ON THE EXISTENCE OF EQUILIBRIUM IN BAYESIAN GAMES WITHOUT COMPLEMENTARITIES

By
Idione Meneghel and Rabee Tourky

August 2019
Revised March 2020

COWLES FOUNDATION DISCUSSION PAPER NO. 2190R2

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS YALE UNIVERSITY

Box 208281
New Haven, Connecticut 06520-8281
http://cowles.yale.edu/

ON THE EXISTENCE OF EQUILIBRIUM IN BAYESIAN GAMES WITHOUT COMPLEMENTARITIES

IDIONE MENEGHEL
Australian National University

RABEE TOURKY
Australian National University

Abstract

This paper presents new results on the existence of Bayesian equilibria in pure strategies of a specified functional form. These results broaden the scope of methods developed by Reny (2011) well beyond monotone pure strategies. Applications include natural models of first-price and all-pay auctions not covered by previous existence results. To illustrate the scope of our results, we present three auctions: (i) a first-price auction of objects that are heterogeneous and imperfect substitutes; (ii) a first-price auction in which bidders' payoffs have a very general interdependence structure; and (iii) an all-pay auction with non-monotone equilibrium.

Keywords: Bayesian games, monotone strategies, pure-strategy equilibrium, auctions.

1. Introduction

Equilibrium behavior in general Bayesian games is not well understood. While there is an extensive literature on equilibrium existence, that literature imposes substantive restrictions on the structure of the Bayesian game. In particular, previous existence results require some version of the following assumptions:
(1) "weak quasi-supermodularity:" informally, the coordinates of a a player's own action vector need to be complementary; and

[^0](2) "weak single-crossing:" informally, a player's incremental returns of actions are nondecreasing in her types.

We show that pure-strategy equilibria exist under significantly more general conditions, without impeding the analyst's ability to describe the properties of the equilibrium. The class of Bayesian games we cover includes games in which the players' action vectors are substitutes, and players' incremental returns of actions are not always increasing in their types. Despite the generality of these games, pure-strategy equilibria are well-behaved, in strategies that belong to a particular class of interest, such as the set of functions of bounded total variation, or functions of mixed monotonicity. ${ }^{1}$

The approach we adopt in this paper is motivated by positive questions. The goal is to develop a model that introduces new considerations to the analysis of Bayesian games and provides useful (testable) predictions. In the context of auctions in particular, we seek a convenient modeling tool for describing bidders' behavior in environments where weak quasi-supermodularity and weak single-crossing are too strong or unlikely to be true. Providing a more comprehensive theoretical framework for interpreting data has important implications for empirical and experimental research on auctions. In experimental work, it is usually the case that the questions of interest cannot be answered empirically until an internally consistent model of an auction game is specified. Thus our result extends the kind of economic questions that can be investigated using traditional experimental methods. ${ }^{2}$ Further, structural econometric approaches to auctions have been mostly restricted to a limited class of models, usually settings with one object in which the equilibrium bidding strategies are monotone. There are few extensions to environments with multiple objects, with most of the empirical literature focusing on the case of identical goods (multi-unit auctions). ${ }^{3}$ One of the main hurdles to progress beyond these settings is the lack of development of the theory. Thus extending the class of games for which we can characterize pure-strategy equilibria is a necessary step towards new developments in the empirical analysis of data generated by auctions. Finally, albeit beyond the scope of the present paper, a more general equilibrium existence result is of interest

[^1]from the point of view of normative economics. By allowing for a richer strategic environment, our result can lead to policy questions that have not been considered before, such as how to auction strictly substitute goods.

To illustrate the scope of our main result, we study the equilibrium properties of a series of first-price and all-pay auctions that had until now been beyond reach. The applications to auctions we present here are parsimonious and intuitive. Their simplicity is a consequence of the breadth and flexibility of our main result and a reflection of how little we know about auctions outside the class of models satisfying quasi-supermodularity and single-crossing. While these complementarity assumptions are natural in some settings, there are many economic situations in which these assumptions entail unreasonable restrictions. The three auctions we describe illustrate ubiquitous economic environments in which the complementarity assumptions fail for various natural reasons.

The first application is a first-price auction of multiple objects that are imperfect substitutes from the bidders' perspective, which is not covered by any other existence result. More specifically, there are two objects being auctioned simultaneously, and although players can place bids on both objects, they would prefer to buy only one of them. In this case, the bidders' valuations are strictly submodular, thus failing to be (weakly) quasi-supermodular, as required by McAdams (2003). In fact, there is no other result of existence of equilibrium that can be applied to Bayesian games in which players have interdependent but strictly submodular payoff functions. Further, there is no order on the bidders' actions for which the best responses are closed with respect to the pointwise supremum of the bids, thus the more general results of Reny (2011) also cannot be applied. ${ }^{4}$ Our main result shows that this auction has an equilibrium in pure strategies. Moreover, this equilibrium is not monotone.

The second application is an all-pay auction model in which bidders have onedimensional type and action spaces, interdependent valuations, and correlated types in ways that may fail the monotone likelihood ratio property. Nevertheless, we are able to show that, under a condition more general than the weak monotonicity condition of Siegel (2014), this auction has an equilibrium in pure strategies that are of bounded total variation. This application thus substantiates the assertion that our main result extends the result in Athey (2001) to models that fail the (weak) single-crossing property.

[^2]The third application is a first-price auction in which bidders' types are multidimensional and their valuations are interdependent, although restricted to be of polynomial form. Thus it shows that our main result extends the analysis of McAdams (2003) and Reny (2011) when players have multidimensional type spaces, by allowing for more general interdependence structures across the players' payoffs. Perhaps more importantly, since polynomial functions are dense in the set of measurable functions, this auction demonstrates how our main result can be applied to show existence of equilibrium in models that are very close to games in which players have arbitrary, unrestricted payoff functions.

The remainder of the paper has the following structure. To illustrate the suitability of our result to auctions, Section 2 describes a very simple example of a first-price auction of heterogeneous objects that are imperfect substitutes from the bidders' perspective, for which we show existence of a Bayesian equilibrium in pure strategies. The mathematical framework, which concerns absolute retracts and ordered spaces, is described in Section 3. The class of Bayesian games our result covers is described formally in Section 4, where the main existence result is proved. Section 5 studies additional auctions that illustrate the flexibility and scope of our result. Section 6 discusses sufficient conditions on the primitives of the game; these sufficient conditions, albeit stronger, require no preparation or mathematical preliminaries. Section 7 explains how the main results in Athey (2001), McAdams (2003), and Reny (2011) can be derived as a consequence of our result. The Appendix contains most proofs.

2. ExAmple: Auction of imperfect substitutes

To motivate the results in the present paper, we first give an example of a first-price auction of heterogeneous objects that are imperfect substitutes. With substitute objects, the bidders' valuations fail to be quasi-supermodular, as required by McAdams (2003). More importantly, there is no order on the bidders' actions for which the best responses are closed with respect to the pointwise supremum of the bids, thus the more general results of Reny (2011) cannot be applied. Further, there is no result in the more specialized literature on auctions that can be applied. The literature on existence of equilibrium in multi-object auctions is not well-developed, and most theoretical results are for multi-unit auctions, in which the objects are identical. Few results apply to cases in which the objects are heterogeneous and even less to cases in which the objects are strongly substitutes. Cantillon and Pesendorfer (2006) study auctions for bus services in London. In their study, it may be cheaper to operate
some routes if a nearby route is currently being served, so there may be complementarities between some contracts, but some bundles of contracts may be substitutes. Their model is a sealed-bid discriminatory auction in which bidders submit bids on bundles of objects. Baldwin and Klemperer (2019) analyze auctions in which bidders may have purely-complements or purely-substitute preferences over indivisible goods, and show existence of a competitive equilibrium. Their setting does not allow for the objects to be imperfect substitutes. Palfrey (1983), Armstrong (2000), and Avery and Hendershott (2000) study auctions of multiple, heterogeneous objects. But the bidders' valuation function in their models is additively separable, which is covered by McAdams (2003) and Reny (2011). In our example, the objects are strongly substitutes, which implies that the bidders' valuation function is strictly subadditive. Our result shows that this auction has an equilibrium in pure strategies that are not monotone.

There are two objects for sale, object A and object B, and N bidders. Each bidder i receives a private signal $t_{i}=\left(t_{i}^{A}, t_{i}^{B}\right) \in[0,1]^{2}$. Bidder i 's signals are distributed independently of other bidders' signals, according to the density function $f_{i}:[0,1]^{2} \rightarrow$ \mathbb{R}_{+}. After observing their signals, each bidder i submits a sealed bid $b_{i}=\left(b_{i}^{A}, b_{i}^{B}\right)$ from a finite set of bids $\mathcal{B} \subseteq \mathbb{R}_{+}^{2}$. We assume that the set of bids \mathcal{B} contains the zero vector, that is, $(0,0) \in \mathcal{B}$.

If the realization of signals is $t=\left(t_{1}, \ldots, t_{N}\right)$ and bidder i wins subset $S \subseteq\{A, B\}$ of objects, then bidder i 's payoff is given by

$$
v_{i}\left(S, t_{i}\right)=\max _{k \in S} t_{i}^{k}
$$

with the convention that if $S=\emptyset$, then $\max _{k \in S} t_{i}^{k}=0 .{ }^{5}$ Under this formulation, winning both objects gives the bidders no higher payoff than winning only the object they consider most valuable. Therefore the objects may be seen as substitutes, which implies that v_{i} fails any of the usual supermodularity conditions required by previous existence results. In particular, best responses are not closed with respect to the supremum. Further, there is no order on actions that will make the best responses either closed with respect to the supremum or the infimum, which means that it is not possible to show existence of equilibrium using the result of Reny (2011).

Given a vector $b=\left(b_{1}, \ldots, b_{N}\right)$ of bids of all bidders, each object k is awarded to the bidder with the highest bid b_{i}^{k}, who pays her bid. If there is a tie at the highest

[^3]bid, then the object is awarded to one of the highest bidders with equal probability. Let $\rho_{i}(S, b) \in[0,1]$ denote the probability that bidder i gets the subset $S \subseteq\{A, B\}$ of objects given profile of bids b. Given a vector b of bids, bidder i 's payoff is then given by
$$
V_{i}\left(b ; t_{i}\right)=\sum_{S \subseteq\{A, B\}} \rho_{i}(S, b)\left[v_{i}\left(S, t_{i}\right)-\sum_{k \in S} b_{i}^{k}\right] .
$$

A strategy for bidder i is a measurable function $\beta_{i}:[0,1]^{2} \rightarrow \mathcal{B}$. Given a profile of strategies for all bidders β, bidder i 's ex ante payoff is given by

$$
U_{i}(\beta)=\int_{[0,1]^{2 N}} V_{i}\left(\beta(t) ; t_{i}\right) f_{1}\left(t_{1}\right) \ldots f_{N}\left(t_{N}\right) \mathrm{d} t
$$

An application of Theorem 4.1 yields that this auction has a Bayesian-Nash equilibrium in pure strategies. The equilibrium strategies $\left(\beta_{1}, \beta_{2}\right)$ have the following property: for every pair of types $t_{i}, t_{i}^{\prime} \in T_{i}$, with $i=1,2$, if $t_{i}^{A} \geq t_{i}^{\prime A}$ and $t_{i}^{B} \leq t_{i}^{\prime B}$, then $\beta_{i}\left(t_{i}\right)^{A} \geq \beta_{i}\left(t_{i}^{\prime}\right)^{A}$ and $\beta_{i}\left(t_{i}\right)^{B} \leq \beta_{i}\left(t_{i}^{\prime}\right)^{B}$. That is, player i 's equilibrium bid for object A increases (and her bid for object B decreases) as t_{i}^{A} increases (decreases) and t_{i}^{B} decreases. In this model, bid shading happens for two reasons. First, it happens for the usual reason in first-price auctions, due to the trade-off between a lower chance of winning versus a higher payoff when winning. Second, players shade their bids for the least valuable object even further, to reduce the probability of winning (and paying) for both objects, when the second object gives them zero marginal value. The proofs of all claims made in this section are in Appendix C.

3. Mathematical framework

We now review the basic mathematical frameworks that are combined to yield the results in this paper: absolute retracts, lattice theory, and abstract simplicial complexes.
3.1. Absolute retracts. Fix a metric space X. If Y is a metric space, a set $Z \subseteq Y$ is a retract of Y if there is a continuous function $r: Y \rightarrow Z$ with $r(z)=z$ for all $z \in Z$. Such function r is called a retraction. The space X is an absolute retract ${ }^{6}$ (AR) or an absolute neighborhood retract (ANR) if, whenever X is homeomorphic to a closed subset Z of a metric space Y, Z is a retract of Y or a retract of a neighborhood of itself, respectively. Since the "is a retract of" relation is transitive, a consequence is

[^4]that a retract of an $A R$ (ANR) is an AR (ANR). An ANR is an AR if and only if it is contractible (Borsuk, 1967, Theorem 9.1). A contractible set is a set that can be reduced to one of its points by a continuous deformation. Formally, a set X is said to be contractible if it is homotopic to one of its points $x \in X$, that is, if there is a continuous map $h:[0,1] \times X \rightarrow X$ such that $h(0, \cdot): X \rightarrow X$ is the identity map and $h(1, \cdot): X \rightarrow X$ is the constant map sending each point to x. In this case, the mapping h is denoted a contraction.

The Eilenberg-Montgomery fixed point theorem (Eilenberg and Montgomery, 1946) asserts that if X is a nonempty compact AR, $F: X \rightarrow X$ is a closed-graph correspondence, and the values of F are "acyclic," then F has a fixed point. For the purposes of this paper, it suffices to know that a contractible set is acyclic, so that F has a fixed point if its values are contractible. Kinoshita (1953) gives an example of a compact contractible subset of \mathbb{R}^{3} and a continuous function from this space to itself that does not have a fixed point, so the assumption that X is a compact AR cannot be weakened to "compact and contractible."

In Athey (2001) and McAdams (2003) a large part of the analytic effort is devoted to showing that the set of monotone best responses to a profile of monotone strategies is convex valued. However, Reny (2011) provides a simple construction that shows that this set is contractible valued. In addition, passing to the more general Eilenberg-Montgomery fixed point theorem allows many of the assumptions of earlier results to be relaxed. The weakening of hypotheses does not complicate the proof of contractibility, but instead there is the challenge of showing that the set of (equivalence classes of) monotone pure strategy profiles is an AR. Since the set of monotone strategy profiles is contractible, Reny could demonstrate this by verifying the sufficient conditions for a space to be an ANR given by Theorem 3.4 of Dugundji (1965), which is derived from necessary and sufficient conditions given earlier in that paper that in turn build on Dugundji (1952) and Dugundji (1957).

A central theme of this paper is that there is a variety of conditions that imply that a space is an AR. Any of these is potentially the basis of an equilibrium existence result for some type of Bayesian game, and we will provide novel existence results of this sort. In particular, it will be possible to verify other sufficient conditions for a space to be an AR that are related to the order structure of the space of monotonic strategy profiles, and are thus in a sense more natural. Perhaps more importantly, they are flexible, allowing for existence under different hypotheses.
3.2. Simplicial complexes. An abstract simplicial complex is a pair $\Delta=(X, \mathcal{X})$ in which X is a set of vertices and \mathcal{X} is a collection of finite subsets of X that contains every subset of each of its elements. Elements of \mathcal{X} are called simplexes. The realization of Δ is

$$
|\Delta|=\left\{\pi \in \mathbb{R}_{+}^{X}: \sum_{x \in X} \pi_{x}=1, \text { and } \operatorname{supp} \pi \in \mathcal{X}\right\}
$$

where $\operatorname{supp} \pi=\left\{x \in X: \pi_{x}>0\right\}$. For a simplex $Y \in \mathcal{X}$, let $|Y|=\{\pi \in$ $|\Delta|: \operatorname{supp} \pi \in Y\}$. Then $|\Delta|=\bigcup_{Y \in \mathcal{X}}|Y|$. We will always assume that $\{x\} \in \mathcal{X}$ for every $x \in X$. We endow $|\Delta|$ with the $C W$ topology, which is the topology in which each $|Y|$ has its usual topology and a set is open whenever its intersection with each $|Y|$ is open.

Let Z be a topological space. A correspondence $F: \mathcal{X} \backslash\{\emptyset\} \rightarrow Z$ is a contractible carrier that sends simplexes of Δ to subsets of Z if, for every nonempty $Y \in \mathcal{X}$:
(a) $F(Y)$ is contractible, and
(b) if $\emptyset \neq Y^{\prime} \subseteq Y$, then $F\left(Y^{\prime}\right) \subseteq F(Y)$.

Moreover, a continuous function $f:|\Delta| \rightarrow Z$ is carried by F if $f(|Y|) \subseteq F(Y)$ for every $Y \in \mathcal{X}$. The following result is from Walker (1981).

Lemma 3.1 (Walker's carrier lemma). If F is a contractible carrier from Δ to Z, then there is a continuous function $f:|\Delta| \rightarrow Z$ carried by F, and any two such functions are homotopic.

For the remainder of the paper, we reserve the notation Δ for the abstract simplicial complex in which \mathcal{X} is the collection of all finite subsets of X.
3.3. Posets and semilattices. A partially ordered set (poset) is a set X endowed with a binary relation \leq that is reflexive $(x \leq x$ for every $x)$, transitive, and antisymmetric $(x \leq y$ and $y \leq x$ implies $x=y)$. Let

$$
G_{\leq}=\{(x, y) \in X \times X: x \leq y\} .
$$

If X is endowed with a σ-algebra Σ, the partial order \leq is said to be measurable if G_{\leq} is an element of the product σ-algebra $\Sigma \otimes \Sigma$. If X is endowed with a topology, the partial order \leq is said to be closed if G_{\leq}is closed in the product topology of $X \times X$. If X is a subset of a real vector space, the partial order \leq is said to be convex if G_{\leq} is convex. Since $\{(x, x): x \in X\} \subseteq G_{\leq}$, if \leqis convex, then X is necessarily convex.

A partially ordered set X is a semilattice ${ }^{7}$ if any two elements $x, y \in X$ have a least upper bound $x \vee y$. If this is the case, then the semilattice operation is obviously associative, commutative, and idempotent. That is, $x \vee x=x$ for all $x \in X$. Conversely, if V is a binary operation on X that is associative, commutative, and idempotent, then there is a partial order on X given by $x \leq y$ if and only if $x \vee y=y$ that makes X a semilattice for which \vee is the least upper bound operator. ${ }^{8}$ If the greatest lower bound of any two elements $x, y \in X$ exists, then it is denoted by $x \wedge y$.

A subset $Y \subseteq X$ is a subsemilattice if $x \vee y \in Y$ for all $x, y \in X$. Evidently the intersection of any collection of subsemilattices is a subsemilattice. A metric semilattice is a semilattice endowed with a metric such that $(x, y) \mapsto x \vee y$ is a continuous function from $X \times X$ to X. A metric semilattice is locally complete if, for every $x \in X$ and every neighborhood U of x, there is a neighborhood W such that every nonempty $W^{\prime} \subseteq W$ has a least upper bound that is contained in U.
3.4. The hyperspace of a compact metric semilattice. If X is a compact metric space, the hyperspace of X is the set $\mathcal{S}(X)$ of nonempty closed subsets of X endowed with the topology that has as a subbasis the set of sets of the form

$$
N(U, V)=\{C \in \mathcal{S}(X): C \subseteq U \text { and } C \cap V \neq \emptyset\}
$$

where $U, V \subseteq X$ are open. The space X is locally connected if it has a base of connected open sets. Wojdysławski (1939) showed that if X is connected and locally connected, then $\mathcal{S}(X)$ is an AR. (Kelley (1942) reproves this result, and places it in a broader context.)

Now suppose X is a compact metric semilattice. It is easy to show that any subset $S \subseteq X$ has a least upper bound that we denote by $\vee S$. We say that X has small subsemilattices if it has a neighborhood base of subsemilattices, which is called an idempotent basis. It is easy to show that X is locally complete if and only if it has small subsemilattices. Identifying each $x \in X$ with $\{x\} \in \mathcal{S}(X)$, we may regard X as a subset of $\mathcal{S}(X)$. McWaters (1969) showed that if X has small subsemilattices, then the map $C \mapsto \vee C$ is continuous and consequently a retraction. As McWaters points out, in conjunction with Wojdysławski's result, this result implies the following theorem.

[^5]Theorem 3.2. If X is connected, locally connected, and locally complete, then it is an $A R$.

In the Bayesian game considered in Reny (2011), type and action spaces are assumed to be semilattices, and strategy spaces are thus ordered by the induced pointwise ordering. As a result, the subset of monotone strategies is a sub-semilattice, therefore contractible to its least upper bound. In the following section, we extend this result to more general partially ordered subsets of strategies, including subsets that are not necessarily given the induced pointwise ordering or that may not have a least upper bound.
3.5. A new class of retracts. We can now describe a new class of absolute retracts, generated by combining the order structure of posets and abstract simplicial complexes. Let X be a metric space and a poset. (We do not assume that the order is closed.) A (finite) chain in X is a (finite) completely ordered subset of X. When X is a partially ordered space, we consider the order complex $\Gamma=\left(X, \mathcal{X}^{\Gamma}\right)$ of X. The order complex Γ is the abstract simplicial complex for which the set of vertices is X itself and the collection of simplexes \mathcal{X}^{Γ} is the collection of finite chains of X. If $\Gamma=\left(X, \mathcal{X}^{\Gamma}\right)$ is the order complex of X and $\Delta=(X, \mathcal{X})$ is the abstract simplicial complex in which the simplexes are all finite subsets of X, then $\mathcal{X}^{\Gamma} \subseteq \mathcal{X}$, and we regard the geometric realization $|\Gamma|$ as a subspace of $|\Delta|$. If Y is a finite subset of X, then $Y \in \mathcal{X}$ and we denote by $\left|Y^{\Gamma}\right|$ the realization of Y on the order complex Γ, that is, $\left|Y^{\Gamma}\right|=|Y| \cap|\Gamma|$.

The following definition describes a novel mathematical concept. ${ }^{9}$ We say that a sequence of subsets of X converges to $x \in X$ if the sequence is eventually contained in each neighborhood of x.

Definition 3.3. A hulling of X is a collection \mathcal{H} of subsets of X such that:
(a) \mathcal{H} is closed under intersection;
(b) every finite subset of X is contained in some element of \mathcal{H};
(c) for each nonempty $Y \in \mathcal{H}$, the realization $\left|Y^{\Gamma}\right|$ is contractible.

When Y is a finite subset of X, the \mathcal{H}-hull of Y, denoted by $\mathcal{H}(Y)$, is the intersection of all $Y^{\prime} \in \mathcal{H}$ containing Y. The hulling \mathcal{H} is small if, for any sequence of finite sets Y_{n} converging to a point x, the sequence $\mathcal{H}\left(Y_{n}\right)$ also converges to x.

[^6]Note that if X has an upper bound, then $|\Gamma|$ is contractible. Therefore, if X is a semilattice and \mathcal{H} is the collection of all finite sub-semilattices of X, then \mathcal{H} is a hulling. Figure 1 shows examples of other kinds of sets that can compose a hulling. Figure 2 is an example of a set Y for which $\left|\mathcal{H}(Y)^{\Gamma}\right|$ is not contractible, and thus cannot belong to a hulling.

Figure 1. Examples of sets $\mathcal{H}(Y) \in \mathcal{H}$

Figure 2. Example of a set that cannot compose a hulling

Definition 3.4. A monotone realization is a continuous function $h:|\Gamma| \rightarrow X$. A monotone realization h is said to be local whenever, for every sequence Y_{n} of nonempty finite chains converging to $x \in X$, the sequence $h\left(\left|Y_{n}\right|\right)$ also converges to x.

Together, the notions of hulling and monotone realization describe what we call order-convexity.

Definition 3.5. A partially ordered set (X, \leq) is order-convex if there is a small hulling \mathcal{H} and a local monotone realization h for X such that
(a) for every finite subset $Y \subseteq X$, we have $\mathcal{H}(Y) \subseteq X$; and
(b) for every finite chain Y in X, we have $h\left(\left|\mathcal{H}(Y)^{\Gamma}\right|\right) \subseteq X$.

Remark 3.6. Section B in the Appendix proposes easy-to-check conditions for a hulling to be small and a monotone realization to be local.

The following lemma establishes that every order-convex, separable, metric space is an absolute retract. Lemma 3.7 is the main tool used to prove the results.

Lemma 3.7. If (X, \leq) is partially ordered space that is separable, metric, closed, and order-convex, then X is an absolute retract.

The proof of Lemma 3.7 can be found in the Appendix A.

4. Class of Bayesian games

We consider the class of Bayesian games described by the following tuple

$$
G=((T, \mathcal{T}), \pi, A, u)
$$

The space $(T, \mathcal{T})=\otimes_{i}\left(T_{i}, \mathcal{T}_{i}\right)$ is a product of N measurable spaces of types. The probability measure $\pi \in \Delta(T)$ is the common prior; we let π_{i} be the marginal of π on T_{i}. The space $(A, \mathcal{A})=\otimes_{i}\left(A_{i}, \mathcal{A}_{i}\right)$ is a product of N measurable spaces of actions; we assume that each A_{i} is a compact subset of some Banach space L_{i} and is endowed with a σ-algebra \mathcal{A}_{i} that includes the Borel sets. Finally, the tuple $u=\left(u_{1}, \ldots, u_{N}\right)$ is a profile of bounded jointly measurable payoff functions $u_{i}: T \times A \rightarrow \mathbb{R} .^{10}$

A (pure) strategy for player i is a function from T_{i} to A_{i} that is π_{i}-a.e. equal to a measurable function. Let S_{i} be the set of player i 's strategies, and let $S=\prod_{i} S_{i}$ be the set of strategy profiles. We regard the space of strategies S_{i} as a subspace of $L^{1}\left(T_{i}, \pi_{i}\right)$, the space of Bochner-integrable functions (equivalence classes) from T_{i} to L_{i}, with the L^{1}-norm topology. For each $s \in S$ and each i, player i 's expected payoff is

$$
U_{i}(s)=\int_{T} u_{i}(t, s(t)) d \pi(t)
$$

[^7]A strategy $s_{i} \in S_{i}$ is a best response to $s_{-i} \in S_{-i}$ if $U_{i}\left(s_{i}, s_{-i}\right) \geq U_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all $s_{i}^{\prime} \in S_{i}$. A strategy profile $s \in S$ is an equilibrium if, for each i, s_{i} is a best response to s_{-i}.

Let $B_{i}: S_{-i} \rightarrow S_{i}$ denote the best response correspondence of player i :

$$
B_{i}\left(s_{-i}\right)=\left\{s_{i} \in S_{i}: s_{i} \in \arg \max _{s_{i} \in S_{i}} U_{i}\left(s_{i}, s_{-i}\right)\right\}
$$

Let $B: S \rightarrow S$ be the cartesian product of the $B_{i}: B(s)=B_{1}\left(s_{-1}\right) \times \cdots \times B_{N}\left(s_{-N}\right)$.
We make the following assumption on the common prior.
Assumption A.1. For every player i, the common prior π is absolutely continuous with respect to the product of its marginals. ${ }^{11}$

We also make the following assumption on the players' payoffs.
Assumption A.2. For every player i, the function $u_{i}: T \times A \rightarrow \mathbb{R}$ is continuous in a and measurable in t.

Under Assumptions A. 1 and A.2, the best response correspondence B is non-empty and has closed graph by an application of the Vector Dominated Convergence Theorem and Berge Maximum Theorem. ${ }^{12}$ We are ready to state our main result.

Theorem 4.1. Suppose that Assumptions A.1-A.2 are satisfied. If, for every player i, there is a compact, order-convex subset of strategies $K_{i} \subseteq S_{i}$ such that $B_{i}\left(s_{-i}\right) \cap K_{i}$ is a nonempty, order-convex set for every $s_{-i} \in K_{-i}$, then the game G has an equilibrium in K.

Proof. By Lemma 3.7, every compact, order-convex subset of strategies is an absolute retract. Consider the subcorrespondence of best responses $\bar{B}: K \rightarrow K$, given by

$$
\bar{B}(s)=B(s) \cap K
$$

As defined, \bar{B} has closed-graph, and compact, order-convex values. Therefore, it satisfies the hypotheses of Eilenberg-Montgomery fixed point theorem. Hence it has a fixed point in K, which is a Bayesian equilibrium of the game G.

[^8]Remark 4.2. Theorem 4.1 not only helps proving existence of equilibrium results, but it also provides additional, useful information regarding how the equilibrium found looks like. In fact, this is the main motivation for the analysis in Athey (2001), McAdams (2003), and Reny (2011).

Notice that this result does not require the players' type and action spaces to be partially ordered. Nor it requires the partial order on K_{i} to be induced by the pointwise order. In fact, it allows for partial orders that may depend on the whole strategy, as a function from types to actions. Further, Theorem 4.1 does not require the marginals of the probability measure π to be atomless. It is, however, easier to get order-convex best responses when the priors are atomless, as all three auctions analyzed in Section 5 show.

5. Additional applications to auctions

We present two additional applications of the main result to auctions. Most of the auction literature relies on existence of monotone equilibrium. ${ }^{13}$ Although it is not difficult to write auctions in which monotonicity fails, as the examples in Jackson (2009), Reny and Zamir (2004), and McAdams (2007) show, it remains unclear whether or not non-monotonicities in the best-response correspondence pose a serious threat to the existence of equilibrium. The auctions in this section shed some light on this issue.

The following auctions illustrate different directions in which Theorem 4.1 extends the benchmark results of Athey (2001), McAdams (2003), and Reny (2011). The first one concerns an all-pay auction that encompasses and generalizes some standard existence results for such settings, including Athey (2001). The main advance here is in allowing for interdependent valuations and information structures that may fail the weak single-crossing property, yielding equilibria that are not necessarily monotone in players' types. This all-pay auction shows that, even when restricted to the class of games with unidimensional type and action spaces, Theorem 4.1 extends the analysis of pure-strategy equilibria to a broader range of models. The second application involves a first-price auction in which bidders' types are multidimensional and bidders' valuations can be arbitrarily interdependent. The purpose of the second application is to highlight that, within the class of auctions with multidimensional types, Theorem 4.1 allows for an analysis of a much richer class of bidders' preferences, in comparison to the existence results in McAdams (2003) and Reny (2011). In both

[^9]applications, there is no order on the bidder's types that allows for standard arguments to be used to show existence of monotone equilibrium. The proofs of all claims made in this section are in Appendix C.

Before describing the auctions, we make a closing remark with regards to modelling choices. In all of the applications in this paper, bidders submit bids at predetermined discrete levels, that is, there exists a minimal increment by which the bid may be raised. Although the auction literature deals almost entirely with continuous bids, in practice bidders are not able to choose their bid from a continuum. At best, the smallest currency unit imposes such restriction on feasible bids; at worst, the auctioneer may restrict the set of acceptable bids even further. We thus consider this a natural assumption, which yields a model that is both parsimonious and realistic. However, it is possible to extend the analysis in this section to permit a continuum bids under additional assumptions.
5.1. All-pay auction. Consider an all-pay auction with incomplete information. After observing the realization of their signals, bidders submit their bids, and pay their bids regardless of whether or not they win the object. This kind of model has been used to investigate rent-seeking and lobbying activities, competitions for a monopoly position, competitions for multiple prizes, political contests, promotions in labor markets, trade wars, and R\&D races with irreversible investments.

There is a single object for sale and I bidders. Each bidder i observes the realization of a private signal $t_{i} \in[\underline{\tau}, \bar{\tau}]=T_{i}$. Signals of all bidders $T=\left(T_{1}, \ldots, T_{I}\right)$ are drawn from some joint distribution with density $f:[\underline{\tau}, \bar{\tau}]^{I} \rightarrow \mathbb{R}_{+}$. The value of the object being auctioned to bidder i is given by the measurable mapping $v_{i}:[\underline{\tau}, \bar{\tau}]^{I} \rightarrow$ \mathbb{R}. We make the following assumption on the primitives of the model, which is a generalization of the weak monotonicity condition of Siegel (2014).

Assumption B.1. For each bidder i, there is a finite partition of the set of signals $T_{i}=\cup_{n} \mathcal{I}_{i}^{n}$ into subintervals \mathcal{I}_{i}^{n} such that for every t_{-i} the restriction of the weighted valuation $v_{i}\left(t_{i}, t_{-i}\right) f\left(t_{-i} \mid t_{i}\right)$ to each subinterval \mathcal{I}_{i}^{n} is monotone ${ }^{14}$ in t_{i}.

Remark 5.1. Essentially, Assumption B. 1 puts an upper bound on the number of times bidder i 's weighted valuation changes direction, it allows for very general interdependence and correlation structures. In particular, it allows for the weighted valuations to be nondecreasing on some subintervals and nonincreasing on others, and does not impose any restrictions across the subintervals $\left\{\mathcal{I}_{i}^{n}\right\}_{n}$. The independent private value

[^10]auction corresponds to the special case in which $v_{i}\left(t_{i}, t_{-i}\right)=t_{i}$ and $f\left(t_{-i} \mid t_{i}\right)$ does not depend on t_{i}.

Most of the literature on all-pay auctions concentrates on the case in which the players' weighted valuation functions are nondecreasing, yielding monotone equilibria. Assumption B. 1 is a natural generalization of that single-crossing condition.

Given signal t_{i}, bidder i places a bid b, chosen from a finite set of bids $\mathcal{B} \subseteq \mathbb{R}$. The allocation of prizes is determined by the profile of bids. In particular, we assume that there is a function $\alpha:\{1, \ldots, I\} \times \mathcal{B}^{I} \rightarrow[0,1]$, such that $\alpha(b)$ is a probability measure over bidders. The interpretation is that $\alpha_{i}(b)$ is the probability that bidder i gets the object, given profile of bids b. We only assume that the allocation mapping $b_{i} \mapsto \alpha_{i}(b)$ is nondecreasing, that is, a higher bid will increase the probability that bidder i gets the object.

A strategy for bidder i is a measurable function $\beta_{i}: T_{i} \rightarrow \mathcal{B}$. Given a profile of strategies of other bidders β_{-i}, bidder i 's interim payoff is given by

$$
V_{i}\left(b \mid t_{i}, \beta_{-i}\right)=\int_{[\tau, \bar{\tau}]^{I-1}} \alpha_{i}\left(b, \beta_{-i}\left(t_{-i}\right)\right) v_{i}(t) f\left(t_{-i} \mid t_{i}\right) d t_{-i}-b
$$

Given a profile of strategies for all bidders β, bidder i 's ex ante payoff is then given by

$$
U_{i}(\beta)=\int_{[\tau, \bar{\tau}]} V_{i}\left(\beta_{i}\left(t_{i}\right) \mid t_{i}, \beta_{-i}\right) f\left(t_{i}\right) d t_{i}
$$

Theorem 4.1 implies that this auction has a Bayesian-Nash equilibrium in which each bidder i uses a strategy that is monotone in t_{i} when restricted to each subinterval \mathcal{I}^{n}.
5.2. First-price auction with interdependent values. Consider a sealed-bid first-price auction in which bidders' types are multidimensional and possibly interdependent. This kind of model has been used to study, for example, procurement auctions, in which bidders are suppliers who try to underbid each other to sell an object or provide a service to a potential buyer. Government contracts are usually awarded by procurement auctions, and firms often use this auction format when buying inputs or subcontracting work.

There is a single object for sale and N bidders. Each bidder i 's type is a vector $t_{i}=$ $\left(t_{i 1}, \ldots, t_{i K}\right) \in[\underline{\tau}, \bar{\tau}]^{K}$. Bidders' types are independently drawn. Let $f_{i}:[\underline{\tau}, \bar{\tau}]^{K} \rightarrow \mathbb{R}_{+}$ denote the density distribution of bidder i 's types. The value of the object being auctioned to bidder i is given by the measurable map $v_{i}:[\underline{\tau}, \bar{\tau}]^{K N} \rightarrow \mathbb{R}_{+}$.

We assume that the map v_{i} is the sum of polynomial functions in each bidders' vector of types. More precisely, bidder i 's valuation function can be written as

$$
v_{i}(t)=\sum_{j=1}^{N} \sum_{m \in M_{j}} \alpha_{m} t_{j 1}^{d_{1}^{m}} \cdots t_{j K}^{d_{K}^{m}},
$$

where M_{j} is a finite index set for each $j=1, \ldots, N$ and, for each $m \in M_{j}$, the number α_{m} is the coefficient of the m-th term and d_{k}^{m} are nonnegative integers.

The interpretation is that each dimension k of bidder i 's type represents an inherent characteristic of the object, and bidders observe a noisy and independent informative signal regarding these characteristics. Each of these characteristics may or may not be intrinsically desirable. Thus, while we do not rule out symmetric bidders, we do allow for heterogeneous preferences in the sense that different bidders feel differently about each characteristic. In particular, for each dimension k, it may be the case that some bidders prefer higher levels of k, whereas other bidders may prefer lower or even intermediate levels.

Bidder i observes the realization of her private type t_{i}, that gives information about the characteristics of the object. Upon observing t_{i}, bidder i submits a bid b_{i} from a finite set of bids $\mathcal{B} \subseteq \mathbb{R}$. Given a vector $b=\left(b_{1}, \ldots, b_{N}\right)$ of bids of all bidders, the object is awarded to the highest bidder, who pays her bid. If there is a tie at the highest bid, then the object is awarded to one of the highest bidders with equal probability. Let $\rho_{i}(b) \in[0,1]$ denote the probability that bidder i gets the object given profile of bids b. Given a vector b of bids, bidder i 's payoff is given by

$$
u_{i}(b ; t)=\rho_{i}(b)\left[v_{i}(t)-b_{i}\right] .
$$

In this context, a strategy for bidder i is a measurable function $\beta_{i}:[\underline{\tau}, \bar{\tau}]^{K} \rightarrow \mathcal{B}$. Given a profile of strategies for all bidders β, bidder i 's ex ante payoff is given by

$$
U_{i}(\beta)=\int_{[\underline{\tau}, \bar{\tau}]^{N K}} u_{i}(\beta(t) ; t) f_{1}\left(t_{1}\right) \ldots f_{N}\left(t_{N}\right) \mathrm{d} t
$$

Theorem 4.1 implies that this auction has a Bayesian-Nash equilibrium in which each bidder i uses a strategy that is (locally) nondecreasing in $t_{i k}$ whenever $\frac{\partial v_{i}}{\partial t_{i k}}(t) \geq 0$, and (locally) nonincreasing whenever $\frac{\partial v_{i}}{\partial t_{i k}}(t) \leq 0$.

6. Sufficient conditions on primitives

For readers interested in applications, it may be easier to verify sufficient, but less general, conditions that lead to the existence of Bayesian equilibria. Here we provide
two sets of such conditions. The first set, formally stated in Theorem 6.1, is written in terms of payoff differences. The second set of conditions, stated in Corollary 6.3, imposes restrictions on differentiable payoffs.

Throughout this section, we make the following assumptions:
(1) Each player i 's type space $T_{i}=\left[\underline{\tau}_{i}, \bar{\tau}_{i}\right]^{M_{i}} \times\left[\underline{\tau}_{i}, \bar{\tau}_{i}\right]^{M_{i}^{\prime}}$ is a nondegenerate Euclidean cube, with the coordinate-wise partial order.
(2) Each player i 's types are distributed according to the probability density f_{i} over T_{i}, not necessarily everywhere positive, but independently of other players' types.
(3) Each player i 's set of actions $A_{i}=\left[\underline{\alpha}_{i}, \bar{\alpha}_{i}\right]^{N_{i}} \times\left[\underline{\alpha}_{i}, \bar{\alpha}_{i}\right]^{N_{i}^{\prime}}$ is an Euclidean cube, endowed with the coordinate-wise partial order.
(4) Each player i 's payoff function $u_{i}: A \times T \rightarrow \mathbb{R}$ is bounded, measurable in t, and continuous in a.

The following theorem establishes that it suffices to check whether the first differences of payoffs are increasing in specific directions of the players' action and type spaces.

Theorem 6.1. Suppose that the payoff function $u_{i}: A \times T \rightarrow \mathbb{R}$ of every player i satisfies the following two conditions:
(a) Take any given $a_{-i} \in A_{-i}$ and $t \in T$. If $a, a^{\prime} \in A_{i}$, then

$$
\begin{aligned}
& u_{i}\left(a, a_{-i} ; t\right)-u_{i}\left(\left(a_{N_{i}} \wedge a_{N_{i}}^{\prime}, a_{N_{i}^{\prime}} \vee a_{N_{i}^{\prime}}^{\prime}\right), a_{-i} ; t\right) \geq 0 \\
& \quad \Rightarrow \quad u_{i}\left(\left(a_{N_{i}} \vee a_{N_{i}}^{\prime}, a_{N_{i}^{\prime}} \wedge a_{N_{i}^{\prime}}^{\prime}\right), a_{-i} ; t\right)-u_{i}\left(a^{\prime}, a_{-i} ; t\right) \geq 0 .
\end{aligned}
$$

(b) Take any given $a_{-i} \in A_{-i}$ and $t_{-i} \in T_{-i}$. Suppose $a_{i}, a_{i}^{\prime} \in A_{i}$ are such that $a_{i k} \geq a_{i k}^{\prime}$ for $k \in N_{i}$ and $a_{i k} \leq a_{i k}^{\prime}$ for $k \in N_{i}^{\prime}$; and $t_{i}, t_{i}^{\prime} \in T_{i}$ are such that $t_{i \ell} \geq t_{i \ell}^{\prime}$ for $\ell \in M_{i}$ and $t_{i \ell} \leq t_{i \ell}^{\prime}$ for $\ell \in M_{i}^{\prime}$, then

$$
\begin{aligned}
& u_{i}\left(a_{i}, a_{-i} ; t_{i}^{\prime}, t_{-i}\right)-u_{i}\left(a_{i}^{\prime}, a_{-i} ; t_{i}^{\prime}, t_{-i}\right) \geq 0 \\
& \quad \Rightarrow \quad u_{i}\left(a_{i}, a_{-i} ; t_{i}, t_{-i}\right)-u_{i}\left(a_{i}^{\prime}, a_{-i} ; t_{i}, t_{-i}\right) \geq 0
\end{aligned}
$$

Then there exists a Bayesian equilibrium in which each player i plays a pure strategy s_{i} such that the projection $t_{i} \mapsto s_{i k}\left(t_{i}\right)$, with $k \in N_{i}\left(k \in N_{i}^{\prime}\right)$, is nondecreasing (nonincreasing) in $t_{i \ell}$ for $\ell \in M_{i}$ and nonincreasing (nondecreasing) in $t_{i \ell}$ for $\ell \in M_{i}^{\prime}$.

Remark 6.2. In Theorem 6.1, if $N_{i}^{\prime}=\emptyset$ and $M_{i}^{\prime}=\emptyset$, then condition (a) reduces to the usual quasi-supermodularity of McAdams (2003) and condition (b) reduces to the
single-crossing property of McAdams (2003). Then the theorem implies existence of a monotone Bayesian equilibrium.

We can now state a corollary of Theorem 6.1 for the case when the players' payoffs are twice continuously differentiable.

Corollary 6.3. Suppose that for each player i, the payoff function $u_{i}: A \times T \rightarrow \mathbb{R}$ is twice continuously differentiable and satisfies the following two conditions:
(a) For every $a \in A$ and $t \in T$,

$$
\begin{array}{ll}
\frac{\partial^{2} u_{i}(a ; t)}{\partial a_{i k} \partial a_{i k^{\prime}}} \geq 0 & \text { if either } k, k^{\prime} \in N_{i} \text { or } k, k^{\prime} \in N_{i}^{\prime} ; \text { and } \\
\frac{\partial^{2} u_{i}(a ; t)}{\partial a_{i k} \partial a_{i k^{\prime}}} \leq 0 & \text { if } k \in N_{i} \text { and } k^{\prime} \in N_{i}^{\prime} .
\end{array}
$$

(b) For every $a \in A$ and $t \in T$,

$$
\begin{array}{ll}
\frac{\partial^{2} u_{i}(a ; t)}{\partial a_{i k} \partial t_{i \ell}} \geq 0 & \text { if } k \in N_{i} \text { and } \ell \in M_{i} ; \text { or } k \in N_{i}^{\prime} \text { and } \ell \in M_{i}^{\prime} \\
\frac{\partial^{2} u_{i}(a ; t)}{\partial a_{i k} \partial t_{i \ell}} \leq 0 & \text { if } k \in N_{i}^{\prime} \text { and } \ell \in M_{i} ; \text { or } k \in N_{i} \text { and } \ell \in M_{i}^{\prime}
\end{array}
$$

Then there exists a Bayesian equilibrium in which each player i plays a pure strategy s_{i} such that the projection $t_{i} \mapsto s_{i k}\left(t_{i}\right)$, with $k \in N_{i}\left(k \in N_{i}^{\prime}\right)$, is nondecreasing (nonincreasing) in $t_{i \ell}$ for $\ell \in M_{i}$ and nonincreasing (nondecreasing) in $t_{i \ell}$ for $\ell \in M_{i}^{\prime}$.

All proofs for this section can be found in Appendix D.

7. Literature

There is an extensive literature concerned with existence of equilibrium for Bayesian games, with Milgrom and Weber (1985) being a groundbreaking contribution. Often one is interested in equilibria in which the agents' strategies have some prescribed structure. Within many economic frameworks, it is natural to look in particular for equilibria in which each agent follows a pure strategy that is an increasing function of her type. Milgrom and Shannon (1994) were the first to develop a general theory and method for this kind of analysis. Athey (2001), McAdams (2003), and Reny (2011) provide increasingly general existence results of this sort. Remarkably, Reny (2011) introduces far-reaching new techniques applying the fixed point theorem of Eilenberg and Montgomery (1946, Theorem 5). This is done by showing that with atomless type spaces the set of monotone functions is an absolute retract and when the values of the best response correspondence are non-empty sub-semilattices of monotone functions,
they too are absolute retracts. This paper extends this line of research, providing a theory that encompasses Reny's results while generalizing the relevant methods. ${ }^{15}$ In this section, we show how the main result in Reny (2011), which generalizes Athey (2001) and McAdams (2003), can be derived from Theorem 4.1. As a reminder, we state Reny's main result in a concise form.

Theorem 7.1 (Theorem 4.1 of Reny (2011)). Suppose that the following assumptions hold.
(1) For each player i,
(a) π_{i} is atomless;
(b) T_{i} is endowed with a measurable partial order for which there is a countable set $T_{i}^{0} \subseteq T_{i}$ such that for every $E \in \mathcal{T}_{i}$ with $\pi_{i}(E)>0$ there are $t_{i}, t_{i}^{\prime} \in E$ with $\left[t_{i}, t_{i}^{\prime}\right] \cap T_{i}^{0} \neq \emptyset ;$
(c) A_{i} is compact metric space, and a semilattice with closed partial order;
(d) either:
(i) A_{i} is a convex subset of a locally convex topological vector space and the partial order on A_{i} is convex, or
(ii) A_{i} is a locally complete metric semilattice;
(e) $u_{i}(t, \cdot)$ is continuous for every $t \in T$.
(2) Each player's set of nondecreasing pure best responses is nonempty and closed with respect to the supremum operation whenever the other players use nondecreasing pure strategies.
Then the Bayesian game has an equilibrium in nondecreasing pure strategies.
First, we show that, under the assumptions listed, the set of nondecreasing strategies is order-convex. Fix a player i. Being a compact, metric space, the set of actions A_{i} can be isometrically embedded in a Banach space L_{i}. The set of nondecreasing strategies M_{i} for player i is thus a subset of Bochner-integrable functions from T_{i} to L_{i}, under the L^{1}-norm topology. Partially order M_{i} according to the (almost everywhere) pointwise order, as follows

$$
f_{i} \geq g_{i} \quad \Longleftrightarrow \quad f_{i}\left(t_{i}\right) \geq g_{i}\left(t_{i}\right) \quad \pi_{i}-\text { a.e. }
$$

Under this partial order, the set of nondecreasing strategies M_{i} is a metric semilattice. Further, by Reny (2011, Lemmas A. 10 and A.11), the set M_{i} is L^{1}-norm compact. The next lemma establishes that M_{i} is also locally complete.
$\overline{{ }^{15} \text { A recent development, specifically emphasizing existence of equilibrium in auctions, is Prokopovych }}$ and Yannelis (2019).

Lemma 7.2. Under the assumptions of Theorem 7.1-(1), the set of nondecreasing strategies M_{i} for every player i is locally complete.

Proof. Case (1.d.i): We show that, under assumption (1.c), if A_{i} is a convex subset of a locally convex topological vector space with a convex partial order, then A_{i} is a locally complete metric semilattice. Thus case (1.d.i) reduces to (1.d.ii). Given Reny (2011, Lemma A.18), it suffices to show that if a_{n} is a sequence of actions converging to a, then $b_{m}=\vee_{n \geq m} a_{n}$ also converges to a as m goes to infinity. Suppose b_{m} does not converge to a. Because A_{i} is compact, taking a subsequence if necessary, we may assume that b_{m} converges to $b \neq a$. Since $a_{m} \leq b_{m}$ for every m and \leq is a closed order, it follows that $a \leq b$. And since $a \neq b$, it follows that $a<b$. Because A_{i} is a convex subset of a metric, locally convex topological vector space, with a closed order, there exist two disjoint, convex neighborhoods U of a and V of b such that $a^{\prime}<b^{\prime}$ for every $a \in U$ and $b \in V$. Pick $\alpha \in(0,1)$ such that $\alpha a+(1-\alpha) b \in V$. Since \leq is closed, it follows that $\alpha a+(1-\alpha) b<b$, and notice that there is a convex neighborhood W of b such that $\alpha a+(1-\alpha) b<b^{\prime}$ for every $b^{\prime} \in W$. Let M be an integer such that $a_{n} \in U$ for every $n \geq M$ and $b_{m} \in W$ for every $m \geq M$. Therefore, $\alpha a+(1-\alpha) b$ is an upper bound on the set $\bigcup_{n \geq M}\left\{a_{n}\right\}$. However, $\alpha a+(1-\alpha) b<b_{M}$, which contradicts $b_{M}=\vee_{n \geq M} a_{n}$.

Case (1.d.ii): Given Reny (2011, Lemma A.18), it suffices to show that if f_{n} is a sequence of nondecreasing strategies converging in the L^{1}-norm to f, then $\vee_{n \geq m} f_{n}$ also converges to f as m goes to infinity. So let f_{n} be such sequence. From Reny (2011, Lemma A.12), it follows that f_{n} converges π_{i}-almost everywhere to f. Given that A_{i} is locally complete and using Reny (2011, Lemma A.18) again, it follows that $\vee_{n \geq m} f_{n}\left(t_{i}\right)$ converges to $f\left(t_{i}\right)$ for π_{i}-almost every t_{i} as m goes to infinity, which implies L^{1}-norm convergence.

Given Lemmas B.1, B.2, and B.3, if the set of nondecreasing strategies M_{i} has monotonically contractible order intervals, then it is order-convex.

Lemma 7.3. Under the assumptions of Theorem 7.1-(1), the set of nondecreasing strategies M_{i} for every player i is order-convex.

Proof. From Reny (2011, Lemmas A. 3 and A.15), it follows that if $\left[f_{i}, f_{i}^{\prime}\right]$ is an order interval in M_{i}, then $h:[0,1] \times\left[f_{i}, f_{i}^{\prime}\right] \rightarrow\left[f_{i}, f_{i}^{\prime}\right]$ given by

$$
h\left(\alpha, g_{i}\right)= \begin{cases}g_{i}\left(t_{i}\right) & \text { if } \Phi_{i}\left(t_{i}\right) \leq \alpha \\ f_{i}^{\prime}\left(t_{i}\right) & \text { otherwise }\end{cases}
$$

is a monotone contraction. Thus, M_{i} is order-convex.
Notice that each player i 's best reply is closed with respect to the supremum, by assumption, and closed with respect to the monotone contraction, by construction. Thus, given Lemmas 7.2 and 7.3, the existence of an equilibrium in nondecreasing pure strategies follows from Theorem 4.1.

Appendix A. Proofs for Section 3

A.1. Proof of Lemma 3.7.

Proof. If X is separable, metric space, then it can be isometrically embedded as a subset of a Banach space Y. It suffices to construct a retraction $r: X \rightarrow Y$.

For each $y \in Y \backslash X$, let $\varphi(y)=\inf \left\{\|y-x\|_{Y}: x \in X\right\}$. Define the correspondence $F: Y \backslash X \rightarrow X$ by

$$
F(y)=\left\{x \in X:\|y-x\|_{Y}<2 \varphi(y)\right\} .
$$

Because $\varphi(y)>0$ for every $y \in Y \backslash X$, it follows that $F(y)$ is nonempty. Moreover, F has open lower sections. Thus, if X^{*} is a countable dense subset of X, then $\left\{F^{-1}(x): x \in X^{*}\right\}$ is a countable open cover of $Y \backslash X$. Let \mathcal{U} be a locally finite refinement, and let $\left\{\pi_{U}: U \in \mathcal{U}\right\}$ be a partition of unity subordinated to it. For each $U \in \mathcal{U}$, there is at least one $x \in X^{*}$ such that $U \subseteq F^{-1}(x)$; let x_{U} denote such x. For every $y \in Y \backslash X$, we identify the collection $\pi(y)=\left\{\pi_{U}(y): U \ni y\right\}$ with the corresponding point in the simplex $\left|\left\{x_{U}: U \ni y\right\}\right|$. By Walker's carrier lemma, there exists a continuous function $f:|\Delta| \rightarrow|\Gamma|$, such that for every finite subset $Y^{\prime} \subseteq Y$, $f\left(\left|Y^{\prime}\right|\right) \subseteq\left|\mathcal{H}\left(Y^{\prime}\right)^{\Gamma}\right|$. Define the function $r: Y \backslash X \rightarrow X$ by

$$
r(y)=h(f(\pi(y)) .
$$

Extend the function r to X by setting $r(x)=x$ for every $x \in X$.
Since $\left.r\right|_{Y \backslash X}$ and $\left.r\right|_{X}$ are continuous by construction, it suffices to check that, for every sequence $\left(y_{n}\right) \subseteq Y \backslash X$ converging to some $x \in X$, the sequence $\left(r\left(y_{n}\right)\right)$ converges to $r(x)=x$. But, for every n, if $x^{\prime} \in \operatorname{supp} \pi\left(y_{n}\right)$, then $d\left(y_{n}, x^{\prime}\right)<2 \varphi\left(y_{n}\right)$. As n goes to infinity, $\varphi\left(y_{n}\right)$ converges to zero. Because the hulling is small, that implies that $\mathcal{H}\left(\operatorname{supp} \pi\left(y_{n}\right)\right)$ converges to x. Further, because the monotone realization is local, $h\left(f\left(\pi\left(y_{n}\right)\right)\right)$ converges to x.

Appendix B. Locally complete semilattices

We now investigate the relationship between these structures and locally complete metric semilattices.

Lemma B.1. If X is a locally complete, metric semilattice and \mathcal{H} is the family of all finite subsemilattices, then \mathcal{H} is a small hulling.

Proof. Let Y_{n} be a sequence of finite sets converging to $x \in X$, and let U be a neighborhood of x. Since X is locally complete, there is a neighborhood W of x such that every nonempty $Y \subseteq W$ has a least upper bound in U. Suppose that $Y_{n} \subseteq W$, as is the case for large n. Then $\left\{y_{1} \vee \cdots \vee y_{k}: y_{1}, \ldots, y_{k} \in Y_{n}\right\}$ is a subsemilattice that is contained in any subsemilattice that contains Y_{n}, so it is $\mathcal{H}\left(Y_{n}\right)$, and each of its elements is contained in U. Thus $\mathcal{H}\left(Y_{n}\right) \subseteq U$ for large n.

The notion of a order-convexity is a straightforward generalization of the pathconnected metric-lattices extensively studied in Anderson (1959), McWaters (1969), Lawson (1969), Lawson and Williams (1970), and Gierz et al. (1980). It arises quite naturally. An order interval in X is a set defined by

$$
\left[x, x^{\prime}\right]=\left\{y \in X: x \leq y \leq x^{\prime}\right\}
$$

for some $x \leq x^{\prime}$. We say that the order interval $\left[x, x^{\prime}\right]$ is monotonically contractible if there is a contraction $\ell:[0,1] \times\left[x, x^{\prime}\right] \rightarrow\left[x, x^{\prime}\right]$ such that if $\alpha \leq \alpha^{\prime}$, then $\ell(\alpha, y) \leq$ $\ell\left(\alpha^{\prime}, y\right)$ for every $y \in\left[x, x^{\prime}\right]$. The next lemma shows that every metric semilattice with monotonically contractible order intervals has a monotone realization.

Lemma B.2. If X is metric semilattice with monotonically contractible order intervals, then there exists a continuous function $h:|\Gamma| \rightarrow X$ such that $h(|Y|) \subseteq[\wedge Y, \vee Y]$ for every finite chain $Y \subseteq X$.

Proof. Notice that for any finite set Y the hull $\mathcal{H}(Y)$ is the set $\{\vee Z: Z \subseteq S, Z \neq \emptyset\}$. We will use the following fact: any continuous function from the boundary of a cell to a contractible space can be continuously extended across the entire cell. We will construct the monotone realization h by induction on the skeletons of Γ. Recall that the n-skeleton $\Gamma^{(n)}$ is the subcomplex consisting of the simplexes of Γ of dimension n or less. For every vertex x in $\Gamma^{(0)}$, let $h(x)=x$. For each simplex Y in $\Gamma^{(1)}$, choose a monotone path $\ell:[0,1] \rightarrow[\wedge Y, \vee Y]$, and let $h(\pi)=\ell(\pi(\wedge Y))$ for every $\pi \in|Y|$. Notice that $h\left(\delta_{\wedge Y}\right)=\wedge Y$ and $h\left(\delta_{V Y}\right)=\vee Y$. Therefore, h is well-defined and continuous on $\left|\Gamma^{(1)}\right|$. Further, $h(|Y|) \subseteq[\wedge Y, \vee Y]$ for every 1-simplex Y in $\Gamma^{(1)}$. The inductive hypothesis is that $h:\left|\Gamma^{(n)}\right| \rightarrow X$ is continuous and $h(|Y|) \subseteq[\wedge Y, \vee Y]$ for every n-simplex Y in $\Gamma^{(n)}$. Now, suppose Z is an $(n+1)$-simplex. For every proper face Y of $Z, h(|Y|) \subseteq[\wedge Y, \vee Y] \subseteq[\wedge Z, \vee Z]$. Therefore, $h(|\operatorname{Bd} Z|) \subseteq[\wedge Z, \vee Z]$. Since Z is a cell and $[\wedge Z, \vee Z]$ is contractible, h can be continuously extended over $|Z|$ in
such a way that $h(|Z|) \subseteq[\wedge Z, \vee Z]$. Since the map $h:|\Gamma| \rightarrow X$ is continuous if and only if it is continuous on each simplex, it follows that h is a monotone realization.

If additionally X is locally complete, then the monotone realization constructed in the proof of Lemma B. 2 is local.

Lemma B.3. Suppose X is a locally complete, metric semilattice with a monotone realization $h:|\Gamma| \rightarrow X$. If $h(|Y|) \subseteq[\wedge Y, \vee Y]$ for every finite chain $Y \subseteq X$, then h is local.

Proof. Let $Y_{n} \subseteq X$ be a sequence of nonempty finite chains converging to $x \in X$, and let $\underline{Y}_{n}=\wedge Y_{n}$ and $\bar{Y}_{n}=\vee Y_{n}$. For every n take any $x_{n} \in\left[\underline{Y}_{n}, \bar{Y}_{n}\right]$. Birkhoff's identity implies that for every n

$$
\begin{aligned}
\left\lfloor\underline{Y}_{n}-\bar{Y}_{n}\right\rfloor & =\left\lfloor\bar{Y}_{n} \vee x_{n}-\underline{Y}_{n} \vee x_{n}\right\rfloor+\left\lfloor\bar{Y}_{n} \wedge x_{n}-\underline{Y}_{n} \wedge x_{n}\right\rfloor \\
& =\left\lfloor\bar{Y}_{n}-x_{n}\right\rfloor+\left\lfloor x_{n}-\underline{Y}_{n}\right\rfloor,
\end{aligned}
$$

where $\lfloor z\rfloor=z \vee(-z)$ denotes the absolute value of z. Since \bar{Y}_{n} and \underline{Y}_{n} both converge to x and X is locally complete, it follows that $\left\lfloor\bar{Y}_{n}-\underline{Y}_{n}\right\rfloor$ converges to 0 . Therefore, $\left\lfloor\bar{Y}_{n}-x_{n}\right\rfloor$ and $\left\lfloor x_{n}-\underline{Y}_{n}\right\rfloor$ also converge to 0 . Because \bar{Y}_{n} converges to x, it follows that x_{n} converges to x too.

Appendix C. Proofs for Sections 2 and 5

In all three auctions described in this section, the bidders' type and action spaces are subsets of Euclidean spaces. When required, we equip these spaces with the Lebesgue σ-algebra and the Lebesgue measure λ. In particular, this means that density functions on types are absolutely continuous with respect to the Lebesgue measure. Moreover, under these assumptions, the partial order on strategies induced either by the pointwise supremum or the pointwise infimum is measurable.
C.1. All-pay auction. We first describe the bidder-specific set of strategies K_{i}. We then show that, using the sufficient conditions from Lemmas B. 2 and B.1, it satisfies the requirements of Theorem 4.1.

Fix a bidder i. To describe the set K_{i}, let N_{i}^{+}denote the set of indexes k such that the weighted valuation $v_{i}\left(t_{i}, t_{-i}\right) f\left(t_{-i} \mid t_{i}\right)$ is nondecreasing on the interval \mathcal{I}_{i}^{n}, that is, define

$$
N_{i}^{+}=\left\{n: v_{i}\left(t_{i}, t_{-i}\right) f\left(t_{-i} \mid t_{i}\right) \text { is nondecreasing over } \mathcal{I}_{i}^{n}\right\}
$$

Notice that, given Assumption B.1, N_{i}^{+}consists of a finite collection of indexes. Likewise, define N_{i}^{-}to be the set of indexes k such that the weighted valuation $v_{i}\left(t_{i}, t_{-i}\right) f\left(t_{-i} \mid t_{i}\right)$ is nonincreasing on the interval \mathcal{I}_{i}^{n}, that is,

$$
N_{i}^{-}=\left\{n: v_{i}\left(t_{i}, t_{-i}\right) f\left(t_{-i} \mid t_{i}\right) \text { is nonincreasing over } \mathcal{I}_{i}^{n}\right\} .
$$

We may take N_{i}^{+}and N_{i}^{-}to be disjoint. We define K_{i} to be the set of measurable functions from $T_{i}=[\underline{\tau}, \bar{\tau}]$ to \mathcal{B} that are nondecreasing over \mathcal{I}_{i}^{n} when $n \in N_{i}^{+}$and nonincreasing over \mathcal{I}_{i}^{n} when $n \in N_{i}^{-}$. Formally, define

$$
\begin{align*}
& K_{i}=\left\{f:\left.f\right|_{\mathcal{I}_{i}^{n}} \text { is nondecreasing for every } n \in N_{i}^{+}\right. \\
&\left.\quad \text { and }\left.f\right|_{\mathcal{I}_{i}^{n}} \text { is nonincreasing for every } n \in N_{i}^{-}\right\} . \tag{1}
\end{align*}
$$

As defined, K_{i} is a closed subset of functions of bounded variation, with a uniform total variation bound of $|\vee \mathcal{B}-\wedge \mathcal{B}| \times\left(\left|N_{i}^{+}\right|+\left|N_{i}^{-}\right|\right)$. Thus, by Helly's selection theorem, it is a L^{1}-norm compact subset of measurable functions. The following lemmas show that K_{i} satisfies the conditions required to apply Theorem 4.1.

Lemma C.1. The subset of strategies K_{i} is a locally complete, metric semilattice.
Proof. The set K_{i}, endowed with the L^{1}-norm, is clearly a metric semilattice. It only remains to show that it is locally complete. Given Reny (2011, Lemma A.18), it suffices to show that if g_{k} is a sequence of strategies in K_{i} converging in the L^{1}-norm to f, then $\vee_{k \geq m} g_{k}$ also converges to g as m goes to infinity. Let g_{k} be such sequence. Fix $n \in N_{i}^{+}$and consider the function given by $g_{k} \mathbf{1}_{\mathcal{I}_{i}^{n}}$, where $\mathbf{1}_{E}$ is the indicator function of $E \subseteq T_{i}$. Because g_{k} is nondecreasing on \mathcal{I}_{i}^{n}, from Reny (2011, Lemma A.12), it follows that $g_{k} \mathbf{1}_{\mathcal{I}_{i}^{n}}$ converges almost everywhere to $g \mathbf{1}_{\mathcal{I}_{i}^{n}}$. Applying the same argument to $-g_{k} \mathbf{1}_{\mathcal{I}_{i}^{n}}$ for $n \in N_{i}^{-}$yields that $g_{k} \mathbf{1}_{\mathcal{I}_{i}^{n}}$ converges almost everywhere to $g \mathbf{1}_{\mathcal{I}_{i}^{n}}$ for every $n \in N_{i}^{+} \cup N_{i}^{-}$. Since there is a finite number of subintervals, it follows that $g_{k}=\sum_{n} g_{k} \mathbf{1}_{\mathcal{I}_{i}^{n}}$ converges almost everywhere to $g=\sum_{n} g \mathbf{1}_{\mathcal{I}_{i}^{n}}$. Given the real numbers are locally complete, applying Reny (2011, Lemma A.18) again, it follows that $\vee_{k \geq m} g_{k}\left(t_{i}\right)$ converges to $g\left(t_{i}\right)$ for almost every t_{i} as m goes to infinity. Therefore, $\vee_{k \geq m} g_{k}$ converges to g in the L^{1}-norm.

In view of Lemma B.1, we record the following corollary of this result.
Corollary C.2. The family \mathcal{H} of all finite subsemilattices of K_{i} is a small hulling.
The next lemma shows that the order intervals of K_{i} are monotonically contractible.
Lemma C.3. The subset of strategies K_{i} has monotonically contractible order intervals.

Proof. Let $\left[g_{i}^{\prime}, g_{i}^{\prime \prime}\right]$ be an order interval in K_{i}. Define the function $h:[0,1] \times\left[g_{i}^{\prime}, g_{i}^{\prime \prime}\right] \rightarrow$ [$\left.g_{i}^{\prime}, g_{i}^{\prime \prime}\right]$ by

$$
h\left(\alpha, g_{i}\right)= \begin{cases}g_{i}^{\prime \prime}\left(t_{i}\right) & \text { if } t_{i} \in I_{i}^{n} \text { with } k \in N_{i}^{+} \text {and }\left|\vee I_{i}^{n}-t_{i}\right| \leq \alpha\left|\vee I_{i}^{n}-\wedge I_{i}^{n}\right| \\ g_{i}^{\prime \prime}\left(t_{i}\right) & \text { if } t_{i} \in I_{i}^{n} \text { with } k \in N_{i}^{-} \text {and }\left|t_{i}-\wedge I_{i}^{n}\right| \leq \alpha\left|\vee I_{i}^{n}-\wedge I_{i}^{n}\right| \\ g_{i}\left(t_{i}\right) & \text { otherwise }\end{cases}
$$

The function h is the required monotone contraction.

As a result of Lemmas B. 2 and B.3, we have the following corollary of this result.
Corollary C.4. The subset of strategies K_{i} is order-convex.
The next two lemmas check that the best response correspondence also satisfies the conditions of the theorem.

Lemma C.5. The intersection of the best response correspondence $B_{i}\left(\beta_{-i}\right)$ with K_{i} is nonempty for every strategy profile of other bidders β_{-i}.

Proof. Fix a profile of strategies for other players β_{-i}. We show that the interim best response correspondence

$$
B_{i}\left(\beta_{-i} \mid t_{i}\right)=\arg \max _{b \in \mathcal{B}} V_{i}\left(b \mid t_{i}, \beta_{-i}\right)
$$

has a selection in K_{i}. Consider the selection $g_{i}\left(t_{i}\right)=\vee B_{i}\left(\beta_{-i} \mid t_{i}\right)$. It is well-defined because \mathcal{B} is finite. Moreover, it is measurable because the pointwise partial order is measurable. The proof now procedes by contradiction to show that g_{i} is in K_{i}. Suppose $g_{i} \notin K_{i}$. Then there exist $t_{i}^{\prime}>t_{i}$, both in some subinterval \mathcal{I}_{i}^{n}, such that either (i) $g_{i}\left(t_{i}\right)>g_{i}\left(t_{i}^{\prime}\right)$ and $n \in N_{i}^{+}$, or (ii) $g_{i}\left(t_{i}^{\prime}\right)>g_{i}\left(t_{i}\right)$ and $n \in N_{i}^{-}$.

Consider case (i). Because g_{i} is defined as the maximum interim best response, it follows that $g_{i}\left(t_{i}\right) \notin B_{i}\left(\beta_{-i} \mid t_{i}^{\prime}\right)$. Thus

$$
\begin{equation*}
V_{i}\left(g_{i}\left(t_{i}^{\prime}\right) \mid t_{i}^{\prime}, \beta_{-i}\right)-V_{i}\left(g_{i}\left(t_{i}\right) \mid t_{i}^{\prime}, \beta_{-i}\right)>0 . \tag{2}
\end{equation*}
$$

Furthermore,

$$
\begin{aligned}
& V_{i}\left(g_{i}\left(t_{i}\right) \mid t_{i}^{\prime}, \beta_{-i}\right)-V_{i}\left(g_{i}\left(t_{i}^{\prime}\right) \mid t_{i}^{\prime}, \beta_{-i}\right) \\
& =\int_{[\tau, \tau]]^{I-1}}\left[\alpha_{i}\left(g_{i}\left(t_{i}\right), \beta_{-i}\left(t_{-i}\right)\right)-\alpha_{i}\left(g_{i}\left(t_{i}^{\prime}\right), \beta_{-i}\left(t_{-i}\right)\right)\right] v_{i}\left(t_{i}^{\prime}, t_{-i}\right) f\left(t_{-i} \mid t_{i}^{\prime}\right) d t_{-i} \\
& \quad-g_{i}\left(t_{i}\right)+g_{i}\left(t_{i}^{\prime}\right) .
\end{aligned}
$$

Since the allocation mapping α_{i} is positive and nondecreasing in its first argument and $v_{i} f_{i}$ is positive and nondecreasing in bidder i 's signal, it follows that

$$
\begin{aligned}
\int_{[\tau, \bar{\tau}]^{I-1}}[& \left.\alpha_{i}\left(g_{i}\left(t_{i}\right), \beta_{-i}\left(t_{-i}\right)\right)-\alpha_{i}\left(g_{i}\left(t_{i}^{\prime}\right), \beta_{-i}\left(t_{-i}\right)\right)\right] v_{i}\left(t_{i}^{\prime}, t_{-i}\right) f\left(t_{-i} \mid t_{i}^{\prime}\right) d t_{-i} \geq \\
& \int_{[\underline{\tau}, \bar{\tau}]^{I-1}}\left[\alpha_{i}\left(g_{i}\left(t_{i}\right), \beta_{-i}\left(t_{-i}\right)\right)-\alpha_{i}\left(g_{i}\left(t_{i}^{\prime}\right), \beta_{-i}\left(t_{-i}\right)\right)\right] v_{i}(t) f\left(t_{-i} \mid t_{i}\right) d t_{-i}
\end{aligned}
$$

and hence

$$
V_{i}\left(g_{i}\left(t_{i}\right) \mid t_{i}^{\prime}, \beta_{-i}\right)-V_{i}\left(g_{i}\left(t_{i}^{\prime}\right) \mid t_{i}^{\prime}, \beta_{-i}\right) \geq V_{i}\left(g_{i}\left(t_{i}\right) \mid t_{i}, \beta_{-i}\right)-V_{i}\left(g_{i}\left(t_{i}^{\prime}\right) \mid t_{i}, \beta_{-i}\right)
$$

However, optimality also implies that

$$
V_{i}\left(g_{i}\left(t_{i}\right) \mid t_{i}, \beta_{-i}\right)-V_{i}\left(g_{i}\left(t_{i}^{\prime}\right) \mid t_{i}, \beta_{-i}\right) \geq 0,
$$

and hence

$$
V_{i}\left(g_{i}\left(t_{i}\right) \mid t_{i}^{\prime}, \beta_{-i}\right)-V_{i}\left(g_{i}\left(t_{i}^{\prime}\right) \mid t_{i}^{\prime}, \beta_{-i}\right) \geq 0,
$$

which contradicts equation (2).
Consider now case (ii). Because g_{i} is defined as the maximum interim best response, it follows that

$$
\begin{equation*}
V_{i}\left(g_{i}\left(t_{i}\right) \mid t_{i}, \beta_{-i}\right)-V_{i}\left(g_{i}\left(t_{i}^{\prime}\right) \mid t_{i}, \beta_{-i}\right)>0 . \tag{3}
\end{equation*}
$$

Furthermore,

$$
\begin{aligned}
& V_{i}\left(g_{i}\left(t_{i}^{\prime}\right) \mid t_{i}, \beta_{-i}\right)-V_{i}\left(g_{i}\left(t_{i}\right) \mid t_{i}, \beta_{-i}\right) \\
& \begin{aligned}
&=\int_{[\tau, \tau]]^{I-1}} {\left[\alpha_{i}\left(g_{i}\left(t_{i}^{\prime}\right), \beta_{-i}\left(t_{-i}\right)\right)-\alpha_{i}\left(g_{i}\left(t_{i}\right), \beta_{-i}\left(t_{-i}\right)\right)\right] v_{i}(t) f\left(t_{-i} \mid t_{i}\right) d t_{-i} } \\
& \quad-g_{i}\left(t_{i}^{\prime}\right)+g_{i}\left(t_{i}\right) .
\end{aligned}
\end{aligned}
$$

Since the allocation mapping α_{i} is positive and nondecreasing in its first argument and $v_{i} f_{i}$ is positive and nonincreasing in bidder i 's signal, it follows that

$$
\begin{aligned}
& \int_{[\tau, \bar{\tau}]^{I-1}}\left[\alpha_{i}\left(g_{i}\left(t_{i}^{\prime}\right), \beta_{-i}\left(t_{-i}\right)\right)-\alpha_{i}\left(g_{i}\left(t_{i}\right), \beta_{-i}\left(t_{-i}\right)\right)\right] v_{i}(t) f\left(t_{-i} \mid t_{i}\right) d t_{-i} \geq \\
& \int_{[\tau, \bar{\tau}]^{I-1}}\left[\alpha_{i}\left(g_{i}\left(t_{i}^{\prime}\right), \beta_{-i}\left(t_{-i}\right)\right)-\alpha_{i}\left(g_{i}\left(t_{i}\right), \beta_{-i}\left(t_{-i}\right)\right)\right] v_{i}\left(t_{i}^{\prime}, t_{-i}\right) f\left(t_{-i} \mid t_{i}^{\prime}\right) d t_{-i}
\end{aligned}
$$

and hence

$$
V_{i}\left(g_{i}\left(t_{i}^{\prime}\right) \mid t_{i}, \beta_{-i}\right)-V_{i}\left(g_{i}\left(t_{i}\right) \mid t_{i}, \beta_{-i}\right) \geq V_{i}\left(g_{i}\left(t_{i}^{\prime}\right) \mid t_{i}^{\prime}, \beta_{-i}\right)-V_{i}\left(g_{i}\left(t_{i}\right) \mid t_{i}^{\prime}, \beta_{-i}\right)
$$

However, optimality also implies that

$$
V_{i}\left(g_{i}\left(t_{i}^{\prime}\right) \mid t_{i}^{\prime}, \beta_{-i}\right)-V_{i}\left(g_{i}\left(t_{i}\right) \mid t_{i}^{\prime}, \beta_{-i}\right) \geq 0 .
$$

and hence

$$
V_{i}\left(g_{i}\left(t_{i}^{\prime}\right) \mid t_{i}, \beta_{-i}\right)-V_{i}\left(g_{i}\left(t_{i}\right) \mid t_{i}, \beta_{-i}\right) \geq 0,
$$

which contradicts equation (3).
Lemma C.6. The intersection of the best response correspondence $B_{i}\left(\beta_{-i}\right)$ with K_{i} is order-convex for every β_{-i}.

Proof. Fix β_{-i}. Since the intersection of $B_{i}\left(\beta_{-i}\right)$ with K_{i} is a closed subset of K_{i} and K_{i} is locally complete, it follows that $B_{i}\left(\beta_{-i}\right) \cap K_{i}$ is locally complete. Further, the best response correspondence B_{i} is closed with respect to the monotone contraction h constructed in Lemma C.3. Therefore, $B_{i}\left(\beta_{-i}\right) \cap K_{i}$ is order-convex for every β_{-i}.

Corollaries C. 2 and C.4, together with Lemmas C. 5 and C. 6 imply that the assumptions of Theorem 4.1 are satisfied for the all-pay auction when K_{i} is the set of strategies of bounded variation defined as by equation (1). Therefore, the all-pay auction has a Bayesian equilibrium in which bidders play strategies in K_{i}.
C.2. First-price auction with interdependent values. We first describe the bidder-specific set of strategies K_{i}, and show that it is order-convex. We then show that the best responses satisfy the requirements of Theorem 4.1.

Fix a bidder i. For every subset of indexes $L \subseteq\{1, \ldots, K\}$, define the following set of types of bidder i :

$$
T_{i}^{L}=\left\{t \in[\underline{\tau}, \bar{\tau}]^{K}: \frac{\partial v_{i}}{\partial t_{i \ell}}(t) \geq 0 \text { if } \ell \in L \text { and } \frac{\partial v_{i}}{\partial t_{i \ell}}(t)<0 \text { if } \ell \notin L\right\} .
$$

Notice that each T_{i}^{L} is a (Borel) measurable subset of $[\underline{\tau}, \bar{\tau}]^{K}$. Furthermore, they constitute a partition of bidder i 's type space, since $\cup_{L} T_{i}^{L}=[\underline{\tau}, \bar{\tau}]^{K}$ and $T_{i}^{L} \cap T_{i}^{L^{\prime}}=\emptyset$ whenever $L \neq L^{\prime}$. Thus each $t_{i} \in[\underline{\tau}, \bar{\tau}]^{K}$ is an element of T_{i}^{L} for one and only one $L \subseteq\{1, \ldots, K\}$.

Define K_{i} to be the set of (equivalence classes of) measurable functions from $[\underline{\tau}, \bar{\tau}]^{K}$ to \mathcal{B} such that their restriction to each T_{i}^{L} is nondecreasing in $t_{i \ell}$ if $\ell \in L$ and nonincreasing in $t_{i \ell}$ if $\ell \notin L$. We consider K_{i} to be a subset of the set of real-valued, measurable functions over $[\underline{\tau}, \bar{\tau}]^{K}$ under the L^{1}-norm topology. We next show that the subset K_{i} is compact.

Lemma C.7. The set K_{i} is L^{1}-norm compact.

Proof. If $\frac{\partial v_{i}}{\partial t_{i \ell}}(t)=0$ for every $t \in[\underline{\tau}, \bar{\tau}]^{K}$, then the result is straightforward. So we may assume that is not the case. Let $g_{n} \in K_{i}$ be a sequence of functions in K_{i}. By the diagonal argument, there exists a subsequence n_{k} such that $\lim _{n_{k}} g_{n_{k}}(r)=h(r)$ exists for every r in a countable dense subset of $[\underline{\tau}, \bar{\tau}]^{K}$. Define the function $g:[\underline{\tau}, \bar{\tau}]^{K} \rightarrow \mathcal{B}$ by

$$
g(t)=\wedge\left\{h(\tilde{t}): \tilde{t}_{\ell}>t_{\ell} \text { if } t \in T_{i}^{L} \text { and } \ell \in L, \text { and } \tilde{t}_{\ell}<t_{\ell} \text { if } t \in T_{i}^{L} \text { and } \ell \notin L\right\}
$$

By construction, $g \in K_{i}$. Moreover, $\lim _{n_{k}} g_{n_{k}}(t)=g(t)$ for continuity points of g. Theorem 7 of Brunk et al. (1956) and the fact that the set of roots of a nonzero polynomial function has zero Lebesgue measure imply that the set of of discontinuity points of g has zero Lebesgue measure. And since the distribution of bidder i 's types is absolutely continuous with respect to the Lebesgue measure, it follows that $g_{n_{k}}$ converges to g in the L^{1}-norm.

Partially order K_{i} by the almost everywhere pointwise order, whereby

$$
g_{i} \geq g_{i}^{\prime} \quad \Longleftrightarrow \quad g_{i}\left(t_{i}\right) \geq g_{i}^{\prime}\left(t_{i}\right) \quad \lambda \text {-a.e },
$$

where λ denotes the Lebesgue measure. With this partial order, the set K_{i} is a locally complete semilattice.

Lemma C.8. The set K_{i} with the almost everywhere pointwise order is a locally complete lattice.

Proof. Given Reny (2011, Lemma A.18), it suffices to show that if g_{n} is a sequence of strategies in K_{i} converging in the L^{1}-norm to f, then $\vee_{n \geq m} g_{n}$ also converges to g as m goes to infinity. Let g_{n} be such sequence. Fix T_{i}^{L} and consider the function given by $g_{n} \mathbf{1}_{T_{i}^{L}}$, where $\mathbf{1}_{E}$ is the indicator function of $E \subseteq T_{i}$. Because g_{n} is nondecreasing in $t_{i \ell}$ for $\ell \in L$ and nonincreasing in $t_{i \ell}$ for $\ell \notin L$, from Reny (2011, Lemma A.12), it follows that $g_{n} \mathbf{1}_{T_{i}^{L}}$ converges almost everywhere to some $g \mathbf{1}_{T_{i}^{L}}$. Applying the same argument to each $L^{\prime} \subseteq\{1, \ldots K\}$ yields that $g_{n} \mathbf{1}_{T_{i}^{L^{\prime}}}$ converges almost everywhere to $g \mathbf{1}_{T_{i}^{L^{\prime}}}$ for every L^{\prime}. Since there is a finite number of subsets of $\{1, \ldots, K\}$, it follows that $g_{n}=\sum_{L} g_{n} \mathbf{1}_{T_{i}^{L}}$ converges almost everywhere to $g=\sum_{n} g \mathbf{1}_{T_{i}^{L}}$. Given the real numbers are locally complete, applying Reny (2011, Lemma A.18) again, it follows that $\vee_{n \geq m} g_{n}\left(t_{i}\right)$ converges to $g\left(t_{i}\right)$ for almost every t_{i} as m goes to infinity. Therefore, $\vee_{n \geq m} g_{n}$ converges to g in the L^{1}-norm.

Let \mathcal{H}_{i} denote the collection of all finite subsemilattices of K_{i}. The next lemma shows that \mathcal{H}_{i} is a small hulling.

Lemma C.9. The collection \mathcal{H}_{i} of all finite subsemilattices of K_{i} is a small hulling.

Proof. It follows from Lemmas C. 8 and B.1.

Finally, we define a monotone realization for K_{i}. For the purposes of this example, a monotone realization is a continuous function $h:|\Gamma| \rightarrow K_{i}$ from order simplexes in Γ to K_{i}.

For every $L \subseteq\{1, \ldots, K\}$ and $c \in[0,1]$, define the following measurable set of bidder i 's types:
$E(c, L)=\left\{t \in[\underline{\tau}, \bar{\tau}]^{K}: t_{i \ell} \leq(1-c) \underline{\tau}+c \bar{\tau}\right.$ if $\ell \in L$, and $t_{i \ell} \geq c \underline{\tau}+(1-c) \bar{\tau}$ if $\left.\ell \notin L\right\}$.
Notice that the collection $\{E(c, L): c \in[0,1]\}$ is an increasing chain of measurable subsets of bidder i 's type space that reflects the ordering induced by the partial derivatives of the valuation function in T_{i}^{L}. Further, the Lebesgue measure of each set $E(c, L)$ is $\lambda(E(c, L))=c(\bar{\tau}-\underline{\tau}), E(0, L)$ is a singleton for every L, and $E(1, L)=$ $[\underline{\tau}, \bar{\tau}]^{K}$ for every L. Therefore, it follows that, for every $t_{i} \in[\underline{\tau}, \bar{\tau}]^{K}$, there exists one $L \subseteq\{1, \ldots, K\}$ such that $t_{i} \in E(1, L) \cap T_{i}^{L}=T_{i}^{L}$.

If $Y \in \Gamma$ is a simplex in the order complex of K_{i}, then Y consists of a finite chain in K_{i}. Thus the elements in Y can be identified with the ordered vector $Y=\left(g^{1}, \ldots, g^{n}\right)$, with $g^{1} \leq \cdots \leq g^{n}$. And a point x in the geometric realization $|Y|$ can be written as $x=\left(x_{g^{1}}, x_{g^{2}}, \ldots, x_{g^{n}}\right)$. We can now define the monotone realization $h:|\Gamma| \rightarrow K_{i}$ by

$$
h(x)\left(t_{i}\right)= \begin{cases}g^{1}\left(t_{i}\right) & \text { if } t_{i} \in E\left(x_{g^{1}}, L\right) \cap T_{i}^{L}, \\ g^{2}\left(t_{i}\right) & \text { if } t_{i} \in\left[E\left(x_{g^{1}}+x_{g^{2}}, L\right) \backslash E\left(x_{g^{1}}, L\right)\right] \cap T_{i}^{L}, \\ \cdots & \\ g^{n}\left(t_{i}\right) & \text { if } t_{i} \in\left[E(1, L) \backslash E\left(\sum_{k=1}^{n-1} x_{g^{k}}, L\right)\right] \cap T_{i}^{L} .\end{cases}
$$

That the function h is continuous follows from the Pasting Lemma and the fact that the distribution of bidders' types is absolutely continuous with respect to the Lebesgue measure. The next lemma establishes that h is a local monotone realization.

Lemma C.10. The monotone realization h is local.

Proof. It follows from Lemmas C. 8 and B.3.

All that is left to show is that the best response correspondence satisfies the conditions required by Theorem 4.1. We denote by $V_{i}\left(b \mid t_{i}, \beta_{-i}\right)$ bidder i 's interim payoff,
given by

$$
V_{i}\left(b \mid t_{i}, \beta_{-i}\right)=\int_{[\tau, \bar{\tau}]^{(N-1) K}} \rho_{i}\left(b, \beta_{-i}\left(t_{-i}\right)\right)\left[v_{i}(t)-b\right] \prod_{j \neq i} f_{j}\left(t_{j}\right) \mathrm{d} t_{-i}
$$

Lemma C.11. Fix a bid profile $\beta_{-i} \in K_{-i}$ of players other than i. If $B_{i}\left(\beta_{-i}\right)$ is bidder i 's best response to β_{-i}, then $B_{i}\left(\beta_{-i}\right) \cap K_{i}$ is nonempty and order-convex.

Proof. Fix a profile β_{-i} of bids for players other than i. We first show that the intersection $B_{i}\left(\beta_{-i}\right) \cap K_{i}$ is not empty. Let B_{i} denote the interim best response correspondence, defined by

$$
B_{i}\left(\beta_{-i} \mid t_{i}\right)=\arg \max _{b \in \mathcal{B}} V_{i}\left(b \mid t_{i}, \beta_{-i}\right)
$$

and consider the selection $g_{i}\left(t_{i}\right)=\vee B_{i}\left(\beta_{-i} \mid t_{i}\right)$. It is well-defined because \mathcal{B} is finite. Moreover, it is measurable because the pointwise partial order is measurable.

Suppose $t_{i}, t_{i}^{\prime} \in T_{i}^{L}$ are such that $t_{i \ell} \geq t_{i \ell}^{\prime}$ for $\ell \in L$ and $t_{i \ell} \leq t_{i \ell}^{\prime}$ for $\ell \notin L$. It suffices to show that if $b \leq b^{\prime}$ and $b \in B_{i}\left(\beta_{-i} \mid t_{i}\right)$ and $b^{\prime} \in B_{i}\left(\beta_{-i} \mid t_{i}^{\prime}\right)$, then $b^{\prime} \in B_{i}\left(\beta_{-i} \mid t_{i}\right)$.

$$
\begin{aligned}
& V_{i}\left(b^{\prime} \mid t_{i}, \beta_{-i}\right)-V_{i}\left(b \mid t_{i}, \beta_{-i}\right)= \\
& \quad \int\left[\rho_{i}\left(b^{\prime}, \beta_{-i}\left(t_{-i}\right)\right)-\rho_{i}\left(b, \beta_{-i}\left(t_{-i}\right)\right)\right] v_{i}\left(t_{i}, t_{-i}\right) \prod_{j \neq i} f_{j}\left(t_{j}\right) \mathrm{d} t_{-i} \\
& \quad-\int\left[\rho_{i}\left(b^{\prime}, \beta_{-i}\left(t_{-i}\right)\right) b^{\prime}-\rho_{i}\left(b, \beta_{-i}\left(t_{-i}\right) b\right] \prod_{j \neq i} f_{j}\left(t_{j}\right) \mathrm{d} t_{-i} .\right.
\end{aligned}
$$

Since $v_{i}\left(t_{i}, t_{-i}\right) \geq v_{i}\left(t_{i}, t_{-i}\right)$ for every t_{-i} and $\rho_{i}\left(b^{\prime}, \beta_{-i}\left(t_{-i}\right)\right)-\rho_{i}\left(b, \beta_{-i}\left(t_{-i}\right)\right) \geq 0$, it follows that

$$
\begin{aligned}
& V_{i}\left(b^{\prime} \mid t_{i}, \beta_{-i}\right)-V_{i}\left(b \mid t_{i}, \beta_{-i}\right) \geq \\
& \quad \int\left[\rho_{i}\left(b^{\prime}, \beta_{-i}\left(t_{-i}\right)\right)-\rho_{i}\left(b, \beta_{-i}\left(t_{-i}\right)\right)\right] v_{i}\left(t_{i}^{\prime}, t_{-i}\right) \prod_{j \neq i} f_{j}\left(t_{j}\right) \mathrm{d} t_{-i} \\
& \quad-\int\left[\rho_{i}\left(b^{\prime}, \beta_{-i}\left(t_{-i}\right)\right) b^{\prime}-\rho_{i}\left(b, \beta_{-i}\left(t_{-i}\right) b\right] \prod_{j \neq i} f_{j}\left(t_{j}\right) \mathrm{d} t_{-i} .\right.
\end{aligned}
$$

Therefore,

$$
V_{i}\left(b^{\prime} \mid t_{i}, \beta_{-i}\right)-V_{i}\left(b \mid t_{i}, \beta_{-i}\right) \geq V_{i}\left(b^{\prime} \mid t_{i}^{\prime}, \beta_{-i}\right)-V_{i}\left(b \mid t_{i}^{\prime}, \beta_{-i}\right) \geq 0
$$

Because $b \in B_{i}\left(\beta_{-i} \mid t_{i}\right)$, it follows that $b^{\prime} \in B_{i}\left(\beta_{-i} \mid t_{i}\right)$.

Since the intersection $B_{i}\left(\beta_{-i}\right) \cap K_{i}$ is a closed subset of K_{i} that is closed with respect to the hulling from Lemma C. 9 and with respect to the monotone realization h from Lemma C.10, it follows that $B_{i}\left(\beta_{-i}\right) \cap K_{i}$ is order-convex.

Therefore, by Theorem 4.1, this auction has an equilibrium in K.
C.3. First-price auction of imperfect substitutes. Fix a bidder i. To define the bidder-specific set of strategies K_{i}, first partition the set of types $[0,1]^{2}$ above and below the diagonal. That is, let $[0,1]^{2}=T_{i}^{1} \cup T_{i}^{2}$, where

$$
T_{i}^{1}=\left\{t \in[0,1]^{2}: t^{A} \geq t^{B}\right\}
$$

and

$$
T_{i}^{2}=\left\{t \in[0,1]^{2}: t^{A}<t^{B}\right\}
$$

Define K_{i} to be the set of measurable functions $\beta_{i}:[0,1]^{2} \rightarrow \mathcal{B}$ that satisfy the following requirement:
(\star) For every pair of types $t_{i}, t_{i}^{\prime} \in T_{i}^{k}$, with $k=1,2$, if $t_{i}^{A} \geq t_{i}^{\prime A}$ and $t_{i}^{B} \leq t_{i}^{\prime B}$, then $\beta_{i}\left(t_{i}\right)^{A} \geq \beta_{i}\left(t_{i}^{\prime}\right)^{A}$ and $\beta_{i}\left(t_{i}\right)^{B} \leq \beta_{i}\left(t_{i}^{\prime}\right)^{B}$.
We consider K_{i} to be a subset of the set of (equivalence classes of) measurable functions over $[0,1]^{2}$ under the L^{1}-norm topology. We next show that the subset K_{i} is compact.

Lemma C.12. The set K_{i} is is L^{1}-norm compact.
Proof. When restricted to each $T_{i}^{k}, k=1,2$, the set of functions in K_{i} satisfies the assumptions of Lemmas A.10-A. 12 in Reny (2011, pp. 538-540), but with mixed monotonicity in the individual variables. Therefore, the desired result follows.

Consider the partial order \geq_{i} on K_{i} whereby $g \geq_{i} f$ whenever for almost every $t_{i} \in T_{i}^{1}$

$$
g\left(t_{i}\right)^{A} \geq f\left(t_{i}\right)^{A} \quad \text { and } \quad g\left(t_{i}\right)^{B} \leq f\left(t_{i}\right)^{B}
$$

and for almost every $t_{i} \in T_{i}^{2}$

$$
g\left(t_{i}\right)^{A} \leq f\left(t_{i}\right)^{A} \quad \text { and } \quad g\left(t_{i}\right)^{B} \geq f\left(t_{i}\right)^{B} .
$$

Under this partial order, the set K_{i} is locally complete, as the following lemma establishes.

Lemma C.13. The partially ordered set $\left(K_{i}, \geq_{i}\right)$ is locally complete.
Proof. The proof follows closely the proof of Lemma C.8, and is thus omitted.

Let \mathcal{H}_{i} denote the collection of all finite subsemilattices of K_{i} according to the partial order \geq_{i}. The next lemma establishes that \mathcal{H}_{i} is a small hulling.

Lemma C.14. The collection \mathcal{H}_{i} of all finite subsemilattices of K_{i} under \geq_{i} is a small hulling.

Proof. The desired result follows from an application of Lemmas C. 13 and B.1.
Finally, we define a monotone realization for K_{i}. Recall that a monotone realization is a continuous function $h:|\Gamma| \rightarrow K_{i}$, from order simplexes in Γ to K_{i}. If $Y \in \Gamma$ is a simplex in the order complex of K_{i}, then Y consists of a finite chain in K_{i}. Thus the elements in Y can be identified with the ordered vector $Y=\left(g_{1}, \ldots, g_{n}\right)$, with $g_{1} \leq_{i} \cdots \leq_{i} g_{n}$. And a point x in the geometric realization $|Y|$ can be written as $x=\left(x_{g_{1}}, x_{g_{2}}, \ldots, x_{g_{n}}\right)$. Define the monotone realization $h:|\Gamma| \rightarrow K_{i}$ by

$$
h(x)\left(t_{i}\right)= \begin{cases}g_{1}\left(t_{i}\right) & \text { if }\left|t_{i}^{B}-t_{i}^{A}\right| \leq x_{g_{1}} \\ g_{2}\left(t_{i}\right) & \text { if } x_{g_{1}}<\left|t_{i}^{B}-t_{i}^{A}\right| \leq x_{g_{1}}+x_{g_{2}} \\ \cdots & \\ g_{n}\left(t_{i}\right) & \text { if } \sum_{\ell<n} x_{g_{\ell}}<\left|t_{i}^{B}-t_{i}^{A}\right| \leq 1\end{cases}
$$

The mapping h will be a piecewise combination of strategies in a chain. For the case when $Y=\left(g_{1}, g_{2}\right)$, Figure 3 illustrates, for three different points in the geometric realization $|Y|$, the parts in the domain T_{i} where h is equal to g_{1} or g_{2}. Figure 3a shows the composition of h at the point $\delta_{g_{1}}=(1,0)$ that puts all weight into strategy g_{1}, in which case $h\left(\delta_{g_{1}}\right)=g_{1}$. Figure 3b shows the composition of h at a point $\alpha \delta_{g_{1}}+(1-\alpha) \delta_{g_{2}}=(\alpha, 1-\alpha), \alpha \in(0,1)$, that puts some weight into strategy g_{1} and some into strategy g_{2}. In this case

$$
h\left(\alpha \delta_{g_{1}}+(1-\alpha) \delta_{g_{2}}\right)\left(t_{i}\right)= \begin{cases}g_{1}\left(t_{i}\right) & \text { if }\left|t_{i}^{B}-t_{i}^{A}\right| \leq \alpha \\ g_{2}\left(t_{i}\right) & \text { if }\left|t_{i}^{B}-t_{i}^{A}\right|>\alpha\end{cases}
$$

Notice that, since $g_{1} \leq_{i} g_{2}$, if $t_{i}^{A} \geq t_{i}^{B}$, then $g_{1}^{A}\left(t_{i}\right) \leq g_{2}^{A}\left(t_{i}\right)$ and $g_{1}^{B}\left(t_{i}\right) \geq g_{2}^{B}\left(t_{i}\right)$. Similarly, if $t_{i}^{A} \leq t_{i}^{B}$, then $g_{1}^{A}\left(t_{i}\right) \geq g_{2}^{A}\left(t_{i}\right)$ and $g_{1}^{B}\left(t_{i}\right) \leq g_{2}^{B}\left(t_{i}\right)$. Therefore, $h\left(\alpha \delta_{g_{1}}+\right.$ $\left.(1-\alpha) \delta_{g_{2}}\right) \in K_{i}$. Finally, Figure 3c shows the composition of h at the point $\delta_{g_{2}}=(0,1)$ that puts all weight into strategy g_{2}, in which case $h\left(\delta_{g_{2}}\right)=g_{2}$.

That the function h is continuous follows from the Pasting Lemma and the fact that the distribution of bidders types is absolutely continuous with respect to the Lebesgue measure. The next lemma establishes that h is a local monotone realization.

Figure 3. Piecewise composition of the monotone realization $h\left(\left|\left(g_{1}, g_{2}\right)\right|\right)$

Lemma C.15. The monotone realization h is local.
Proof. It follows from Lemmas C. 13 and B.3.
Together, Lemmas C. 14 and C. 15 imply that K_{i} is order-convex, which is recorded in the following corollary.

Corollary C.16. The set K_{i} is an order-convex subset of strategies of bidder i.
The remaining lemmas establish that the best response correspondence satisfies the assumptions of Theorem 4.1.

Lemma C.17. Fix a profile β_{-i} of bids of players other than i and a type $t_{i} \in[0,1]^{2}$ of bidder i. Let $B_{i}\left(\beta_{-i} \mid t_{i}\right)$ be bidder i 's interim best response to β_{-i} when her type is t_{i}. Then the following are true:
(1) If $t_{i} \in T_{i}^{1}$ and $b, d \in B_{i}\left(\beta_{-i} \mid t_{i}\right)$, then $\left(b^{A} \vee d^{A}, b^{B} \wedge d^{B}\right) \in B_{i}\left(\beta_{-i} \mid t_{i}\right)$.
(2) If $t_{i} \in T_{i}^{2}$ and $b, d \in B_{i}\left(\beta_{-i} \mid t_{i}\right)$, then $\left(b^{A} \wedge d^{A}, b^{B} \vee d^{B}\right) \in B_{i}\left(\beta_{-i} \mid t_{i}\right)$.

Proof. (1) Suppose $t_{i} \in T_{i}^{1}$ and $b, d \in B_{i}\left(\beta_{-i} \mid t_{i}\right)$. Let $\pi(S, b)$ denote the probability that bidder i wins S when bidding b, that is,

$$
\pi(S, b)=\int_{[0,1]^{2(N-1)}} \rho_{i}\left(S, b, \beta_{-i}\left(t_{-i}\right)\right) \prod_{j \neq i} f_{j}\left(t_{j}\right) \mathrm{d} t_{-i}
$$

If $W(b)=\sum_{S \subseteq\{A, B\}} v_{i}\left(S, t_{i}\right) \pi(S, b)$, then

$$
\begin{aligned}
& W\left(b^{A} \vee d^{A}, b^{B} \wedge d^{B}\right)+W\left(b^{A} \wedge d^{A}, b^{B} \vee d^{B}\right)-W(b)-W(d) \\
& =t_{i}^{B}\left[\pi\left(B, b^{A} \vee d^{A}, b^{B} \wedge d^{B}\right)+\pi\left(B, b^{A} \wedge d^{A}, b^{B} \vee d^{B}\right)-\pi(B, b)-\pi(B, d)\right] \\
& \geq 0
\end{aligned}
$$

Since $b, d \in B_{i}\left(\beta_{-i} \mid t_{i}\right)$,

$$
W\left(b^{A} \vee d^{A}, b^{B} \wedge d^{B}\right)+W\left(b^{A} \wedge d^{A}, b^{B} \vee d^{B}\right)-W(b)-W(d) \geq 0
$$

implies that $\left(b^{A} \vee d^{A}, b^{B} \wedge d^{B}\right) \in B_{i}\left(\beta_{-i} \mid t_{i}\right)$, which completes the proof.
(2) A similar argument, with the roles of A and B reversed, proves (2).

Lemma C.18. Fix a profile β_{-i} of bids of players other than i and let $B_{i}\left(\beta_{-i}\right)$ be bidder i 's ex ante best response to β_{-i}. The intersection $B_{i}\left(\beta_{-i}\right) \cap K_{i}$ is nonempty.

Proof. Recall that $B_{i}\left(\beta_{-i} \mid t_{i}\right)$ is the interim best response correspondence, defined by

$$
B_{i}\left(\beta_{-i} \mid t_{i}\right)=\arg \max _{b \in \mathcal{B}} V_{i}\left(b \mid t_{i}, \beta_{-i}\right),
$$

and consider the selection

$$
g_{i}\left(t_{i}\right)= \begin{cases}\left(\left.\vee B_{i}\left(\beta_{-i} \mid t_{i}\right)\right|_{A},\left.\wedge B_{i}\left(\beta_{-i} \mid t_{i}\right)\right|_{B}\right) & \text { if } t_{i} \in T_{i}^{1} \\ \left(\left.\wedge B_{i}\left(\beta_{-i} \mid t_{i}\right)\right|_{A},\left.\vee B_{i}\left(\beta_{-i} \mid t_{i}\right)\right|_{B}\right) & \text { if } t_{i} \in T_{i}^{2}\end{cases}
$$

It is well-defined by Lemma C. 17 and because \mathcal{B} is finite. Moreover, it is measurable because the pointwise partial order is measurable.

Suppose $t_{i}, t_{i}^{\prime} \in T_{i}^{1}$ are such that $t_{i}^{A} \geq t_{i}^{\prime A}$ and $t_{i}^{B} \leq t_{i}^{\prime B}$. It suffices to show that if $b \in B_{i}\left(\beta_{-i} \mid t_{i}\right)$ and $b^{\prime} \in B_{i}\left(\beta_{-i} \mid t_{i}^{\prime}\right)$, then $\left(b^{A} \vee b^{\prime A}, b^{B} \wedge b^{B}\right) \in B_{i}\left(\beta_{-i} \mid t_{i}^{\prime}\right)$.

$$
\begin{aligned}
& V_{i}\left(b^{A} \vee b^{\prime A}, b^{B} \wedge b^{\prime B} \mid t_{i}^{\prime}, \beta_{-i}\right)-V_{i}\left(b^{\prime} \mid t_{i}^{\prime}, \beta_{-i}\right) \\
& \quad=t_{i}^{\prime A}\left[\pi\left(A B \cup A, b^{A} \vee b^{\prime A}, b^{B} \wedge b^{\prime B}\right)-\pi\left(A B \cup A, b^{\prime}\right)\right]+t_{i}^{\prime B}\left[\pi\left(B, b^{A} \vee b^{\prime A}, b^{B} \wedge b^{\prime B}\right)-\pi\left(B, b^{\prime}\right)\right] \\
& \quad \geq t_{i}^{A}\left[\pi\left(A B \cup A, b^{A} \vee b^{\prime A}, b^{B} \wedge b^{\prime B}\right)-\pi\left(A B \cup A, b^{\prime}\right)\right]+t_{i}^{B}\left[\pi\left(B, b^{A} \vee b^{\prime A}, b^{B} \wedge b^{\prime B}\right)-\pi\left(B, b^{\prime}\right)\right] \\
& \quad=V_{i}\left(b^{A} \vee b^{\prime A}, b^{B} \wedge b^{\prime B} \mid t_{i}, \beta_{-i}\right)-V_{i}\left(b^{\prime} \mid t_{i}, \beta_{-i}\right) .
\end{aligned}
$$

By the same argument as in Lemma C.17, it follows that
$V_{i}\left(b^{A} \vee b^{\prime A}, b^{B} \wedge b^{\prime B} \mid t_{i}, \beta_{-i}\right)-V_{i}\left(b^{\prime} \mid t_{i}, \beta_{-i}\right)-V_{i}\left(b \mid t_{i}, \beta_{-i}\right)+V_{i}\left(b^{A} \wedge b^{\prime A}, b^{B} \vee b^{\prime B} \mid t_{i}, \beta_{-i}\right) \geq 0$.
Because $b \in B_{i}\left(\beta_{-i} \mid t_{i}\right)$, it follows that

$$
V_{i}\left(b^{A} \vee b^{\prime A}, b^{B} \wedge b^{B} \mid t_{i}, \beta_{-i}\right)-V_{i}\left(b^{\prime} \mid t_{i}, \beta_{-i}\right) \geq 0
$$

and thus $b^{\prime} \in B_{i}\left(\beta_{-i} \mid t_{i}^{\prime}\right)$.
If $t_{i}, t_{i}^{\prime} \in T_{i}^{2}$, then a similar argument, with the roles of A and B reversed, completes the proof.

Lemma C.19. Fix a profile β_{-i} of bids of players other than i and let $B_{i}\left(\beta_{-i}\right)$ be bidder i 's best response to β_{-i}. The intersection $B_{i}\left(\beta_{-i}\right) \cap K_{i}$ is closed with respect to the hulling \mathcal{H}_{i}.

Proof. The desired result follows from Lemmas C. 17 and C.18.
Lemma C.20. Fix a profile β_{-i} of bids of players other than i and let $B_{i}\left(\beta_{-i}\right)$ be bidder i 's best response to β_{-i}. The intersection $B_{i}\left(\beta_{-i}\right) \cap K_{i}$ is closed with respect to the monotone realization h.

Proof. The result follows from the construction of the monotone realization.
Together, Lemmas C.18-C. 20 imply the following corollary, which allows us to apply Theorem 4.1 to show that this auction has a Bayesian-Nash equilibrium in K.

Corollary C.21. Fix a profile $\beta_{-i} \in K_{-i}$ of bids of players other than i and let $B_{i}\left(\beta_{-i}\right)$ be bidder i 's best response to β_{-i}. The intersection $B_{i}\left(\beta_{-i}\right) \cap K_{i}$ is non-empty and order-convex.

Appendix D. Proofs for Section 6

D.1. Proof of Theorem 6.1. For convenience, we repeat the assumptions made in Section 6:
(1) Each player i 's type space $T_{i}=\left[\underline{\tau}_{i}, \bar{\tau}_{i}\right]^{M_{i}} \times\left[\underline{\tau}_{i}, \bar{\tau}_{i}\right]^{M_{i}^{\prime}}$ is a nondegenerate Euclidean cube, with the coordinate-wise partial order.
(2) Each player i 's types are distributed according to the probability density f_{i} over T_{i}, not necessarily everywhere positive, but independently of other players' types.
(3) Each player i 's set of actions $A_{i}=\left[\underline{\alpha}_{i}, \bar{\alpha}_{i}\right]^{N_{i}} \times\left[\underline{\alpha}_{i}, \bar{\alpha}_{i}\right]^{N_{i}^{\prime}}$ is an Euclidean cube, endowed with the coordinate-wise partial order.
(4) Each player i 's payoff function $u_{i}: A \times T \rightarrow \mathbb{R}$ is bounded, measurable in t, and continuous in a.

In addition, Theorem 6.1 makes the following assumptions on each player i 's payoff function $u_{i}: A \times T \rightarrow \mathbb{R}$.
(a) Take any given $a_{-i} \in A_{-i}$ and $t \in T$. If $a, a^{\prime} \in A_{i}$, then

$$
\begin{aligned}
& u_{i}\left(a, a_{-i} ; t\right)-u_{i}\left(\left(a_{N_{i}} \wedge a_{N_{i}}^{\prime}, a_{N_{i}^{\prime}} \vee a_{N_{i}^{\prime}}^{\prime}\right), a_{-i} ; t\right) \geq 0 \\
& \quad \Rightarrow \quad u_{i}\left(\left(a_{N_{i}} \vee a_{N_{i}}^{\prime}, a_{N_{i}^{\prime}} \wedge a_{N_{i}^{\prime}}^{\prime}\right), a_{-i} ; t\right)-u_{i}\left(a^{\prime}, a_{-i} ; t\right) \geq 0 .
\end{aligned}
$$

(b) Take any given $a_{-i} \in A_{-i}$ and $t_{-i} \in T_{-i}$. Suppose $a_{i}, a_{i}^{\prime} \in A_{i}$ are such that $a_{i k} \geq a_{i k}^{\prime}$ for $k \in N_{i}$ and $a_{i k} \leq a_{i k}^{\prime}$ for $k \in N_{i}^{\prime}$; and $t_{i}, t_{i}^{\prime} \in T_{i}$ are such that $t_{i \ell} \geq t_{i \ell}^{\prime}$ for $\ell \in M_{i}$ and $t_{i \ell} \leq t_{i \ell}^{\prime}$ for $\ell \in M_{i}^{\prime}$, then

$$
\begin{aligned}
& u_{i}\left(a_{i}, a_{-i} ; t_{i}^{\prime}, t_{-i}\right)-u_{i}\left(a_{i}^{\prime}, a_{-i} ; t_{i}^{\prime}, t_{-i}\right) \geq 0 \\
& \quad \Rightarrow \quad u_{i}\left(a_{i}, a_{-i} ; t_{i}, t_{-i}\right)-u_{i}\left(a_{i}^{\prime}, a_{-i} ; t_{i}, t_{-i}\right) \geq 0
\end{aligned}
$$

With these assumptions in mind, we can now prove Theorem 6.1. Take any player i. Define K_{i} to be the set of (equivalence classes of) measurable functions s_{i} from $T_{i}=$ $[\underline{\tau}, \bar{\tau}]^{M_{i}} \times[\underline{\tau}, \bar{\tau}]^{M_{i}^{\prime}}$ to $A_{i}=[\underline{\alpha}, \bar{\alpha}]^{N_{i}} \times[\underline{\alpha}, \bar{\alpha}]^{N_{i}^{\prime}}$ that satisfy two conditions:
(1) If $k \in N_{i}$, then $t_{i} \mapsto s_{i k}\left(t_{i}\right)$ is nondecreasing in $t_{i \ell}$ whenever $\ell \in M_{i}$, and nonincreasing in $t_{i \ell}$ whenever $\ell \in M_{i}^{\prime}$.
(2) If $k \in N_{i}^{\prime}$, then $t_{i} \mapsto s_{i k}\left(t_{i}\right)$ is nonincreasing in $t_{i \ell}$ whenever $\ell \in M_{i}$, and nondecreasing in $t_{i \ell}$ whenever $\ell \in M_{i}^{\prime}$.
Endow K_{i} with the L^{1}-norm topology. Partially order K_{i} by the almost everywhere pointwise order \geq_{i} whereby $g_{i} \geq_{i} g_{i}^{\prime}$ if and only if for μ_{i}-almost every t_{i}

$$
\begin{aligned}
& g_{i k}\left(t_{i}\right) \geq g_{i k}^{\prime}\left(t_{i}\right) \text { if } k \in N_{i}, \text { and } \\
& g_{i k}\left(t_{i}\right) \leq g_{i k}^{\prime}\left(t_{i}\right) \text { if } k \in N_{i}^{\prime},
\end{aligned}
$$

where $g_{i k}\left(t_{i}\right)$ denotes the projection of the vector $g_{i}\left(t_{i}\right)$ onto the k-th coordinate of the action space $A_{i}=[\underline{\alpha}, \bar{\alpha}]^{N_{i}} \times[\underline{\alpha}, \bar{\alpha}]^{N_{i}^{\prime}}$.
Lemma D.1. The set K_{i} is L^{1}-norm compact and locally complete.
Proof. The set K_{i} is homomorphic and lattice isomorphic ${ }^{16}$ to the set of monotone functions from T_{i} to A_{i}. By Lemma A. 13 in Reny (2011, p. 540), K_{i} is compact. By Lemma 7.2 , the set K_{i} is locally complete.

Let \mathcal{H}_{i} denote the collection of all finite subsemilattices of $\left(K_{i}, \geq_{i}\right)$. The next lemma shows that \mathcal{H}_{i} is a small hulling.

Lemma D.2. The collection \mathcal{H}_{i} of all finite subsemilattices of $\left(K_{i}, \geq_{i}\right)$ is a small hulling.

Proof. It follows from Lemmas D. 1 and B.1.
Finally, we define a monotone realization for K_{i}. Recall that a monotone realization is a continuous function $h:|\Gamma| \rightarrow K_{i}$ from order simplexes in Γ to K_{i}. Let $\mathbf{1}_{M}$ denote

[^11]the indicator vector, in which the ℓ-th entry is 1 if $\ell \in M$ or 0 if $\ell \notin M$. Notice that $\mathbf{1}_{M} \cdot \mathbf{1}_{M}$ denotes the number of non-zero entries in M, with $M=M_{i}, M_{i}^{\prime}$. For every $c \in[0,1]$, define the following measurable set of player i 's types:
$$
E(c)=\left\{t_{i} \in T_{i}:\left(\mathbf{1}_{M_{i}}-\mathbf{1}_{M_{i}^{\prime}}\right) \cdot t_{i} \leq(1-c)(\underline{\tau}-\bar{\tau})\left(\mathbf{1}_{M_{i}} \cdot \mathbf{1}_{M_{i}}\right)+c(\bar{\tau}-\underline{\tau})\left(\mathbf{1}_{M_{i}^{\prime}} \cdot \mathbf{1}_{M_{i}^{\prime}}\right)\right\} .
$$

Notice that the collection $\{E(c): c \in[0,1]\}$ is an increasing chain of measurable subsets of bidder i 's type space that reflects the ordering induced by the natural order of $[\underline{\tau}, \bar{\tau}]^{M_{i}}$ and the dual order of $[\underline{\tau}, \bar{\tau}]^{M_{i}^{\prime}}$. Further, notice that $E(0)$ is a singleton, and $E(1)=T_{i}$.

If $Y \in \Gamma$ is a simplex in the order complex of K_{i}, then Y consists of a finite chain in K_{i}. Thus the elements in Y can be identified with the ordered vector $Y=\left(g^{1}, \ldots, g^{n}\right)$, with $g^{1} \leq_{i} \cdots \leq_{i} g^{n}$. And a point x in the geometric realization $|Y|$ can be written as $x=\left(x_{g^{1}}, x_{g^{2}}, \ldots, x_{g^{n}}\right)$. We can now define the monotone realization $h:|\Gamma| \rightarrow K_{i}$ by

$$
h(x)\left(t_{i}\right)= \begin{cases}g^{1}\left(t_{i}\right) & \text { if } t_{i} \in E\left(x_{g^{1}}\right), \\ g^{2}\left(t_{i}\right) & \text { if } t_{i} \in E\left(x_{g^{1}}+x_{g^{2}}\right) \backslash E\left(x_{g^{1}}\right), \\ \cdots & \\ g^{n}\left(t_{i}\right) & \text { if } t_{i} \in E(1) \backslash E\left(\sum_{k=1}^{n-1} x_{g^{k}}\right) .\end{cases}
$$

That the function h is continuous follows from the Pasting Lemma and the fact that the distribution of players' types is absolutely continuous with respect to the Lebesgue measure. The next lemma establishes that h is a local monotone realization.

Lemma D.3. The monotone realization h is local.
Proof. The desired result follows from an application of Lemmas D. 1 and B.3.
Together, Lemmas D. 2 and D. 3 imply that K_{i} is order-convex, which is recorded in the following corollary.

Corollary D.4. The set $\left(K_{i}, \geq_{i}\right)$ is an order-convex subset of strategies of player i.
Assumptions (1)-(4) imply that Assumptions A. 1 and A. 2 are satisfied. All that is left to show is that the best response correspondence satisfies the conditions required by Theorem 4.1. We denote by $V_{i}\left(a \mid t_{i}, s_{-i}\right)$ player i 's interim payoff, given by

$$
V_{i}\left(a \mid t_{i}, s_{-i}\right)=\int_{T_{-i}} u_{i}\left(a, s_{-i}\left(t_{-i}\right) ; t\right) \prod_{j \neq i} f_{j}\left(t_{j}\right) \mathrm{d} t_{-i}
$$

Lemma D.5. Fix a profile s_{-i} of strategies of players other than i and a type $t_{i} \in T_{i}$ of bidder i. Let $B_{i}\left(s_{-i} \mid t_{i}\right)$ be bidder i 's interim best response to s_{-i} when her type is t_{i}. If $a, b \in B_{i}\left(s_{-i} \mid t_{i}\right)$, then $\left(a_{N_{i}} \vee b_{N_{i}}, a_{N_{i}^{\prime}} \wedge b_{N_{i}^{\prime}}\right) \in B_{i}\left(s_{-i} \mid t_{i}\right)$.

Proof. Suppose $a, b \in B_{i}\left(s_{-i} \mid t_{i}\right)$. By Assumption (a) of Theorem 6.1,

$$
V_{i}\left(b \mid t_{i}, s_{-i}\right)-V_{i}\left(a_{N_{i}} \wedge b_{N_{i}}, a_{N_{i}^{\prime}} \vee b_{N_{i}^{\prime}} \mid t_{i}, s_{-i}\right) \geq 0
$$

implies that

$$
V_{i}\left(a_{N_{i}} \vee b_{N_{i}}, a_{N_{i}^{\prime}} \wedge b_{N_{i}^{\prime}} \mid t_{i}, s_{-i}\right)-V_{i}\left(a \mid t_{i}, s_{-i}\right) \geq 0
$$

Since $a, b \in B_{i}\left(s_{-i} \mid t_{i}\right)$, it follows that $\left(a_{N_{i}} \vee b_{N_{i}}, a_{N_{i}^{\prime}} \wedge b_{N_{i}^{\prime}}\right) \in B_{i}\left(s_{-i} \mid t_{i}\right)$, which completes the proof.

Lemma D.6. Fix a profile s_{-i} of strategies of players other than i and let $B_{i}\left(s_{-i}\right)$ be player i 's best response to s_{-i}. The intersection $B_{i}\left(s_{-i}\right) \cap K_{i}$ is nonempty.

Proof. Consider the following selection of the interim best-response $B_{i}\left(s_{-i} \mid t_{i}\right)$ of player i given her type t_{i} and strategies of other players s_{-i} :

$$
g_{i}\left(t_{i}\right)=\left\{\left(\vee a_{N_{i}}, \wedge a_{N_{i}^{\prime}}\right): a \in B_{i}\left(s_{-i} \mid t_{i}\right)\right\}
$$

It is well-defined because A_{i} is a compact sublattice of $\mathbb{R}^{N_{i} \cup N_{i}^{\prime}}$. Moreover, it is measurable because the pointwise partial order is measurable.

Suppose $t_{i}, t_{i}^{\prime} \in T_{i}$ are such that $t_{i \ell} \geq t_{i \ell}^{\prime}$ for every $\ell \in M_{i}$ and $t_{i \ell} \leq t_{i \ell}^{\prime}$ for every $\ell \in M_{i}^{\prime}$. It suffices to show that if $a \in B_{i}\left(s_{-i} \mid t_{i}\right)$ and $b \in B_{i}\left(s_{-i} \mid t_{i}^{\prime}\right)$, then $\left(a_{N_{i}} \vee b_{N_{i}}, a_{N_{i}^{\prime}} \wedge b_{N_{i}^{\prime}}\right) \in B_{i}\left(s_{-i} \mid t_{i}\right)$. Since $b \in B_{i}\left(s_{-i} \mid t_{i}^{\prime}\right)$,

$$
V_{i}\left(b \mid t_{i}^{\prime}, s_{-i}\right)-V_{i}\left(a_{N_{i}} \wedge b_{N_{i}}, a_{N_{i}^{\prime}} \vee b_{N_{i}^{\prime}} \mid t_{i}^{\prime}, s_{-i}\right) \geq 0
$$

By Assumption (b) of Theorem 6.1,

$$
V_{i}\left(a_{N_{i}} \vee b_{N_{i}}, a_{N_{i}^{\prime}} \wedge b_{N_{i}^{\prime}} \mid t_{i}, s_{-i}\right)-V_{i}\left(a \mid t_{i}, s_{-i}\right) \geq 0
$$

Since $a \in B_{i}\left(s_{-i} \mid t_{i}\right)$, it follows that $\left(a_{N_{i}} \vee b_{N_{i}}, a_{N_{i}^{\prime}} \wedge b_{N_{i}^{\prime}}\right) \in B_{i}\left(s_{-i} \mid t_{i}\right)$, which completes the proof.

Lemma D.7. Fix a profile s_{-i} of strategies of players other than i and let $B_{i}\left(s_{-i}\right)$ be player i 's best response to s_{-i}. The intersection $B_{i}\left(s_{-i}\right) \cap K_{i}$ is closed with respect to the hulling \mathcal{H}_{i}.

Proof. The desired result follows from Lemmas D. 5 and D.6.

Lemma D.8. Fix a profile s_{-i} of strategies of players other than i and let $B_{i}\left(s_{-i}\right)$ be player i 's best response to s_{-i}. The intersection $B_{i}\left(s_{-i}\right) \cap K_{i}$ is closed with respect to the monotone realization h.

Proof. This follows from the construction of the monotone realization.
Together, Lemmas D.6-D. 8 imply the following corollary, which allows us to apply Theorem 4.1 to show that this Bayesian game has an equilibrium in K.

Corollary D.9. Fix a profile $s_{-i} \in K_{-i}$ of strategies of players other than i and let $B_{i}\left(s_{-i}\right)$ be player i 's best response to s_{-i}. The intersection $B_{i}\left(s_{-i}\right) \cap K_{i}$ is nonempty and order-convex.

References

Aliprantis, C. D. and K. C. Border (2006). Infinite Dimensional Analysis: A Hichhiker's Guide. Springer.
Anderson, L. W. (1959). On the breadth and co-dimension of a topological lattice. Pacific Journal of Mathematics 9(2), 327-333.
Armstrong, M. (2000). Optimal multi-object auctions. The Review of Economic Studies 67(3), 455481.
Athey, S. (2001). Single crossing properties and the existence of pure strategy equilibria in games of incomplete information. Econometrica 69(4), 861-889.
Athey, S. and P. A. Haile (2007). Chapter 60: Nonparametric approaches to auctions. In J. J. Heckman and E. E. Leamer (Eds.), Handbook of Econometrics, Volume 6, Part A, pp. 3847-3965. Elsevier.
Avery, C. and T. Hendershott (2000). Bundling and optimal auctions of multiple products. The Review of Economic Studies 67(3), 483497.
Baldwin, E. and P. Klemperer (2019). Understanding preferences: "demand types," and the existence of equilibrium with indivisibilities. Econometrica 87(3), 867-932.
Borsuk, K. (1967). Theory of Retracts. Monografie Matematyczne. Państwowe Wydawn Naukowe (Polish Scientific Publishers).
Brunk, H. D., G. M. Ewing, and W. R. Utz (1956). Some Helly theorems for monotone functions. Proceedings of the American Mathematical Society 7(4), 776-783.
Cantillon, E. and M. Pesendorfer (2006). Combination bidding in multi-unit auctions. Unpublished paper.
Dugundji, J. (1952). Note on $C W$ polytopes. Portugaliae Mathematica 11(1), 7-10.

Dugundji, J. (1957). Absolute neighborhood retracts and local connectedness in arbitrary metric spaces. Composito Mathematica 13, 229-246.
Dugundji, J. (1965). Locally equiconnected spaces and absolute neighborhood retracts. Fundamenta Mathematicae 57, 187-193.
Eilenberg, S. and D. Montgomery (1946). Fixed point theorems for multi-valued transformations. American Journal of Mathematics 68(2), 214-222.
Gierz, G., K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, and D. S. Scott (1980). A Compendium of Continuous Lattices. Berlin, Heidelberg: Springer Berlin Heidelberg.
Jackson, M. (2009). Non-existence of equilibrium in vickrey, second-price, and english auctions. Review of Economic Design 13(1-2), 137-145.
Kagel, J. H. (1995). Auctions: a survey of experimental research. In J. H. Kagel and A. E. Roth (Eds.), The Handbook of Experimental Economics, Volume 1, pp. 501-585. Princeton University Press.
Kagel, J. H. and D. Levin (2015). Auctions: a survey of experimental research. In J. H. Kagel and A. E. Roth (Eds.), The Handbook of Experimental Economics, Volume 2, pp. 563-637. Princeton University Press.
Kaplan, T. and S. Zamir (2015). Advances in auctions. In P. Young and S. Zamir (Eds.), Handbook of Game Theory with Economic Applications, pp. 381-453. Elsevier.
Kelley, J. L. (1942). Hyperspaces of a continuum. Transactions of the American Mathematical Society 52(1), 22-36.
Kinoshita, S. (1953). On some contractible continua without fixed point property. Fundamenta Mathematicae 40(1), 96-98.
Klemperer, P. (1999). Auction theory: A guide to the literature. Journal of Economic Surveys 13(3), 227-286.
Lawson, J. D. (1969). Topological semilattices with small semilattices. Journal of the London Mathematical Society 2(1), 719-724.
Lawson, J. D. and W. Williams (1970). Topological semilattices and their underlying spaces. Semigroup Forum 1(1), 209-223.
McAdams, D. (2003). Isotone equilibrium in games of incomplete information. Econometrica 71(4), 1191-1214.
McAdams, D. (2007). On the failure of monotonicity in uniform-price auctions. Journal of Economic Theory 137, 729-735.

McLennan, A., P. K. Monteiro, and R. Tourky (2011). Games with discontinuous payoffs: a strengthening of Reny's existence theorem. Econometrica 79(5), 16431664.

McWaters, M. M. (1969). A note on topological semilattices. Journal of the London Mathematical Society 2(1), 64-66.
Milgrom, P. R. and C. Shannon (1994). Monotone comparative statics. Econometrica 62(1), 157-180.
Milgrom, P. R. and R. J. Weber (1985). Distributional strategies for games with incomplete information. Mathematics of Operations Research 10(4), 619-632.
Palfrey, T. R. (1983). Bundling decisions by a multiproduct monopolist with incomplete information. Econometrica 51 (2), 463483.
Prokopovych, P. and N. C. Yannelis (2019). On monotone approximate and exact equilibria of an asymmetric first-price auction with affiliated private information. Journal of Economic Theory 184, 104925.
Reny, P. J. (2011). On the existence of monotone pure strategy equilibria in Bayesian games. Econometrica 79(2), 499-553.
Reny, P. J. and S. Zamir (2004). On the existence of pure strategy monotone equilibria in asymmetric first-price auctions. Econometrica 72 (4), 1105-1125.
Siegel, R. (2014). Asymmetric all-pay auctions with interdependent valuations. Journal of Economic Theory 153, 684-702.
Walker, J. W. (1981). Homotopy type and Euler characteristic of partially ordered sets. European Journal of Combinatorics 2, 373-384.
Wojdysławski, M. (1939). Retractes absolus et hyperespaces des continus. Fundamenta Mathematicae 32(1), 184-192.

[^0]: E-mail addresses: idione.meneghel@anu.edu.au, rabee.tourky@anu.edu.au.
 Date: March 14, 2020.
 For invaluable comments and suggestions, we thank Hector Chade, Marina Halac, Phil Haile, Johannes Hörner, Jonathan Libgober, George Mailath, Larry Samuelson, Juuso Välimäki, and seminar participants at Yale Microeconomic Theory Workshop, Stanford GSB Economics Seminar, and The University of Texas at Austin Economics Seminar. The paper was written while the first author was visiting the Cowles Foundation for Research in Economics at Yale University, whose hospitality is gratefully acknowledged.

[^1]: ${ }^{1}$ Informally, functions of mixed monotonicity are those that are nondecreasing in some dimensions of the player's types and possibly nonincreasing in other dimensions.
 ${ }^{2}$ Kagel (1995) and Kagel and Levin (2015) are valuable surveys on the ongoing experimental work on auctions.
 ${ }^{3}$ Athey and Haile (2007) provide an excellent survey of structural econometric approaches to auctions.

[^2]: ${ }^{4}$ To be more specific, there is no unique order on players' actions consistent with the results of Lemma C.18.

[^3]: ${ }^{5}$ There is nothing essential about this particular functional form. This example can be extended to more general subadditive payoff functions, as well as a larger number of objects.

[^4]: ${ }^{6}$ The terms "metric absolute retract" and "absolute retract for metric spaces" are used in mathematical literature that also considers spaces that satisfy the embedding condition for other types of topological spaces.

[^5]: ${ }^{7}$ This concept is often described as a join semilattice in contexts in which one also considers meet semilattices, which are posets in which any pair of elements has greatest lower bound.
 ${ }^{8}$ Verification of the details underlying this assertion is straightforward.

[^6]: ${ }^{9}$ It is a generalization of the notion of a zellij in McLennan, Monteiro, and Tourky (2011).

[^7]: ${ }^{10} \mathrm{We}$ use standard notation for the indexing of player profiles: for a N-tuple $\left(X_{i}\right)_{i=1}^{N}$ of sets we let $X=\prod_{i} X_{i}$, and for each player i we let $X_{-i}=\prod_{j \neq i} X_{j}$. Vectors in X are called profiles. A profile $x \in X$ is also written as $\left(x_{i}, x_{-i}\right)$ where x_{i} is the i-th coordinate of x and x_{-i} is the projection of x into X_{-i}. We also use standard notation for probability: if (X, Σ) is a measurable space, then $\Delta(X)$ is the set of probability measures on X.

[^8]: ${ }^{11}$ If the marginals are purely atomic, then this assumption is trivially true. If the marginals are nonatomic, then an application of the Radon-Nikodym theorem yields that each player i 's ex ante payoff U_{i} can be written as the integral of their interim payoff V_{i}. Therefore, if $s_{i}, s_{i}^{\prime} \in B_{i}\left(s_{-i}\right)$ are two best responses, then the piecewise combination $s_{i} \mathbf{1}_{E}+s_{i}^{\prime} \mathbf{1}_{T_{i} \backslash E} \in S_{i}$ is also an element of $B_{i}\left(s_{-i}\right)$ for every measurable set $E \subseteq T_{i}$. Further, a fixed point of the best response correspondence B is a Bayesian-Nash equilibrium in the traditional (interim) sense.
 ${ }^{12}$ We refer the reader to Aliprantis and Border (2006, Theorems 11.46, 13.6, 17.11, 17.28, and 17.31).

[^9]: ${ }^{13}$ We refer to Kaplan and Zamir (2015) and Klemperer (1999) for excellent surveys.

[^10]: ${ }^{14}$ By monotone, we mean either nonincreasing or nondecreasing.

[^11]: ${ }^{16}$ If (X, \vee, \wedge) and $\left(X^{\prime}, \vee, \wedge\right)$ are lattices, then a lattice isomorphism is a bijective mapping $\kappa: X \rightarrow X^{\prime}$ such that $\kappa(x \vee y)=\kappa(x) \vee \kappa(y)$ and $\kappa(x \wedge y)=\kappa(x) \wedge \kappa(y)$.

