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Abstract

We analyze how to optimally engage in social distancing (SD) in order to minimize the
spread of an infectious disease. We identify conditions under which the optimal policy is
single-peaked, i.e., first engages in increasingly more social distancing and subsequently de-
creases its intensity. We show that the optimal policy might delay measures that decrease the
transmission rate substantially to create “herd-immunity” and that engaging in social distanc-
ing sub-optimally early can increase the number of fatalities. Finally, we find that optimal
social distancing can be an effective measure in substantially reducing the death rate of a dis-

€ase.

Keywords— Social Distancing, SIR model, Time-Optimal Control of an Epidemic

1 Introduction

This paper analyzes how to optimally engage in measures to contain the spread of an infectious disease.
We formalize this question in the context of a standard model from epidemiology, the Susceptible-Infected-
Recovered (SIR) model (Kermack and McKendrick, 1927). This model divides the population into three
groups susceptible, infected and recovered, and people transition from one group into another at given
exogenously specified rates depending on the size of each sub-population. We extend this model by allowing
an additional parameter controlled by the planer that affects the rate at which the disease is transmitted.
We think of this parameter as capturing political measures such as social distancing, and the lockdown

of businesses, schools, universities and other institutions. While such measures reduce the spread of the
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disease, they often come at a substantial economic and social cost. We model this trade-off by considering
a planner who faces convex cost in the number of infected (capturing the number of people whose death is
caused by the disease) and the reduction in transmission rate (capturing the cost of shutting down society).

Our analysis identifies several features of any optimal policy. First, whenever a constant fraction of
those who are infected dies, the optimal policy is single peaked in the sense that first the measures to reduce
the transmission rate are escalated until some point in time, and after this point in time these measures are
reduced. Second, if the cost of reducing the transmission rate is linear, meaning that closing half of society
for two days is equally costly as closing all of society for one day, only the most extreme policies are used.
Either, the planner imposes the maximal possible lockdown or no restrictions at all. Intuitively, the planner
can achieve a greater effect by imposing a more extreme policy for a shorter time and thus does not find it
optimal to use intermediate policies. These results imply that for linear cost the optimal policy has a simple
structure and consists of three phase: first it imposes no restrictions then it imposes as many restrictions as
possible, and finally in the third phase imposes no restrictions at all. This result drastically simplifies the
search for an optimal policy as the planner has to only optimize over the start and end time of the social
distancing period.

We then calibrate our model to the current Covid-19 epidemic to illustrate some further insights. We
first characterize the optimal timing of the social distancing period given that the planner has access to a
certain budget of days of social distancing. We find that the optimal social distancing is often substantially
delayed. For example, if the planer has a budget of 100 days of social distancing in the next 360 days after
0.1% of the population are infected it is optimal to delay social distancing by 50 days. This initial period
of letting the disease spread uncontrolled is useful as it creates “herd immunity” and thereby reduces the
overall severity of the epidemic. We show by an example that the benefit of herd immunity is so strong that
sometimes more social distancing can increase the number of people that die from the epidemic. We show
that in this example more people die when social distancing is imposed from day 0-100 compared to day
50-100. As this example suggests, benefit of optimally timing social distancing measures is often large and
we illustrate this by comparing social distancing in the first # days after 0.1 percent are infected to ¢ days
of optimally timed social distancing. Finally, we quantify the optimal amount of social distancing. We find
that for parameters commonly used to describe the spread of Covid-19 that when one assumes a value of
a life of 10 million and that social distancing reduces the transmission rate by 60% that the optimal policy

starts social distancing almost immediately and maintains it for around 300 days.

Related Literature Our theoretical results extend the literature on the optimal control of SIR epidemic
models (for an overview see chapter 5 in Wickwire, 1977). Abakuks (1973) consider the question of how
to optimally isolate infectious population if infectious population can be instantaneously isolated. Abakuks
(1972, 1974) determine the optimal vaccination strategy in the same framework. Morton and Wickwire
(1974); Wickwire (1975) extend the previous work on vaccination and isolation by considering flow controls.

Behncke (2000) considers more general functional forms and Hansen and Day (2011) allows for hard bounds
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on the control, while considering vaccination and isolation policies simultaneously. To the best of our
knowledge the first paper that considers social distancing or lockdown policies is (Behncke, 2000, Chapter
4). This paper suggests an elegant reduction of the problem by establishing that the optimal policy depends
only on the shadow price difference between infected and susceptible. This insight is also an important
building block for our analysis (see Proposition 1). Based on it we are able to reduce the dimension of the
dynamics of the problem and provide a much more explicit characterization of the optimal policy in the
linear case (see Proposition 2 and 3).

Finally, our paper also relates to the recent literature that numerically studies optimal policies for the
current epidemic of Covid-19 in the context of SIR models (Alvarez et al., 2020; Kissler et al., 2020; Toda,
2020). Alvarez et al. (2020) numerically characterize the optimal lockdown policy for the current covid
pandemic in a similar SIR model. The paper Kantner (2020) considers an extended SEIR model and numer-
ically analyzes social distancing policies that minimize disease-related deaths while establishing a desired
degree of herd immunity at the same time. Kissler et al. (2020) numerically compare various lockdown
policies and allow for seasonality effects. Toda (2020) estimates the transmission rate in the context of an
SIR model with fixed transmission rate for various countries, compares various SD policies numerically, and
considers asset prices during an epidemic. While it is not a goal of this paper to make any recommendations
for the current Covid-19 epidemic we hope that the formal analysis and insights this paper contributes will
be useful in the rapidly evolving discussion of how to optimally react to the Covid-19 epidemic (Atkeson,
2020; Barro et al., 2020; Dewatripont et al., 2020; Piguillem et al., 2020; Stock, 2020; de Walque et al.,
2020).

2 The Evolution of an Epidemic

The SIR Model To model the spread of an infectious disease we rely on a basic model from epidemiol-
ogy, the Susceptible Infected Recovered (SIR) model introduced in Kermack and McKendrick (1927). We
divide society into three groups: susceptible s, infected i, and the rest which is either immune to the dis-
ease as they recovered from it or died. We denote by s(7) the fraction of the population that is healthy, but
susceptible to disease at time 7, and by i(¢) the fraction of the population that is infected. The SIR model
assumes the number of people that gets infected, by a single infected person is deterministic proportional
to the fraction of society s(¢) that is still susceptible to the disease. Intuitively, if only a small fraction of
society is susceptible to the disease it is unlikely that an infected person meets a susceptible person. The

mass of healthy people that become infected during dt thus equals

B0)i(t)s(1),

where the transmission rate 3(¢) captures both how infectious the disease, as well as measures society has

taken to influence the speed at which the disease spreads (like social distancing). Infected become non-



infected, by either recovering from the disease, or dying of it at rate y > 0, such that during a short time span
dt, the fraction of infected is reduced by 7i(¢).The susceptible and infected populations (s(¢),i(¢)), thus for

every ¢ € [0,00) evolve according to the following dynamics

s'(t)
i(t)=

_Z(t)i(t)s(t), 5(0) = s, W

(0)ie)s(t) —vi(e),  i(0) = o,

where s9,ip € (0,1) are given initial values satisfying so +ip < 1.

Control of the Transmission Rate The time-dependent transmission rate f3: [0,00) — B takes values
in an compact interval B = [b,b] C (0,0). We denote by b the maximal transmission rate and by b the
minimal transmission rate that can be achieved through some policy measures. The set of admissible controls
2 consists of all measurable functions f: [0,0) — B.

We introduce two cost functions v: [0,1] — [0,e0) and ¢: B — [0, 0) and for fixed time horizon T € [0, o)

we consider the cost functional

1B) = [ AG0) +e(B0)dr @

The cost v(i) measures the number of people that die per unit of time if a share i of the population is infected.
We suppose that v is convex, continuously differentiable and strictly increasing. Convexity of v captures the
fact that the probability of dying from the disease might be higher if a large share of the population is
infected and the hospital system is overwhelmed. We note that v can not only capture the people who die of
the disease directly, but also those who die because other medical conditions remain untreated as an indirect
consequence of the disease.

The cost function ¢ captures the economic and social cost of measures taken to reduce the transmission
rate. For example if social distancing measures are imposed which require the closure of most businesses
this comes at a substantial economic cost. We only make minimal assumption on ¢ and assume that it is
convex and continuous, and without loss normalize the cost associated with the highest transmission rate to
zero, c(b) = 0 > ¢(b) for all b € [b,b).

The planner trades-off the number of people who die as a direct (or indirect) consequence of the disease
with the economic and social cost of reducing the transmission rate. A policy B* is optimal if it minimizes

J over A

B* € argminJ(f). 3)
pe#

3 The Optimal Policy

The next result shows existence of an optimal policy and provides necessary conditions that any solution of

the optimal control problem (3) must satisfy.



Proposition 1. An optimal policy exists. Let B* € 2 be such an optimal strategy and denote by s*,i*: [0,T] —
[0, 1] the associated state processes satisfying (1). Then there exists a function n* : [0,T] — R with n*(T) =
0 such that for almost all t € [0,T] it holds

Fe) @
(B")() € ar%ergin (n*()i*(1)s* (t)b+c(b)] .

Moreover, we have n*(t) > 0 for allt € [0,T).

The proofs of all results of the paper are presented in the Appendix. The proof of Proposition 1 relies on
a sequence of auxilliary results we establish in the appendix using standard arguments from control theory
that can, e.g., be found in Clarke (2013). The existence of an optimal policy follows as the convexity of ¢ and
B ensures compactness of the policy space which leads to the existence of an optimal policy. Pontryagin’s
optimality principle then yields that for every optimal policy there exist two Lagrange multipliers A;, 1}
such that the optimal control is only a function of these multipliers. An argument similar to Behncke (2000)
implies that these two Lagrange multipliers can be summarized into a single variable n* = A; — A >0
that completely determines the optimal policy according to (4). This Lagrange multiplier n*(¢) has a clear
interpretation as marginal increase in the cost from infecting susceptible population. The fact that n*(¢) > 0
reflects the fact that the planner always benefits from having fewer infected. Finally, Proposition 1 provides
a novel characterization of * as the solution to an ODE, which allows us to explicitly derive features of the

optimal policy in Section 3.1.

3.1 Linear Costs

In this section we impose additional linearity assumptions on the cost to provide further insight into the
structure of the optimal policy. Again we suppose that f* € 4 is an optimal control and denote by
s*,1*: [0,T] — [0, 1] the associated state processes.

Our first type of result assumes that v is linear, which means that the fraction of infected that die from
the disease is independent of the total fraction of the population that is infected at any point in time. This as-
sumption rules out capacity effects that arise from the overload of the medical system. It is thus a reasonable

assumption if the number of infected is kept within levels that do not overburden the health system.
Proposition 2. Suppose that v is linear.' Then B* is quasi-convex, i.e., first decreasing and then increasing.

Proposition 2 establishes that any optimal policy is single peaked, in the sense that the measures to
decrease the transmission rate are first escalated until some point in time and then reduced over time. Any

policy where a reduction in measures is followed by an increase is suboptimal.

IThere exists & > 0 such that v(i) = ai



Our next result establishes that if both costs v and ¢ are linear then the optimal policy involves only the
two most extreme controls. The assumption that the cost ¢ of measures that reduce the transmission rate is
linear has a simple interpretation in the context of social distancing: Shutting down half of the economy for
two days is equally costly as shutting down the whole economy for a single day.”> While we think that there

is no normative reason for this assumption we think of it as a natural baseline for the analysis.

Proposition 3. Suppose that v and c are linear.® Then for any optimal control B* there exists 0 < H<t; <T
such that for a.e. t € [0, 1]

b fortel0,t})
B (t)=qb forte[t,5] -
b forte (5,T]

Proposition 3 drastically simplifies the search for an optimal policy as it implies that any optimal policy
is characterized by the two points in time (7,7 ). Note that the proposition does not rule out that any of the
intervals is empty. In particular, reducing the transmission rate by the maximal amount at every point in time
as well as taking no measures at all to reduce the transmission rate can be optimal. The main insight of the
proposition is that under plausible assumption it is never optimal to use intermediate measure for a longer
time (i.e. closing only parts of the economy) as doing so is dominated by implementing maximal measures

for a shorter time.

4 An Illustration

We next illustrate how our results can be used to derive policy advice for fighting an epidemic. In this
illustration we aim to choose parameters in line with the COVID-19 pandemic. An important disclaimer
is that at the current point in time there is substantial uncertainty about the true parameters governing the

spread of COVID-19 which substantially influence the optimal policies.

Parametric Assumptions We assume that the average length of an infection equals 18 days (y = 1/18)
and that the social planner has access to two policies 0 < b < b corresponding to social distancing (SD) b
and no social distancing (NSD) b. We set b to 0.16 in line with a reproduction rate of Ry of b/y = 2.88. We
assume that enacting social distancing reduces the number of contacts by 60% and set b = 0.4b consistent
with Ry = b/y = 1.152. The fraction of infected that dies equals 0.8%, below 20 times* the critical care

This implicitly assumes that the transmission rate 8 depends linearly on the shut down of the economy.

3There exists &, 8 > 0 such that v(i) = ai and ¢(B) = §(b— B).

“This is we implicitly assume that 5% of infections are sufficiently severe that they need hospitalization and access
to critical care.
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Figure 1: On the left: The number of infected over time without SD (in red), with SD from day
0-100 (in black), and for the optimal SD period from day 48 to day 148 in blue. On the right: the
optimal period of SD as a function of the length of SD. The dashed line marks the point beyond
which the fraction of infected who die increases due to an overload of the medical system.

bed capacity k¥ = 0.000347° and then grows linearly such that if 20% of the population is simultaneously
infected 5% of infected die®

0.042(7i — 20k)

V(i) = (i) x [0.008 + — BP0

1yi>20x
Throughout our simulations we assume that at day zero, 0.1% of the population is infected. Finally, we

assume that a cure and a vaccine for the disease arrive in one year (360 days) and no one dies of the disease

afterwards.

The Optimal Timing of Social Distancing We begin by analysing the optimal timing of social dis-
tancing. In order to do so we first suppose that the planner has a fixed budget of days of social distancing and
answer the question during which time period he optimally engages in social distancing. We only consider
policies that consist of three subsequent periods, first NSD, follows by a period of SD, and a period of NSD.
For example, consider the case where the planer has a budget of 100 days of SD. In this case the optimal
policy is to start social distancing on day 48 and end it on day 148. As one can see in the left graph of

Figure 1 this leads to a substantially flatter curve of infected over time than social distancing in the first 100

>The number of cricitcal care beds per population equals & = 0.000347 for the US,
Kk = 0.000292 for Germany, and &k = 0.000125 for Italy. See https://www.sccm.org/
getattachment/Blog/March-2020/United-States-Resource-Availability-for-COVID-19/
United-States-Resource-Availability-for-COVID-19.pdf?lang=en-US.

®Note, that v(i) aims not only at capturing the people who die directly as a consequence of the disease, but also
those who die as they do not have access to critical care as a consequence of the overloaded medical system. Our
assumption implies that if 50% of the population is simultaneously infected the death rate increases to 11.5%. We
note that these are extremely pessimistic assumptions if the number of infected is substantially underestimated.
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Figure 2: On the Left: Fraction of the population that dies within 360 days of 0.1% infected as a
function of the length of social distancing for the optimal timing of social distancing (in blue) and
social distancing starting at day O (in red). On the right: infected over time, if SD is exercises from
day 50-100 (in blue) and from day 0-100 (in red).

days (in black) or no social distancing (in red). Interestingly, the effect of suboptimal social distancing is
marginal in the sense that while it initially reduces the number of infected substantially, it essentially only
delays the peak of infected, but does not substantially flatten it. This leads to a substantial reduction in the
implied death rate within a year: 0.6% under optimal social distancing, 4.6% with social distancing in the
first hundred days, and 4.8% without social distancing.

We next analyse how the optimal timing of social distancing depends on the length of social distancing.
As one can see in the right graph of Figure 1 it is optimal to delay social distancing beyond the date where
0.1% of the population is infected. For example even if it is optimal for the planner to engage in 300 days
of social distancing within the next year it is only optimal to start social distancing after 25 days. This
observation might be surprising as it implies that if it is not optimal to maintain permanent social distancing

(until the arrival of a vaccine/cure), then it is optimal to delay the period of SD.

The Value of Social Distancing Whether or not the planner wants to engage in SD is an orthogonal
question to the optimal timing of SD. To study this question we plot in Figure 2 the death rate withing a
year as a function of the number of days of social distancing. As one can see in the figure social distancing
can be an effective measure to prevent the death of population. For example, 50 days of optimally timed
social distancing (from day 50 to day 100) reduce the death rate by roughly 4%. The figure however shows
that without optimal timing SD is much less effective and to achieve an equal reduction in the example one
needs more than 300 days of SD.

We asses the value of optimal social distancing in prevented dead where we plot the percentage of dead
population prevented per day of SD as a function of the number of days the planner engages in SD. The

initial efficacy of social distancing is around 0.2% per day of SD and then decreases to 0.05% around 100
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Figure 3: Prevented dead population per day of optimal social distancing.

days. If one assigns a value of around 10 million dollar to a statistical life as it is typically estimated in
the literature’ then one life corresponds to around 148 US per capita GDPs®, which implies that the planner
should be willing to endure a day of SD to save 0.0019% of the population. Thus, for the commonly assumed
value of a statistical life the planner should engage in constant SD until a vaccine or cure is found. Figure 3
shows that this conclusion is robust and stays valid even if one assigns just a tenth of the commonly assumed

value to a life, i.e. 1 million $.

Social Distancing can Lead to more Dead We next illustrate how suboptimally timed social distanc-
ing can actually increase the number of fatalities as a consequence of the epidemic. A particular example
of this is shown in the right graph of Figure 2 which shows that social distancing from day 50-100 can lead
to a substantially flatter curve than SD from day 0-100. The reason for this perhaps surprising phenomenon
is that by not engaging in SD early, many more people are infected before day 100 which are then later on
immune. The “herd-immunity” that is created this way leads to a substantially lower peak in infections and
fewer dead (0.7% of the population vs 4.6%).

5 Extensions

5.1 Random Arrival of a Vaccine and Cure

In this section we introduce a variant of the model of Section 2 where the time until a vaccine or cure is
available is random. More formally, we let T7: Q — [0,7] be a bounded random variable on a probability

space (Q,.%,IP). We assume that 7 has a continuous density function p: [0,7] — [0,c0) and we denote by

7See for example Viscusi and Aldy (2003).
8See https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(PPP) _per_capita.
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F(t) =P[t <t] = [§ p(s)ds its distribution function®. The expected costs of a strategy 3 € & are given by

58 = | [ i)+ e(Beyar] ®

These can be transformed to

T T
J(B)zE[/O 1[o,f><s><v<z'<r>>+c<ﬁ<r>>>dr}= | (1= FO)(i0) +e(B0)) . (©)

We obtain the following variant of Proposition 1'°.

Proposition 4. An optimal policy exists. Let B* € 9 be such an optimal strategy and denote by s*,i*: [0,T] —
[0, 1] the associated state processes satisfying (1). Then there exists a function N* : [0,T] — R with n*(T) =
0 such that for almost all t € [0,T)] it holds

(L= F (@) (v(i (1)) + (B (1)) =V (i (0))i* (1)) — Ji" (v(i*(s)) +¢(B*(s)))p(s) ds

()0 = 0

+n (OB (0)i(@) (7)

and

B(r) € argmin [0 ()i (1) ()b + (1 — F () (b)] )

Moreover, we have n*(t) > 0 for allt € [0,T).

5.2 Vaccine, but no Cure

Throughout, we made the simplifying assumption that a vaccine and a cure arrive simultaneously. While
this assumption simplified the analysis, it is easy to extend the model such that there is no cure at the
time a vaccine arrives. As after the comprehensive vaccination of the population no new infected would
be added, the share of infected would evolve according to /() = —¥i(t) after time T and thus be given by
i(t) = i(T)e "*~T), The share of the population that would die after the arrival of the vaccine in this case

would thus be given by

Fi(T)) = /T " (iCr)e T dr = /0 o Vz(?dz. ©)

For example in the linear case where v(i) = ai this would simplify to v(i) = %i. The objective function

would thus be adjusted by a terminal cost

T
J(B) :/0 v(i(t)) + c(B(1))dr +v(i(T)) -

9Without loss of generality we assume that T is the smallest upper bound of 7, i.e., F(t) < 1 forall t < T.
10See (Clarke, 2013, Corollary 22.6) for a statement of the maximum principle for time-dependent payoffs.
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For the problem of minimizing J we obtain the following variant of Proposition 1.

Proposition 5. An optimal policy exists. Let B* € 2 be such an optimal strategy and denote by s*,i*: [0,T] —
[0, 1] the associated state processes satisfying (1). Then there exists a function N* : [0,T] — R withn*(T) =

V;g;) such that for almost all t € [0,T] it holds

V(i* () + e(B* (1)) — minyep ("CELDE 1 (1))
i*(2) (10)

(™)' (6) =" ()" ()" (1) +

(B")) € argergin [n*(t)i*(t)s*(t)b—i—c(b)] )

Moreover, we have nN*(t) > 0 for allt € [0,T).

6 Conclusion

We derived the optimal policy for social distancing during an epidemic. Our analysis revealed several
features of the optimal policy. For cost linear in the number of infected, the optimal policy consists of
two phases, a first phase where the measures taken to decrease the transmission rate are escalated and then
a second phase where these measures are reduced. Furthermore, if the cost of reducing the transmission
rate is linear, the optimal policy is always extreme. At any point in time either social distancing is carried
out to the maximal extend possible or not at all. The intuitive reason for this result is that more extreme
measures over a shorter time horizon are more effective than less extreme measures over a longer horizon.
We illustrated through an example that the effectiveness of social distancing depends crucially on its optimal
timing. Withing the context of this example optimal social distancing is often substantially delayed in order
to generate herd immunity. Engaging in more, but too early social distancing can increase the peak number

of infected and thereby the fatalities from the disease.

A Appendix

We split the appendix in two sections. Section A.1 proves a sequence of auxiliary results which together

imply Proposition 1. Section A.2 provides a proof of Proposition 2 and 3.

A.1 Proof of Proposition 1

Lemma 6. An optimal policy B* exists that solves (3). Let s*,i*: [0,T] — [0, 1] be the state processes associ-

ated with an optimal control satisfying (1). Then there exist absolutely continuous functions A;,A;: [0,T| —

11



R which satisfy for almost all t € [0,T] the dynamics

(A7) (1) = (A1 (1) = A5 (1) B~ (1)i" (1), A{(T) =0, an
(22)'(1) = (A7 (1) = A7 () B (1)s" (1) + ¥A; (1) =V'(i*(1)),  A37(T) =0,
and the optimality condition
B*(t) € argengin [(A5 () = Af (0))i*(1)s™ (£)b+c(b)] . (12)
Moreover, there exists a constant h € R such that for almost all t € [0,T] we have
(25 (1) = AL (0)]B™ (1)1 (£)s™ (1) = YA ()17 (1) +v(i* () +c(B" (1)) = h. (13)

Proof of Lemma 6. Suppose an optimal policy B* exists. The existence of A;, A} that satisfy (11), (12) and
(13) follows from the Pontryagin principle (see, e.g., Clarke, 2013, Theorem 22.2 and Corollary 22.3). We
show the existence of an optimal policy by verifying the conditions of Theorem 23.11 in Clarke (2013).
(@) g(z,(s,0)) = (—z.s> which implies that |g(z, (s,1))] < 2[is| < 2.

+is
(b) B = [b,b] is closed and convex by definition.

(c) The sets E = {(so,ip)} x R, and Q = [0,T] x [0, 1]? are closed and ¢ = 0 is lower semicontinuous.
(d) The running cost B — v(i) +¢(fB) is convex as c is convex. Furthermore, v(i) +c(f3) > 0.

(e) The projection set is given by {(so,io)} and thus bounded.

(f) As B € Bit follows that |8| < b. This verifies (f) (ii).

We have hence verified that there exists an optimal policy. O

Throughout we suppose that $* € 4 is an optimal control and denote by s*,i*: [0,7] — [0, 1] the as-
sociated state processes satisfying (1). Moreover, we denote by A;",A}: [0,T] — R the Lagrange variables
from Lemma 6. Note that compactness of B and continuity of ¢ ensure that for all ¢ € [0, 7] the function
b— [A;(t) — A (1)]i*(¢)s* ()b + c(b) attains its minimum on B. By (12) this minimum is attained by $*(z)
for almost all 7 € [0, T]. By potentially changing B* on a set of measure zero we suppose in the sequel that
B*(t) attains the minimum for all ¢ € [0,7] (i.e., (12) holds for all # € [0, T]). Note that this change does not
affect the trajectories of s*,i*,A; and 1.

We introduce the new Lagrange variable

n(0) =4 (1) = A (1) (14)

The variable n*(7) has a clear interpretation: it measures the marginal change in the cost with respect to
infecting susceptible population. Intuitively speaking, n*(¢) measures the additional cost if one additional

person is infected at time ¢ given the optimal policy is used. Note that by (12) at each time ¢ the optimal
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control B*(¢) depends on A (¢) and A (¢) only through their difference n*(¢) = A, (t) — 4] (¢).
The next result shows that towards the end of the time horizon it becomes optimal to use the control b.

Moreover, it identifies the constant 4 from Lemma 6.

Lemma 7. Let B* € & be an optimal control and suppose that the optimality condition (12) holds for all
t € [0,T]. Suppose that ty € [0,T] satisfies N*(ty) < 0. Then it holds that lim,_,, B*(t) = B*(to) = b. In
particular, we have that lim, 7 B*(t) = b and that h = v(i*(T)) for the constant h from Lemma 6.

Proof of Lemma 7. First note that the assumption 1*(#p) < 0 ensures that the function b +— n*(¢)i* (¢)s*(t)b+
c(b) attains its global minimum on B at b. Hence (12) implies that *(to) = b. Next let (¢,) be a se-

quence such that 1, — 79 as n — o. Suppose by contradiction that there exists a subsequence such that
lim,, . B*(t,) =: by < b. Next note that (12) ensures for all n € N that (recall that ¢(b) = 0)

N (ta)i" (tn)s"™ (tn) B™(tn) + c(B™ (tn)) < M7 ()" (tn)s™ (1) - (15)
This implies that *
13 (1) (1) (1) > bc(_ﬁﬁ(t(t))) (16)
Taking the limit n — oo yields the contradiction
0= fim 0" (1)i* (1,)5" (5) > fim <P )) _ cbo) 17)

n—eo Tnoeb—B*(t,)  b—by
Therefore, we have lim,_,,, B*(t) = b = B*(ty). Taking the limit # — 7T in (13) and using that n*(7) =0
implies & = v(i*(T)). O

The next result shows that the cost of additional infected n* is characterized by an ordinary differential
equation (ODE) that does not depend on A, and A;. Moreover, we show that both A; and A} can be

recovered from n*.

Lemma 8. The variable n* solves

(19)

B(t) e argenl;in [(M(©)i()s(t)b+c(b)],
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then

w0 = [n@pst) ¢ VLD g,
(20)
_1 op) 2 @) +c(B() —v(i(T))
i) = [nB)s0) + - ]
solves (11).
Proof of Lemma 8. First note that it follows from (13) and Lemma 7 that
N @O)B ()i (0)s™ (1) = YA (0)i" (1) = v(i*(T)) = v(i* (2)) — c(B"(1))- 2D
Then (11) implies that
(M) (1) = (A3)'(1) = (A7) (1) = =0 (O)B"(1)s™ (1) + ¥A; (1) =V (i (2)) + " (1) B™ (2)i" (¢)
v(EE(T) — v () —e(B(1)) (22)

Next suppose that s,i and 1 solve (19) and that A; and A, are given by (20). Observe that it follows
similarly as in Lemma 7 that 3(T) = b and consequently that A(T) = 2,(T) = 0. Next note that the

envelope theorem ensures that

gt [ (@)i()s(@)B (1) +c(B(1))] = 2 min M (@)i(t)s(1)b+c(b)] = ﬁ(t);)t M@i(0)s@)].  (23)

ot beB

Then it holds that
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Therefore we obtain that

Similarly, A; satisfies

M(t) =2A5(1) =n'(t) = [n'(t) = ()B@)i(1)] = n'(t) = (A (1) = Xa(1)) B (2)ir). O
Lemma 9 (More Infected are Costly). The function nN* satisfies n*(t) > 0 forallt € [0,T).

Proof of Lemma 9. Suppose that there exists 7 € [0,7) such that n*(¢) < 0. Then Lemma 7 shows that

B*(t) = b. Moreover, Lemma 7 ensures that §* is continuous at ¢ and hence 1* is differentiable at . Then

(18) shows (recall that ¢(b) = 0)

(Y (0) =" (B (1)i"(1) + o 24)

Since v/ > 0 we thus obtain that
0 <o+ X CD DV -1 7)) 05)

Convexity of v thus implies that
(*Y(0) <n* (B ()7 (1) <. 26)

We conclude from the terminal condition n*(7) = 0 that n*(¢) > 0 for all # € [0,7]. If v/ > 0 then (25) is a
strict inequality and hence we have (n*)'(t) < 0 for all # € [0,7) with n*(z) < 0. Again we conclude from
the terminal condition n*(7) = 0 that n* is strictly positive on [0,7). O

Since (A;")'(t) = —n*(t)B*(¢)i*(¢) we obtain from Lemma 9 that A" is decreasing in time and, in par-
ticular, that A" is non-negative. This means that a marginal increase of the susceptible population (while
keeping the infected population constant marginally increases the costs. This marginal effect decreases over

time and vanishes at time 7.
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A.2  Proof of Proposition 2 and 3

Proof of Proposition 2. We introduce the function g(r) = n*(¢)i*(¢)s*(¢), t € [0, T] and compute g’(z)

gt) = ") (O (0)s™(t) + (" () (@) (1) (1) + 0" ()i (1) (s7) (1)
=[(A7(6) = A3 () B (1)s" () + A5 (1)y =V (i"(1)) = (AT (6) = A7 () B~ ()i (1)]i7 (£)s™ (1)
+ (A (1) = A (1)s™ () [B7(0)i" (1)s™ (1) — i (1))
— (A (1) = AL (@) (B ()i (1)s™ (1) @7)
= (A7 (1) = 23 (0)) B (0)[= (5™ (0))%" (1) + (i (1)) (1) + (5™ (1)) %" (1) — (1)) 5™ (1))
+ (A5 (1) =V (O ()57 (1) = ¥(A5 (1) = Af (£))s™ (£)i" (1)
= [YAL (1) =V (@ ()] (1)s" (1)
Since V' (i) = or we have by Lemma 9 that
gth’lfk(f) V(@) = —ym* (B (1)i*(r) < 0. (28)

This together with (27) shows that g’ changes its sign at most once and that this change (if existent) is from
positive to negative. It follows from (28) that g’ can not be equal to zero on any interval. This implies that
g is first strictly increasing and then strictly decreasing, i.e., strictly quasi-concave. Next take two points in
time ¢,#' € [0, T]. Then (12) shows that

g(t)B"(t) —c(B™(r)) < g(t)B™(r) — c(B* (")) and g(t") B™(r') — c(B*(¢')) < g(t")B*(t) —c(B"(1)). (29)
Adding these two inequalities yields that

(8(t) —g("))(B*(t) = B*(1")) <0 (30)

Since g is strictly quasi-concave we obtain that B* is quasi-convex. 0

Proof of Proposition 3. Let v(i) = ai and ¢(B) = 8(b— ). It follows from (12) that any optimal control

B (1) = {b %fg(t) <6
b ifg(t)>0.

satisfies

As argued in the proof of Proposition 2, g’ is strictly quasi-convex which implies the result with 7 = inf{r >
0: g(t)> 6} and sy =sup{t <T:g(t) >6}. O
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