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Figure 6: Platform Pickup Time Regression with no Surge in Staten Island.
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†: Lyft estimated to arrive faster in pink areas and Uber in black areas.

is a large disparity between Uber’s and Lyft’s estimated arrival times across different locations

within Staten Island between 2am and 6am, it cannot be caused by price differences between the

two platforms. This will provide the same empirical evidence that our analysis of NYC proper

offers, except it does not rely on estimates from Cohen et al. (2016), which came from a slightly

different context.

Figure 6 is thus restricted to 2am - 6am in Staten Island (we show all points, instead of just

the statistically significant ones).

Table 6: Pickup Times (in seconds) and Surge Multipliers by Area‡

Black Area Pink Area

Lyft Pickup Time 682.62 481.39

Uber Pickup Time 523.04 535.90

Lyft Surge 1.003 1.003

Uber Surge 1.000 1.000

‡ Area Black or Pink based on Figure 6

Table 6 summarizes the surge-factor and arrival-time comparisons across platforms and areas.

It shows that while prices are constant across locations, Lyft’s arrival time rapidly increases as

we move toward less densely populated parts of the borough, whereas Uber’s is relatively stable.

As illustrated in the figure, there is almost no geographical price disparity. Uber never does surge
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pricing, and Lyft does it very infrequently (fewer than 10 instances in more than 2,000 observations)

and does almost equally between pink and black areas (in fact, if anything, the average surge for

Lyft across black areas is about 0.0001 higher than that in pink areas). However, the estimated

arrival times are very different. Lyft’s arrival time is about 54 seconds faster in pink areas, whereas

Uber’s is about 160 seconds faster in black areas. The difference-in-difference is about 214 seconds

and is statistically significant, with a standard error of 18 seconds.

4.2.3 What is the Role of Platform Competition/Collusion?

Another possible reason for the relative under-supply of rides from smaller platforms in the outer

boroughs could be strategic interactions among platforms. It is, in principle, conceivable that

platforms collude by strategically divide the city amongst themselves geographically in order to

avoid direct competition against one another. In practice, however, we show that this does not

seem to be the case in the NYC rideshare market. We argue this by observing that such collusion

would have implications that are not empirically supported once we examine the patterns from our

data. First, if platforms strategically send their drivers to different parts of the city, it would be

natural to expect that prices are among the main levers platforms use to carry out this mission.

This is, however, not empirically supported for at least two reasons: (i) Via does not do surge

pricing; (ii) by the logic in Section 4.2.2 that prices do not seem to play a major role in Lyft’s

relative under-supply in less busy areas.

Second, if platforms are strategically dividing the market geographically, it would be natural

to expect data patterns indicating that each platform is focusing on a certain area. This is not

empirically supported either. All platforms in our data have higher ride densities, higher relative

outflows, and lower ETAs in denser parts of the city than elsewhere. It is only the slope of decline

(for rides and relative outflows) or increase (for ETAs) that is steeper for smaller platforms.17 We

cannot think of a form of strategic division of the market that would lead to this pattern.

Finally, a strategic division of the city by platforms would have implications for which platforms

would focus on which areas. It would be natural to expect larger and more powerful platforms,

which enjoy a first-mover advantage, to take the more attractive regions, and for the newcomers to

find niche markets. This is not supported by the observation that the supply of smaller platforms is

more skewed towards Manhattan (and, in general, busier areas) relative to those of larger platforms.

For instance, Via started its business from Manhattan; and even when it became active in a low

density borough such as Staten Island, it had a relative outflow of only 0.13.

17See Table 1, Fig. 4, and Table 5.
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4.2.4 The Role of Driver Behavior

There is anecdotal evidence that drivers behave in a manner closely in line with our empirical results

in Tables (3) and (4). In Appendix A, we document evidence from online rideshare forums that (i)

drivers tend to avoid less busy areas because they consider pickups too far away and (ii) the problem

with distant pickups in less busy areas, and hence, the avoidance of those regions by drivers, is

a more pronounced problem for Lyft than it is for Uber. In addition to this anecdotal evidence,

we have run an analysis (available upon request) of data from a ride-share platform in Austin to

obtain direct empirical evidence on the impact of pickup times on driver behavior. Controlling for

prices and idle times and resolving a series of endogeneity issues, our analysis obtains evidence that

drivers tend to avoid the outer areas of the city, and that pickup times play a first order role in

their decisions.18

To sum up, we find the suggestive evidence provided in Sections 4.2.2 through 4.2.4 strong

enough to motivate our decisions in the theoretical analysis to (i) abstract away from prices, and

(ii) study a monopolist platform instead of competition, but instead (iii) be more general than the

literature when it comes to the spacial aspects of the market, in order to properly capture the role

of pickup times on drivers’ location decisions. We turn to that theoretical analysis next, which

builds upon the results in Section 4.2.1, and with assumptions guided by the results in Sections

4.2.2 through 4.2.4.

5 Theoretical Model

Our theoretical model complements the empirical analysis in at least two ways. First, it describes

a mechanism through which a thinner market (i.e., smaller platform size) can, ceteris paribus, lead

to under-supply of the rides in less dense areas. Our empirical analysis suggests such a mechanism

should be there, but the theoretical literature on spatial markets is silent on the relationship between

market thickness and the geographical inequity of supply. The second role of the theoretical model

is to produce further results that could help enrich the empirical policy analysis. For instance, as

we will show in this section, our theoretical model suggests that the impact of platform size on the

geographical distribution of supply will satiate once the platform size becomes large enough. We

will feed this insight back to the empirical analysis in Section 6 in order to estimate that minimum

adequate size, which might be of interest to policymakers.

18In spite of being otherwise rich, this Austin data is only from a single platform. This puts it at a disadvantage,

compared to our NYC data for our empirical analysis. As such, we chose NYC for the main analysis in the paper.

It is worth noting that the analysis of the Austin data also shows that relative outflows are substantially higher in

busier parts of the city.
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5.1 Setup

We model a market with regions i ∈ {1, ..., I} with a monopolist ridesharing platform serving

them. The regions (which, depending on the application, would could think of as neighborhoods,

boroughs, etc.) are modeled as circumferences of circles, a la Salop. Regions are assumed to have

the same size.19 In each region, passengers arrive at a rate λi per unit of time. Without loss of

generality, we assume ∀i < j : λi ≥ λj . Also, λ represents the vector (λ1, ..., λI). Each arriving

passenger’s location is uniformly distributed on the circumference of the circle. There are a total

N drivers who work for the platform.

Our model is a one-shot game among drivers in which they simultaneously and independently

choose which of the regions to drive in. Once they choose their regions and ni drivers pick region i,

we assume for simplicity that they are uniformly distributed across the region (i.e., the circumfer-

ence of circle i).20 Drivers are matched to arriving passengers via a centralized matching system.

Each driver’s “range” or “catchment area” will be the arc consisting of all the points on the circle

that are closer to that driver than they are to any other driver in region i. Each driver picks up

the first passenger that arrives within that driver’s catchment area. In practice, ridesharing plat-

forms implement a similar matching rule (Frechette et al. (2019) use a similar approach to model a

centralized matching market). The game finishes once all drivers have picked up their passengers.21

Each driver chooses a region to drive in, minimizing his or her expected total wait time, which

has two components. First, the driver in a specific location must wait for demand realization, i.e.,

the arrival of a customer in the catchment area. We term this the idle time. Second, the driver

needs to travel to the exact location of the customer to pick her up, and we call this the pickup

time. The wait time is thus comprised of these two different components, which have divergent

impacts on the equilibria in ridesharing markets.

The circular model of regions is illustrated in Figure 7. Suppose the disutility to a driver from

traveling a full circumference to pick up a passenger is t′ times that of one minute of idle time.22

The platform allocates an arriving customer to the closest driver. Because drivers are situated

at equidistant points on the circumference of the region, their catchment areas include half the

distance to their nearest neighbors on both sides. The idle time expected for a customer to arrive

19The equal size assumption is not limiting since one can, in principle, think of a larger region as equivalent of

multiple of our uniform-sized regions i.
20While we do not model the locational choice of drivers within the region, it is fairly easy to see that equidistant

positioning location from neighbors is an equilibrium. While there might be other locational choices that might also

be equilibria, we focus on the equidistant positioning equilibrium.
21Note that by not tracking the destinations, this model does not capture relative outflows. We do not see this as

a weakness, given that the role of relative outflows in the empirical section was to help with the identification of λi

values, which we assume known in the theory model.
22Thus, t′ can be thought of as aggregating (i) how long it takes to travel the circumference, and (ii) how much

more than idle time drivers dislike pickup time, due, perhaps, to feul costs.
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Figure 7: Illustration of Circular Model of each Region i and Driver Allocation

Driver 1

Driver 1's range

in the driver’s area is ni
λi

. The distance between drivers is l
ni

where l is the circumference. Since

consumer location is uniform, the distance a consumer will be from the driver along the arc is

distributed d ∼ U [0, l
2ni

], implying that the expected distance is E[d] = l
4ni

. Thus, the (cost of)

expected pickup time is t′

4ni
.

We have the (cost of) expected total wait time Wi(ni) defined from the driver’s perspective as:

Wi(ni)︸ ︷︷ ︸
Total Wait Time

=
ni
λi︸︷︷︸

Idle Time

+
t′

4ni︸︷︷︸
Pickup Time

=

(
ni
λi

+
t

ni

)
(9)

where t = t′

4 . Observe that idle time increases in the number of drivers ni since a given level of

customer demand is allocated across all the drivers present in the region. On the other hand, the

ridesharing platform allocates each customer to the closest driver. Thus, the pickup time decreases

in n, since with a greater number of drivers, each driver is more likely to be allocated a passenger

closer to him. In other words, the presence of each driver in region i has a negative externality

on other drivers in i by increasing their expected idle times and a positive externality on them by

decreasing their expected pickup times. This combination of idle and pickup time creates a non-

monotonic U-shaped wait time function, where total wait time is initially decreasing in the number

of drivers, then reaches an interior minimum, and then increases in n beyond the minimum.

Driver payoffs are characterized as ui = −Wi(ni), so drivers will choose a region where they

have the lowest expected wait time. Drivers thus balance idle time and pickup time to determine

which market to operate in.

Before laying out definitions of equilibria and turning to our results, we would like to re-iterate

our modeling assumptions. In deciding on what assumptions to make, we faced a trade-off between

being comprehensive and being able to deliver strong comparative-static results that describe, at

the most granular level, how supply redistributes itself spatially in response to a changed market

thickness. As such, we decided to abstract away from prices, platform competition, and the dynamic

nature of driver behavior. We believe such modeling decisions are supported by the empirical and

anecdotal evidence shown in the previous section. Even under these assumptions, proving the
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comparative static results is quite involved and requires developing new techniques. Also note that

on the issue of modeling the spatial aspects of the market, which is of first order relevance to our

empirical results, our theory model is in fact more general than the literature: we study a multi-

region model in which each region has a size rather than being a point. This is what allows the

conceptualization of pickup times and is the main reason why some proofs are involved.

The list of our assumptions follows:

1. Total number of drivers across both markets is fixed at N .

2. Prices are the same for all regions and are, hence, not modeled.

3. Drivers are undifferentiated (conditional on location) and their identity does not matter.

Drivers do not have any preference for either of the regions beyond the expected wait times.

4. Each demand arrival gets a location uniformly on the circumference of the circle.

5. The platform greedily allocates consumers to the drivers who are closest to them.

6. The allocation of drivers among regions is thought of as continuous rather than discrete.

7. There is only one platform.

The next subsections define market equilibria and present the results.

5.2 Defining Equilibria and Geographical Supply Inequity

We start by defining what we mean by an equilibrium of this game.

Definition 1. Under “market primitives” (λ,N, t), an allocation n∗ = (n∗1, ..., n
∗
I) of drivers among

the I regions is called an equilibrium if (i) Σi=1,...,In
∗
i = N , and (ii) no driver in any location i can

strictly decrease his or her expected total wait time by choosing to drive in another location. Also,

we call n∗ an “all-regions” equilibrium allocation if it is an equilibrium and if n∗i > 0 for all i.

Next, we define geographical supply inequity.

Definition 2. We say allocation n is under-supplied in region j, relative to region i, if we have:

nj
λj

<
ni
λi

The “degree of under-supply” in region j relative to region i is defined by κji =
ni
λi
nj
λj

.

The logic behind this definition is the same as what we had in the empirical section. It basically

compares the ratio of the realized numbers of rides ni between regions to ratio potential demands

λi.
23

23Unlike the empirical section which had subscripts ikd, this section has only i due to the single platform and

one-shot nature of the game.
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5.3 Results for a Market with Two Regions

In this section, we present our results for the case of I = 2. We do this to ease the discussion of

the intuition behind our results (since the 2-regions case accepts a simple graphical representation)

and to build toward our main theorem. We will present two important results. First, if the demand

arrival rate in region 1 is strictly larger than that of region 2, then in any all-regions equilibrium,

region 2 will be strictly under-supplied. Second, we show that the under-supply problem in region

2 is mitigated as the size of the platform increases, holding fixed the ratio between λ1 and λ2.

First we give a result that helps to visually understand an all-regions equilibrium.

Proposition 1. At any all-regions equilibrium, the wait times in the two regions are equal. Also

the wait time for each region is locally increasing in the number of drivers present in that region.

Proof. If W1(n1) 6= W1(n1), then, given the wait time functions are continuous, a small mass

of drivers can relocate from the region with the higher wait time to the region with the lower wait

time and be strictly better off. Thus, at equilirium allocation n∗, we have W1(n∗1) 6= W1(n∗2). Next,

if at equilibrium, the wait time curve in region i is strictly decreasing, then a small mass of drivers

from region j can relocate to i and become strictly better off.�

Next, we introduce a result that speaks to the existence and uniqueness of an all-regions equi-

librium.

Proposition 2. There is exactly one all-regions equilibrium if assumptions (A1) to (A3) hold.

Otherwise, there is no all-regions equilibrium.

(A1) N ≥
√
λ1t+

√
λ2t

(A2,A3) 2

√
t

λj
≤
N −

√
λjt

λi
+

t

N −
√
λjt

for j = 1, 2 and i = 3− j

Figure 8 visually illustrates Propositions 1 and 2. In each panel, the wait time curves for

the two regions are plotted opposite from each other. In each region, the wait time is initially

decreasing in the total number of drivers present in that region due to the decrease it causes in

pickup times. But as the region gets more drivers, the effect on pickup time dwindles and overall

wait time increases due to increased idle time for drivers.24 Each point on the horizontal axis

of the graph corresponds to a driver allocation between the two regions. One such point is the

“demand-proportional” allocation which satisfies n1
λ1

= n2
λ2

. This allocation is shown in the figure

by a dashed vertical gray line. At each point, the solid blue line shows the total wait time in region

1, and the dashed green line gives the total wait time in region 2.

24Total wait time curves being U-shaped has been mentioned in other studies (such as Castillo et al. (2017)). To

our knowledge, this curve and the U-shaped assumption on it are used by ride-share platforms in the determination

of various strategies including surge pricing.
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Translated to these graphical terms, Proposition 1 states that an all-regions equilibrium is a

point of intersection between the two wait-time curves, at which both curves are increasing. Among

the panels of Fig. 8, such equilibrium only exists in panel (c).25 Proposition 2 explains why. In

order for an all-regions equilibrium to exist, there should exist allocations for which the total wait

time at each region is increasing in the number of drivers present in that region. This is what

assumption (A1) requires. Graphically, the trough for the wait time curve in region 2 (emphasized

by a green circle) should be to the right of the trough of the wait time in region 1 (blue circle).

Panel (a) in Fig. 8 lacks this feature and, hence, also lacks an all-regions equilibrium. In addition to

(A1), the existence of an all-regions equilibrium would also require that the two wait-time curves

do intersect over the range in which they are both increasing. In order for this to happen, we require

assumptions (A2) and (A3). They require that, under the allocation that minimizes the total wait

time in region 1, the total wait time in region 2 be higher than that in region 1. They impose a

similar condition on the allocation that minimizes the total wait time in region 2. Graphically,

they require that the total-wait-time curve for region 2 (the green dashed line) be above the trough

of the wait-time curve in region 1 (the blue circle), and vice versa. Panel (c) satisfies both (A2)

and (A3) and, hence, has an all-regions equilibrium given by the intersection between the two

wait-time curves, emphasized by a large black circle. Panel (b), although satisfying (A1), has the

wait time curve for region 1 pass below the trough of the wait time curve in region 2. Therefore,

there is no all-regions equilibrium in panel (b).

The reason why different panels in Fig. 8 differ in terms of having an all-regions equilibrium is

that they pertain to different market primitives (λ,N, t) (in the figure as well as some of the proofs

in the appendix, instead of its components λ1 and λ2, the vector λ is represented by total demand

Λ = λ1 +λ2 and share of region 1 from demand φ = λ1
Λ ). The figures are already suggestive of what

affects the existence of an all-regions equilibrium (e.g., a large enough N is necessary) or where

the all-regions equilibrium is located when it exists (to the right of the gray dashed line –i.e., the

demand-proportional allocation– instead of on it due to agglomeration of drivers in region 1). Our

next results in this section formalize and generalize such observations from the figure and add other

results describing the role of market thickness.

Proposition 3. Suppose that λ1 > λ2 and that an all-regions equilibrium (n∗1, n
∗
2) exists. In that

25One can verify that in all panels of Fig. 8, allocations that put all drivers in one of the two regions are in fact

equilibria. To illustrate why, note that under allocation (n1, n2) = (N, 0), the wait time at region 2 is ∞ due to high

pickup time. Thus, no driver has an incentive to move from region 1 to region 2. This, of course, is an artefact of

our assumption of a continuous mass of drivers: If we assume that one driver has a non-trivial mass, some of these

one-region equilibria will go away. That said, because of the convenience of assuming a continuous mass of drivers

and to avoid multiple equilibria, the rest of the paper focuses on all-regions equilibria only. However, interesting

results can be obtained on the properties of the other equilibria and on how their existence and form respond to

market thicnkess. All those results, which would be available upon request, have similar economic implications to

the results presented on all-regions equilibria.
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Figure 8: Wait Time and Driver Allocation. An all-regions equilibrium exists only in panel (c)
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(c) Unique All-Regions Equilibrium

case, the all-regions equilibrium is strictly under-supplied in region 2:

n∗1
λ1

>
n∗2
λ2

To illustrate, if region 1 has 80% of the demand, then, in equilibrium, 90% of the drivers might

prefer to drive in region 1. This result coincides with our empirical observation that the relative

outflow was greater in busier areas than in less busy areas.
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The proofs for all propositions are given in the appendix. The basic intuition for this proposition

is rather simple. Consider an allocation with no under-supply in either region. That is, an allocation

with n1
λ1

= n2
λ2

. Based on the expressions for idle and pickup times in those areas, it is immediate

that under such allocation, the idle times in the two regions are equal, whereas the pickup time

is higher in region 2. Therefore, it would be natural to expect drivers to prefer to relocate to

region 1, pushing the equilibrium in a direction in which region 2 will be under-supplied.26 This

can be graphically seen in Fig. 8 panel (c): the equilibrium is to the right of the gray dashed line

representing the proportional allocation.

We now turn to our second result which speaks to the impact of market thickness. We prove

that “making the market thicker” will decrease the extent of geographical inequity in supply. The

next two results show this, respectively, for thickening the market on both sides (increasing the

number of drivers and all-regional demand arrival rates) and thickening it on one side (increasing

the number of drivers only).

Proposition 4. Suppose that λ1 > λ2, and (n∗1, n
∗
2) is the all-regions EQ under (λ1, λ2, N, t).

Consider scaling up the platform size by γ > 1 to (λ′1, λ
′
2, N

′, t) = (γλ1, γλ2, γN, t). Under these

new primitives, an all-regions equilibrium exists and under-supply in region 2 decreases with scaling

up, i.e.,
n′∗1
N ′ <

n∗1
N In particular, as γ →∞,the relative under-supply in region 2, κ21, tends to zero.

This proposition speaks to the impact of market thickness (platform size) on geographical

supply inequity in two ways. First, it shows that a scale-up in size preserves the existence of

an all-regions equilibrium. This means it is possible that as size scales down, drivers abandon a

region all-together, making all-regions equilibrium cease to exist. However, as the size scales up,

an all-regions equilibrium always remains in existence.

Second, and more importantly, Proposition 4 shows that the all-regions equilibrium under a

thicker market exhibits less geographical inequity. To illustrate this result, it says that if under

(λ1, λ2, N, t) region 1 had 80% of the total demand, but n∗1 was 90% of N , then under the scaled-up

setting (λ′1, λ
′
2, N

′, t), region 1 still has 80% of the total demand but will get, say, 85% of the total

number of drivers. The theorem also says that if the size undergoes an extreme scale-up, then

region 1 will get very close to 80% of the total number of drivers in the all-regions equilibrium.

Proposition (4) is also proved in the appendix. The intuition behind this proof is that as size

gets larger and larger, the platform will get denser in both regions, reducing the importance of

pickup times compared to idle times in the decision-making processes of drivers. To show this, we

first observe that the extent of geographical supply inequity κ21 in the equilibrium is invariant to

26The actual proof requires more than this simple intuition. Specifically, it requires a lemma that shows if (A1)

through (A3) hold, then each total-wait-time curve is increasing at the demand-proportional allocation (or, put

graphically, the troughs of the two curves are located on different sides of the gray dashed line representing the

demand-proportional allocation). See appendix for a lemma proving this argument as well as for the details on why

such a lemma helps prove the proposition.
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multiplying all primitives (i.e., λ1, λ2, N, t) by the same factor γ. Therefore, the effect of multiplying

only λ1, λ2, N by some γ > 1 on geographical supply inequity will be the same as that of dividing

t by γ and holding λ1, λ2, N fixed. A division of t by γ > 1 means drivers care less about pickup

times. Drivers caring less about pickup times leads the equilibrium allocation to be closer to what

would be implied by idle times only. It is easy to verify that if it were only the idle time that

mattered to drivers, the equilibrium allocation would always be one that involved no under-supply

in either region: (n∗1, n
∗
2) = ( Nλ1

λ1+λ2
, Nλ2
λ1+λ2

). This is exactly what will be the case as the scale-up

grows infinitely large.

Our next proposition proves similar results to those shown in Proposition 4, but this time for

thickening the market only on one side.

Proposition 5. Suppose that λ1 > λ2 and (n∗1, n
∗
2) is the all-regions EQ under (λ1, λ2, N, t). If we

scale up to (λ1, λ2, N
′, t) for some N ′ > N , then an all-regions equilibrium still exists. Also, the new

equilibrium shows less under-supply of rides in region 2. In particular, as N ′ → ∞, under-supply

in region 2 (and in region 1) tends to zero.

The proof for this proposition is given in the appendix. The intuition is as follows: a scale-up

in N to N ′ = γN for some γ > 1 can be thought of as a combination of two changes. First, a

scale-up from (λ1, λ2, N, t) to (γλ1, γλ2, γN, t). Second, a scale back down in the demand arrival

rates from (γλ1, γλ2) to (λ1, λ2). The first move is guaranteed to mitigate the geographical supply

inequity problem, according to Proposition (4). The second move increases the importance of idle

times (relative to pickup times) in drivers’ decision-making processes. Therefore, this change also

shifts the new equilibrium toward what would be implied by idle times only, which would be an

allocation with no geographical supply inequity.

5.4 Main Result

Our main result extends all of the results presented so far from two regions to any number of regions

I ≥ 2. This theorem is powerful in that it provides, among other results, a description of how the

market responds to a changed thickness, at the most granular level. That is, it describes what

happens to the supply ratio between any two regions i, j. As formalized below, the proposition

shows that the market responds to a “global thinning” by further agglomerating the supply at the

thickest “local markets.”

Theorem 1. In the general version of the game (i.e., I ≥ 2), the following statements are true:

1. For an all-regions equilibrium, the total wait time is equal across all I regions. Also, at the

equilibrium allocation, the total-wait-time curve for any region is strictly increasing in the

number of drivers present in that region.

2. Any all-regions equilibrium n∗ = (n∗1, ..., n
∗
I) is unique.
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3. At any all-regions equilibrium, for any i < j, we have
n∗i
λi
≥ n∗j

λj
. The inequality is strict if and

only if λi > λj .

4. Suppose an all regions equilibrium n∗ = (n∗1, ..., n
∗
I) exists under primitives (λ,N, t) where

λ = (λ1, ..., λI). Then, if supply and demand both scale up, that is, under new primitives

(γλ, γN, t) with γ > 1, we have:

• An all-regions equilibrium n∗
′

= (n∗
′

1 , ..., n
∗′
I ) exists.

• The new equilibrium n∗
′

shows less geographical supply inequity than n∗ in the sense

that for any i < j, we have 1 ≤
n∗
′
i
λi

n∗′
j
λj

≤
n∗i
λi
n∗
j
λj

. Both inequalities are strict if and only if

λi > λj .

• All
n∗
′
i
λi

n∗′
j
λj

tend to 1 as γ →∞

5. The same statement is true if instead of proportionally scaling up both λ and N , we scale up

only N .

These results are closely in line with our empirical results from Table 3 and Table 4. Statement

3 above corresponds to the positive coefficient on borough population density (interpretable only

under assumptions 1 and 2). Also, statements 4 and 5 are closely in line with the negative coefficient

on the interaction of borough population density and platform size (interpretable under assumption

1 plus either of 2 or 3).

The proof of this result can be found in the appendix. It is based on strong induction. The basis

of the induction (i.e., the case of I = 2) is given by propositions (1) through (5). The induction

works in an interrelated way. That is, for instance, in order to show that item 3 from Theorem (1)

holds for some I = I0 > 2, we need not only assume that item 3 holds for all I ∈ {2, ..., I0 − 1},
but also that all of the other items of the proposition hold for all I ∈ {2, ..., I0− 1}. We believe the

proof techniques developed in the implementation of this induction (see appendix) can be useful

beyond this paper, in the theoretical analysis of geographical demand-supply mismatch in spatial

markets.27

27We would also like to note, without entering the details, that the proof involves more than a straightforward

application of the induction. To illustrate this, consider the case of I = 3. Suppose the equilibrium allocation under

primitives (λ,N, t) is n∗ = (n∗1, n
∗
2, n
∗
3). Also suppose that once we scale up both N and λ to obtain primitives

(γλ, γN, t), we have the equilibrium n∗
′

= (n∗
′

1 , n
∗′
2 , n

∗′
3 ). Assume, under this new equilibrium, that n∗

′
3 > γn∗3. That

is, the least dense region is gaining drivers above and beyond the scale-up, as expected. This implies that regions 1

and 2 will, together, have strictly fewer drivers than γ(n∗1 + n∗2). But this renders the application of the induction

to the set of regions 1 and 2 insufficient, since now those regions have undergone (i) a scale-up of γ in both demand

arrival rates and total number of drivers, followed by (ii) loss of some drivers to region 3. According to our previous

results, the first change reduces geographical supply inequity between regions 1 and 2, whereas the second change
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5.5 Discussion

Before turning to policy implications of the model, we would like to re-emphasize why our theory

results on geographic inequity of supply and the role of market thickness are important beyond

ridesharing. We first discuss how the notion of geographical inequity relates to efficiency and then

describe how crucial the role of thickness is in spatial markets other than ridesharing (such as

taxis).

Geographical Inequity and Efficiency. The main purpose of our model was to analyze

geographical inequity in supply and its response to market thickness. The model was not developed

with the goal of studying efficiency. However, it can still illuminate some (though not all) of the

efficiency implications of inequity. Proposition 6 formalizes this.

Proposition 6. Consider primitives (λ,N, t) with λ1 > λI and the set N of all driver allocations

defined as {n ∈ RI : Σini = N, ∀i ni > 0}. Suppose n0 ∈ N is the “demand-proportional”

allocation: ∀i, j : κ0
ji ≡

n0i
λi
n0
j
λj

= 1. Also suppose that n1, n2 ∈ N are such that ∀i < j : κ2
ji ≥ κ1

ji ≥ 1.

That is, both n1 and n2 exhibit geographical inequity in supply in favor of higher demand areas, and

the inequity is larger under n2 than under n1. Then, the following hold:

1. Under all allocations n ∈ N , the average pickup time for drivers is constant at I×t
N .

2. Among all n ∈ N , the allocation n0 is the unique minimizer of the average driver idle time.

Specifically, an all-regions equilibrium allocation has a higher average idle time than n0.

3. The average driver idle time is higher under n2 compared to n1.

Proposition 6 is proved in the appendix. It describes one reason why geographical inequity in

supply is inefficient: By choosing a busy region to minimize her own total wait time, a driver leaves

a larger negative externality on the market by substantially lengthening the average idle time in

the region she joins and the average pickup time in the regions she avoids. As Proposition 6 shows,

any equilibrium allocation, compared to the demand-proportional allocation, makes the total idle

time worse without improving the total pickup time. Of course our model is one-shot and, by

construction, the total number of given rides is constant at N irrespective of the allocation. But

in the real ride-share market, there is repetition. Therefore, in reality, inefficiently high total wait

times due to agglomeration of drivers can lead to inefficiently low number of rides given in rideshare

(and other transportation) markets.

Aside from the argument above, there is (in our view) a more important reason why geographical

inequity of supply may be inefficient that our model does not fully capture. That reason is the very

increases it. Thus, by plain application of induction, one cannot show that geographical supply side inequity between

regions 1 and 2 decreases at the end. However, we prove lemmas in the appendix which guarantee the proof of the

proposition, in spite of the fact that induction applies in some but not all of the cases.
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notion of inequity. If residents of region j consistently have lower access to supply of transportation

services than region i (i.e., if a higher fraction of the potential demand is forgone in j than in i),

then the marginal demand in j is likely to be for more essential transportation needs than in i.

This may imply some allocative inefficiency. The issue of inequity has been major topic in the

transportation science literature.28 It has also been salient enough in public policy to bring about

such major actions as the launch of green taxis (also called “boro taxis”29) However, quantifying

the magnitude of the welfare effects of inequity is beyond the scope of our paper. It will require

panel data on passengers in order to capture the fact that some groups are regularly under-supplied

relative to others.

Generalizability of Results Beyond Ridesharing. Our theoretical model assumes a central

dispatch structure for the matching of drivers to riders, and one of the key forces behind our results

is the pickup time. Also, all of our empirical analysis is performed on rideshare data. This raises

the question of whether the geographical inequity in supply (due to agglomeration) can arise in a

market with decentralized matching, such as the taxicab market. In that market, there might be

search frictions; but once a cab and a passenger find each other, they are not far apart.

We believe our insights are also crucial in understanding the spatial distribution of supply in

the taxicab market. Table 7 corroborates this by presenting the relative outflows for the Yellow

Taxis across boroughs of NYC during January 2009, the first month on which data on the taxicab

market is available from the TLC. We find it interesting that, similar to the rideshare market, the

relative outflows in the taxicab market almost have a perfect rank-correlation with the borough

population densities (the only exception is Queens, most likely because areas closer to the airports

become denser and, hence, more attractive). In fact, relative outflows are much more skewed toward

Manhattan for taxicabs than they are in the rideshare market. For instance, it is interesting to

observe that although the outflow of rides from Manhattan was about 742 times more than that

from Staten Island, the ratio between the inflows was only 10 (the total population of Manhattan

is about 4.2 times that of Staten Island).30

Studies that examine the taxicab market in NYC tend to focus on Manhattan, on the grounds

that the large majority of rides take place there (see Buchholz (2018); Lagos (2003) for instance).

However, based on the above observation, we argue that this is likely an equilibrium outcome in

which supply gets highly agglomerated in Manhattan. Therefore, understanding why there is such

a sharp contrast between Manhattan and the outer boroughs may be of first order importance in

28See Litman (1999); Delbosc and Currie (2011); Pereira et al. (2017) among may other references.
29For more details, see the history of boro taxis on the TLC website from this link.
30The skewness of these relative outflows towards Manhattan would be even more sriking once we notice that in

the Taxicab market, as opposed to rideshare, drivers have full discretion on which rides to give. Therefore, drivers

in Manhattan might refuse to give rides that exit the borough because they anticipate they will have to return to

Manhattan empty. Thus, we conjecture that if it were not for such discretion, the relative outflows for the taxicabs

would be even more skewed.
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Table 7: Relative Outflows in NYC Boroughs for Yellow Taxi during Jan. 2009

Borough Outflow Inflow
Relative

Outflow

Bronx 9,436 56,981 0.17

Brooklyn 95,727 406,111 0.24

Manhattan 682,159 161,049 4.24

Queens 72,601 221,218 0.33

Staten Island 919 15,483 0.06

Note: rides to and from airports (i.e., JFK and LGA in Queens) have been excluded.

studying what shapes the geographical distribution of supply in spatial markets with decentralized

matching.31 This is particularly important because the same agglomeration mechanism that leads

to the sharp observed contrast between Manhattan and other boroughs might also be at work in

determining how drivers position themselves within Manhattan.32

6 Implications for Policy

Our work is timely since it relates to the policy debate on whether rideshare platforms should be

downsized. New York has recently been considering implementing multiple policies which, either

directly or indirectly, will shrink the size of rideshare platforms. This policy debate is important

both because NYC is the largest city in the country and because of the precedent the action taken

by NYC will likely set for other cities. One proposed policy is imposing a $17 minimum hourly

wage on the rideshare platforms (The Washington Post, 2018; Wired, 2019), which took effect in the

beginning of February 2019 (The Hill, 2019). Another policy is to impose a cap on the number of

licenses each platform can hand out to drivers (hence a cap on the number of drivers who can drive

for these platforms). The particular way this regulation was designed was by halting, for 12 months

starting August 2018, the issuance of new licenses for drivers of rideshare platforms (The Verge,

2018; Tech Crunch, 2018). The reactions of ridesharing platforms to the aforementioned regulations

31One could think of a theory of agglomeration in de-centralized transportation markets that is similar in nature

to the theory in our paper. In the taxicab (rideshare) market, lower density of demand and supply in outer boroughs

leads to higher local search frictions (longer pickup times). This geographical difference in search efficiencies (pickup

times) in turn distorts the supply further away from the outer boroughs. In fact, Frechette et al. (2019) already

document that there is economy of scale in search efficiency, which can lead to overall more efficient search when the

market is thicker. It would not be unnatural to think, then, that “where” the market is thicker is more desirable for

drivers, hence the self-reinforcing loop.
32Indeed, we carried out a relative outflows analysis on the set of taxicab rides from January 2009 that started and

ended in Manhattan. We found a sharp contrast in relative outflows between Lower and Central Manhattan (which

are where the density of rides are the highest) on the one hand, and Upper Manhattan on the other.
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(and potential regulations) have been mostly negative.33 Finally, a third approach considered by

the city is to start levying a “congestion tax” on drivers. The fares for rides originating in lower

Manhattan were supposed to increase by $2.50 for taxi and $2.75 for rideshare, effective January

1, 2019. However, the implementation has been temporarily postponed due to a lawsuit brought

by a coalition of drivers and taxi owners, calling the tax a “suicide charge” (The New York Times,

2019b).34 Whether this regulation will eventually be implemented is still uncertain (The New York

Times, 2019a).

In this section, we discuss what we can learn from the theoretical and empirical analyses con-

ducted in this paper for public policy issues. We focus on the potential impacts of such policies on

the distribution of drivers across the city and on the geographical (in)equity of the availability of

rideshare services. Of course, this by no means is a claim that geographical inequity is the only

important implication of this policy. For instance, our paper does not focus on the labor-market

consequences of this policy nor does it focus on the impact on congestion. Nevertheless, we believe

it does bring up an issue for consideration that is important in navigating future decisions.

Some policy tools might have an advantage over others from the perspective of reducing (or

not increasing) geographical inequity. For instance, imposing a congestion tax (currently planned

to take effect in 2020) might be preferred over downsizing the total number of drivers. Of course,

if a congestion tax leads to downsizing rideshare platforms, it will, according to our results, also

provide an incentive for drivers to drive in busier areas. However, the tax will provide a direct

incentive for drivers to serve less busy areas. Such a “counter-incentive” is not provided by a plain

downsizing regulation. In fact, our results could be used to defend a congestion tax policy against

the potential criticism that a congestion tax might cause under-supply in busier areas. Our results

suggest that downsizing rideshare platforms via a congestion tax leads to driver incentives in both

directions (i.e., both to drive less in busier areas and to drive more in less busy areas), whereas a

direct downsize of the number of drivers (or a geography-independent mandatory wage increase)

would only increase the incentive to drive more in busy areas and less in other areas, exacerbating

the inequality problem.

33Uber has sued the city of New York over the year-long pause to issuing new ridesharing licenses (The Tech Crunch,

2019). Their spokesperson has claimed that such policy will do little to help mitigate the congestion in NYC (Tech

Crunch, 2018). The spokesperson stated that he believed the congestion tax to be a more effective policy regarding

controlling congestion. On the equity front, ridesharing platforms contend that a downsize of ridesharing will hit

the outer boroughs harder than Manhattan, given that those areas might have lower access to public transportation

options and taxis and thereby be more reliant on ridesharing (Tech Crunch, 2018). Also, on the front of fairness

among ridesharing platforms, smaller platforms have brought lawsuits against the city for multiple aspects of its

crackdown on ridesharing. Lyft and Juno sued the city for the minimum wage regulation which is calculated on a

weekly basis, rather than based on hours driven with a passenger. They claimed this hurts smaller platforms with

lower utilization rates (Wired, 2019).
34The term originates from multiple recent cases of driver suicides in NYC due to financial hardship and the belief

that some recent regulations by the city have exacerbated the drivers’ situation (The New York Times, 2018).
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Another qualitative takeaway from the analysis is that competition policy is complicated by

driver location choice. That is, a hypothetical breakup of a large ridesharing firm into two smaller

ones could have opposing effects. On the one hand, the competition between the two could benefit

consumers. On the other hand, in each of those two smaller platforms (and hence, overall), the

under-supply in less busy areas will increase.35

On the quantitative side, we answer an interesting question motivated by our theoretical anal-

ysis. Our theoretical results show that geographical inequity diminishes as platform size becomes

infinitely large due to the fact that pickup times lose their importance against idle times. In a

sense, this implies that if the platform size is “large enough,” then geographical inequity will not

be a first order concern. A practical question is how large is this “large enough” size? To find out,

we modify regression equation (7), replacing the log function applied to platform size by a function

that satiates to an upper limit as the platform size increases.

We implement this by using log(min(aMax,#Rides)) instead of log(#Rides), where aMax is

the parameter capturing the adequate size and is to be estimated (one could interpret aMax as the

size at which the impact of size on the geo-distribution of relative outflows becomes small enough

so that it cannot be distinguished from noise). We choose this way of capturing the adequate size

over adopting a functional form that converges smoothly as size grows. The reason behind this

choice is that we want the identification of the adequate size to come mainly from the data points

at which relative outflows stop responding to platform size, as opposed to the data points at which

the platform size is well below the upper limit. The regression equation implementing this notion

is very similar to the earlier regression Eq. (7) on relative outflows, with the difference being the

inclusion of aMax. Equation (10) describes this regression:

ROikd = α0 + α1 log(ρi) + α2 log(min(aMax, Skd)) + α3 log(min(aMax, Skd)) log(ρi) + νikd (10)

In order to make sure that the functional form of log is not substantially impacting our estimate

of aMax, we also estimate a version in which the size itself, as opposed to its natural log, is used.

Equation (11) represents this:

ROikd = α0 + α1 log(ρi) + α2 min(aMax, Skd) + α3 min(aMax, Skd) log(ρi) + νikd (11)

35It might seem at first that “multi-homing” (i.e., the phenomenon of drivers working for multiple platforms (Bryan

and Gans, 2019)) might mitigate the excess clustering of supply of small platforms in busier areas, because drivers

working for multiple platforms are, in effect, working for one large rideshare system. We note, however, that, for

multi-homing to mitigate agglomeration, it must be that the matching systems across platforms are fully integrated.

This would imply, for instance, that a Lyft driver would not get asked to pick up a passenger who is far away, if there

is an Uber driver in the vicinity of that passenger. We believe that in reality, the integration of matching systems

is substantially less than perfect, rendering multi-homing less impactful on the extent of agglomeration. Indeed, if

multi-homing could eliminate agglomeration, it should have shown up in the relative outflows of Lyft and Via in

Fig. 4.
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Regressions (10) and (11) are estimated using non-linear least squares, and the results are

reported in Table (8). The adequate size parameter, aMax is estimated at 3.65M rides/month using

regression (10) and at 3.30M rides/month using regression (11). Both estimates are statistically

very significant. They are also fairly close to each other, suggesting the robustness of aMax to the

model specification, as we expected.

These results suggest that NYC needs to use caution if it were to downsize Lyft and, especially,

Via (see numbers reported in Fig. 4). Uber, on the other hand will not face distorted geographical

supply distribution if downsized. We note that given a similar dataset to what we used here, the

method we laid out in this section can help identify aMax in any other metropolitan area.36

7 Conclusion

This paper asked three questions about the functioning of spatial markets and studied them in

the context of the rideshare market in NYC: (i) How can we empirically identify whether there

is geographical demand-supply mismatch, leaving some regions with persistently lower access to

supply compared to others? (ii) What mechanism leads to such persistent geographical inequity

in supply? (iii) How should we design policies that help mitigate the inequity? To answer these

questions, we started by developing the “relative-outflows” method. It is fairly simple to implement,

has limited data requirements, detects under-supply in a region even if passengers in that region

have, over the long run, learned not to search for rides, and finally can be applied to markets with

centralized or decentralized matching in the same way. We used this method to show that rideshare

platforms (especially smaller ones) tend to be under-supplied in low-population-density regions. As

such, we conducted an empirical study pointing to the role of market thickness (platform size)

on the geographical balance between demand and supply. We complemented it with a theory

model that studies the impact of market thickness on the geographical distribution of supply. We

showed that making the market thinner skews the supply ratio between any two regions toward the

higher density one, even though demand ratios are fixed. Finally, on the policy front, we estimated

a minimum required size for rideshare platforms in NYC in order to avoid the overclustering of

supply in busier areas. Our method could be used to find such required sizes in other metropolitan

36We consider these estimates of aMax to be lower bounds in the sense that the minimum required size may be larger

than they are. The reason is, even at Uber’s current size, Uber’s relative outflows are skewed toward Manhattan in

terms of magnitude (though less so than the other platforms). Under assumptions (1) and (3), our empirical method

does not allow us to identify whether this is because of under-supply of Uber in the outer boroughs or because of

geographical heterogeneity in outside options (because our method can only identify cross-platform differences). But

under assumptions (1) and (2), even Uber’s current size would be too small, making our estimated aMax a lower

bound. But even then, we believe this estimate is very useful because it shows at what size the response of the

geographical distribution of supply to size becomes so slow that even with an almost three-fold growth in size (from

Lyft to Uber), only a negligible improvement in geographical equity of supply is achieved.
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Table 8: Results of regressions (10) and (11)

Dependent variable: Relative Outflow

(1) (2)

Regression Equation (10) Equation (11)

α0 −15.07∗∗∗ −1.449∗∗∗

(0.2829) (0.027)

α1 4.129∗∗∗ 6.408∗∗∗

(0.079) (7.604e-03)

α2 1.030∗∗∗ 5.876e-07∗∗∗

(0.019) (1.254e-08)

α3 −0.264∗∗∗ −1.505e-07∗∗∗

(0.005) (3.428e-09)

aMax 3.648e+06∗∗∗ 3.295e+06∗∗∗

(7.120e+04) (3.916e+04)

Observations 7,709 7,709

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The main coefficient of interest is aMax, the adequate

size for a rideshare platform to contain geographical

inequity in supply.
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areas as well.

Our research can be extended along a number of dimensions. On the theory side, one interesting

question would be about the role of platform incentives and pricing. More specifically, it is not

entirely clear whether a platform should “go along” with its drivers agglomerating in busier areas or

whether it should try to “correct” the agglomeration. On the one hand, the time spent by drivers

on the way to pick a passenger up is a loss both to them and to the platform, suggesting that

the drivers’ action to avoid long pickup times by relocating to busy areas is in line with what the

platform would want. On the other hand, a driver’s decision to relocate to another area impacts

not only his or her wait times, but also other drivers’ wait times. In particular, it may increase the

pickup time in the quieter area more than it decreases the pickup time in the busy area. What this

suggests is that the platform might want to intervene and mitigate agglomeration through prices.

A theoretical model, more general than the one we built in this paper, is needed to address this

question and characterize the optimal intervention by the platform.

On the empirical side, quantifying the consumer welfare effects of the geographical inequity in

supply would be a major step. We believe a prerequisite to such a study would be panel data on

passengers in order to capture the fact that persistent under-supply of rides in a region means per-

sistent under-supply of rides to the same population, which could have large adverse effects if the

marginal utility from taking a ride diminishes with the number of rides taken. Another interesting

direction for future research would be to empirically study whether the impact of agglomeration on

the spatial distribution of drivers across a city is comparable to or larger than that of other mech-

anisms studied in the literature. For instance, Lagos (2000, 2003) focus on the role of the average

length of rides starting in each region on the attractiveness of that region for drivers. Buchholz

(2018) focuses on how drivers’ decisions are impacted by the inter-temporal, intra-daily, externali-

ties from rides given by other drivers. Brancaccio et al. (2019c) study the inefficiency arising from

transportation of goods/passengers to locations from which the car/ship would likely need to return

vacant. The modeling of all (or even a subset) of the above, in conjunction with spatial network

externalities that lead to agglomeration, could substantially complicate the computation and/or

make the estimation of the parameters too reliant on parametric assumptions. This presents the

difficult question of what (not) to include in empirical models of such comoplex markets. As such,

we believe an extension of our study, from a sole examination of agglomeration to an empirical

comparison between magnitude of agglomeration and those of the other forces mentioned above,

can enrich the literature.
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