In contrast, the senior class of CarMax 2009-1 had initial loss expectations of 4 percent and hard credit support of 16.5 percent, providing loss coverage of 4.13x. In this case, an increase in baseline losses of 1.25 percent led to an additional 6.5 percent of hard credit enhancement.

In a revolving ABS trust (for example, credit cards), repayments of principal by borrowers are used to purchase new receivables and not to pay down the balance of the bonds. For these transactions, required credit enhancement for AAA-rated bonds is generally based on analysis of the trust wind-down following an early amortization event. Such a wind-down takes place when the payment rate, defined as the rate at which borrowers in the pool repay their loans, falls below a trigger level. The trust is then no longer permitted to purchase new receivables and must use all principal received to pay down the tranches. Greater charge-offs during early amortization correspond to greater pool losses, consequently requiring greater credit enhancement for a given rating level.

While higher credit enhancement requirements would normally manifest themselves in new issuance, several credit issuers took the unexpected step of adding credit enhancement to their master trusts during 2009 to avoid downgrade actions driven by increases in charge-offs. Issuers can take a range of actions to increase credit enhancement, such as creating cash infusions through additional subordinate bond tranches, increasing overcollateralization, and strengthening excess spread by removing charged-off collateral. For example, the senior class of American Express Credit Account Master Trust Series 2008-1 had credit enhancement of 12 percent with annual charge-offs near 4 percent in January 2008, but Series 2009-1 had credit enhancement of 17.5 percent as annual charge-offs increased to 11 percent in June 2009.

The typical recent-vintage fixed-rate conduit commercial real estate deal is secured by loans to more than 100 different borrowers, with the top ten loans often corresponding to 40 percent of the pool. The underlying loans have fixed interest rates, and often had interest-only options, but are balloon loans that amortize over a thirty-year term but mature much more quickly. The typical loan had a ten-year maturity, but loan pools generally also have loans with five-year and seven-year maturities. Super-senior CMBS tranches had hard credit subordination of 30 percent. With a loss severity of 50 percent, well outside the post-World War II experience for commercial real estate cycles, it would take defaults on the order of 60 percent of the pool to cause a super-senior CMBS loss.

The most senior CMBS, the AS class, is generally time-tranched into at least four classes, A1 through A4. When loans are performing, the A4 class receives principal payments last, but if credit enhancement of the super-senior class is exhausted by losses, the cash flow waterfall switches from sequential to pro rata, and all super-senior tranches share in principal and credit losses. Moreover, recoveries that are typically around 50 percent on defaulting loans are first used to pay down the A1 and A2 (first and second pay) super-senior tranches until they are fully repaid, which means that even in dire credit loss scenarios, the A1 and A2 bonds are very difficult to break. However, the A1 and A2 bonds are subject to significant extension risk, because in an environment with little liquidity for refinancing maturing balloon loans or purchasing foreclosed properties, the best option for the trust may be to extend loans until the economic environment improves. The A4 (last pay) super-senior bonds generally have an average life at issue of about ten years, while the second-pay A2 bonds generally have an average life of five years. The average life of AM and AJ bonds, which are junior to the AS class in both payment and credit priority, is also ten years.

Apart from credit enhancement, TALF-eligible bonds are also protected by other structural features that vary greatly by collateral type and issue. For most structured credit products, in addition to the senior bonds’ priority in credit, the prepayments, amortization, and recovery payments flow first to the most senior bonds. Another feature is that issuers of revolving trusts have historically provided recourse (an issuer guarantee) to their securitizations in order to avoid downgrades of existing notes. While the prospect of recourse is not taken into account in setting the level of required credit enhancement, it has had a significant positive effect on the ratings history of these asset classes.

4.3 Risk Mitigation from Haircuts

ABS losses are not binary, but incremental, building up over time at a pace depending on the extent and timing of losses in the collateral pool. In most ABS, it is a near certainty that at least some collateral losses will occur in the pool; the question is whether they will exceed the attachment point—that is, the credit subordination of a particular bond. Ideally, in order to
measure risk, one would like to perform a risk analysis on each loan in the collateral pool to estimate distribution of losses at a specific time horizon and then apply the cash flow waterfall to derive the distribution of credit losses of each bond.

In the case of ABS collateral, even when the underlying loans are granular, there is usually not enough historical data to estimate with accuracy the distribution of losses and, in particular, the performance of the loans during severe economic downturns. Credit card receivables, securitized since 1987, have the longest history of securitization other than residential mortgages. In the subsequent two decades, the credit characteristics of a typical receivables pool have evolved as credit card accounts have proliferated, effectively shortening the available history that would be useful in estimating loss distributions. Between 1987 and 2007, there were only two economic downturns in the United States, neither extremely severe. Credit card receivables are the most granular ABS asset class and have the longest data history, but the capacity to draw inferences about tail events is nonetheless limited.

For other securitization asset classes, the prospects of estimating loss distributions for the pools of underlying loans are even bleaker. Commercial mortgages are at the other end of the granularity spectrum from credit card receivables. CMBS generally have, at most, a few hundred loans in the collateral pool, and delinquency of a small number of loans can often make the difference between a security being impaired or not. Moreover, the loans are very different from one another in size and other characteristics. Each loan is unique; it is not feasible to forecast the loss distribution of a commercial mortgage using the performance history of a set of different loans.

One key difficulty in applying such ground-up approaches to risk measurement of ABS is the role of default correlation, a measure of the likelihood of two different loans in the underlying collateral pool defaulting over a given time horizon. It captures systematic risk—the risk of a severe economic downturn in which an unusual number of underlying loans default simultaneously. This risk drives the tails of the distribution and is particularly relevant to TALF, which endeavored to reduce the probability of credit loss to a very low level. As with all financial assets, expected losses can be estimated with some accuracy, but the tails of the distribution are extremely difficult to gauge because large losses are rare events and long histories are needed to generate even a few observations on them. Of course, the tails of the distribution are what is most relevant to risk measurement.

To see the impact of correlation, we return to the simple ABS example analyzed in the previous section using the single-factor credit risk model. The senior bond will suffer impairment only if the pool losses are so high as to wipe out the equity entirely. Equivalently, the senior bond will be impaired if the loan proceeds at maturity are insufficient to pay its principal and interest. The probability of a pool loss reaching that level or greater can be computed within the single-factor model for any pair of parameters \(\pi \) (loan pool default rate) and \(\beta \) (correlation parameter). These probabilities of impairment of the senior bond are expressed in percent below:

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>0.025</th>
<th>0.35</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi = 0.035)</td>
<td>0.00</td>
<td>0.17</td>
<td>4.36</td>
</tr>
<tr>
<td>(\pi = 0.070)</td>
<td>0.00</td>
<td>2.48</td>
<td>8.52</td>
</tr>
<tr>
<td>(\pi = 0.105)</td>
<td>0.00</td>
<td>9.19</td>
<td>12.58</td>
</tr>
</tbody>
</table>

The correlation parameter \(\beta \) has a large impact. If correlation is low, there is a negligible likelihood that even a high default rate will break the senior bond, given its 12.5 percent credit subordination and the 5.5 percent spread between the loan interest rate and 4 percent bond coupon. If correlation is medium or high, the senior bond has a higher likelihood of impairment even at a relatively low default rate.

The use of haircuts, or the practice of lending less than the value of the collateral, was a key risk mitigant as well as an incentive to potential borrowers to use the TALF program and make capital available to securitization issuers. Haircuts enabled borrowers to take leveraged positions in TALF-eligible ABS; the reciprocal of the haircut is the leverage ratio. The leveraged return has two parts: 1) the net spread—or the difference between the coupon and TALF lending rate, multiplied by the leverage ratio, minus the interest paid on the TALF loan, and 2) the bond’s price appreciation times the leverage ratio.

The capital invested by the borrower in the form of a haircut is a first-loss position. Because the loan is nonrecourse, the maximum the investor can lose is 100 percent of that capital. Losses in excess of the haircut diminish the Federal Reserve’s interest and fee income and, if large enough, can cause a net loss to the TALF’s public sector funding. If, for example, spreads widen significantly but not drastically, and the bond price drops by, say, 2 points and the leverage ratio is 10, the...
The investor will suffer a 20 percent mark-to-market loss. A drastic widening leading to a 10-point decline will wipe the investor out. At the other end of the return distribution, the investor can keep any gains from spread tightening. The haircuts were designed to provide high leveraged returns while protecting the Federal Reserve and Treasury. Haircuts were risk sensitive, varying by the underlying asset class and the security’s weighted average life.

In the absence of adequate data on the credit quality of the underlying loans, and thus the ability to accurately estimate loss distributions “from the ground up,” other approaches to quantitative risk measurement were explored and ultimately deployed. These approaches attempt to fully exploit the historical data on defaults and market pricing, or to take account of the credit characteristics of the collateral pool underlying a particular bond.

The first approach is to use historical data on ABS bond impairment to estimate future losses. These data represent the fraction of bonds in a given category, such as asset class and credit quality, that have suffered a material impairment over a given time horizon—say, one or five years. Data also exist on the expected loss on each bond, conditional on the occurrence of impairment. The impairment rate and loss given impairment can then be treated analogously to corporate or sovereign default and loss-given-default rates.

The second approach is to extract risk-neutral ABS loss rates from credit spreads on ABS. The credit spread is the compensation, expressed as a rate, that the market or typical investor requires as compensation for the risk of holding ABS. It has several components: the mean impairment rate and loss given impairment, the product of which gives the loss rate the market actually expects, and the risk premium, which is the compensation the market requires to bear all the risks of investing in ABS, including the tail credit risk, market spread fluctuations, and liquidity.

The third and final approach is to apply stress scenario analysis. In this approach, a stress scenario is defined that is more adverse than expected. The scenario can be defined in terms of macroeconomic variables; the severity of the scenario depends on the risk appetite of the program. A model is required to translate the scenario into losses in the collateral pool, which in turn, through the cash flow waterfall, can be used to compute losses on the bonds.

All of these approaches share model risk—namely, the risk of incorrectly estimating the parameters of the model and thus over- or underestimating the risk of the bonds. Additional conservatism was built into the TALF risk models in order to protect against model risk.

Using haircuts as a risk mitigant creates the potential for adverse selection, a problem that would affect any nonrecourse collateralized lending program. Adverse selection arises because a TALF borrower has an incentive to invest in bonds with a higher spread within an asset class and weighted-average-life category, since they would have the same haircut under the TALF terms and conditions as bonds with lower spreads. W eaker bonds would have higher spreads and thus higher leveraged returns, but also higher tail risk—that is, a higher probability that the collateral value would fall below the loan amount at the maturity of the TALF loan. Nonrecourse permits the borrower to shift the risk of an extreme loss to the lender. In the new-issue ABS program, adverse selection could manifest itself in a tendency for weaker issuers, or issuers in asset classes that are weaker in ways that are hard to mitigate through additional credit enhancement, to use the program.

In the legacy CMBS program, adverse selection would express itself in a tendency for borrowers to borrow against legacy bonds of lower credit quality.

4.4 Risk Mitigation through Credit Reviews

In the past, one answer to the difficulties of risk measurement for structured credit had been credit ratings. The credit rating agencies (CRAs) reviewed aspects of the deal relevant to credit quality, such as the quality of the underlying loans, the bankruptcy-remoteness of their sale into the trust, and the financial strength of the issuer. Most crucially, the CRAs opined on whether the attachment points of the bonds were consistent with the imperviousness to credit write-downs that investors should expect to be associated with various ratings.

However, in November 2008, structured product ratings were largely discredited. Subprime residential had performed execrably, with most bonds suffering downgrades; expected pool losses were many times the projected tail losses, and it became obvious that the ratings models, which had attributed a probability of zero to the event of house price declines, had been fundamentally flawed. The performance of ratings with respect to CMBS was far better, but still poor; senior bonds in late-vintage CMBS deals had, in some cases, been given ratings as high as bonds in earlier deals with far better underwriting standards. However, the CRAs appeared to have done a

17 The investor will, however, not put the bond prior to the maturity of the TALF loan as long as the cash flow from the transaction remains positive.

18 There are additional restrictions for financing subsidiaries of a public-private investment fund (PPIF) established pursuant to the Legacy Securities Public-Private Investment Program. In particular, in order to prevent double leveraging, these borrowers may participate in the legacy CMBS only if the PPIF is receiving Treasury-supplied debt financing equal to or less than 50 percent of the PPIF’s total equity (including private and Treasury-supplied equity) and satisfies all other borrower eligibility requirements.
reasonably accurate job on nonmortgage ABS. A further
difficulty was that for securitizations, as opposed to corporate
bonds, the probabilities of default are based on sparse historical
data sets and therefore are less reliable than corporate ratings,
which can take into account a long history of corporate default
experience.

A final problem was that the CRAs might well set credit
enhancement levels or other ratings criteria at significantly
more stringent levels than in the past, in order to repair their
damaged reputations by overcompensating for the lower
underwriting standards of late-vintage deals. In fact, credit
enhancement levels have tended to be higher for 2009 and later
ABS deals than in the recent past. In part, this has been a
response to higher expected losses and to investor demand
for higher credit enhancement. However, ratios of credit
enhancement levels to expected losses have also risen.

In view of these risk management challenges and the
urgency of constructing a program as quickly as possible, it
was hard to dispense with CRAs. Over time, their role in
TALF evolved. Initially, with ABS being the only TALF-
eligible asset class, the eligibility requirements focused on
credit ratings. As additional asset classes were contemplated,
the disinclination to rely too heavily on ratings grew. For
legacy residential MBS, for example, ratings were nearly
devoid of information content.

To address the potential risk and problem with program
effectiveness posed by the
use of CRA ratings, the Fed conducted
internal credit reviews before accepting
bonds as collateral. This review provided a
layer of due diligence beyond that of the
credit rating agencies and investors,
putting the public sector in a better
position to manage adverse selection.

In addition to formal risk assessments, the Federal Reserve
revised its approach to selecting the set of CRAs whose ratings
could be used to determine TALF eligibility. Initially confined
to “major NRSROs,” the set was expanded to include
additional CRAs beginning in November 2008. Moreover,
rather than drawing from a fixed list of CRAs, the Fed set
criteria, enshrined in a rule, for determining the set of CRAs
whose ratings could be used to determine TALF eligibility for
each TALF asset class.19

Nonmortgage ABS

Beginning with the November nonmortgage ABS
subscription,20 the New York Fed performed its own risk
assessments of nonmortgage ABS proposed as TALF-eligible
loan collateral. To facilitate this review, the Fed asked sponsors
or issuers of proposed TALF-eligible ABS to provide all data on
the ABS or its underlying exposures that had been provided
to any NRSRO well in advance of the applicable TALF
subscription date.

New-Issue CMBS

A more intensive risk review was associated with the new-issue
CMBS program, which included not only an analysis of the
underlying loan pool and trust structure, but also a review of
key legal documents. In addition, certain protections for the
public sector were to be incorporated in the trust structure of
single-borrower deals, in which one borrower places loans on a
number of properties it owns and operates into the CMBS trust
(unlike a conduit or fusion CMBS, in which the underlying
properties are owned by many borrowers). Pooling of cash
flows across properties reduces the probability that any one
property will default on its mortgage, but concentrates
property ownership and management, potentially amplifying
conflicts of interest between the owner and bondholders.

Single-borrower transactions therefore typically have lower
loan-to-value ratios than conduit deals and include only
investment-grade bonds. (Conduit deals, however, include
B-rated bonds.)

The Federal Reserve retained the right to reject individual
loans from a proposed pool in the new-issue CMBS program.
Intermediaries were reluctant to add rather than reduce assets

19 The announcement of the rule can be found at http://
20 For a description of TALF’s operations schedule, see the subsection TALF
Operations (3.6).
in the post-Lehman environment, especially given CRE credit risk. Potential CMBS issuers were therefore uneasy about originating loans with a view to a TALF-eligible securitization that might be rejected by the Fed after the issuer funded the loans. Consequently, issuers initially endeavored to securitize single-borrower pools, for which TALF eligibility could be clarified more easily in advance of funding.

As part of its credit review, the Federal Reserve was also attentive to potential conflicts of interest within the governance structures of potential new-issue CMBS deals. An important example is the role of the special servicer, a firm entrusted with the administration and disposition of delinquent properties. In a typical CMBS transaction, the special servicer is instructed under a servicing agreement to make decisions in the interest of the trust as a whole, according to an industry standard. In late-vintage CMBS transactions, however, the most junior bond class, which absorbs losses first, was typically given consent rights and the right to replace the special servicer, giving the junior investor leverage over decision making. Allocating these rights to the junior investor has the function of disciplining the special servicer, benefiting all investors. However, this mechanism also creates scope for abuse owing to the conflicts between junior and senior tranches, particularly regarding the decision to foreclose versus extend a loan. Typically, the junior tranches prefer to extend troubled loans, thus preserving the “option value” of possible recovery, while the senior tranches prefer rapid foreclosure, reducing the potential for further deterioration of recovery value. Senior investors’ concerns about such conflicts are amplified by the often limited transparency of the rationale behind the special servicer’s decisions. In its capacity as lender to the senior investor, TALF shared these concerns.

In the event, only one new-issue CMBS transaction, a single-borrower issue sponsored by Developers Diversified Realty (DDR) in November 2009, was supported by TALF. The DDR trust agreement addressed governance concerns through these features:

- Enhanced reporting to all investors regarding the rationale behind major decisions (particularly an analysis of whether the action would produce the largest net present value) and disclosure of relevant assumptions in the calculation. In principle, this communication should provide transparency into why a special servicer has taken a particular course of action, providing additional discipline on servicer behavior and increasing the confidence investors have in the integrity of the transaction.
- No individual tranche has either consultative rights or the right to replace the special servicer. With the advantage of junior-tranche investors removed, there is no scope for them to intimidate the special servicer into taking their preferred course of action. While it resolves the conflict, this feature does remove an important check on the special servicer’s behavior. In order to rectify this, the transaction introduced the concept of an independent operating advisor (OA), who represents the trust and has consultative rights over major decisions by the special servicer. The OA can recommend to investors that the special servicer be replaced, and a majority vote of each class is required to overturn this recommendation. A regime giving any one class a veto would mean that the class benefiting from the special servicer’s decision would be able to block the OA’s attempt to remedy the situation and thus protect the interest of the trust as a whole.

Legacy CMBS

For the legacy CMBS program, the New York Fed conducted a risk assessment of loan requests in the period between the subscription date and the settlement date. In particular, the Fed worked with collateral monitors to estimate stress valuations for the collateral behind each loan request. These are forward valuations of the submitted collateral, measured at TALF loan maturity in a severe credit and spread environment. These stress valuations are compared with the loan amount in order to identify loan requests where the borrower would be likely to put the collateral. The New York Fed disclosed the outcome of the risk review process to the market in order to prevent the process from creating information asymmetries (between the borrower and other investors) that would reduce market liquidity.

The risk review process was an important check on adverse selection by TALF borrowers, despite the low rejection rate of 13 percent. Its effectiveness in inducing monitoring of collateral quality by TALF borrowers is evidenced in dealers’ calls, during TALF’s active lending phase, for greater transparency into the “black box” of the legacy CMBS risk review and, in particular, for the Fed’s publication of a list of the risk review process was an important check on adverse selection by TALF borrowers, despite the low rejection rate of 13 percent.21 Its effectiveness in inducing monitoring of collateral quality by TALF borrowers is evidenced in dealers’ calls, during TALF’s active lending phase, for greater transparency into the “black box” of the legacy CMBS risk review and, in particular, for the Fed’s publication of a list of

\[21 \text{This rate is measured as the ratio of the number of rejected CUSIPs to the total number tendered during the nine legacy CMBS subscriptions.}\]
eligible legacy CMBS CUSIPs prior to subscriptions. Had the program done so, market participants would have had an incentive to submit lower-quality collateral chosen from that list. The TALF portfolio would then be weighted toward the lower-quality end of the generally high credit quality super-senior spectrum. The possibility of CUSIP rejection motivated borrowers to perform their due diligence on the bonds and refrain from submitting bonds from deals with serious known problems, as they would then have risked either holding the bonds or selling them into the market at a loss following rejection. While this may have limited liquidity support by the program for the most risky super-senior bonds, it avoided funding a portfolio of the riskiest eligible bonds.

Beyond the impact on risk taken by the public sector, publishing a list of eligible bonds might also have reduced the informativeness of market prices. In particular, there was a risk that the program would attract investors with little experience in the sector who would then “free ride” on the private expertise, buying bonds on the basis of yield in the sector with little appreciation for risk. While this would be a positive for the current owners of eligible bonds, spread differentiation related to risk would diminish, raising the question of whether the program was having a net benefit on the market. The threat of rejection was likely a factor in keeping uninformed investors on the sidelines, preventing the harm that would ensue from uninformed bond buying.

4.5 Risk Mitigation from Borrower Payments

Risk mitigants from payments made by the borrower include the loan rate, premium payment, carry cap, and the small administration fee earned by the Fed for operating the program.

The TALF Loan Rate

The interest rate on TALF loans is generally high relative to the historical coupon rate on ABS and CMBS. This high rate serves two important purposes. First, it is an important source of credit enhancement to the public sector. Second, the high loan rate is also an important part of the exit strategy. As historical spreads on the senior-most new-issue ABS and CMBS were significantly less than 100 basis points, the loan rate would make the facility uneconomic as new-issue spreads reverted toward their historical norms. Thus, the need for the facility would diminish as the markets recovered. TALF borrowers would also have an incentive to repay loans prior to maturity since, at tighter spreads, the likelihood of a sharp widening would increase relative to the likelihood of a sharp further tightening, increasing the risk of a large mark-to-market loss.

The Premium Payment

As described above, the premium payment is intended to prevent the loan-to-value ratio for bonds presented at a premium price from declining over the life of the loan. The need for a premium lending regime was originally motivated by the desire to support small-business lending through the Small Business Administration. However, it was recognized that if the program wanted to provide liquidity support to other asset classes of new-issue ABS in subsequent subscriptions, it would have to accept TALF-eligible collateral at above-par prices, as spreads were likely to narrow over time. The SBA offers guarantees on the principal balance of small-business loans originated by SBA-approved lenders. It offers fixed-rate loans to fund the purchase of equipment through its 504 program and floating-rate loans to fund working capital through its 7a program. In both programs, the originating lender retains a portion of the balance of each loan, typically about 85 percent, and the SBA-guaranteed portion is sold to a

22 As described above, the three-year cumulative loss is 8 basis points, or fewer than 3 basis points per year. See Moody’s, “Default and Loss Rates of Structured Finance Securities: 1993-2009, Exhibit 40.”
pool assembler, who securitizes the pool into a pass-through security. Risk retention by the originator aligns its incentives with the SBA’s in order to prevent adverse selection of underlying loans. The presence of SBA credit guarantees on the securitized balance implies that the main risk to the investor is prepayment rather than credit risk, which comes in the form of voluntary prepayments by the borrower as well as accelerations—that is, immediate repayment by the SBA of defaulted loans. Given the low-interest-rate environment in which recently originated loans were underwritten, there is little risk of voluntary prepayment. However, the weak economic environment has adversely affected the credit quality of small businesses, which are more vulnerable to the economic cycle, and may ultimately result in historically high levels of acceleration by the SBA.

As a historical convention, SBA loan originators want to be compensated up front for their costs of origination, which requires the loans, and consequently the SBA certificates, to be priced at a premium, typically around $105, at issue. In other words, the issuer sells the pool to investors for $105 and buys the loans from the originator at $104, pocketing $1 for underwriting expenses and compensating the originator $4 immediately for origination costs. The premium price is justified by the absence of credit risk on the underlying loans as well as an above-market rate of interest for a security without credit risk. This premium price is simply the net present value of the above-market interest payments, calculated over the average life of the security, which is defined as the time until the average principal payment is remitted to the investor. In order to calculate the average life, it is necessary to make an assumption about prepayment speeds, which is the most important variable in determining valuation. If prepayment speeds accelerate faster than expected at issue, the premium price will fall because the average life is shorter and the investor receives above-market interest rates for a shorter amount of time.

The premium price generates prepayment risk for TALF. If the prepayment speed on the collateral is much faster than anticipated, the premium price reverts toward par. If there is enough acceleration, and the TALF has loaned in excess of par, it is conceivable—that is, likely—that the market value of the bond could fall below the loan amount even with no change in interest rates. Given the nature of the SBA asset class, the TALF program has a number of important mitigants in place to ensure the proper trade-off between the goal of facilitating small-business lending (which requires lending at an above-par price) and the desire to minimize prepayment risk.

The first mitigant to prepayment risk is the presence of haircuts, which generally exceed the premium. The average life of SBA 7(a) certificates is typically seven to eight years based on the TALF assumed conditional prepayment rate (CPR) of 14 percent (“14 CPR”), implying that 14 percent of the remaining balance of the pool will repay each year. The corresponding TALF haircut is 6 to 7 percent. The average life on fixed-rate SBA 504 certificates is typically ten years at the TALF prepayment speed of 5 CPR, which corresponds to a TALF haircut of 8 percent. When the haircut is larger than the premium, there is no prepayment risk on the TALF loan because the SBA will have guaranteed repayment of an amount larger than the loan amount.23

The second mitigant to prepayment risk is the presence of a cap on the value of the collateral at $110, which limits the maximum loss severity of TALF. In an extreme scenario, if an entire pool priced at $109 and with a haircut of $7 defaulted on the day after issue, the haircut would be inadequate and the program would take a loss of $2. The cap on price limits loss severity to the difference between the cap and the haircut. However, this risk is very low, as such rapid acceleration is far outside the range of historical experience. Moreover, with a typical five-year loan term, there will generally be adequate loan spread generated to offset this exposure. For example, for a loan against 7(a) collateral, the loan rate is the five-year swap rate plus 50 basis points. Given a Federal Reserve cost of funds equal to OIS plus 25 basis points and a five-year swap rate at 250 basis points, TALF LLC is compensated 250 basis points per year in spread income, which should be enough to offset the $2 of maximum prepayment exposure after just one year.

The program’s final risk mitigant is the requirement that investors make an additional payment each month, called a “premium payment,” to account for the expected reversion of the price back toward par over time. Without this payment, the loan-to-value (LTV) and the leverage of the loan would increase as above-market interest was distributed to the investor, leaving the TALF program more vulnerable to a put at loan maturity. To mitigate this, the investor must make an additional payment that amortizes the premium over the average life of the security. The formula employed is conservative, so if the TALF assumption on prepayment speed is realized, premium payments cause the LTV to decline modestly over time. However, if prepayment speeds were much higher than expected, these payments would not suffice to keep the LTV from increasing over time. The premium payment limits the potential loss severity to a level easily covered by spread income, minimizing the risk of loss to the program.

The Carry Cap
The carry cap was a feature designed to mitigate adverse selection in the legacy program and to manage the policy risk to the Federal Reserve of committing its balance sheet far into the future under a five-year TALF loan. In particular, the investor could not receive more than 25 percent of the original equity investment per year in the first three years of the loan. In the fourth and fifth years, the percentages drop to 10 percent and 5 percent, respectively. Any net carry—interest received from the ABS or CMBS minus interest paid on the TALF loan—in excess of this amount would be used to pay down the TALF loan and delever the transaction.

Illustrating the first rationale, initial surveys of how market participants would value leverage provided against legacy securities suggested that many would “price to the put.” In other words, they would start with the assumption that the collateral would be surrendered at TALF loan maturity and that their equity would be wiped out. Despite this assumption, investors expected the leverage provided to have a significant effect on prices given how wide spreads were, which would permit the borrower to earn more than enough carry over the life of the loan to offset the complete loss of TALF borrower equity. The problem with this behavior is obvious, as it would incentivize investors to choose risky collateral that had the most carry. The risk to the public sector of providing leverage on those terms was clearly unacceptable.

The carry cap addressed this problem by obliging TALF borrowers to keep at least some capital at risk through the life of the loan. Note that the sum of these annual caps is equal to 90 percent of the TALF borrower’s equity; the borrower receives no upside until the loan to the public sector is repaid. If spreads tightened enough, the investor could realize a capital gain by repaying the TALF loan and selling the collateral in the market. But if spreads remained wide, returns from interest-related cash flows could not exceed the investor’s equity. With the cap in place, the investor was unable to “price to the put,” as such an assumption would result in losses. By effectively subordinating the investor’s upside to the TALF loan, the carry cap provided a strong incentive to select good collateral and reduced the scope for adverse selection.

Regarding the second rationale, the Federal Reserve was not eager to provide a TALF loan maturity of five years, as this would commit its balance sheet, and thus the monetary base, five years into the future. While the Fed has tools to address the size of its balance sheet, longer-term TALF loans could increase the challenge in the event the economy had fully recovered, and the Fed viewed inflation as a serious risk. On the other hand, legacy fixed-rate CMBS generally had an average life at issue of five to ten years, and investors appeared reluctant to bear the refinancing risk associated with funding long-term debt with short-term leverage. In order for the legacy program to succeed, it was necessary to find some middle ground. This was accomplished through the step-down in the carry cap to 10 percent and 5 percent in the fourth and fifth years of the TALF loan. In the event that markets had recovered by then, investors would have the incentive to seek alternative funding or sell the collateral. However, if the economy and financial markets were still weak, investors could keep the funding through five years and hope for improvement. The step-down in carry cap incentivized the investor to seek alternative private funding when it was most likely to be available and most desirable for the Fed from a monetary policy standpoint for them to do so.

5. Impact of TALF on Term ABS and CMBS Markets
This section reviews the impact of the TALF on the new-issue ABS, legacy CMBS, and new-issue CMBS markets. The program was designed to prevent a sustained shutdown of the securitization channel of credit intermediation by supporting liquidity in the ABS and CMBS markets, and it should be evaluated in terms of its intended effects. We therefore assess TALF by observing volumes and patterns of ABS and CMBS issuance as well as liquidity conditions in these markets.

Overall, the improvement in market conditions and liquidity in the term ABS and CMBS markets in 2009 was dramatic, particularly in view of the lower-than-expected volume of lending through TALF. A total of $71.1 billion in TALF loans was requested (Table 7) and the volume of outstanding loans peaked in March 2010 at $48.2 billion (Chart 4), although the program was authorized to reach $200 billion and at one point up to $1 trillion in loan volume was envisioned.24

Table 7
TALF Loans by Subscription and Asset Class
Millions of Dollars, Except as Noted

Panel A: March-October 2009

<table>
<thead>
<tr>
<th></th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto</td>
<td>1,908.9</td>
<td>796.9</td>
<td>2,310.9</td>
<td>2,945.9</td>
<td>2,830.7</td>
<td>555.3</td>
<td>1,159.8</td>
<td>190.8</td>
</tr>
<tr>
<td>Credit card</td>
<td>2,804.5</td>
<td>890.8</td>
<td>5,514.7</td>
<td>6,022.7</td>
<td>1,459.1</td>
<td>2,553.6</td>
<td>4,399.1</td>
<td>224.4</td>
</tr>
<tr>
<td>Equipment</td>
<td>NA</td>
<td>0.0</td>
<td>445.6</td>
<td>590.2</td>
<td>0.0</td>
<td>0.0</td>
<td>110.6</td>
<td>38.8</td>
</tr>
<tr>
<td>Floorplan</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Premium finance</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Servicing advances</td>
<td>NA</td>
<td>0.0</td>
<td>0.0</td>
<td>438.6</td>
<td>34.4</td>
<td>107.5</td>
<td>0.0</td>
<td>475.2</td>
</tr>
<tr>
<td>Small business</td>
<td>0.0</td>
<td>0.0</td>
<td>86.5</td>
<td>29.4</td>
<td>62.2</td>
<td>147.4</td>
<td>161.9</td>
<td>262.5</td>
</tr>
<tr>
<td>Student loan</td>
<td>0.0</td>
<td>0.0</td>
<td>2,281.5</td>
<td>226.7</td>
<td>986.8</td>
<td>2,444.7</td>
<td>177.1</td>
<td>287.7</td>
</tr>
<tr>
<td>ABS total</td>
<td>4,713.4</td>
<td>1,687.7</td>
<td>10,639.2</td>
<td>10,717.3</td>
<td>5,373.2</td>
<td>6,814.0</td>
<td>6,538.5</td>
<td>2,366.0</td>
</tr>
<tr>
<td>New-issue CMBS</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Legacy CMBS</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>635.8</td>
<td>2,148.3</td>
<td>1,351.1</td>
<td>1,930.6</td>
<td>1,930.6</td>
</tr>
<tr>
<td>CMBS total</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.0</td>
<td>635.8</td>
<td>2,148.3</td>
<td>1,351.1</td>
<td>1,930.6</td>
</tr>
<tr>
<td>Amount of loans</td>
<td>4,713.4</td>
<td>1,687.7</td>
<td>10,639.2</td>
<td>10,717.3</td>
<td>6,009.0</td>
<td>8,962.3</td>
<td>7,889.6</td>
<td>4,296.6</td>
</tr>
<tr>
<td>Number of loans</td>
<td>136</td>
<td>83</td>
<td>205</td>
<td>275</td>
<td>165</td>
<td>294</td>
<td>200</td>
<td>170</td>
</tr>
</tbody>
</table>

Panel B: November 2009-June 2010

<table>
<thead>
<tr>
<th></th>
<th>November</th>
<th>December</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>91.0</td>
<td>0.0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>12,790.2</td>
</tr>
<tr>
<td>Credit card</td>
<td>63.1</td>
<td>1,528.7</td>
<td>242.2</td>
<td>205.0</td>
<td>409.2</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>26,317.1</td>
</tr>
<tr>
<td>Equipment</td>
<td>57.1</td>
<td>199.2</td>
<td>0.0</td>
<td>31.1</td>
<td>139.3</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>1,611.7</td>
</tr>
<tr>
<td>Floorplan</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.0</td>
</tr>
<tr>
<td>Premium finance</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.0</td>
</tr>
<tr>
<td>Servicing advances</td>
<td>0.0</td>
<td>137.7</td>
<td>0.0</td>
<td>114.8</td>
<td>0.0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>1,308.1</td>
</tr>
<tr>
<td>Small business</td>
<td>408.7</td>
<td>274.6</td>
<td>332.4</td>
<td>37.7</td>
<td>349.5</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>2,152.9</td>
</tr>
<tr>
<td>Student loan</td>
<td>85.0</td>
<td>665.1</td>
<td>0.0</td>
<td>54.4</td>
<td>1,760.1</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>8,969.1</td>
</tr>
<tr>
<td>ABS total</td>
<td>1,059.3</td>
<td>2,977.4</td>
<td>1,067.5</td>
<td>973.6</td>
<td>4,097.8</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>59,024.9</td>
</tr>
<tr>
<td>New-issue CMBS</td>
<td>72.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>72.2</td>
<td>72.2</td>
</tr>
<tr>
<td>Legacy CMBS</td>
<td>1,329.5</td>
<td>1,282.4</td>
<td>1,326.0</td>
<td>1,133.0</td>
<td>857.0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>11,993.8</td>
</tr>
<tr>
<td>CMBS total</td>
<td>1,401.8</td>
<td>1,282.4</td>
<td>1,326.0</td>
<td>1,133.0</td>
<td>857.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>12,066.1</td>
</tr>
<tr>
<td>Amount of loans</td>
<td>2,461.1</td>
<td>4,259.8</td>
<td>2,393.5</td>
<td>2,106.6</td>
<td>4,954.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>71,091.0</td>
</tr>
<tr>
<td>Number of loans</td>
<td>117</td>
<td>144</td>
<td>109</td>
<td>105</td>
<td>149</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,152</td>
</tr>
</tbody>
</table>

The low level of TALF usage reflected the strong risk mitigants the program incorporated as well as the rapid improvement in market conditions in the term ABS and CMBS markets. As spreads narrowed, the balance of risk and reward in levered positions in ABS and CMBS shifted, at least partly offsetting the benefit of term financing with positive net carry. At tighter spreads, the potential for further capital gains from tightening must be weighed against the potential for losses induced by widening. These considerations reduced incentives to borrow through TALF and led some borrowers to repay TALF loans prior to maturity, which they are permitted to do at no cost.

5.1 Issuance Impact of TALF

While greatly reduced compared with results from prior years, term ABS and CMBS issuance did not collapse in 2009. The initial post-Lehman transactions in each sector were TALF-eligible and drew at least partly on TALF liquidity support, indicating that TALF contributed to keeping the securitization channel functioning. The effect of TALF can be seen not only in the volume of securities financed by the program, but also in the following:

- The volume of TALF-eligible securities marketed without TALF financing increased, a sign that the sector had grown less dependent on TALF financing and was likelier to thrive without public sector support.
- ABS and CMBS in TALF-eligible asset classes were issued, but with features that made them ineligible TALF collateral. Issuance of ABS in TALF-eligible asset classes, but with no potential for direct TALF support, was also a sign of recovery in the sector.

- Within the latter category, issuance of subordinate bonds (bonds with credit quality lower than what was required for TALF eligibility) was particularly significant.

Chart 5 displays total ABS issuance in new-issue ABS and CMBS asset classes included in the TALF program, the volume of TALF-eligible bonds, and the amount of bonds actually pledged as collateral against TALF loans. The fraction of total ABS issuance directly supported by TALF loans was high at the start of the program and close to half during the program’s first six subscriptions, but fell dramatically over time, especially in major asset classes, averaging around 20 percent in the last six subscriptions. While early on, about two-thirds of total ABS issuance was TALF eligible, and most of that was actually pledged—by the end of the program more than half of ABS issuance in TALF asset classes was financed away from TALF or held unlevered.

These trends suggest that as market conditions improved, cash investors were induced to participate in the term ABS market, and private sector financing became more available to levered investors, permitting TALF to operate as a backstop rather than a form of direct support. In addition, as ABS spreads narrowed during the course of 2009, the balance of risk in leveraged investment in ABS and CMBS shifted, reducing incentives to put on such trades: At very wide spreads, the likelihood of further widening and capital losses is smaller relative to the likelihood of tightening and capital gains than when spreads have narrowed.

Table 8, panel A, displays the volume of term ABS issuance for the major TALF-eligible asset classes—credit cards, auto loans and leases, equipment loans and leases, and private student loans—since 2005:

- Auto ABS issuance had peaked at $85 billion in 2005 and declined somewhat through 2007, likely because...
Chart 5
Asset-Backed Security Issuance, 2007-11
Total Issuance in TALF-Eligible Classes and Breakdown of TALF Issuance

Sources: Board of Governors of the Federal Reserve System; Bloomberg Financial L.P.; discount window data.
Note: Eligible classes exclude legacy commercial-mortgage-backed-security transactions.

of the loss of vehicle market share by ABS-dependent U.S. auto manufacturers. However, issuance collapsed to $5 billion in the second half of 2008, bringing the 2008 total to $36 billion. Following the introduction of TALF, 2009 issuance was more than $60 billion.

- In contrast, credit card ABS issuance had been increasing from less than $70 billion in 2005 to almost $100 billion in 2007, then fell to $60 billion in 2008. No credit card ABS were issued in the fourth quarter of 2008. Card issuance rebounded to $46 billion for 2009, one-fourth outside the program. Most major issuers were able in 2009 to issue enough to refinance maturing ABS, although with shorter terms than they likely preferred. Card issuance came to a complete halt in late 2009, largely on concerns by credit rating agencies about the impact of FAS 166/167 on bank-sponsored securitization volume.

- Student loan ABS issuance continued its volume decline since 2005 and was relatively dependent on direct TALF support. Investors initially hesitated to assume the refinancing risk associated with three-year TALF financing of longer-dated student loan ABS. Beginning in June, five-year TALF loans became available.

26 Auto ABS fund static pools of loans and leases; so issuance is closely related to the amount of lending, which in turn is closely related to sales of new and used vehicles. In contrast, card ABS fund revolving pools of receivables, so the amount of issuance depends more on the maturity profile of the trust and normally has a less immediate relationship to the volume of lending.
Table 8
Volume of New Issuances
Billions of Dollars

Panel A: Major Asset Classes

<table>
<thead>
<tr>
<th>Asset Class</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-non-TALF</td>
<td>84.9</td>
<td>81.9</td>
<td>74.1</td>
<td>36.2</td>
<td>13.8</td>
<td>51.1</td>
<td>45.8</td>
<td>387.8</td>
</tr>
<tr>
<td>Auto-TALF</td>
<td>41.6</td>
<td>2.7</td>
<td>29.1</td>
<td>32.8</td>
<td>7.4</td>
<td>6.2</td>
<td>294.4</td>
<td></td>
</tr>
<tr>
<td>Credit card-non-TALF</td>
<td>67.8</td>
<td>66.9</td>
<td>99.5</td>
<td>59.1</td>
<td>32.8</td>
<td>7.4</td>
<td>6.2</td>
<td>339.7</td>
</tr>
<tr>
<td>Credit card-TALF</td>
<td>29.1</td>
<td>3.2</td>
<td>4.3</td>
<td>6.3</td>
<td>29.4</td>
<td>29.4</td>
<td>29.4</td>
<td></td>
</tr>
<tr>
<td>Equipment-non-TALF</td>
<td>10.4</td>
<td>8.8</td>
<td>5.8</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
<td>39.5</td>
</tr>
<tr>
<td>Equipment-TALF</td>
<td>6.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>7.1</td>
</tr>
<tr>
<td>Student loan-non-TALF</td>
<td>63.2</td>
<td>67.1</td>
<td>61.4</td>
<td>28.2</td>
<td>11.6</td>
<td>13.5</td>
<td>13.7</td>
<td>258.7</td>
</tr>
<tr>
<td>Student loan-TALF</td>
<td>7.4</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>9.6</td>
</tr>
<tr>
<td>CMBS</td>
<td>181.1</td>
<td>235.7</td>
<td>245.6</td>
<td>17.8</td>
<td>11.9</td>
<td>25.0</td>
<td>34.4</td>
<td>751.4</td>
</tr>
<tr>
<td>Total</td>
<td>415.0</td>
<td>451.2</td>
<td>494.5</td>
<td>149.3</td>
<td>165.8</td>
<td>128.6</td>
<td>144.4</td>
<td>1,867.4</td>
</tr>
</tbody>
</table>

Panel B: Minor Asset Classes

<table>
<thead>
<tr>
<th>Asset Class</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floorplan-non-TALF</td>
<td>12.9</td>
<td>13.3</td>
<td>6.9</td>
<td>1.2</td>
<td>0.7</td>
<td>10.7</td>
<td>5.8</td>
<td>51.5</td>
</tr>
<tr>
<td>Floorplan-TALF</td>
<td>4.3</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>0.2</td>
<td>3.4</td>
<td>7.7</td>
<td>23.8</td>
</tr>
<tr>
<td>Small business-non-TALF</td>
<td>5.3</td>
<td>8.7</td>
<td>7.7</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>23.8</td>
</tr>
<tr>
<td>Small business-TALF</td>
<td>3.8</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>4.4</td>
</tr>
<tr>
<td>Insurance-non-TALF</td>
<td>2.9</td>
<td>5.7</td>
<td>3.4</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>12.7</td>
</tr>
<tr>
<td>Insurance-TALF</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>4.4</td>
</tr>
<tr>
<td>Servicer-non-TALF</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>4.7</td>
</tr>
<tr>
<td>Servicer-TALF</td>
<td>1.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>1.7</td>
</tr>
<tr>
<td>Total</td>
<td>21.4</td>
<td>28.0</td>
<td>18.3</td>
<td>3.5</td>
<td>12.8</td>
<td>18.7</td>
<td>6.0</td>
<td>108.7</td>
</tr>
</tbody>
</table>

Sources: JPMorgan Chase; Bloomberg Financial L.P.

Note: Commercial-mortgage-backed-security (CMBS) data exclude agency issuances.

Table 8 reveals that ABS issuance in 2009 was significantly lower than in previous years. While the issuance of ABS in major asset classes, such as auto- and credit card ABS, decreased substantially, the issuance of ABS in minor asset classes, such as small business and insurance receivables, actually increased. This suggests that TALF had a significant impact on funding liquidity in these sectors.

- Equipment ABS is the smallest of the major sectors, with $10 billion or less in issuance between 2005 and 2007. Issuance in this sector also evaporated in the second half of 2008. It has returned to pre-crisis levels, but appears to have been more dependent on the TALF support.

As seen in Table 8, panel B, ABS issuance by minor sectors—servicing advances, dealer floorplan, insurance premium receivables, and small-business loans—actually rose in 2009 compared with recent years, suggesting that TALF had a significant impact on funding liquidity. The pattern of loan requests suggests that it took some time for these sectors to come to market. In the case of auto-dealer floorplan, it was particularly difficult for issuers to secure AAA ratings given the bankruptcy risk of the largest domestic auto manufacturers.

Overall, term ABS issuance in 2009 was about half that in 2005. Issuers had a lower need to issue ABS, since lending was reduced by both the recession and higher credit standards, while bank issuers, at least, had alternative sources of cheap funding. Some issuers also had difficulty securing AAA term credit ratings for their securitizations.

27 In particular, the FDIC has the authority to repudiate contracts when resolving a failed bank, and that power includes the right to take securitized assets back on to the balance sheet. In 2000, the FDIC implemented a rule-making suggesting that as long as a securitization transaction met accounting true sale requirements, it would benefit from a safe harbor from this resolution authority. However, under the new accounting regime, most credit card revolving master trusts would no longer benefit from true sale accounting treatment and, consequently, would no longer benefit from the 2000 safe harbor. As the change in accounting rules introduced sponsor credit risk into what was supposed to be a bankruptcy-remote transaction, the credit rating agencies refused to rate the senior notes of credit card master trusts with AAA ratings unless the sponsor had a AA credit rating. Given downgrades of major financial institutions below that level, this put their trusts at risk of downgrade. Moreover, given the AAA-rating requirement of TALF, this prevented major issuers from being able to issue through the program. The FDIC in late November extended the 2000 regime through the end of March until the end of TALF.
While only one TALF-eligible, new-issue CMBS transaction was brought to market—a single-borrower issue sponsored by DDR—it appears to have had a large and positive impact on market conditions. At the time of issuance, the DDR transaction was the first U.S. CMBS issue in more than eighteen months. The market impact of the transaction can be seen in several ways. TALF received $72 million in loan requests, compared with $323 million in AAA-rated bonds issued, and spreads on all bonds in the DDR deal were progressively tightened during the preissuance marketing period. This evidence that the transaction was well supported by cash buyers, together with the data it provided on the pricing levels for new CMBS backed by recently and conservatively underwritten loans, led within weeks to two non-TALF, single-borrower CMBS transactions. These deals, sponsored by LWest and Flagler, were of comparable size, $350 million and $390 million, versus $325 million for DDR (see Table 9 for a summary of the terms of these transactions).

The underwriters responded to improved market conditions by seeking higher proceeds and longer underlying loan maturities. The non-TALF transactions were tranched down to a BBB rating, compared with single-A for DDR. The AAA tranche of the non-TALF deals had loan-to-values of 39.2 percent and 45.8 percent, compared with 42 percent for DDR. Despite the greater deal leverage and longer weighted average life, spreads at issuance for the non-TALF AAA tranches were only 50 to 75 basis points wider than DDR’s.

Despite the program’s success in facilitating these transactions, as of this writing, issuance in the CMBS market has remained subdued compared with pre-crisis levels. As is the case for nonmortgage ABS, this owes in part to reduced underlying lending activity. Also, some large real estate investment firms that are potential sponsors of single-borrower deals have been able to access both the unsecured debt and equity markets, reducing the need for secured financing.

Table 9
New Issuances of Commercial Mortgage-Backed Securities, 2009

<table>
<thead>
<tr>
<th>Class</th>
<th>Size (Millions of Dollars)</th>
<th>Ratings (RP/S)</th>
<th>Debt Yield (Percent)</th>
<th>LTV (Percent)</th>
<th>WAL</th>
<th>Initial Px Guidance</th>
<th>Final Pricing</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPMCC 2009-IWST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>58.3</td>
<td>AAA/AAA</td>
<td>18.90</td>
<td>45.80</td>
<td>5.62</td>
<td>S+150-165</td>
<td>S+150</td>
</tr>
<tr>
<td>A2</td>
<td>330.6</td>
<td>AAA/AAA</td>
<td>18.90</td>
<td>45.80</td>
<td>9.95</td>
<td>S+205-220</td>
<td>S+205</td>
</tr>
<tr>
<td>B</td>
<td>24.1</td>
<td>AA/AA</td>
<td>17.80</td>
<td>48.60</td>
<td>9.95</td>
<td>S+360-385</td>
<td>S+360</td>
</tr>
<tr>
<td>C</td>
<td>42.9</td>
<td>A/A</td>
<td>16.10</td>
<td>53.70</td>
<td>9.95</td>
<td>S+410-435</td>
<td>S+420</td>
</tr>
<tr>
<td>D</td>
<td>44.0</td>
<td>BBB-/BBB-</td>
<td>14.70</td>
<td>58.90</td>
<td>9.95</td>
<td>8.25-8.50 percent</td>
<td>9.00 percent</td>
</tr>
<tr>
<td>X</td>
<td>10.0</td>
<td>AAA/AAA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BALL 2009-FDG							
A	350	AAA/AAA	22.00	39.20	6.67	S+190-210	S+225
B	30	AA/AA	20.30	42.50	7.11	S+385-405	S+400
C	33	A/A	18.70	46.20	7.11	S+435-455	S+450
D	47	BBB-/BBB-	16.80	51.50	7.11	8.25-8.50 percent	8.75 percent

DDR1 2009-DDR1							
A	323.5	AAA/Aaa/AAA	20.50	41.80	4.62	S+175-200	S+140/3.10 percent
B	41.5	AA/Aa/AA	18.10	47.20	4.89	7.5-8.5 percent	S+335/5.737 percent
C	35.0	A/A/AA	16.50	51.70	4.89	8.5-9.5 percent	S+385/6.230 percent

Sources: Bloomberg Financial L.P.; security prospectus supplements.
TALF also had an impact on the ABS and CMBS investor base. A higher fraction of the smaller volume of issuance from 2009 on was taken up by asset managers and hedge funds than in prior years. Much of this new investment took place through relatively small specialized funds managed by large asset or hedge fund management companies that borrowed from the TALF and invested only in TALF-eligible securities. The fraction of ABS and CMBS issuance taken up by participants in securities lending programs and by off-balance-sheet vehicles such as SIVs, largely sponsored by banks, declined sharply.

While TALF was premised on the need to continue providing leverage to a sector that had come to rely on it, the overall extent of leverage employed by ABS and CMBS investors likely fell as this shift in the investor base occurred. Table 1 displays data on the investor base for term ABS before and after the implementation of TALF in 2009.

As the investor base has shifted, TALF and recent non-TALF ABS and CMBS deals have, in important respects, stepped back from some of the more baroque features of late-stage pre-crisis securitization. The complexity of ABS and CMBS structures has been reduced—no longer, for example, do they feature microtranching, the practice of issuing very thin tranches, particularly in the mezzanine part of the liability structure. These bonds were created to appeal to particular clienteles seeking high yields alongside high systematic risk: When losses in the loan pool are great enough to affect these thin tranches, their loss given default can be close to 100 percent.

The Federal Reserve’s requirements as a nonrecourse secured lender with a low risk appetite also had an influence on deal structures. The Fed’s announcement of the introduction of formal risk assessments for nonmortgage ABS reiterated its criteria of “transparency, and simplicity of structure.” These criteria were aligned with the market’s own recoil from the complexity and opacity of pre-crisis ABS structures.

5.2 Liquidity Impact of TALF

Secondary-market credit spreads are a key indicator of liquidity conditions as well as of credit risk. Spreads on structured credit products widened dramatically in the fall of 2008 and tightened almost as dramatically in the early months of TALF operations. Term ABS spreads continued to narrow throughout early 2010, in line with unsecured corporate spreads.

One cannot say with certainty how much of this improvement is attributable to TALF rather than to a more positive view on credit risk. But the suddenness and rapidity of the tightening suggest that TALF had a disproportionate effect on liquidity. The provision of liquidity may have had a proportionally greater impact on new-issue ABS, where liquidity was the primary problem, and less of an immediate and evident impact on legacy and new-issue CMBS, where problems were related to credit as well as liquidity. It is difficult to ascertain the relative contribution of TALF versus a more general reduction of spreads and risk premiums. Other factors at work include the following:

- massive public sector support for the financial system;
- abatement of risk aversion, expressed particularly by opportunistic investors buying oversold assets; and
- portfolio balance effects arising from increasing supplies of low-risk government bonds and the drastic reduction in supply of credit-risky bonds, including securitizations.

As seen in the top panel of Chart 3, secondary-market spreads on short-dated, AAA-rated credit card and prime auto loan ABS widened to over 600 basis points, from near zero. Relative to their extremely tight starting point, ABS spreads widened more than the spreads on AAA-rated corporates with similar duration.

While the new-issue ABS TALF did not support the secondary market directly, there are several channels through which support of primary markets could have contributed to the tightening in the secondary market. Relative-value arbitrage forces secondary-market spreads to narrow in anticipation of new issuance at tighter spreads. In addition, regaining access to term nonmortgage ABS funding reduced the risk of nonbank issuer insolvency arising from inability to roll over maturing funding. This would lower secondary-market spreads, since issuers are generally the servicers of nonmortgage ABS, and good financial condition of servicers is associated with good loan pool performance.

Additional evidence for the program’s positive impact on liquidity is the decline in utilization relative to the total volume of new ABS issuance. As early as the fall of 2009, for major asset classes, most new-issue ABS investors were not using TALF, indicating a reduction in the need for the program.

either because they were cash investors or because (to a minor extent) they had obtained leverage elsewhere. The program thus served predominantly as a backstop for issuers, generating significantly less volume and public sector risk exposure than originally envisioned.

The bottom panel of Chart 3 chronicles the behavior of fixed-rate conduit CMBS spreads on what were originally AAA tranches from August 2008 through the end of November 2009. Spreads spiked in November 2008, and again in March, the low point for many credit- and equity-risk asset prices, peaking around the announcement of the legacy TALF program. In addition to the overall flight from risky assets between September 2008 and March 2009, which affected all securitizations, the CMBS market had to cope with recognition of low underwriting standards in many late-vintage CMBS deals and with the difficulty of refinancing CRE loans in the new-issue CMBS market.

The rollout of the legacy TALF program coincided with a dramatic decline in spreads, although news of a change in Standard and Poor’s fixed-rate conduit CMBS ratings criteria unnerved markets in the weeks before the program started. As seen in the bottom panel of Chart 3, the peak in spreads coincided with the March 2009 announcement that TALF would include CMBS, and the most rapid decline in spreads commenced with the posting of details on the new-issue and legacy CMBS programs in May 2009.

Chart 6 shows loan requests for legacy CMBS over the life of the program. The first legacy subscription occurred in July 2009, with loan requests of just under $670 million. Monthly loan requests varied between $1.3 billion and $2.3 billion, for a total over the life of the program of $13 billion in loan requests. The extent of secondary-market spread tightening in 2009 and early 2010, displayed in Chart 3, is noteworthy in view of the comparatively small volume of TALF lending.

However, it is hard to isolate the impact of the program, as spreads tightened not only for TALF-eligible super-senior (AS) tranches, but also for AM and AJ tranches, which were not eligible. While spreads on all CMBS AAA-rated bonds narrowed steadily from early 2009, spreads for AM and AJ bonds narrowed more than those of super-senior bonds. Together with the general narrowing of risk spreads, this indicates the impact of factors other than TALF. In March 2009, for example, the U.S. Treasury announced the Legacy Securities PPIP program, targeted at a far broader range of securities, by asset type and credit quality, than TALF. It identified specific bonds accepted and rejected following a risk assessment, but otherwise gave the market limited insight into how it assessed the risk of the bonds. Accordingly, the announcements generally contained some news. Chart 7 shows the number of CUSIPs submitted at each operation and the fraction rejected during the risk assessment.

Additional insights into the impact of TALF on liquidity can be obtained from the response of legacy CMBS spreads to TALF subscription results. As noted above, the New York Fed had the right to reject legacy TALF loan requests if it believed that the loan amount would be larger than the bond’s stress value (its value in a severe economic stress scenario). It identified specific bonds accepted and rejected following a risk assessment, but otherwise gave the market limited insight into how it assessed the risk of the bonds. Accordingly, the announcements generally contained some news. Chart 7 shows the number of CUSIPs submitted at each operation and the fraction rejected during the risk assessment.

If the TALF program were having an important impact on spreads, one might expect the acceptance or rejection announcement to have a lasting impact on the prices at which bonds were traded. In fact, Campbell et al. (2011) find such an impact, particularly that of rejections. Loan rejections appear to have had a stronger impact on secondary-market spreads in the early months of the program, while later rejections had a more transitory impact on spreads, suggesting that a significant amount of non-TALF liquidity had entered the market. The surge in loan requests in the last (March 2010) legacy CMBS operation is consistent with this observation. Purchasers of eligible CMBS in the secondary market would have been more reluctant to bear the risk of loan rejection had they expected a sharp widening of the spread to result.

As with new-issue ABS, secondary-market spreads have come in without the program taking a significant amount of
exposure, and it has been able to do so in the presence of conservative haircuts for the underlying credit risk and strong mechanisms to limit adverse selection.

6. Conclusion

In several key respects, the public policy posture and intent of TALF have been easy to misunderstand. TALF appears on its face to provide direct credit support for either certain categories of lending, such as consumer credit card and auto loans or commercial real estate investors, or certain ABS issuers who would otherwise have had enormous difficulty carrying on their businesses.

The distinction between liquidity support and credit support is key to understanding the design of TALF. Preventing the shutdown of lending to consumers and small businesses was the goal. But the means was not having the Fed take on material credit risk in those loans. Rather, it was to encourage private investors to do so, by providing them with liquidity in the form of access to leveraged financing of investments, and to the market in the form of pricing benchmarks.

TALF might also have been misinterpreted as a validation of the “shadow banking system,” or of the particular forms taken by securitization of credit over the past decade. There was, however, no intent to signal satisfaction with securitization as it existed. The design of TALF was intended to counter some undesirable features insofar as they were relevant to the Federal Reserve as a nonrecourse lender collateralized by senior bonds, such as overreliance on ratings, trust structures that could disadvantage senior bonds in certain situations, and opaque structures generally. TALF was designed to use an existing securitization channel of credit intermediation in an emergency, regardless of its imperfections or of any intention to institute reforms in the future.

Insofar as the TALF program was intended to provide liquidity rather than credit support to the market, it is consistent with the classical doctrine on central banks’ lender-of-last-resort policy during a crisis: Lend at a penalty rate on good collateral. It was unusual in providing that liquidity support to the market as a whole, through investors in a class of securities, rather than to financial intermediaries.29

However, the balance between credit risk and program objectives was delicate. If the credit risk tolerance had been set too low—through haircuts, lending rates, or other terms and conditions—the program would not have been effective. It was not obvious ex ante that there was a program design that would lead to new issuance of ABS without exposing the Federal Reserve to more credit risk than desired.

The implementation of TALF for nonmortgage new-issue ABS was associated with a dramatic recovery in secondary-market spreads, outpacing the broad recovery in spreads across credit markets. While there was also a sharp recovery in issuance volumes in 2009, issuance has not returned to its pre-crisis levels, no doubt reflecting the poor overall state of the economy, among other factors. Although spreads have come in, the market is no longer dominated by levered buyers. The stronger presence of cash investors suggests that this nontraditional exercise of the lender-of-last-resort function did not simply pump up ABS and CMBS prices, but rather helped markets solve a coordination problem.

The rollout of the legacy TALF program also corresponded to a dramatic decline in spreads. While news of the change in Standard and Poor’s fixed-rate conduit CMBS criteria unnerved markets in the weeks before the program started, and loan rejections had a dramatic impact on spreads in the early months of the program, later loan rejections appear to have had only a transitory impact on secondary-market spreads, suggesting a recovery of non-TALF liquidity in the market. The high rejection rate in the final legacy CMBS subscription in March 2010 (Chart 7) confirms investors’ confidence in their ability to finance positions without TALF. As with new-issue ABS, secondary-market spreads came in without the program taking a significant amount of exposure, and it has been able to do so in the presence of conservative haircuts for the underlying credit risk and strong mechanisms to limit adverse selection.

Finally, the new-issue CMBS program had remarkable success in bringing the first transaction to market in more than eighteen months, which was quickly followed by other single-borrower transactions. It was able to accomplish this with minimal program exposure, tight loan underwriting standards, and a conservative trust structure that protects senior investors. However, the impact of the program on the supply of commercial real estate credit has clearly been much smaller than the impact of the new-issue ABS program on the supply of consumer and commercial credit.

29 See Madigan (2009) and Sack (2010) for further discussion of these issues.
One interpretation of events is that the provision of liquidity can alleviate funding constraints created by illiquidity. However, it is much more difficult for liquidity provided under prudent terms to have a significant impact on markets where deeper structural issues exist. The fundamental uncertainty about the depth of the commercial real estate cycle, combined with poor performance of the rating agencies in CMBS, suggests that liquidity has not been the only problem limiting the supply of CRE credit.

The most impressive achievement of the TALF program is how much it was able to accomplish with so little exposure and with such conservative terms. Its impact on market conditions raises important questions about how liquidity works. TALF will remain an interesting data point in understanding the nature of liquidity, suggesting that it may be related as much to multiple equilibria (investor psychology) as to leverage (the supply of credit). To the extent that TALF had an impact on liquidity, and in view of the low lending volume of the program, how was that impact transmitted? Among the possible mechanisms are the following:

- A handful of benchmark transactions conveyed important information about market-clearing spreads to the market, encouraging issuers.
- Provision of term funding induced investors to participate, permitting the financing of entire new trusts.
- TALF's credit standards supported the marketplace's more stringent requirements around credit quality and structure.

These and other issues related to this complex emergency liquidity program are worth exploring in the future.
References

Other Electronic Sources

- Board of Governors TALF Site: http://www.federalreserve.gov/newsevents/reform_talf.htm
- Factors Affecting Reserve Balances (H.4.1): http://www.federalreserve.gov/releases/h41/

The views expressed are those of the authors and do not necessarily reflect the position of the Federal Reserve Bank of New York or the Federal Reserve System. The Federal Reserve Bank of New York provides no warranty, express or implied, as to the accuracy, timeliness, completeness, merchantability, or fitness for any particular purpose of any information contained in documents produced and provided by the Federal Reserve Bank of New York in any form or manner whatsoever.