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Bitcoin: An Axiomatic Approach and an Impossibility Theorem

Jacob D. Leshno∗ Philipp Strack†

October 16, 2019‡

Abstract

Bitcoin’s main innovation lies in allowing a decentralized system that relies on anonymous,

profit driven miners who can freely join the system. We formalize these properties in three

axioms: anonymity of miners, no incentives for miners to consolidate, and no incentive to

assuming multiple fake identities. This novel axiomatic formalization allows us to characterize

which other protocols are feasible: Every protocol with these properties must have the same

reward scheme as Bitcoin. This implies an impossibility result for risk-averse miners: no protocol

satisfies the aforementioned constraints simultaneously without giving miners a strict incentive

to merge. Furthermore, any protocol either gives up on some degree of decentralization or its

reward scheme is equivalent to Bitcoin’s.

1 Introduction

In 2008 an unknown person under the pseudonym of Satoshi Nakamoto proposed a protocol to

maintain a decentralized currency named bitcoin (Nakamoto, 2008). As of today (October 8, 2019),

Bitcoin processes around 350,000 transactions per day, which transfer a total value of approximately

6 Billion US dollar.1

Bitcoin’s main economic innovation is its decentralized structure: In contrast to traditional

systems, no one owns Bitcoin. A fixed protocol governs the rules of the network. The system’s

infrastructure is provided by anonymous entities who can enter and leave at will, and are free to de-

cide whether or not to follow the rules described by the protocol. Thus, the incentive compatibility

of the protocol is crucial for its operation.

This decentralized structure may entail economic benefits, such as the absence of a controlling

entity who can extract rents, and the absence of a single point of failure. At the same time,

∗University of Chicago, Booth, yarboz@gmail.com. This work is supported by the Robert H. Topel Faculty
Research Fund at the University of Chicago Booth School of Business.
†Yale University, Economics Department, philipp.strack@gmail.com
‡An earlier version of this manuscript with the title “Bitcoin: An Impossibility Theorem for Proof-of-Work” was

submitted on February 14, 2019 to the EC’19 conference (ACM Conference on Economics and Computation).
1Source: https://bitinfocharts.com/bitcoin/
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Bitcoin’s design has been criticized for its cost and environmental impact.2 Environmental concerns

and other shortcomings of Bitcoin motivated a growing interest among academics and industry in

the development of resource-efficient blockchains. Examples of suggestions for alternative designs

include proof-of-stake,3 proof-of-space,4 and proof-of-replication.5 Despite these efforts, Bitcoin

remains the most popular cryptocurrency.6

We employ the methodology commonly used in mechanism design or social choice to understand

the limitations of decentralized systems operated by anonymous, selfish agents. We begin by

formulating axioms that capture the desired properties and necessary constraints of a decentralized

system operated by anonymous, selfish agents. We follow to give characterization of protocols

satisfying these axioms (which is akin to the characterization of incentive compatible mechanisms).

Our axiomatic approach leads to sharp characterization in the case of risk-neutral miners: Any such

protocol must reward a miner proportional to the fraction of computational power he provided to

the system. As this is exactly the reward scheme used in the Bitcoin protocol, any protocol must

be reward-equivalent to Bitcoin, or violate our axioms. For the case of risk-averse miners we show

an impossibility theorem: there does not exist any protocol that is anonymous, robust to merging,

and robust to Sybil attacks which leaves miners without incentives to merge.

Our findings show that certain properties of decentralized systems are implied by their un-

derlying economic structure, and thus cannot be solved via cryptographic methods. In order for

alternative protocols to provide a different reward scheme these must be able to identify miners

(violate anonymity), or restrict the entry of unidentified miners (which allows the protocol to vi-

olate robustness to Sybil attacks), or provide the miners with incentives to merge (and therefore

limit the decentralization of the system).

Apart from the direct implications for the design of decentralized systems, we view this paper

as making a conceptual contribution. The axiomatic approach we utilize allows us to reason about

general properties of protocols and analyze necessary economic trade-offs. In particular, a possible

economic interpretation of our results is that any protocol must either be equivalent in terms of

rewards to Bitcoin or be less decentralized.

2Bitcoin is estimated to use at least 53.81 terawatt-hours of power every year, which is roughly
equivalent to the power consumption of Switzerland (source: https://www.inverse.com/article/

57389-bitcoin-mining-s-incredible-energy-waste-has-been-captured-in-new-research). The network
is estimated to cause CO2 emissions of 22.0 to 22.9 MtCO2, which is between the emissions caused by Jordan and
Sri Lanka (see Stoll et al., 2019). See also Benetton et al. (2019).

3See Gilad et al. (2017), Bentov et al. (2016), Kiayias et al. (2017), and Saleh (2019).
4See Dziembowski et al. (2015) and Park et al. (2018).
5See Benet et al. (2017).
6As of August 2019, there existed more than 1600 digital currencies (source https://en.wikipedia.org/wiki/

List_of_cryptocurrencies). Etherum is the second largest cryptocurrency by market capitalization, with a market
cap roughly equivalent to 20 Billion USD or 17% of Bitcoin’s market cap (source https://coinmarketcap.com/

currencies/ethereum/historical-data/).
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Related Literature This paper joins a large and growing literature of papers that analyzed

miner’s incentives to follow Bitcoin’s protocol (Eyal and Sirer 2014, Biais et al. 2018, Sapirshtein

et al. 2016, Pass et al. 2017, Carlsten et al. 2016, Kiayias et al. 2016), analyzed miners’ entry

decisions (Prat and Walter 2018, Arnosti and Weinberg 2019), analyzed the implied market for

transaction processing (Easley et al. 2017, Huberman et al. 2019, Chiu and Koeppl 2017, Lavi et al.

2019), criticized its resource inefficiency (Budish 2018, Auer 2019), and suggested alternative designs

(for example, Chen and Micali 2016, Benet et al. 2017). Most of the literature focuses on analyzing

specific protocols, or presents challenges to a general class of protocols (Abadi and Brunnermeier

2018, Brown-Cohen et al. 2019). Our focus is in providing a characterization of protocols that satisfy

axiomatic properties. We hope this approach will help elucidate the limitations and trade-offs for

any decentralized protocol.7

The economic literature also explored other related issues raised by Bitcoin, exploring the ques-

tion of adoption and competition between different cryptocurrencies (Athey et al. 2016, Halaburda

and Sarvary 2016, Gandal and Halaburda 2014, Gans and Halaburda 2015), the valuation of cryp-

tocurrencies and implication for fiscal policy (Schilling and Uhlig 2018, 2019, Fernández-Villaverde

and Sanches 2019, Garratt and Wallace 2018, Benigno et al. 2019), and asking whether Bitcoin

functions as a currency (Yermack 2013).

Contests where each player wins with a probability equal to her effort divided by total effort

have been called Tullock contests in the economic literature. As our axioms imply a functional form

that is equivalent to a Tullock contest, our work is distantly related to the literature that proposes

axiomatizations of contest success functions (Skaperdas 1996; Clark and Riis 1998). Skaperdas

(1996) show that requiring consistency of the winning probabilities in which only a subset of player

participates and symmetry with respect to the players implies a functional form that generalizes

the Tullok contest. Clark and Riis (1998) generalize this insight to asymmetric contests. The

main axiom in both papers states that when a player stops to participate and exerts zero effort

the winning probabilities of each other player increases proportionally. While this axiom is very

natural in many contexts it is fundamentally different from the axioms we impose that state that

there should be no benefit to Sybil attacks or merging.

This note is structured as follows: Section 2 defines a random selection rule based on the number

of computations performed by each miner and provides a characterization of all random selection

rules that are anonymous and robust to Sybil attacks and merging. Section 3 argues that all three

axioms are necessary to obtain the result. We discuss risk-averse miners in section 4. Section 5

shows how existing results for Tullock contests can be used to characterize how many computations

miners perform for the network in any decentralized protocol that satisfies our axioms. We conclude

in Section 6.

7Subsequent to a first version of our paper Chen et al. (2019) also show that the proportional selection rule is the
unique selection rule satisfying similar axioms.
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2 Random Selection in Decentralized Protocols

Bitcoin’s ledger is maintained and updated by a decentralized network of anonymous computers,

commonly referred to as miners. A key challenge in the design of the protocol is to maintain consen-

sus (Lamport et al., 1982) among all miners on the ledger (record of accepted transactions) while

continuously updating the ledger with new transaction data. Bitcoin achieves this by randomly

selecting a single miner that issues an update to the ledger, which is commonly called a “block”.

This random selection is carried out through the use of a computational puzzle, without relying

on known identities or a trusted randomization device. The Bitcoin protocol asks miners to perform

costly computations, whose result is used to determine a single miner to issue the next block.

Performing these computations in attempt to issue the next block is commonly referred to as

“mining”.8 To incentivize miners to perform these costly computations, Bitcoin rewards miners

when they are selected to issue the next block.

We next formalize this random selection of a miner. Let n ≥ 2, and N = {1, . . . , n} be the set

of miners and denote by i a typical miner. Each miner i who takes part in the decentralized system

performs a certain amount of computations xi ≥ 0, which we refer to as miner i’s contribution.

The probability with which miner i is selected in the Bitcoin protocol equals his computational

contribution divided by the total contribution by all miners

xi∑n
j=1 xj

.

This selection is achieved by having the miners compute cryptographic hashes. Each computation

of a hash is equally likely to lead to a value9 that allows the miner to write the next block and

receive the associated reward.10

The selection rule is a critical ingredient of any decentralized protocol, as it determines the

incentives of miners to contribute to the system. Abstracting away from computational aspects of

the problem, we define a random selection rule as follows:

Definition 1 (Selection Rule). A random selection rule p is described by a family of functions

pn : Rn+ → ∆n indexed by n ∈ N such that the probability with which miner i ∈ N is selected at the

contribution profile x = (x1, . . . , xn) equals

pni (x1, . . . , xn),

which is non-decreasing in xi.
8While miners need to perform other computational tasks (such as validating transactions, storing the ledger,

etc.), the vast majority of the miner’s computational resources is spent on mining (Croman et al., 2016).
9The target value is adjusted periodically, so that on average a single miner is selected to issue a new block every

ten minutes.
10Under standard cryptographic assumptions, there is no computational method for finding a valid solution that

is more efficient than simply attempting many hashes.
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Computational contributions induced by proportional and WTA selection Different

selection rules can lead to very different outcomes. To illustrate this, consider a situation with n

miners and compare two selection rules: The first one is the proportional selection rule used by

Bitcoin.

Definition 2 (Proportional Selection Rule). In the proportional selection rule miners are selected

with probability proportional to their contribution

pni (x1, . . . , xn) =
xi∑n
i=1 xj

In the second rule the miner who contributed the most always wins.

Definition 3 (Winner-Take-All Rule). In the winner-take-all rule the miner who contributed the

most wins and ties are broken randomly

pni (x1, . . . , xn) =

 1
|{i : xi=maxj∈N xj}| if xi = maxj∈N xj

0 else
.

To illustrate the different behaviour induced by these selection rules, assume for the example

that each miner’s marginal cost of performing computations equals 1 and that the reward when

mining a block equals 1. It is easily seen that under the proportional selection rule there is a unique

Nash equilibrium where each miner contributes11

xi =
n− 1

n2
.

In contrast, under the winner-take-all (WTA) rule there is a unique symmetric Nash equilibrium

where each miner randomizes his contribution on [0, 1] according to12

P[xi ≤ s] = n−1
√
s .

These two equilibrium outcomes resulting from different selection rules differ across several dimen-

sions. For example, under the proportional rule miners follow a simple pure strategy in equilibrium,

while under the WTA rule there are no pure strategy equilibrium and miners must randomize. Fur-

thermore, the expected equilibrium contributions differ between the two selection rules.

A Mechanism Design Perspective We are interested in which selection rules can be used to

maintain a decentralized system. In terms of the miners’ behaviour the two above selection rules

11We argue this formally in Section 5.
12This follows from the strategic equivalence between this game and the complete information all-pay auction, and

the characterization of all-pay auction equilibria given in Barut and Kovenock (1998).
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are equivalent to using a Tullok contest or an all-pay-auction for allocating the next block to a

miner. The question of designing an optimal selection rule is similar to the classical mechanism

design question of allocating a single object among several bidders using transfers. In the single

object allocation problem a mechanism specifies the probability with which each bidder gets the

object and the transfer made by each bidder as a function of the valuations of bidders. Similarly, a

selection rule determines the probabilities with which miners are selected and their computational

contributions (which are the analogue of transfers). As in the classical mechanism design approach

we start by characterizing selection rules which satisfy certain incentive constraints following from

the decentralized nature of the protocol (the analog of incentive compatible mechanisms). This

characterization of “feasible selection rules” is a necessary first step to finding the optimal selection

rule according to some criterion. What differs between our problem and the classical mechanism

design context are the restrictions imposed on selection rules: The requirement that the proto-

col should operate in a decentralized manner imposes additional restrictions not present in the

mechanism design context. The next section presents axioms that formalize these restrictions.

2.1 Three Axioms for Decentralized Protocols

The first constraint we impose is anonymity. It states that every miner is treated the same by the

mechanism: If two miners exchange their identities their outcomes remain unchanged. For example

in the Bitcoin protocol all miners are treated the same as they all face the same requirement to be

selected to mine the next block.

Axiom 1 (Anonymity). A selection rule is anonymous if it is invariant under permutations, i.e.

for every n and every permutation π : Rn+ → Rn+ it satisfies π(pn(x)) = pn(π(x)).

Anonymity is a key features of a decentralized system which aims to attract anonymous agents

to freely join the system. Note that this anonymity axiom is strong in that it does not allow the

protocol to treat agents differently based on the agents’ history within the system (as would be

the case in some proof-of-stake protocols). Allowing dependence on the agent’s history can give

incumbents an advantage over new entrants, hindering free entry of miners.

Our next axiom ensures that no miner can increase his winning probability without increasing his

contribution by posing as a new entrant, and splitting its computations between the two identities.

Axiom 2 (Robustness to Sybil Attacks). An selection rule is robust to Sybil attacks if for every

x ∈ Rn+, i ∈ N and every ∆ ∈ [0, xi]

pni
(
x
)
≥ pn+1

i

(
y
)

+ pn+1
n+1

(
y
)
,

where y =
(
x1, . . . , xi−1, xi −∆, xi+1, . . . , xn,∆

)
.
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Axiom 2 implicitly encodes a free entry condition: Whenever only n miners are present in the

system, a new miner can join and claim the role of miner n+1.13 In a decentralized setting without

verifiable identities, an existing participant can also assume the role of a new entrant. Axiom 2

formalizes the implied incentive constraint that is present in a protocol with free entry and no

verifiable identities.14

Axiom 3 (Robust to Merging). An random selection rule is robust to merging if for every x ∈ Rn+
and every i, j ∈ N

pni
(
x
)

+ pnj
(
x
)
≥ pni (y) + pnj (y) ,

where y = (x1, . . . , xi−1, xi + xj , xi+1, . . . , xj−1, 0, xj+1, . . . , xn).

Robustness to merging imposes a decentralization requirement: No two miners can merge and

increase their joint winning probability. A mechanism which is not robust to merging will, by defi-

nition, provide some miners with incentives to merge. This might lead such a selection mechanism

to be, in the long-run, controlled by relatively few miners.

Centralization is undesirable for cryptocurrencies, as it undermines the security of the decen-

tralized system. Nakamoto (2008) argues that Bitcoin is secure as long as no party controls more

than 50% of the computational power. Subsequent research analysed whether Bitcoin is susceptible

to various types of attacks by miners under differing assumptions. The main common finding in

this literature is that the integrity of the network can be preserved as long as no miner performs

more than a certain fraction of the computations. This fraction varies depending on assumptions

and considered attacks between 33% and 50%.15

Our main result characterizes all selection rules satisfying these decentralization properties:

Theorem 1. A random selection rule p is anonymous, robust to Sybil attacks, and robust to merging

if and only if is the proportional selection rule

pni (x) =
xi∑n
j=1 xj

. (1)

Equation 1 states that the probability with which an miner is selected is proportional to the

share of computations she performed. For example, it describes the probability that a miner is

selected to mine the next block in Bitcoin: Miners attempt to mine the next Bitcoin block once

13On its own, this free entry condition imposes almost no restriction as miner n + 1 can be excluded by always
assigning him a winning probability of zero. However, in conjunction with anonymity the possibility of free entry
imposes further restrictions as a new entrant has to be treated like the miners already present in the system.

14While the possibility of free entry imposes constraints, it also creates benefits for the protocol: Huberman
et al. (2019) shows that free entry in Bitcoin prevents all miners, including large miners, from profitably affecting
transaction fees. But if entry of new miners is blocked, large miners can gain by increasing transaction fees. Prat and
Walter (2018) analyzes miner entry decision in a dynamic setting where entry requires an fixed upfront investment
in hardware. While there may be no entry in some periods, hardware obsolescence gives rise to an ongoing stream of
entrants.

15See for example Sompolinsky and Zohar (2015), Pass et al. 2017, Biais et al. 2018, Eyal and Sirer 2018.
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the previous block was published (we abstract from some technical details and assume blocks are

transmitted instantaneously to all miners) by attempting different values of a nonce and computing

their hashes. Under common cryptographic assumptions, no miner can do better than guess a

random nonce and each nonce entails the same probability of being selected (to mine the next

block). Thus, the probability with which an miner is selected in the Bitcoin protocol equals the

number of hashes she computed relative to the total number of hashes computed before the next

block is mined.

The proof of Theorem 1 shows that the monotonicity of the selection rule is not necessary if one

restricts attention to the case where investments are rational numbers. In any practical application

where quantities invested can be finitely encoded the restriction to rational number is vacuously

satisfied and thus the monotonicity assumption plays no role.

3 Necessity of the Axioms

Anonymity To see that anonymity is necessary to our characterization to hold, observe that

given q ∈ (0, 1) the selection rule

pni (x) =


0 if i /∈ {1, 2}

q if i = 1

1− q if i = 2

.

satisfies robustness to Sybil attacks and robustness to merging, but violates the anonymity axiom

as it treats miner 1 and 2 different from everybody else. In this selection rule only miner 1 and 2

can win a block.

Robustness to Sybil attacks Next, we show that the robustness to Sybil attacks is necessary

for our characterization to hold. Consider for example the selection rule

pni (x) =
1

n

which selects one miner uniformly at random, independently of their contribution. This selection

rule is anonymous and robust to merging. It also does not requires miners to perform any costly

computations.16 This rule is clearly not robust to Sybil attacks, as a miner who poses as a group

of independent miners increases his chances of being selected.

16Such a selection rule is desirable in a context, like Bitcoin, where the main goal of the protocol is to ensure
randomness of the selection and the computations performed as part of the protocol are wasteful.
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Robustness to Merging Consider the winner-take-all rule (definition 3). This rule is anonymous

and robust to Sybil attacks, but not robust to merging. To see this note that if two miners merge

they still win whenever one (or both) of them would have won, but in addition also win whenever

the sum of the contributions exceeds the maximal contribution.

4 Risk-Averse Miners

So far we have been agnostic about the risk attitudes of miners. Axiom 3 presents a weak require-

ment that is necessary for risk-neutral miners not to have incentives to merge. However, if miners

are risk-averse their incentives to merge increase and Axiom 3 is not sufficient to ensure that miners

do not want to merge.

Consider any protocol that is anonymous, robust to Sybil attacks and merging (i.e. satisfies

Axiom 1-3). By Theorem 1 such a protocol induces a proportional selection rule. Suppose that in

such a selection rule miners i and j who are winning with probability pi and pj merge and split

the price in case they win according to their relative contributions. Together, they now win with

probability pi+pj . If they win miner i receives a share of xi
xi+xj

of the reward from mining the block

and miner j receives a share of
xj

xi+xj
. The reward given to either miner in this sharing scheme

equals exactly the expected reward of that miner conditional on either i or j winning the block

before merging. The original lottery over rewards when not merging is thus a mean preserving

spread of the lottery faced by a miner when merging. Hence, it is strictly better for the two miners

to merge whenever they are risk-averse. This argument leads to the following corollary:

Corollary 1. For every selection rule that satisfies Axiom 1-3 any two risk averse miners have

a strict incentive to merge their computational contributions and share the reward from mining a

block proportional to their respective contributions.

An economic implication of Corollary 1 is that large mining pools, where miners pool their

resources17 can not be avoided in any decentralized protocol when miners are sufficiently risk-averse.

Corollary 1 thus suggests that risk aversion of the miners is an impediment to the decentralization

of the network.

5 Equilibrium Contributions

We next endogenize the computing power xi contributed by each miner i to the system. This section

does not produce any novel results, but illustrates the power of our main result. As by Theorem 1

it suffices to understand Tullock contests to reason about the computational contributions in any

decentralized protocol we can leverage known results about Tullock contests to better understand

17For analysis of mining pools see Fisch et al. (2017), Cong et al. (2019), and Schrijvers et al. (2016).
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decentralized protocols. Prior to our work Arnosti and Weinberg (2019) studied these implication

for the special case of Bitcoin and our Theorem 1 implies that their analysis generalizes to arbitrary

proof-of-work protocols.18

Each miner i pays a cost of ci : R+ → R+ depending on how many computations she performs.

Throughout, we assume that ci is strictly increasing, with ci(0) = 0. The later assumption ensures

that each miner i participates in the system voluntarily, and we use xi = 0 to denote that the miner

did not enter (and receives a zero payoff).19

As we have shown in Theorem 1 the total payoff of miner i in every decentralized, anonymous

protocol that is robust to Sybil attacks as a function of the computations performed by every

participant is thus given by

pni (x1, . . . , xn)− ci(xi) =
xi∑n
j=1 xj

− ci(xi) . (2)

The functional form of the payoff (2) is well known in the economics literature as a Tullock contest

(Tullock et al., 1980). Each miner maximizes her payoff and we thus look for Nash equilibria of the

game. Szidarovszky and Okuguchi (1997) show that if all miners have convex, twice differentiable

cost functions there exists a unique pure strategy Nash equilibrium. To describe the equilibrium

it is helpful to denote the total computational power in the system by s =
∑n

i=1 xi. We denote by

ρi(s) the unique solution to the equation

s2c′i(ρi(s)) = s− ρi(s)

if sc′i(0) < 1 and set ρi(s) = 0 otherwise. Intuitively, the function ρi(s) describes the best-response

of miner i if the total computational power of the system equals s.

The next result follows immediately from combining Szidarovszky and Okuguchi (1997) with

our Theorem 1:

Corollary 2. Consider an arbitrary decentralized, anonymous protocol that is robust to Sybil at-

tacks. Suppose that the cost of computation is strictly convex and twice differentiable. There exists

a unique pure strategy Nash equilibrium. The total computational power of the system s =
∑n

i=1 xi

in equilibrium is solves

s =

n∑
i=1

ρi(s)

and the number of computations performed by miner i equals ρi(s)

18Arnosti and Weinberg (2019) already farsightedly discuss in their conclusion that it might be difficult for another
protocol to achieve more decentralization than Bitcoin if there is a risk of Sybil attacks: “Ideally, a miner’s expected
return would be concave in their share of mining power. This seems difficult to achieve in practice, as miners can
always divide their hardware among several false identities.”

19We can simplify notation this way as any miner who performs no computations never wins by Theorem 1.
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If the contestants costs are linear ci(xi) = βixi it was previously established in Hillman and

Riley (1989) that the same characterization holds, but can be further simplified. Without loss

assume that β1 ≤ β2 ≤ . . . ≤ βn and denote by

m = min

{
k : βk+1 ≥

k

k − 1
avg (β1, . . . , βk)

}
(3)

the first miner m whose follower’s marginal cost is greater than m
m−1 times the average of the

marginal cost of miners with lower marginal cost. In equilibrium only miners 1 to m will chose to

enter and perform compuations.

Corollary 3. Consider an arbitrary decentralized, anonymous protocol that is robust to Sybil at-

tacks. Assume that ci(xi) = βixi and let m solve (3). The total computational power of the system

equals

s =
m− 1

m

1

avg (β1, . . . , βm)

and the number of computations performed by miner i is given by

xi =

0 if i > m

s(1− βis) if i ≤ m
. (4)

Again this result follows immediately from the combination of our Theorem 1 and Hillman

and Riley (1989). Rearranging (4) for the winning probability xi/s yields immediately that a

participating miner is chosen with probability

1− βis = 1− βi(m− 1)∑
j=1n βj

.

To illustrate these results we provide a simple example:

Example 1 Consider a situation where there are two miners providing computational power to

the system. Assume main cost factor are energy cost which are roughly linear in the number of

computations performed. miner 1’s energy cost are γβ while miner 2’s energy cost equal β, i.e.

c1(x1) = γ β x1 and c2(x2) = β x2. In this case m = 2 and miner 1 wins with probability 1
γ+1 .

Thus, the winning probability of miner 1 depends only on the ratio between her marginal cost and

miner 2’s marginal cost. For example if miner 1 faces twice as high energy cost she performs only

1/3 of the computations. This, illustrates that a concentration towards those participants with low

energy cost is unavoidable in any protocol satisfying our axioms. Any protocol that avoids such a

dependence on computational cost has to give up either on anonymity, robustness to merging or

robustness to Sybil attacks.
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6 Conclusion

The introduction of Bitcoin was followed by much popular interest and excitement about the

potential of decentralized protocols. This paper takes a step towards understanding the novel

economic systems that can or cannot be enabled by this technology.

One notable example of a design approach that violates our assumption is Proof-of-Stake, in

which miners are identified based on their previous actions within the platform (for example, posting

a required collateral), violating our strong anonymity axiom. While such design may have numerous

advantageous, our axioms capture desiderata for decentralized systems that that such designs will

satisfy. In particular, such systems do not satisfy the strong notion of free-entry that motivates

our axioms. We hope that our results and following axiomatic work will be helpful in clarifying the

trade-offs in design decentralized systems.

Finally, our analysis abstracts from the details of the computations used to perform the ran-

dom selection. While our results do not rely on computational details, we note that the choice of

computational tasks may have several economically important implications. (i) A change to the

computational tasks used may change the cost functions of miners. In particular, the availability

of fixed cost investment that reduces the cost of the computation task20 can affect entry dynamics.

(ii) Different computational tasks may induce miners to exert different unpriced externalities. For

example, different computational tasks may induce miner to spend their budget on storage capabil-

ities rather than electricity consumption (for example, Dziembowski et al. 2015), which may result

in a lower environmental impact.
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A Proofs

Lemma 1. Consider a selection rule that is robust to Sybil attacks. For every x ∈ Rn+ and every

y ∈ Rk+ with
∑k

j=1 yj = xn

pnn
(
x1, . . . , xn

)
≥

n+k−1∑
j=n

pn+k−1j

(
x1, x2, . . . , xn−1, y1, . . . , yk

)
.

Proof. The result follows by sequentially applying the robustness to Sybil attacks to miner r ∈
{n, . . . , n+ k − 2} with ∆r =

∑n+k−1
j=r+1 yj .

Lemma 2. We have that for all i ∈ {1, . . . , n}

pni (x1, . . . , xn) = pn+1
i (x1, . . . , xn, 0) ,

and pn+1
n+1(x1, . . . , xn, 0) = 0.

Proof. The robustness to Sybil attacks by Lemma 1 implies that for each agent i

pni (x1, . . . , xn) ≥ pn+1
i (x1, . . . , xn, 0) + pn+1

n+1(x1, . . . , xn, 0) .

Summing up over all agents i ∈ {1, . . . , n} yields

1 ≥

(
n∑
i=1

pn+1
i (x1, . . . , xn, 0)

)
+ n pn+1

n+1(x1, . . . , xn, 0) = 1 + (n− 1)pn+1
n+1(x1, . . . , xn, 0)

⇒ 0 = pn+1
n+1(x1, . . . , xn, 0) .

Where we used in the first equality that the combined winning probability of all miners equals 1

and in the second equality that winning probabilities are non-negative.

We thus have that pni (x1, . . . , xn) ≥ pn+1
i (x1, . . . , xn, 0) for all agents i ∈ {1, . . . , n}. As winning

probabilities sum up to 1 we get that

pni (x1, . . . , xn, 0) = 1−
∑
j 6=i

pn+1
j (x1, . . . , xn, 0) ≤ 1−

∑
j 6=i

pnj (x1, . . . , xn) = pni (x1, . . . , xn) .

This establishes the lemma.

Lemma 3. In any selection rule that is robust to merging we have that for every x ∈ Rn+ and every

y ∈ Rk+ with
∑k

j=1 yj = xn

pnn
(
x1, . . . , xn

)
≤

n+k−1∑
j=n

pn+k−1j

(
x1, x2, . . . , xn−1, y1, . . . , yk

)
.

16



Proof. Applying the condition for robustness to merging sequentially agent by agent yields that

pn+k−1n

(
x1, . . . , xn, 0, . . . , 0

)
≤

n+k−1∑
j=n

pn+k−1j

(
x1, x2, . . . , xn−1, y1, . . . , yk

)
.

Applying Lemma 2 iteratively for agent j ∈ {n+ 1, . . . , n+ k − 1} yields that

pn+k−1n

(
x1, . . . , xn, 0, . . . , 0

)
= pnn

(
x1, . . . , xn

)
and thus the result follows.

Corollary 4. Consider a selection rule that is robust to merging and to Sybil attacks. For every

x ∈ Rn+ and every y ∈ Rk+ with
∑k

j=1 yj = xn

pnn
(
x1, . . . , xn

)
=

n+k−1∑
j=n

pn+k−1j

(
x1, x2, . . . , xn−1, y1, . . . , yk

)
.

Proof. Follows immediately from Lemma 1 and Lemma 3.

Proof of Theorem 1. We begin by showing the axioms imply the functional form (1) in the case

where the investment of each miner is rational x ∈ Qn
+. Consider an arbitrary vector of investments

x ∈ Qn
+ and w.l.o.g assume that all investments are expressed with respect to a common denom-

inator b ∈ N, i.e. there exists a ∈ Nn such that xi = ai/b. We begin by splitting the first miner

into a1 miners each of which makes an investment of 1/b. As a consequence of Corollary 4 and the

anonymity it follows that the joint winning probability of the first a1 miners after this split equals

the original winning probability of the first miner

pn1 (x) =

a1∑
j=1

pn+a1−1j

(
1

b
, . . . ,

1

b
,
a2
b
, . . . ,

an
b

)
.

In the next step we merge the last n − 1 miners into a single miner. Again by Corollary 4 the

winning probability of the last miner in the new situation equals the joint winning probability of

the last n−1 miners in the old situation. As the winning probabilities sum up to 1 the joint winning

probability of the first a1 miners remains unaffected and we have that

pn1 (x) =

a1∑
j=1

pa1+1
j

(
1

b
, . . . ,

1

b
,

∑n
i=2 ai
b

)
.

In the next step we split the a1+1 miner into
∑n

i=1 ai miners each investing 1
b . Again, by Corollary
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4 this implies that

pn1 (x) =

a1∑
j=1

p
|a|
j

(
1

b
, . . . ,

1

b

)
,

where |a| =
∑n

i=1 ai. It follows from anonymity that each of the miners wins with equal probability

of 1/|a|, and thus

pn1 (x) =
a1
|a|

=
a1/b

|a|/b
=

x1∑n
j=1 xj

.

To extend this result from Qn
+ to Rn+ we first show that the result extends to vectors where the

first coordinate is chosen from R+ instead of Q+. Consider an arbitrary x−1 ∈ Qn−1
+ and x1 ∈ R+.

Choose two sequences wr, vr ∈ Q+ such that wr converges to x1 from above and vr converges to

x1 from below when r →∞. By monotonicity we have that

vr

vr +
∑n

j=2 xj
≤ pn1 (x1, x−1) ≤

wr

wr +
∑n

j=2 xj
.

As the lower bound and the upper bound converge to the same limit it follows that pn1 (x) = x1
|x|

for all x with x1 ∈ R+ and x−1 ∈ Qn−1
+ . By anonymity p22(x) = x2

|x| for all x with x−2 ∈ Qn−1
+ and

x2 ∈ R+. Thus, for x−2 ∈ Qn−1
+ and x2 ∈ R+ we have that

pn1 (x) = 1− pn2 (x)−
n∑
k=3

pnk(x) = 1− x2
|x|
−

n∑
k=3

xk
|x|

=
x1
|x|

.

Applying the above argument with an upper and lower bound again yields that for all x with

(x1, x2) ∈ R2
+ and (x3, . . . , xn) ∈ Qn−2

+ we have that pn1 (x) = x1
|x| . Applying the same argument

sequentially for each miner k ≥ 3 yields that pn1 (x) = x1
|x| for all x ∈ Rn+. By permuting the role

of miner 1 and miner i and anonymity we have that pni (x) = xi∑n
j=1 xj

for all i ∈ {1, .., n} and all

x ∈ Rn+.

We are left to verify that the functional form (1) satisfies our assumptions. Clearly (1) is

monotonic and anonymous. Furthermore, we have that for every y ∈ Rk+ with |y| = x1

k∑
j=1

pn+k−1j

(
y1, . . . , yk, x2, x3, . . . , xn

)
=

k∑
j=1

yj
|y|+

∑n
i=2 xi

=
x1∑n
i=1 xi

= pn1 (x) ,

which shows that the functional form (1) is robust to Sybil attacks and merging and completes the

proof.
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