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ABSTRACT 

 
Despite its clinical success, the mechanism underlying extracorporeal photopheresis (ECP) is not well 

understood, however, the plate-passage (PP) step appears integral to generating activated monocytes. In the 

first part of the project, we developed a functional assay to evaluate the efficacy of plate-passed myeloid 

cells (PPM) compared with freshly isolated, unstimulated monocytes (UM) and conventional dendritic cells 

derived from blood monocytes cultured with GM-CSF/IL4 (DC). Each of these three antigen presenting 

cell (APC) was co-cultured with purified, autologous CD8 cells, with or without CD4 cells. Cultures were 

carried out using melanoma antigen MART-1 “long peptide (LP),” a 25-amino acid peptide containing the 

binding sequences for the appropriate MHC class I and II, and for presentation to CD8+ and CD4+ cells. 

Results showed reliable expansions of freshly isolated naïve human T cells using the three types of APC, 

without any significant differences among the types, and the addition of CD4+ tended to enhance 

expansion of PPM and DC, but not UM. In the second part, we sought to develop a method for directly 

tracking early T cell responses during immunotherapy. Using calcium flux to indicate early T cell 

signaling, we focused mostly on the ovalbumin (OVA)-derived, SIINFEKL-specific transgenic mouse 

model (OT1). After a few protocol modifications, we were able to detect antigen-specific calcium flux 

(ASF) upon mixing naïve OT1 cells with SIINFEKL peptide-loaded DC compared with non-specific 

peptide counterparts. We could still detect ASF down to a peptide-loading concentration of ~10-3uM and at 

a frequency of ~0.1% OT1 cells among wild-type (WT), non-responding cells. We next identified the 

activation requirements of early effector and memory OT1 cells from the spleen, lymph nodes, and 

peripheral blood after adoptive transfer into WT recipients immunized with OVA. At 1 week, OT1 cells 

from all 3 tissues had become activated, effector cells (CD44hi and CD62 lo), and while detectable, ASF in 

all three tissues was reduced compared with naïve cells. At 6 weeks, only the peripheral blood OT1 cells 

had generated a memory response (CD127hi KLRG1lo), and ASF in all three tissues was further reduced. 

Herein, we have shown that ASF can be detected in naïve, and less so antigen-experienced and memory T 

cells in a single-antigen, transgenic system from which we hope to develop a multi-antigen tumor model.  
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INTRODUCTION  

The anti-tumor immune response  

The interface between cancer and the immune system has been postulated at least for a few 

decades (1,2,3) but may date back to as early as 1863 when Virchow hypothesized that sites of chronic 

inflammation were susceptible to cancer (4). Since the 19th century, our understanding of the anti-tumor 

response continues to evolve, permitting us more than ever to develop drugs that generate effective 

therapeutic responses (5). Classically, an anti-tumor immune response begins with tumor cells in the tumor 

environment expressing a variety of tumor-associated antigens (TAAs) (Figure 1). In fact, TAAs may be 

mutated self-antigens (neoantigens resulting from somatic mutations)(6,7,8) or wild-type self-antigens 

which are over-expressed or selectively expressed by the tumor. TAAs act as a source of antigen for the 

infiltrating dendritic cells (DC) of the tumor bed. By various mechanisms, TAAs are taken up, processed 

and presented as peptides onto major histocompatibility complex (MHC) class I or II, in processes known 

as cross-presentation or presentation, respectively, or generally referred to as immunization. DC home to 

regional lymph nodes where they are able to make contacts with naïve, “virgin” CD8+ cytotoxic T cell 

precursors and CD4+ helper T cell precursors that express TCRs specific for peptide-MHC complex. If DC 

are in a matured state in which they express costimulatory molecules, they will transmit an activation signal 

to T cells to proliferate and differentiate. Once a T cell response is initiated, T cells then exit the lymph 

node and traffic back to the tumor microenvironment where they infiltrate and trigger tumor cell death by 

various death mechanisms. However, if DC receive no maturation stimulus, they may instead induce 

tolerance (“down-regulation”) via T cell deletion, anergy or production of T regulatory (Treg) cells. In fact, 

a host of immunosuppressive defense mechanisms are produced by the tumor or other infiltrating myeloid 

cells that oppose T cell killing which otherwise would result in tumor shrinkage. Some of these 

mechanisms include upregulation of programmed death-ligand, (PD-L1/L2) on the cancer cell surface, 

release of prostaglandin E2 (PGE2), arginase and vascular endothelial growth factor (VEGF). Interestingly, 

compared with over- and selectively-expressed TAAs, analysis of T cell responses in melanoma showed 

that the most dominant and enduring responses were against neoantigens (9). This suggests that 

immunotherapies are most likely successful if they promote responses to neoantigens.  
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 In fact, different cancer immunotherapies target the different steps in the cascade just described to 

enhance production of anti-tumor T cells, which presumably function to destroy tumor cells. These 

therapies and their effect on anti-tumor T cells will be discussed next. For instance, therapies targeting the 

immunization step include DC- or peptide-based vaccines or exogenously administered activation signals 

such as those delivered via Toll-like Receptor (TLR). Peptides (such as 20-mers) have been used in 

vaccines against vulvar cancer in which they have been shown to promote T cell infiltrates (10). Cell-based 

therapies such as Provenge have shown variable and non-sustainable responses. In Provenge therapy, white 

blood cells are apheresed at weeks 0, 2, and 4 then cultured overnight in media containing a fusion protein 

from prostatic acid phosphatase (PAP) and granulocyte macrophage colony-stimulating factor (GMCSF) 

prior to reinfusion. Clinical results of a Phase III trial, unfortunately, showed little evidence of tumor 

shrinkage or delay in disease progression (11). In fact, by conventional clinical response criteria, known as 

Response Evaluation Criteria in Solid Tumors (RECIST; see Section, “Aim Two: Developing a method to 

evaluate anti-tumor responses”), only 1 in 341 patients exhibited a partial response. Although these 

numbers seemed bleak, the trial reported a 4.1 month improvement in median survival compared with 

placebo. Because of the limited options to treat advanced prostate cancer, the therapy was expedited for 

FDA approval. Additionally, biopsies of metastases after vaccination in some clinical trials revealed the 

presence of immune infiltrates in association with extensive edema, which often were followed by fibrosis 

(12). Since the tumor progressed in spite of such infiltrates, two conclusions were presented: 1) cells were 

of low avidity or subject to additional inhibition by endogenous tumor signals (13) and; 2) more powerful 

metrics were needed to evaluate clinical response. 

 Other methods target the T cell activation phase of the immune response. In one strategy, adoptive 

transfer of exogenously modified T cells modifies the T cell response. Typically these methods follow a 

lymphodepletion of the host, and in melanoma patients, this has shown incredible promise in expanding the 

tumor infiltrating lymphocyte (TIL) pool (14, 15). Lymphodepletion appears to be necessary to increase the 

efficacy of the treatment, possibly due to elimination of T cells and other homeostatic cytokines that might 

interfere with a response (16). A variant of adoptive cell transfer therapy is chimeric antigen receptor 

(CAR) therapy in which T cells are exogenously genetically modified to express an artificial tumor-specific 

TCR that is expanded and reinfused back into the patient. Results from CAR therapy have been promising 
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in inducing T cell infiltrates, and indeed, objective clinical responses (17), but once again the field is faced 

with limited methods to track those clinical responses.   

Lastly, and perhaps most promising are molecular-based therapies that counteract the tumor’s 

immune suppressive defense mechanisms. These include molecules such as cytotoxic T-lymphocyte-

associated protein-4 (CTLA-4), classically expressed on Treg cells, and programmed cell death 1 (PD-1) 

and PD-L1, expressed on the surface of T cells and tumor cells respectively. Melanoma-specific CD8 T cell 

responses have been reported in the case of ipilimumab, a CTLA-4 monoclonal antibody (18). Recent 

studies established a correlation between clinical responses to ipilimumab and elevated peripheral blood 

lymphocyte count (19), expression of T cell activation markers, inflammation in the microenvironment (20, 

21), and an elevated frequency T cell receptor clones. Most recently, a study correlated the mutational 

burden of melanoma with duration of clinical therapy benefit from ipilimumab therapy (22), which 

suggested that highly mutated melanomas expressed more antigens and thus were more capable at 

triggering the host immune system. However, this hypothesis has been somewhat discredited as mutational 

burden was demonstrated not to be a sufficient predictor of therapeutic response. This again suggests that, 

without better markers of immune function, it will be difficult to evaluate clinical outcome relying solely on 

phenotypic characterization. Similarly, in a study evaluating the immune correlates of anti-PD-1 antibody 

therapy in various cancer types including melanoma and prostate cancer, 66% of patients whose tumors 

expressed PD-1 did not correlate with objective response (23). In short, determinants of therapeutic 

response may be more complex and a more direct assessment of T cell function may be needed to more 

accurately predict response to therapy. 

Some histological features of the tumor environment may shed light on the interface between the 

immune system and the tumor. For instance, the association between improved survival and the presence of 

CD8+, Th1, and memory T cell infiltrates is well established in various cancer types (24, 25, 26). By 

contrast, the presence of mast cells has been a poor prognostic factor (27). In fact, the type, density and 

location of immune cells within the tumor bed may correlate with the clinical outcome, and these metrics 

have been proposed as an adjunctive prognostic measurement alongside the conventional TNM staging 

system (28). The major caveat behind relying on histological examination is that it does not incorporate 

function. In the example of Provenge, functional examination of T cells revealed two metrics that 
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correlated with clinical response: delayed-type hypersensitivity (DTH) responses to recall antigens, and 

secretion of cytokines after non-specific stimulation (29). Unfortunately, in this study, the authors could not 

demonstrate tumor antigen-specific immunity: in other words, T cells from patients who received DC alone 

versus DC plus tumor antigen did not respond differently. Because the technique could not distinguish a 

tumor-specific response from an non-specific one, it was not generalizable. Although evidence for an 

important interface between the immune system and tumor is strong, therapy for cancer as well as T cell-

mediated disorders still lacks validated methods for directly tracking T cell responses.  

Extracorporeal photopheresis: an immunomodulatory therapy 

In this section, I turn to an immunomodulatory therapy developed in the early 1980s by our group 

and discuss it as a lens for studying the field of cancer immunotherapy. Extracorporeal photopheresis 

(ECP) resulted in the cure of many patients with advanced, and at the time, terminal, cutaneous T-cell 

lymphoma (CTCL) (30, 31). CTCL is a clinically heterogenous disease of CD4+ skin-homing T cells (32). 

Early on, involvement in CTCL is confined to the skin with erythematous patches that evolve into scaling 

and poikiloderma (33), but as the disease advances, patches thicken to become plaque-like and involvement 

of peripheral blood increases (34). Moreover, erythroderma, a late manifestation of the disease, presents 

with near-complete skin involvement and varying amounts of scaling and pruritis.  

During ECP, a patient’s blood is apheresed, i.e., exposed to centrifugal forces, to separate the red 

blood cells from the rest of the blood (Figure 2A). Red blood cells are reinfused immediately back into the 

patient, while the patient’s plasma and leukocytes are passed through a polystyrene plate under low flow 

conditions that recapitulate forces in the post-capillary venule. This first step is termed “plate passage.” For 

some time during this plate passage procedure, leukocytes, constituting about 5% of the patient’s total 

peripheral pool are exposed ex vivo to a photoactivated psoralen drug, 8-methoxy psoralen (8-MOP) in the 

presence of ultraviolet light type A (UVA), a combination therapy referred to as psoralen and UVA 

(PUVA). Because 8-MOP is inactive without UVA, the duration of activity of the drug is controlled by 

exposure to UVA (35). 

Since its FDA approval, ECP has been effective in the treatment not only of CTCL but also of 

solid organ transplant rejection (SOTR) (36), graft-versus-host disease (GVHD) (37, 38), and autoimmune 
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diseases such as progressive systemic sclerosis (39) and pemphigus vulgaris (36). SOTR and GVHD are 

life-threatening complications of organ transplantation and allogeneic hematopoietic stem cell 

transplantation (AHSCT), respectively (40). In SOTR, the host immune system attacks graft tissue resulting 

in graft rejection and potentially death. In AHSCT, host irradiation and chemotherapy is thought to create 

an inflammatory milieu, which activates clonal expansion of donor T cells against host antigen, promotes 

cytokine secretion, and expands the pool of natural killer (NKT) cells. Without GVHD, HSCT holds 

promise in the treatment of high-grade malignant hematologic disease, autoimmune disease, and 

immunologic deficiencies, including HIV (41). ECP has been used to treat rejection in heart (42, 43), 

kidney (44), and lung (45, 46) transplants. Moreover, randomized trials have demonstrated phototherapy’s 

efficacy for the prevention of cardiac rejection (47, 48). In fact, after several cycles of ECP, transplant 

patients are often less dependent on broad immunosuppression (49). When used in the treatment of GVHD, 

ECP diminishes the graft-versus-leukemia effect, allowing the immune system to harness an effective 

response against leukemic cells (50). Lastly, similar to its effect in CTCL, when used in STOR and GVHD, 

ECP carries no carry life-long risks of infection, unlike conventional therapy with broad 

immunosuppression (51, 52). 

At the end of the procedure, which normally lasts between 1 and 2 hours, the WBC and plasma are 

reinfused back into the patient. In the case of CTCL, the effect is to stimulate immune responses, and in 

SOTR and GVHD, the responses are downregulated. ECP’s other major advantages are that it carries 

neither the risk of infection from immune suppression nor the toxic effects of chemotherapy. Such broad 

application is promising and simultaneously paradoxical, for how is a single therapy immunostimulatory 

(in the case of CTCL) and downregulatory (in the case of SOTR and GVHD), and in one case report, in the 

same patient (53)? Lastly, the main advantage of ECP compared with artificial DC therapies (11, 82, 83) is 

that, in ECP, physiologic conditions partner with the immune system to stimulate or regulate it, the way the 

immune system would in a healthy host. 

Our lab has studied the mechanism underlying ECP using both human and mouse models. We 

hypothesize that central to the plate passage step is the interaction between adhered platelets and “rolling” 

monocytes (Figure 2B). Specifically, as platelets flow on the polystyrene surface, they adhere to the 

surface via fibrinogen receptors. Platelet adhesion under shear stress conditions is a well-recognized step in 
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platelet activation, and we have shown in our model system, that this results in expression of activation 

molecules such P-selectin (54). This allows peripheral blood monocytes flowing over the plate to interact 

and adhere to the platelets (55). We have shown that without these flow conditions, such interactions are 

not possible (54). Platelets have been shown to have activating effects on monocytes that contact them (56, 

57), and overall, plate passage appears to generate synchronized, activated monocytes expressing various 

DC differentiation markers (58).  

To marry the paradoxical application of ECP in immunostimulation and downregulation, we have 

explored the second component of ECP: the effect of PUVA on DC. Our lab and others have shown, for 

instance, that 8-MOP and UVA upregulate expression of DC “suppression” genes thus favoring the 

generation of tolerogenic DC (59), and that PUVA plays a role in inhibiting graft rejection (60, 61). 

Therefore, we hypothesize PUVA’s role in tolerogenesis is central to ECP’s downregulatory effect. PUVA 

has the additional effect of preferentially inducing massive, slow apoptosis in the lymphocyte population 

(59, 62). We hypothesize that lymphocytes act as antigen sources for both tolerogenic and stimulatory DC. 

DC internalize these peptides, display them on class I or II major histocompatibility complex (MHC) 

molecules, and ultimately activate the adaptive immune system’s CD8+ cytotoxic T cells or CD4+ helper T 

cells, respectively (63). Depending on the activation state of DC, the immune response is either stimulatory 

or downregulatory.  

The advantages of ECP over other immune therapies are multiple: firstly, being a relatively 

“physiologic” therapy, requiring no addition of artificial cytokines, ECP has a great safety profile (64). This 

permits large-scale induction of antigen-presenting cells (APC) that are highly specific for dying 

pathogenic T cells. Additionally, since it’s been approved for over three decades, there is accumulating 

clinical evidence supporting its efficacy in a variety of T cell mediated disorders (36, 39).  

Since the introduction of ECP, next-generation modifications have been developed. In one, known 

as transimmunization, ECP is modified by an extra, overnight ex vivo incubation prior to reinfusion (65). 

The incubation step allows easier transfer of antigens (from apoptotic lymphocytes) to activated 

monocytes. Since ECP and its related therapy allow easy access to treated cells, it is an ideal model for 

designing a clinical tool for the purpose of immune monitoring.  
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With this simplified introduction to immunotherapy (and with an emphasis on ECP), I turn to the 

focus of this project, which was two-fold: firstly, to establish a functional model that permits the evaluation 

and optimization of a laboratory model of ECP. Specifically, our first aim was to enhance our 

understanding of the process of generating functional myeloid APC via plate passage. Our second aim was 

to develop a method to more readily evaluate and quantitate immune responses during ECP, as well as 

other immune-based therapies. Although ECP has had promising success in the treatment of the various T 

cell disorders, responses remain variable. In fact, while complete responses certainly have been repeatedly 

observed, such patients remain a minority. In fact, the best responders to ECP were the patients with a short 

duration of disease, those without bulky lymphadenopathy or major internal organ involvement, patients 

with limited leukocytosis or leukemic burden and close to normal numbers of peripheral CD8+ T cells (66, 

67, 68, 69). For this reason, ECP remains a promising therapy that merits closer inspection and 

optimization. Moreover, beyond CTCL, immunogenic cancers such as melanoma and renal cell carcinoma 

may stand to benefit from such a physiologic, immune-based therapy. As such, optimization of ECP as well 

as development of methods to evaluate the response would ideally allow a broader application of the 

therapy.   

Aim One: Developing a laboratory model of ECP  

In the first part of this project, our aim was to functionally evaluate plate-passed, myeloid APC 

against two other myeloid APC in order to optimize the laboratory plate-passage model. Specifically, we 

were interested in examining the role of CD4+ cells in the expansion of naïve CD8 cells from healthy 

human donors.  

A naïve T cell, by definition is a circulating, mature T cell that has never encountered its specific 

(or cognate) peptide-MHC (70, 71). Naïve cells therefore circulate through the bloodstream and lymphoid 

organs for immunologic surveillance. Upon encountering an antigen, they undergo robust clonal expansion 

and differentiation into effector and memory cells (72). It is estimated that there are about 4,000-40,000 

naïve circulating cells in a single clone, which is a frequency of about 10-6 -10-7 in the peripheral blood (73). 

One such antigen represented a relatively high frequency is the melanoma antigen recognized by T cells-1 
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(MART-1), which was among the first human tumor antigens to be cloned (74, 75). The precursor 

frequency of naïve MART-1 specific cells has been estimated as high as 1 in 1000 naïve T cells (73). 

MART-1 is expressed by melanocytes of the skin and retina (76), as well as in the majority of 

early stage melanosomes in melanoma tumors (77), but not other tumors. Although the protein function 

remains unknown, the MART-1 gene encodes a 118-amino acid polypeptide that acts a type III signal-

anchor protein localized to the endoplasmic reticulum and trans Golgi network (78). This protein 

localization is clearly different from another melanocyte-specific polypeptide, tyrosinase, but it resembles 

that of gp100 (79). The uniqueness of MART-1 lies in its recognition by T lymphocytes in the context of a 

commonly encountered HLA haplotype, HLA-A*0201, making it an immunogenic peptide. In fact, it has 

been shown that MART-1 can be efficiently internalized and cross-presented by DC to T cells (80).  

Since it is expressed in most melanocytic tumors and recognized by a common HLA haplotype, 

MART-1 has been used in several vaccination strategies. MART-1 peptide has been injected with adjuvant 

and/or pulsed on DC with modest clinical success (81, 82, 83). Often, responses to MART-1 are frequently 

assessed using tetramers, which are oligomers formed of multiple peptide-MHC class I complexes capable 

of binding to specific TCRs (84). MART-1 peptide has been used in 2 classical forms: as a long peptide 

(LP) spanning residues 16-40 and a short peptide (SP) spanning residues 26-35. It has been shown that LP 

is superior to SP in vaccination strategies, due to its preferential targeting of DC present in lymph nodes, 

and subsequent enhancement of antigen presentation in vivo (85). Additionally, cross-presentation and T 

cell expansion were found to be enhanced when the MART-1 peptide was modified at position 27 by 

replacing an alanine with a leucine residue. This anchor-optimized residue was shown to enhance MHC-

peptide affinity by 2-3 log, in turn increasing the duration of T cell-DC contact, a critical step in T cell 

priming (86). It has also been proposed that this anchor residue may stabilize the TCR/MHC-peptide 

complex as a whole (87). Unfortunately, while the modified peptide improves cross-presentation, in vitro 

proliferation of naïve T cells is often not reproducible between experiments and within the same donor as 

% tetramer positive CD8+ cells range anywhere from 1% to 70% of the total CD8+ population (86). 

Clinically, peptide vaccinations resulted in expansions of specific T cells in 3-10% of patients, limiting the 

broad applicability of the MART peptide (88).  
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 Another important aspect of the MART system was the discovery of 2 novel MHC class II 

epitopes of MelanA/MART-1 in the region of the immunodominant 27-35 Class I epitope (89). From 

animal studies, we learned that concomitant activation of antigen-specific CD4 and CD8 cells boosted the 

effector function and maintained a longer-lasting memory population of CD8 cells (90, 91, 92). Bioley et 

al. were able to show that the modified MART-1A27L LP was able to induce CD4 responses (89). The same 

group has also shown that MART-1 peptide vaccination showed in vivo reduction in FoxP3 expression 

levels in CD4 T cells, which suggested reduced regulatory T cell (Treg) activity, as well as restoration of 

peptide-specific proliferation and cytokine secretion (93). The authors had begun work on the role of CD4 

cells in CD8 expansions, but these results remain unpublished. Another approach has been to TCR engineer 

CD4+CD25- T cells with transduced MHC Class I-restricted TCR for the MART epitope with some 

success (94). 

 In the first part of this project, we tested the functional APC capability of our plate-passed 

monocytes (PPM) by comparing them against untreated monocytes and conventional (GMCSF/IL4) DC. 

Because of its capacity to generate peptides capable of being bound by MHC Class I and II (and hence be 

recognized by both CD8+ and CD4+ cells), we used the MART-1A27L LP system to study the role of CD4 

cells in the expansion of naïve, human CD8 cells. We hoped to use such an assay to understand the 

mechanism underlying APC capability in ECP, and by modifying those conditions in vitro, we sought to 

optimize therapy.  

Aim Two: Developing a method to evaluate immune responses 

 The second part of this project was directed toward developing a method to evaluate immune 

responses, which would be applicable in all immune-based therapies, whether anti-tumor or anti-graft, cell-

based or molecular.  

Improved methods to track T cell responses would enhance our understanding of the interface 

between cancer and the immune system. Indeed, I am convinced that such methods are necessary to replace 

conventional clinical response criteria which are problematic and inaccurate. Criteria such as RECIST and 

World Health Organization (WHO) are based on evaluation of tumor size and overall burden of disease 

(95). The problem with applying these measures in immunotherapy is patients may take longer to respond: 
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in fact, responses to immunotherapy are on the order of weeks or months, as compared with conventional 

chemotherapy where responses are on the order of 6-8 weeks or approximately following 2 cycles of 

chemotherapy (96). In clinical trials, delayed response is often seen as delayed separation of Kaplan Meier 

curves which may be falsely interpreted as treatment failure (97). Particularly in studies comparing 

standard chemotherapy to immunotherapy, classical responses to chemotherapy will be apparent before any 

responses to immunotherapy can be measured. Delayed response lengthens the period for follow up which 

increases the probability of unexpected outcomes and leads to loss of statistical power (97, 98, 99). 

Additionally, certain response patterns to immunotherapy are not captured by conventional criteria. These 

include patients whose disease burden increases overall, whether by increase in size of existing lesions or 

emergence of new lesions prior to reduction in tumor burden. In fact, specifically for ipilimumab (CTLA-4 

inhibitor), there are four patterns of response associated with favorable survival: 1) shrinkage in baseline 

lesions, without new lesions; 2) durable stable disease (in some patients followed by a slow, steady decline 

in total tumor burden); 3) response after an increase in total tumor burden; and 4) response in the presence 

of new lesions. Additionally up to 10% of patients who ultimately had a positive response to ipilimumab in 

two Phase II clinical trials followed response patterns 2, 3, and 4 and therefore were not captured by the 

clinical trial, which classified their disease as “progressive” or “stable” according to WHO criteria (100, 

101). Modifications to RECIST have been proposed, such as, immune-related response criteria (irRC), 

however, these lack specificity for a therapeutic response (102, 103). Most clinical trials now use overall 

survival or progression-free survival as a primary outcome to evaluate therapeutic response, but this 

evaluation is also delayed, with mean response times in one trial of 2.1 months (104). That is a extensive 

period to be on a potentially highly toxic therapy such as ipilimumab without any knowledge of whether 

the patient is responding.    

Since clinical criteria to evaluate immunotherapeutic response are insufficient, a number of 

methods evaluate T cell responses directly using peripheral blood have been developed (105). These 

include tetramers (discussed also in Aim One) (106), which do not report on any T cell functional 

capability. Alternatively, assays to evaluate T cell proliferation by staining with CFSE are influenced by the 

in vitro stimulation procedures, and therefore may not be an accurate measure of in vivo conditions. Other 

techniques such as enzyme-linked immunosorbent spot (ELISPOT) or flow cytometric assays detect 
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cytokine levels in the peripheral blood. ELISPOT can be used to evaluate cytokine production levels, such 

as levels of IFNγ and TNFα, or expression levels of various surface markers. Some murine models have 

shown Th1 responses to be relevant in anti-tumor immunity (107), suggesting that IFNγ and TNFα 

cytokines are important in monitoring immune responses. However, such a strategy may not work if tumors 

have developed mutations in cytokine receptors that prevent receptor engagement, such as in human lung 

adenocarcinoma models (108) and prostate cancer cell lines (109). Furthermore, ELISPOT results did not 

correlate with disease-free survival in patients who underwent surgical resection of Stage II-IV melanomas 

then received a multi-peptide vaccine (81). The caveat to interpretation of this study is that subset analysis 

was not done so it remains unclear if stage of disease before resection contributed to disease-free survival 

or whether the technique was not standardized. Another study showed no correlation in Stage IV melanoma 

patients treated with a multi-peptide vaccine, even though the technique was standardized (110).  

Though some have focused their efforts on standardizing these existing techniques and conducting 

large, prospective clinical trials, especially with ELISPOT (111, 112, 113, 114, 115), others have argued 

we should learn from the HIV field where techniques like ELISPOT have failed at measuring T cell 

responses against the virus. Rather than concentrate on harmonizing assays, we should be focused on 

developing new ones. In fact, the lack of monitoring tools has been suggested as one of nine critical hurdles 

in cancer immunotherapy (96). More recently, mRNA transcription of cytokines such as IFN-γ have been 

used to report on CD8+ responses following in vitro stimulation with peptide (antigen)-loaded, autologous 

peripheral blood mononuclear cells (PBMCs). Unfortunately, RT-PCR based methods are still expensive 

and time-consuming.  

To address this clear gap in cancer immunotherapy, this project aims to develop a method that 

tracks early T cell signaling events. Such a tool would offer rapid clinical assessment and allow for early 

modification or discontinuation of therapy. Fortunately, understanding of the early signaling events in 

antigen-specific T cell activation continues to evolve. We now understand that an immunological synapse 

is formed by three dominant contacts (116): firstly, T cell receptor binds cognate peptide-MHC on the 

surface of a DC, which primarily controls the specificity of the immune response, and is often referred to as 

Signal 1. Secondly, adhesion molecules such lymphocyte function-associated antigen (LFA), CD2, and 

CD58 provide the energy needed to pull cells together allowing sustained antigen recognition and precise 
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execution of effector functions, which has been shown to be necessary for tumor rejection (117). Thirdly, 

co-stimulatory and checkpoint receptors, known as Signal 2, alter the functional outcome of immunological 

synapse formation without having much signaling or adhesive activity.  

Following the immunological synapse, a cascade of T cell phosphorylation events ensues that 

culminates in a supramolecular assembly that recruits phospholipase PLC-γ1, which becomes activated 

(118). Upon activation, PLC-γ1 hydrolyzes PtdIns(4,5)P2 into diacylglycerol (DAG) and inositol-(1,4,5)-

triphosphate (IP3). IP3 opens up calcium channels in the endoplasmic reticulum permitting release of 

calcium stores. This process triggers opening of store-operated calcium channels in the cytoplasmic 

membrane. As a result, several calcium-dependent signaling proteins and their target transcription factors 

are activated, including the phosphatase calcineurin and its targets: nuclear factor of activated T cells 

(NFATs), calcium-calmodulin-dependent kinase (CaMK), and nuclear factor kappa B (NFκB). By contrast, 

DAG activates GTPase Ras and kinase ERK, which in turn activate Ras-mitogen-activated protein kinase 

(MAPK) and protein kinase C (PKC) and a number of downstream transcription factors. These various 

signals are often integrated, such as with NFAT:Fos:Jun complex (119, 120). Integrated early signals drive 

the transcription of a large number of activation-associated genes and are important in cell proliferation and 

cytokine gene expression (121). 

 Calcium flux was first reported as a measure of lymphocyte activation nearly three decades ago 

(122). Methods to track calcium flux use fluorescent dyes that are detected by flow cytometry or confocal 

microscopy. In order for calcium flux to be used as an immune monitoring tool, several features must be 

present. Fundamentally, the method should detect responses that are antigen-specific. In other words, 

responses must be sensitive and specific for a T cell that has encountered cognate peptide-MHC. Moreover, 

to achieve true immunological monitoring, sufficient clinical responses must be recorded for correlations 

between in vitro and in vivo parameters to be made. Since all activated T cells will signal calcium early on, 

such a method would capture all activated T cells no matter the antigen specificity. It would capture all 

antigen types, including neoantigens and over-expressed self-antigens. Although such a tool would require 

staining the sample in a relatively laborious protocol, we hypothesized that if we developed a method that 

would be sensitive and specific to antigen-specific T cell responses, we could use label-free, non-tedious, 

existing technologies and elaborate new ones that would be significantly less tedious and would be 
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compatible with a clinical test. To begin with, this project introduces a proof-of-principle concept using a 

transgenic mouse model (OT1) in which all T cells expressed TCR specific for the ovalbumin (OVA)-

derived, SIINFEKL-peptide. Transgenic models have been invaluable for the understanding of basic 

concepts of T cell tumor biology (123, 124, 125), and we hoped to use the simplicity from such a model to 

prove the concept that early, antigen-specific T cell signals could be tracked. 

STATEMENT OF PURPOSE 

Firstly, to develop a functional assay to evaluate laboratory-produced, plate-passed myeloid cells 

Secondly, to elaborate a method for directly tracking T cell responses during cancer immunotherapy 

MATERIALS AND METHODS 

Unless otherwise specified, all procedures were performed by the author.  

Human donors 

PBMC were obtained from healthy, HLA-A2 human donors, in accordance with the guidelines of the Yale 

Human Investigational Review Board, and informed consent obtained under protocol number 0301023636, 

Production of normal control allo-inhibitory dendritic cells. Typing of HLA-A2 (MHC Class I) was done 

using anti-HLA-A2 FITC mAb (BioLegend). When applicable, donors were also tested for two MHC Class 

II loci, HLA-DRB1 and HLA-DQB1, which are two MART-specific loci reported by Bioley et al (89). 

PBMC were obtained by Ficoll gradient centrifugation. When plasma was needed, whole blood was spun 

blood at 1000 RPM for 15 min prior to laying the Ficoll layer to separate plasma from PBMC and RBC, 

plasma layer was obtained, and the leftover cell-rich layer was brought up to the same volume and lain on a 

Ficoll column. Monocytes were purified from PBMC by negative selection using the Pan Monocyte 

Isolation Kit, human (by Miltenyi). Naïve CD4+ and CD8+ T cells were each purified from PBMC by 

negative selection, using Naïve CD4+ T cell isolation kit II and CD8+ T cell isolation kit, human, 

respectively. All purifications achieved >90% purity (data not shown).  

 

APC preparation, including plate-passage  
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Three different APC were prepared from human PBMC: conventional FastDC (FastDC), plate-passed 

monocytes (PPM), and unstimulated monocytes (UM). Two days prior to set up of functional assay (d-2), 

FastDC were prepared by culturing monocytes in the presence of 800IU/ml GMCSF and 1000IU/ml IL-4 to 

differentiate into DC over 2 days, as described by others. (126) On day 0, autologous donor monocytes 

were again negatively purified from PBMC using the same kit, and either left unstimulated (UM) or passed 

over a laboratory model of ECP (PPM). The ECP model was comprised of a polystyrene chamber 

measuring 4x2x0.029cm with a volume capacity of approximately 232 µl, engineered by the Fraunhofer 

Institute for Biomedical Engineering. The chamber has one entry and one exit port. The entry port is 

connected to a flow pump that can adjust for 2 variables: the rate of flow and the diameter of the syringe. 

The plate-passage is performed in a CO2-free incubator set at 37oC. To run the plate, 4ml of autologous 

platelet-containing plasma were spun at 900g for 15 min in order to deplete plasma of platelets and form 

platelet-poor plasma (PPP). 2 ml of PPP were mixed with 2ml of platelet-containing plasma to form a 1:1 

diluted plasma that was loaded onto the plate at 2.92ml/hr. The plasma layer was left to coat the plate for 

30min-1hour to allow platelet adhesion. Plasma was then washed at 2.92ml/hr with 6ml of RPMI media, 

and 8ml of 10e6/ml PBMC were run continually over the plate at 0.484ml/hr. Cells were then washed and 

collected using a low-volume, low-speed wash (at 0.484ml/hr), and a second high-volume-high-speed wash 

(at 14.8ml/hr) to remove any adherent monocytes. Throughout the plate-passage, another 8ml of 10e6/ml 

PBMC, constituting UM, were kept at 37oC. PBMC from both plate-passed and unstimulated groups, were 

then purified to monocytes.  

 

MART functional assay  

APC were co-cultured in 96-well round-bottomed plates, with autologous CD8+ cells in RPMI media 

supplemented with non-essential amino acids (100X, Sigma-Aldrich), sodium pyruvate (100X, Invitrogen), 

vitamin solution (100X, Invitrogen), 2-mercaptoethanol (100X, Invitrogen), and 10µM ciprofloxacin 

(Serologicals Proteins), and 5-10% human plasma. Cultures are set up at varying ratios of 1:5, 1:10, 1:20, 

and in some cases, 1:40, APC:T cells in the presence of 10uM MARTA27L long-peptide. Negative controls 

were also set up by culturing T cells alone in the presence of peptide. Unless, otherwise noted, the CD8+ 

cell number was kept constant at 0.5e6/ml/well. When applicable, 0.5e6 autologous CD4+ cells were added 
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at 1:1 CD4+:CD8+ cells, keeping the APC:CD8 cell or APC:total T cell ratios the same. Three days 

following co-culture, 12.5IU/ml IL-2 and 5ng/ml IL7 cytokines were added. Between d9 and d11 from co-

culture, half of the media was changed, when needed, and IL2 and IL7 cytokines again supplemented. On 

d13, cells were harvested, washed and stained with 1:25 MART-1 PE-conjugated dextramer (Immudex) 

and, as a negative control, 1:25 gp100 APC-conjugated dextramer (Immudex). Cells were kept in the dark 

at 25oC for 10min. Excess dextramer was removed by washing and cells were then surface stained with 

1:50 anti-CD4 BV mAb (BioLegend), 1:50 anti-CD8 PE/Cy7 mAb (BioLegend), 1:75 anti-CD45RO Alexa 

Flour 488 mAb (BioLegend), then kept in the dark at 3oC for 15min. Cells were washed and analyzed on 7-

color Stratadigm. Before analyzing samples, 1:12 7AAD (BioLegend) was added at 1:12 on ice. 7AAD was 

added to exclude any apoptotic cells from the tetramer analysis.   

 

Mice, reagents, and generation of bone-marrow derived DC (BMDC) 

Wild-type B6-SJL CD45.1+ and OT-1 transgenic CD45.2+ mice were purchased from Taconic. Mice were 

between 7 and 10 weeks of age at the start of each experiment. All experimental procedures involving mice 

were performed with the approval of the Yale Animal Research Committee under the protocol number 

2014-11620, “Murine Models for testing the bidirectional immunomodulatory actions of modified 

extracorporeal photochemistry”. All CD8+ cells were purified by negative selection using EasySepTM 

Mouse CD8+ T cell Enrichment kit by STEMCELL. The protein ovalbumin (OVA) and the peptides H-

2Kb-restricted OVA257-264 (SIINFEKL) and the negative control peptide, EIINFEKL were purchased from 

Sigma-Aldrich. Lipopolysaccharide/OVA-containing nanoparticles (LPS/OVA-NP) were synthesized and 

used at10mg/ml [by Douglas Hanlon and Harib Ezaldein]. BMDC were generated from crushing of femur, 

tibia and fibula of a B6-SJL mouse using mortar and pestle. After filtering debris and washing mortar twice 

in RMPI media, filtered cells were washed, resuspended at 10-15e6/ml in T cell media supplemented with 

20ng/ml, and cultured in 6-well plates. Cells were harvested between days 6 and 8 after culture, with 

approximately 60-70% recovery, and a purity of >85%, and subsequently used in antigen-presentation 

assays.  

 

Adoptive transfer and vaccinations 
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OT-1 CD45.2+ cells were obtained from crushing a spleen (SPL) from which 5e6 purified CD8+ cells were 

injected into each of the tail vein (i.v) and peritoneal cavity (i.p.) of a isoflurane-anesthetized B6-SJL 

CD45.1+ mouse, as shown in [done by Enping Hong] (Figure 3A). The mouse rested for 4 hours before the 

vaccinations. Vaccination of both B6-SJL CD45.1+ and OT-1 CD45.2+ mice with LPS/OVA-NP 

proceeded identically in all 7 sites, unless otherwise noted [done by Enping Hong]. 100ul was injected 

intraperitoneally, 40ul subcutaneously (s.c.) bilaterally at each base of the tail, 40ul s.c. bilaterally at each 

mid-thigh, and 40ul s.c. at each ventral chest area, for a total 3.4mg vaccination. To generate memory cells, 

B6-SJL CD45.1+ mice were rested for 7 days, then rechallenged with 3.4 mg dose of LPS/OVA-NP, as 

described previously [done by Enping Hong] (127). Vaccination was also attempted directly on OT1 mouse 

by injecting increasing quantities of LPS/OVA-NP. For peripheral blood (PBL) analysis, eye bleeds were 

performed of the R ophthalmic vein [done by Enping Hong]. For memory cell characterization, the 

following panels were used: CCR7 PerCP/Cy5.5, CD62L APC, KLRG1 AF488, CD127 PeCy7, CD44 

AF700. For adoptive transfer experiments, the following antibodies were added: CD8 PE, CD45.2 eF450. 

For direct vaccination of transgenic OT1 mice, we used the following: TCRβ PE, CD8 eF450. All 

antibodies were from BioLegend.  

 

Human cell line  

The MART-1 tumor-reactive lymphocyte cell line called DMF5 was obtained as a gift from the National 

Cancer Institute (NCI). DMF5 is a cell-line cloned from the MART-specific tumor-infiltrating lymphocytes 

(TILs) of an HLA-0201 patient with melanoma. Compared to other clones from a pool of TILs from five 

patients, it was found to be the most avid against MART-1 expressing tumors in vitro (128). The authors 

then expanded in the presence of irradiated PBMC from healthy donors and high doses of IL-2, as 

described previously. Approximately 14 days from the start of an expansion, cells were frozen down in 

4e6/ml aliquots. Staining using MART dextramer showed 30% of DMF5 cells expressed MART-specific 

TCR (data not shown).  

 

Cell labeling and calcium flux assay 
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As shown in Figure 3B, murine BMDC were loaded for 2 hours at 37oC with 1µg/ml LPS and either 

SIINFEKL or EIINFEKL peptide. For human experiments, FastDC were loaded with MARTA27L short-

peptide (SP) or gp100 SP, as a negative control. Unless noted, the peptide loading concentration was 

10ug/ml. BMDC and FastDC were then washed from peptide and surface stained with 1:300 murine anti-

CD11c FITC mAb (BioLegend) and 1:100 human anti-Cd11c FITC mAb (Biolegend), respectively. CD8+ 

(either OT1 or Dmf5) cells were loaded with 1µM Indo-1 AM by Life Technologies and kept at 37oC in the 

dark for 30 min. Indo-1 is a ratiometric indicator of free intracellular calcium that has been used by many 

authors to study the activation of lymphocytes (122, 129). It excites at 365 nm and emits at two different 

wavelengths depending on its bound state: at 485 nm (blue) for free Indo-1 and at 405nm (violet) for Indo-

1 that is bound to calcium. The ratio of emission intensity of bound to free Indo-1 (i.e. Violet/Blue) 

represents the calcium content of the cell and is independent of the actual indo-1 concentration. Following 

Indo-labeling, OT1 CD8+ cells and DMF5 cells were stained with 1:100 murine anti-Cd8 PerCP-Cy5.5 

mAb (Biolegend) and 1:100 human anti-CD8 PerCPCy5.5 mAb (Biolegend), respectively. Following 

staining, all cells were resuspended in calcium-chloride containing PBS: 1) APC (either BMDC or FastDC) 

were brought up in a constant volume of 150ul/ FACS tube while varying the cell number and 

concentration; 2) CD8+ cells were kept fixed at 1e6/ml, and 0.4e6 cells were added to FACS tubes, which 

were separate from the APC tubes. For the positive control, anti-CD3 antibodies, human and mouse, from 

eBioscience was used.  

For flow cytometric analysis, an APC tube and its respective CD8+ T cell tube were pre-warmed for 2-

3min, after which APC were added to T cell tube and mixed by pipetting. The sample was walked over to 

the centrifuge, spun at 1650 RPM for 20s, then the pellet was walked back to the cytometer, as described 

by others (130), vortexed and flicked to resuspend the pellet. The sample was then run for 7 min on the 

LSRII cytometer. Data were analyzed using FlowJo version 9.6.4; calcium plots were represented as kinetic 

curves, which graph the median value of the ratios of Indo-1 Violet/Blue collected for all events in one 

second.  To quantify differences in T cell responses to antigen-specific and non-specific stimuli, the 

following parameters were tabulated: mean and peak Ratio of Indo Violet/Blue, area under the curve 

(AUC), slope of the curve and its oscillatory frequency (OF). The OF was calculated as the number of 

conjugate events per second.  
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RESULTS  

PPM functionally stimulate clonal expansion of MART-specific naïve T cells 

Three different types of APC were prepared; for a detailed explanation, see Materials and Methods. 1) 

Conventional FastDC (FastDC) were generated by culturing purified monocytes over two days in the 

presence of GM-CSF and IL-4. 2) Plate-passed monocytes (PPM) were generated by passing PBMC 

through an IBMT chamber that was coated with autologous plasma/platelets. 3) Unstimulated monocytes 

(UM) were untreated but left to sit at 37oC as a negative control during the time that the PPM were being 

prepared. No phenotypic characterization was done on the various types of APC. However, work done by 

others in our laboratory had shown plate-passage capable of generating functional APC that were 

differentiating along the DC pathway (55, 58). 

To evaluate the functional capabilities of the three APC, each APC (purified by magnetic bead negative 

selection; see Materials and Methods) was co-cultured with autologous CD8+ cells at 4 DC:T cell ratios: 

1:5, 1:10, 1:20, and 1:40, keeping the CD8+ cell number fixed, and in the presence of 10 µM MARTA27L LP 

(Figure 4A). LP was chosen instead of the form-fitting, 10-mer SP used by others (131). In all six of 

donors tested, none of the DC:T cell ratios showed any superiority in expanding naïve T cells (results not 

shown). When all ratios were matched across all 3 APC types and concatenated, as shown in Figure 4B, 

the average tetramer+ expansion of CD8 cells co-cultured with each of the three APC types was the 

following: 10.86 % from FastDC (range=1.73-40.6, SD=11.56, n=6), 9.78% from UM (range=2.32-21.9, 

SD=5.87, n=8), and 7.3 % from PPM (range=1.71-17.4, SD=5.07, n=8). Differences among APC types 

were not significantly different. Negative controls were also set up using autologous CD8 cells only 

cultured in the presence of LP: those expansions averaged 1.1% (range=0.16-2.12; SD=0.75, n=8). Further, 

when possible, duplicates were set up. Figure 4C shows the coefficient of variance (COV) for the 6 

experiments ranged from 23.5 to 53%. This is higher than the COV reported by Wolfl and Greenberg 

(131): for more, see Discussion. 

CD4 cells may assist in CD8 proliferation  

In donors that tested positive for a MART-specific MHC class II, CD4+ cells were added to the co-culture 

to evaluate whether helper T cells would potentiate the proliferative response of MART-specific clones 
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(Figure 5). CD8 expansions stayed the same or decreased: for conventional FastDC, 3.9%, SD 1.64, with 

CD4 addition, 6.9%, SD 3.7; for UM, 9.7%, SD 6.8, with CD4 addition, 7%, SD 3.6; for PPM, 5%, SD 4.7, 

with CD4 addition, 7%, SD 4.8. Negative controls, set up with CD8 only, expanded to only 1.4%, SD 1.4, 

and with CD4 addition, 1.6%, SD 1.61. Thus with the addition of CD4 cells into the co-culture, CD8 

expansions using FastDC and PPM increased, though the numbers did not attain statistical significance, 

whereas CD8 expansions using UM decreased.  

Antigen-specific flux (ASF) cannot be detected without gating a population of interest  

The second part of the project was to develop a proof-of-principle immunologic assay using calcium flux 

and show that early T signal signaling could report antigen-specific responses. We used Indo-1 AM, a dual 

wavelength calcium detection dye that is excited at 340 nm (in the UV range) and emits differentially at 

475 nm when bound to calcium (Indo-Blue), and at 405 nm when free from calcium (Indo-Violet). Results 

are therefore reported as a ratio of calcium-bound (Indo-Violet)/ calcium-free (Indo-Blue). The advantages 

of using Indo-1 AM in this setting are multifold. Firstly, because Indo-1 is a ratiometric dye, it allows 

comparisons between samples and different experiments. Secondly, it is well-suited for flow cytometry 

detection. However, the limitations of Indo-1 include a small dynamic range, that is, the difference in 

intensity between baseline and activation may be small, which could present a problem when evaluating 

subtle differences. We also tried another calcium dye (Fluo-4AM), which is a single-wavelength dye, but 

achieved greater sensitivity with Indo-1AM (data not shown). Because of the complexity of a multi-antigen 

tumor model, we focused initially on the ovalbumin (OVA)-derived, SIINFEKL-specific transgenic mouse 

model (OT1). Naïve OT1 CD8+ T cells were labeled with Indo-1 AM then mixed with SIINFEKL 

(specific)- or EIINFEKL (non-specific) peptide-loaded DC. By flow cytometry, we could not detect 

antigen-specific calcium flux (ACF) in OT1 cells (Figure 6A). We reasoned that the absence of antigen-

specific flux in the peptide-loaded DC groups may have been because the probability of DC-T cell 

encounter was low under the specific mixing conditions employed. To increase that probability, we mixed 

and then pelleted DC and T cells to facilitate immunological synapse formation. We also surface-labeled 

DC and T cells with anti-CD11c(FITC) and anti-CD8(PerCP/Cy5.5) antibodies respectively, which allowed 

gating on CD8+ CD11c+ conjugates. Conjugates represented T cells that had made stable contacts with 
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DC. For more, see Materials and Methods. Figure 6B shows the conjugate gating strategy and a 

representative plot of conjugate % as the ratio of DC: T cell changes. Overall, by decreasing the ratio of 

DC:T cells through varying the DC number and concentration, ASC formation decreased. 

Results pooled from 4 experiments reproduced these antigen-specific differences (Figure 6C). Comparing 

the 3 DC:T cell ratios tested: at the 3:1, 5:1, 10:1 ratios, ASC formed in 17% (STD=14.5), 33.5% 

(STD=15.8), and 48.4% of CD8+ cells (STD=12.5), respectively. At 3:1, 5:1, and 10:1 ratios, non-antigen 

specific conjugates (NASC) formed in 3% (STD=3.78), 8.49% (STD=4.73), and 14.5% of CD8+ cells 

(STD=11.4). These differences between ASC and NASC became more significant as the ratio of DC:T cell 

increased, which may have been due to reduced T cell competition to contact DC.   

We were also able to show ASC formation in the human DMF5 cell line using MART SP- (specific 

peptide) or gp100 SP- (nonspecific peptide) loaded FastDC (Figure 6D). At the 3:1, 5:1, 10:1 ratios, ASC 

formed in 25.4% (STD=17), 36.6% (STD=11.7), and 42.6% of CD8+ cells (STD=12.3), respectively. At 

3:1, 5:1, and 10:1 ratios, NASC formed in 11.9% (STD=3.1), 28% (STD=10.6), and 29.3% of CD8+ cells 

(STD=4.9). We concluded that the DMF5 cell line exhibited higher background levels of NASC, compared 

with OT1 cells. We hypothesized that this may be due to the presence of IL2 cytokine in the expansion 

media of the DMF5 resulting in non-specific background stimulation, or to the fact that this highly 

activated T cell line is sticky. Because differences in flux between ASC And NASC were maximized at the 

5:1 ratio, the remainder of experiments in the OT1 system utilized this middle ratio. By contrast, DMF5 

were used at 10:1 ratio where differences between ASC and NASC were maximized (data not shown). 

ASF has a lower limit of detection  

We were initially surprised to find that as ASC formation decreased, so did ASF (Figure 7A). The 

amplitude of flux in ASC and NASC increased as the DC:T cell ratios increased, as did the oscillatory 

frequency. However, upon further reflection, this result should probably not have been surprising, as 

increased ratios resulted in increased conjugate formation, with TCR contacting more available peptide-

MHC (pMHC) complexes. Moreover, when the sample was vortexed “vigorously,” following the pelleting 

step, ASC disappeared and no ASF was detectable.  
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To determine the sensitivity of our system, we next titrated the peptide loading concentration. We showed 

that the peptide-loading concentration could be titrated down to the order of ~10-3uM in the OT1 (Figure 

7B) and DMF5 systems (Figure 7C). We also mixed responding cells (OT1 or DMF5) with wild-type 

(WT; non-responding cells), and showed that ASF disappeared when the proportion of antigen-specific 

cells in the mixture reached ~0.1% OT1 cells (Figure 7D) and around 1% of DMF5 cells (Figure 7E).   

In vitro antigen-experienced T cells have a higher activation threshold than naïve cells 

Next, we sought to compare the activation threshold of naïve cells with in vitro pre-activated counterparts. 

For pre-activation in the OT1 system, purified CD8+ OT1 cells were cultured with BMDC at a 10:1 ratio of 

T:DC in the presence of human IL2/IL7 (see Materials and Methods for concentrations). In the DMF5 pre-

activation set-up, 3e6 DMF5 were cultured in the presence of 0.6e6 FastDC in the presence of classic 

maturation cocktail (TNFα, IL1β, IL6, PGE2; see Materials and Methods for concentrations) and either 10 

µg/ml MART SP or gp100 SP. Forty hours later, non-adhered cells representing DMF5 were collected and 

used in calcium flux experiments. In all both T cell types (OT1 and DMF5), results suggested that pre-

activated cells were less able to flux calcium as efficiently as freshly harvested OT1 (Figure 8A, B) and 

DMF5 (Figure 8C, D) cells. Additionally, somewhat surprisingly, DMF5 pre-activated using gp100 (a 

non-specific source of peptide), had restored ability to flux calcium compared to specifically pre-activated 

DMF5 (8D; bottom rows).  

To examine the activation potential of naïve, human T cells, 7 day co-cultures were set up using FastDC 

from an HLA-A2+ donor and autologous naïve cells T in the presence of IL2, IL7, and either specific (S) 

peptide, i.e. MART-1 SP, or non-specific (NS) peptide, i.e. gp100 SP. On day 7, cells were harvested and 

tetramer stained. (S) T cells expanded to approximately 9% of the CD8 pool, whereas (NS) T cells did not 

(Figure 9A). By calcium flux, (S) T cells demonstrate ASC formation and ASF compared with (NS) T 

cells. Intriguingly, when (S) T cells are diluted with (NS) T cells at a 50% (1:1 ratio) dilution rate, ASC and 

ASF are not significantly altered (Figure 9B). In conclusion the in vitro naïve T cell expansion suggested 

that (NS) T cells were less able to activate calcium flux than (S) T cells. This contrasts with DMF5 data 

shown in Figure 9D. This could be on account of the fact that DMF5 cells are expanded in the presence of 

large amounts of IL2 cytokine, resulting in non-specific activation. It’s possible that specifically pre-
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activated DMF5 become exhausted from the combination of both specific and non-specific stimulation. 

Since cytokine is added to the naïve T cell culture on day 3, exhaustion is less likely to occur as the 

expansion proceeds slowly. Because in vitro culture conditions may well not be particularly physiologically 

relevant, we next sought an in vivo activation model in the OT1 system. 

T cell activation in antigen-experienced T cells in vivo differ depending on host 

To generate in vivo antigen-experienced cells, two WT B6 SJL mice on a CD45.1+ background were 

vaccinated with 3.4 mg LPS/OVA nanoparticles (Vax WT). Because of this genetic background, wild-type 

cells could be labeled with CD45.1 fluorescent antibody that would distinguish wild-type cells from OT1 

adoptively transferred cells, which were on a CD45.2+ background. Four hours later, one mouse received 

an adoptive transfer of 5e6 CD45.2+ CD8+ OT1 cells (Vax+AT WT), while the other did not. In doing so, 

we sought to compare the AT population to the endogenous SIINFEKL-specific T cell population in the 

WT mouse. One week later, splenic SIINFEKL-tetramer positive cells had expanded to 1.5% in the 

vaccinated WT mouse and to 4.4% in the WT+AT mouse (of the total CD8+ population). As positive 

control, naïve OT1 CD8+ splenocytes were 100% SIINFEKL tetramer positive (Figure 10A). Since 

activated T cells express CD44, we compared CD44 intensity in the tetramer+ and tetramer- populations, 

and found CD44 activation in the tetramer+ population in the vaccinated mice, but not the tetramer- 

population, and less so in naïve OT1 cells. There was no difference in activation between Vax WT and 

Vax+AT WT.  

To compare calcium flux among the different groups, we diluted naïve OT1 cells from 100% to 4% in a 

WT non-responding population, then to 1% and 0.5% (Figure 10B). This permitted us to do side-by-side 

comparisons with the Vax+AT WT (at 4%, then diluted to 1%, 0.5%), and Vax WT (at 1%, then diluted to 

0.5%). As with the in vitro pre-activated system, we saw decreased activation at 4% in the Vax+AT WT as 

compared with naïve animal. ASC were also lower in that animal (5% compared with 12% in naïve OT1). 

Surprisingly, at 1%, Vax WT ASF was higher than in naïve OT1 and Vax+AT WT, which suggested that 

endogenous antigen-specific cells might behave somewhat differently than AT transgenic cells. At 0.5%, 

ASF was similar in naïve OT1 and Vax WT, and lowest in Vax+AT WT.  
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To further investigate the impact of host environment on the activation of T cells, we sought to compare 

naïve OT1 cells and Vax+AT WT cells (same conditions as above) to a directly vaccinated OT1 mouse 

(Vax OT1). Because we were not sure if cytokine storm would ensue when naïve OT1 cells encountered 

antigen for the first time, we chose to vaccinate the animal at 1/20th of the dose, i.e. 0.17mg. Vax+AT WT 

mice expanded AT tetramer-positive population to 5.85% of total CD8+ cells. Phenotypic characterization 

of Vax+AT WT peripheral blood (PBL) showed shedding of CD62L after 1 week and increase in CD44 

expression (Figure 11A), compared with naïve OT1 mouse. By contrast, phenotypic characterization of 

PBL from Vax OT1 showed no changes in CD44 and CD62L, so the mouse was vaccinated at 1/10th the 

dose (0.34 mg) one week later, again without any increased expression of activation or memory markers 

(data not shown). Two weeks from the first dose, the OT1 mouse was vaccinated a third time at the full 3.4 

mg dose, and still no activation response was measurable. Functional analysis of CD8+ cells from spleens 

(SPL) by calcium flux of all three T cell types revealed decreased activation levels in Vax OT1 as 

compared with naïve OT1 cells and AT cells from Vax+AT WT host (Figure 11B). ASF disappeared at 

0.1% in naïve OT1 and at 1% in Vax+AT WT and Vax+OT1 hosts. Of note, the first lymph node 

purification from Vax+AT WT mice was unsuccessful, but see also below.  

In vivo antigen-experienced AT T cells in the LN have greatest expansion potential 

Since the spleen is not a secondary lymphoid organ, it is not a classic organ for the initiation of CD8+ T 

cell responses. The lymph node (LN), being a secondary lymphoid organ was a logical site to examine. We 

chose the AT+Vax WT mouse as our antigen-experienced model because we had seen greatest expansions 

in that mouse (see previous discussion) compared with Vax WT mouse, and with Vax OT1 mouse which 

showed no phenotypic change from naïve OT1. We next reattempted obtaining LN CD8+ cells from a 

Vax+AT WT mouse as well as PBL and SPL for comparison (Figure 12A). One week post-vaccination, 

cells from LN, SPL, and PBL were characterized by phenotype and found to be CD44+ and CD62L-, 

consistent with an activated population. Subsequently, LN and SPL CD8+ cells were purified but PBL was 

not since numbers were limiting. Upon purification, LN tetramer+ cells were enriched to 7% of total CD8+ 

population, and splenocytes to 3.5%. PBL tetramer+ cells comprised 5% of total PBL cells. Functional 

analysis revealed ASF in LN population at 1 µM and 0.1 µM peptide loading concentrations (Figure 12B). 
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ASF could not be detected in PBL or SPL. This could partially be the result of lower starting %tetramer+ 

cells in the latter compartments, but could also reflect differences in the level of activation of CD8+ cells in 

those compartments, with LN cells being best poised to initiate T cell signaling upon encounter with 

cognate pMHC. 

In vivo memory AT T cells have different phenotypes depending on the compartment  

We next sought to identify the activation requirements of memory cells by examining the phenotype and 

functional potential of OT1 cells 6 weeks after adoptive transfer into WT recipients and immunization with 

OVA. During antigen-driven expansion, CD8 cells rapidly proliferate and differentiate into early effector 

cells (EEC), which are low in expression for CD127 and KLRG1. Following expansion, the majority of 

effector cells, known as short-lived effector cells (SLEC) and characterized by CD127lo, KLRG1hi 

phenotype die in huge numbers via apoptosis (132, 133, 134). This is termed the contraction phase of the 

immune response, in which surviving cells are known as memory precursor effector cells (MPECs) and 

express CD127hi, KLRG1lo. MPECs then eventually differentiate into one of two populations: central 

memory cells (TCM), which are CCR7+ CD62Lhi are poised to drive cell division and promote survival 

(135, 136). By contrast, effector memory cells (TEM), defined as CCR7-, CD62Llo, demonstrate increased 

effector function (136). In one study it was shown that TCM conferred superior antitumor immunity 

compared with TEM in a B16 murine melanoma model  (137). Our understanding of how these memory 

populations arise is limited (138). Suffice it to say, we used these markers as a phenotypic panel to ensure 

that the T cells produced by the vaccination scheme were memory cells.  

Briefly, to generate memory cells, WT mice were injected with 5e6 AT OT1 cells, rested then vaccinated 

with 3.4mg LPS/OVA much like previous vaccination schedules. Eye bleeds were performed at 2-week 

intervals to evaluate the expansion. One week later, the mice were boosted (week 0) with LPS/OVA 

according to the previous schedule. Eye bleeds at that time revealed a CD45.2+ AT population that had 

expanded to 3-4% of PBL, and 12-15% of the CD8+ population in PBL. It was difficult to characterize the 

AT cells phenotypically by the memory markers, as they did not fit the “classic” EEC and did not express 

KLRG1lo, CD127lo (Figure 13A). This fit in with what is known about activated and expanding T cells and 

their heterogeneous expression of memory markers (139). Two weeks after the boost (week 2), another eye 
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bleed was performed which showed some contraction of the CD45.2+ AT population to 2-2.5% of PBL. 

Phenotypically, cells showed more EEC phenotype, as seen by downregulated expression of CD127 and 

KLRG (Figure 13B). Additionally, a majority had shed CD62L. CD44 expression was not increased (data 

not shown). On week 4, mice were bled again and the CD45.2+ AT population had further contracted to 

0.5-1% of PBL. Phenotypic expression was similar to week 2 (Figure 13C). On week 7, the experiment 

was terminated and PBL, SPL, and LN cells obtained (Figure 13D). LN were purified by CD45.2 negative 

selection, whereas SPL were purified by sequential CD45.2 then CD8 negative selection. PBL were left 

unpurified. Phenotypic analysis revealed that PBL OT1 cells had become MPEC (CD127hi KLRG1lo) and 

SLEC (CD127lo KLRG1hi) cells, whereas OT1 splenocytes and lymph node cells remained EEC (CD127lo 

KLRG1lo). We were somewhat surprised by this result in LN, as we expected secondary lymphoid tissues 

to exhibit preferential localization of MPECs over the spleen, an observation reported by others (140). 

Functional analysis of the different compartments showed that ACF could only be detected in the PBL, and 

not in any of the EEC cells from the SPL or LN (Figure 13E). Indeed, quite surprisingly, calcium flux in 

splenocytes pulsed with EIINFEKL-loaded (nonspecific peptide) DC was higher than the SIINFEKL-

loaded (specific peptide) group. It’s possible that activation-induced cell death underlies these findings 

(141), but this experiment clearly must be repeated before any conclusions are drawn. In addition, we 

unfortunately did not have enough splenocytes to stimulate the splenocytes with anti-CD3 antibody as a 

positive control.  

DISCUSSION  

In the first part of this project, we developed a model for expanding freshly isolated naïve human 

T cells using 3 different APC, and in the case of PPM and UM, without the addition of artificial cytokines. 

We observed a high degree of variability in this system, which was similar to that reported by others (131, 

142). However, our study is unique in two aspects. Firstly, we have demonstrated for the first time that 

PPM are non-inferior by functional analysis to FastDC and PBMC. Others have used macrophages (143) 

and B cells (144) in MART-1 specific immune responses, but to our knowledge, no study has shown PPM 

capable of expanding naïve human T cells.  
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Secondly, unlike the most recent MART expansion study by Wolfl and Greenberg (131), we used 

the MART-1 25 amino-acid long peptide, and not the MART126-35 SP used in their expansions. We felt the 

LP was advantageous for our purposes in two major respects: 1) the 25-amino acid peptide requires 

internalization, processing, and presentation by APC, thereby making it more physiologic; and, 2) the LP 

contained binding sequences for presentation by both MHC class I and II, allowing the study of both CD8 

and CD4 cells. However, MART LP may have been taken up and processed variably between duplicates 

and between donors. Another explanation for why variability exists may be that certain donors may be 

HLA-A*0201 homozygous or may have a polymorphism with enhanced MART-1 epitope binding 

capability, as suggested by Wolfl and Greenberg (131).  

Previous expansions with MART-1 LP have been reported but the coefficients of variance in these 

experiments were not disclosed (80). In Faure et al.’s study, the authors showed that long-peptide (LP)-

loaded DC required longer co-culture periods to expand naïve T cells as compared with short peptide (SP). 

Curiously, these authors report that while mature DC present SP more efficiently than immature DC, the 

results appeared reversed when LP was used. We also observed similar differences in our own experiments 

(results not shown). Results like these give one pause and serve as a reminder that a peptide or whole 

protein does not substitute for a whole tumor cell being phagocytosed. In other words, some observations 

from experiments using peptides as sources of antigen may not make inherent biological sense. As such, it 

is important to evolve from peptide experiments to using whole tumors. Our laboratory is currently 

initiating such experiments.  

Comparing the average expansion in our hands using the LP with Chauvin et al. (in which authors 

use LP), we had arrived at average expansions of 8-10% compared with 2% on d13 in their experiments 

(86). However our COV, which was approximately 40%, was higher than the 10% reported by Wolfl and 

Greenberg (131) and might be due to our use of the long peptide contributing to a greater complexity in our 

experimental set-up. In fact, we calculated the COV among the LP expansions reported by Chauvin et al. 

(86), which was 65% by d13 of their expansion, compared to approximately 40% in our hands. Our study 

therefore was the first of its kind to elaborate significant expansions using PPM, the LP, and introduce the 

lowest reported COV in the system.  
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Focusing on variability among our PPM, population, we considered the considerable complexities 

of the plate passage process itself. Since monocyte activation relies on the activation of platelets, variability 

among donors may be linked to the variability in baseline platelet activation status. We began investigating 

this, and showed that resting human platelets are variably activated, and respond variably to adhesion onto 

a polystyrene surface, similar to a flow chamber (data not shown). We also began to show that enhanced 

pre-activation of platelets using a platelet activator, thrombin, allowed maximal platelet activation and 

potentially improved the functional capability of PPM in co-culture experiments (data not shown).  

The data shown in Figure 5 suggest that the presence of CD4 cells may have assisted in the 

expansion of CD8 cells, however, the differences did not reach statistical significance. This may be a result 

of the specific in vitro co-culture conditions (e.g. the particular ratios of APC:CD8:CD4 cells employed, 

but in fact, little is known about CD4 responses in cancer patients. In a trial of melanoma patients 

immunized with MHC Class I and II epitopes, no significant benefit was derived from immunization with 

Class II peptides (145). In another trial, modest Th1/Th2 responses were induced in a small number of 

immunized patients (146). More studies are needed to unpack the role of helper T cells in the expansion of 

anti-tumor CD8+ T cells.   

The conclusions from this part of the study are several-fold: 1) artificial cytokines may not be 

necessary for the generation of functional responses; 2) different donors respond differently to co-culture 

studies, and results are difficult to duplicate with any precision; and, 3) the current laboratory model of 

ECP does not confer functional advantage to the PPM compared with UM and DC. The latter two 

conclusions may be related, and may be explained by the observation that, at the end of the procedure, 

millions of monocytes remain adherent to the ECP device even after the device is washed. We believe these 

adherent monocytes may, in fact, be more potent APC than their counterparts that are washed off, since 

they are most likely to have formed strong platelet interactions, as described in Figure 2B. Our group is 

currently pursuing strategies for removing these adherent monocytes to use in co-culture experiments. 

Ultimately, further optimization of the ECP conditions is needed in order to extend its applicability to 

cancer types that have shown response to other immunotherapies, such as melanoma and renal cell 

carcinoma.  
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In the second part of the project, we sought to develop an assay that would track early T cell 

signals (via calcium flux) in an antigen-specific manner. The usefulness and broad applicability of a 

technique such as the one we propose is that it could potentially capture all polyclonal responses to a broad 

variety of known and unknown TAAs. As such, it would capture responses to neoantigens as well as 

overexpressed self-antigens, however rare or frequent those responses. Because of the complexity of a 

multi-antigen tumor model, we focused initially on a single-antigen, transgenic system from which we hope 

to ultimately develop a multi-antigen tumor model. Additionally, through direct comparison of TCR 

transgenic cells of the same number and specificity, we were able to avoid the ambiguities brought on by 

inconsistent precursor frequencies. Initially, we could not detect ASF in our system. We made two 

modifications in our system that have been reported by others. The first was to track ASC by surface 

labeling T cells and DC separately with anti-CD8 and anti-CD11c flourochrome-conjugated antibodies 

(147). The next modification was to facilitate DC/ T cell encounter by centrifuging the sample to drive T/ 

DC contacts and initiate T cell activation, as proposed by others (130). In doing so, we were able to detect 

ASC formation and within that population, we demonstrated ASF in a naïve, single-antigen, murine system 

(OT1) as well as a single-antigen, transduced human model (DMF5).  

Next we addressed the detection limits of our system by varying the peptide-loading concentration 

and by diluting our responding T cells in a pool of WT, non-responding cells. By doing so, we showed that 

ASF disappeared, by peptide loading concentration at the order of 10-3uM in OT1 and DMF5 cells, and by 

dilution at the order of 0.1% in OT1 cells and 1% in DMF5 cells. These conclusions were made by visual 

evaluation of the antigen-specific and non-specific calcium flux curves. We are also currently testing a 

Random Forest in order to describe an algorithm that would utilize the parameters of the calcium flux 

curves and predict whether ASF is present or not. 

Lastly, we were interested in the activation ability of antigen-experienced and memory cells 

compared with naïve cells. We observed lower calcium flux intensity in in vitro pre-activated T cells in 

both OT1 and DMF5 systems. However, we also recognized that in vitro models were different from in 

vivo counterparts. For instance, it has been shown that in vitro produced memory T cells do not require co-

stimulatory signals to initiate activation and recall expansion (148, 149), whereas in vivo memory cells do 

(150, 151). Therefore, we next turned to an in vivo antigen-experienced model. We showed that even 
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within the first week of an expansion, both AT and WT endogenous antigen-specific T cells had expanded 

and displayed activation markers such as increase in CD44 expression and shedding of CD62L. We were 

surprised to see that activation in the endogenous population in Vax WT was higher than in the AT 

population in Vax+AT WT. This suggested a difference between a transgenic T cell and a naturally 

occurring endogenous counterpart. Alternatively, this observation is consistent with the possibility that the 

number of the starting population of responding cells influenced the response. In fact, others have shown 

that the number of transgenic T cells used in adoptive transfer studies can affect phenotype and kinetics of 

responding cells (70, 152, 153). These authors showed that higher transfer numbers resulted in reduced 

expansion following vaccination. We were not able to test this hypothesis, as it was outside the scope of 

this work.  

The second surprising result was that OT1 mice were relatively anergic to direct immunization. 

We had expected that since OT1 mice are antigen-naïve, they would respond classically to a primary 

antigen encounter by becoming activated, rather than appearing anergic. It is possible that since all CD8 T 

cells in an OT1 mouse were capable of responding to antigen, this resulted in competition over 

costimulatory molecules and cytokines. Competition has been proposed to act as a deterrent for immune 

activation. This is based on experiments in the OT1 system in which lymphopenic hosts developed 

autoimmune, inflammatory responses, whereas lymphocompetent hosts developed anergy (154). Perhaps 

the OT1 mouse was overwhelmed by “competition” over peptide-MHC and this resulted in anergy towards 

the OVA antigen.  

Because of the inability to generate functional effector cells in a naïve, transgenic animal, we then 

turned our focus to studying the memory population that forms after a primary expansion in a wild-type 

mouse. We chose the Vax+AT WT model over the Vax WT model because of the higher starting numbers 

of responding cells. By transferring a starting population, we would increase the absolute number of cells in 

the contraction phase, thereby affording enough cell numbers to proceed with the experiment. Tracking of 

the PBL population by phenotype assured that we obtained an expansion and that AT cells contracted 

within 2 weeks following the boost. Surprisingly, although purified SPL, purified LN, and unpurified PBL 

were 36%, 6% and 1% CD45.2+ positive, we could only detect ASF in the PBL population. The caveat to 

our interpretation of these results is that we do not have information about the SPL and LN expansion and 
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contraction phases prior to week 7. Future experiments will address this. These results are not, however, 

surprising as others have shown that memory T cells have reduced activation capability following antigen-

specific stimulation from BMDC (155), as well as other APC sources (156), possibly due to decreased 

surface TCR expression or increased protein tyrosine phosphatases as compared with their naïve 

counterparts.   

Ultimately, we hope to apply this concept of early T cell signaling as a method for tracking 

antigen-specific T cell responses using nanodevices, such as nano-wires that are able to sense changes in 

proton flux (157). Proton flux is a well-recognized early event in the signaling of a T cell (158), and our 

collaborating laboratory (Dr. Tarek Fahmy) has shown that nano-wires can be used to track the signals 

produced by OT1 cells when they contact antigen-specific peptide-MHC dimmers (159). Additionally, 

proton flux and calcium flux in activated T cells have been correlated by others by others (160, 161). We 

hope to use our DC/T cell conjugate assay to detect T cell proton flux when T cells make antigen-specific 

contacts with DC. To arrive at T/DC conjugates, we aim to use label-free separation techniques based on 

conjugate size using existing technology known as dielectrophoretic field-flow fractionation, which we are 

in the midst of developing (162).  

Although our measurement of early T cell activation responses to date have been applied only to 

defined single antigens, its advantage lies in its potential to monitor T cell stimulation of polyclonal 

populations responding to undefined antigens from complex sources, such as tumors. Currently available T 

cell monitoring reagents, particularly multimeric MHC/peptide complexes such as tetramers or dextramers, 

are limited in quantitating T cell responses against single disease-associated antigen (per reaction), and only 

after relevant MHC class I- and/or class II-restricted epitopes have been characterized. This makes these 

reagents expensive and restricts T cell monitoring to a limited group of epitopes currently associated with a 

particular infectious or disease state. 

Additionally, in disease states where the antigen pool is potentially vast and unknown, including 

cancer and autoimmune diseases, the “ultimate” device could be used to identify panels of potential 

antigens tailored to the T cell repertoire of the patient. For instance, if no tumor material was available to 

provide a “personalized” set of tumor-associated protein from a patient, panels of known tumor-associated 

proteins could be fed to autologous APC (and exposed to autologous T cell populations) as an alternative 
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antigen source. Utilizing the nanosensors as a direct readout of activation of existing anti-tumor T cell 

precursors already present in patient blood, individualized antigen groups most likely to initiate potent T 

cell responses following vaccination could be identified prior to the initiation of therapy. 

Lastly, the sensor could also be applied to multiple host/donor-specific antigens potentially 

targeted by recipient or donor T cells following organ transplant or bone marrow allograft of foreign tissue. 

It could be used to calculate pre-transplant probability of organ rejection and could be incorporated into the 

matching algorithm used by the United Network for Organ Sharing (UNOS). The device would also be 

useful to make quantitative determinations of the progress of treatments initiated to down-regulate T cell 

responses, in organ transplant settings, but also in the case of autoimmune diseases. These include cell-

based therapies, such as DC therapy with “tolerogenic” DC as well as the systemic use of tolerogenic drugs 

or other agents. Patient-derived T cell populations could be removed during such therapies and T cell 

responses evaluated in vitro or ex vivo and compared as a measure of treatment efficacy.  

In short, this body of work hopes to have humbly contributed to an exciting field of cancer 

immunotherapy. Through our laboratory model of plate-passage, we have developed a functional assay for 

the evaluation and optimization of APC and T cells. We have also shown that it is possible to utilize early T 

cell signals, including-but not limited to- calcium flux, to track the evolution of the antigen-specific 

response.  
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FIGURES AND LEGENDS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: The immune system is shown to combat cancer. 
In a classical immune response against cancer, the tumor microenvironment expresses a number of tumor 
associated antigens (TAAs) that act as a source of antigen for the immune system’s potent antigen 
presenting cell, the dendritic cell (DC). DC take up antigen in one of several mechanisms, process, and 
present antigen onto their MHC Class I or II, in a process known as immunization. Immunized DC then 
traffic to the regional lymph node where they make contact with T cells whose surface T cell receptor can 
recognize cognate peptide-MHC on the DC, in a process known as cross presentation. Following this, a T 
cell response is initiated whereby T cells clonally expand, are able to exit the lymph node, infiltrate the 
tumor bed and result in tumor cell killing. The tumor often produces a host of immunossuppressive defense 
mechanisms that may prevent tumor shrinkage. For immunotherapy to be successful, it must initiate T cell 
responses in the tumor bed. Adapted from Mellman I, et al. Nature. 2011. 
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A 

Figure 2A: Extracorporeal photopheresis has two paradoxical applications.  
In an ECP procedure, a patient’s blood is apheresed, or taken out of his body and spun to obtain three 
layers: a red blood cell, white blood cell (WBC) and platelet-rich plasma layers. The WBC and plasma are 
then run over a plate, which constitutes the first part of the treatment labeled 1) plate passage. For some 
part of the plate passage, the WBC are exposed to a photoactivatable DNA alkylating agent known as 8-
methoxypsoralen (8-MOP) and ultraviolet light type A (UVA), labeled as 2) 8-MOP+UVA. At the end of 
the procedure, the WBC and plasma are reinfused back into the patient. In the case of CTCL, the effect is to 
stimulate immune responses, and in SOTR and GVHD the responses are downregulatory.   
 
B 

Figure 2B: The plate-passage procedure relies on monocyte-platelet interactions.  
Plate passage exposes resting platelets to shear stress rates which activates them. When activated, platelets 
express surface markers, such as P-selectin, (marked in brown circles) and release soluble factors (marked 
in triangles). Monocytes rolling on the plate then transiently bind platelets as well as platelet-derived 
soluble factors and differentiate along the DC pathway.  
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Figure 3A: Vaccinations and in vivo experimental are set up produce antigen experienced or memory 
T cells.  
Each experiment utilized at least one of the groups in this figure. For vaccinations, OVA/LPS NP were 
administered at a maximum of 7 site. For primary expansion experiments, experiments were terminated and 
organs harvested one week from vaccination. For memory experiments, animals were boosted at the same 
schedule as primary vaccination one week after vaccination. When applicable eye bleeds were performed 
for tetramer positivity and phenotypic analysis.  
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Figure 3B: In the calcium flux assay, murine or human T cells and DC are brought in contact.  
Whether murine or human, DC are pulsed for 2 hours with a specific peptide (SIINFEKL or MART-1) or 
non-specific peptide (EIINFEKL or gp100) at varying concentrations (10-3-10uM) and in serum-free media. 
Meanwhile, responding T cells (OT1 or DMF5) as well as non-responding T cells (B6 or naïve, 
unstimulated human CD8+ cells) are loaded separately for 30min with 1uM Indo-1 AM at 37oC. Following 
loading step, DC and T cells are washed and stained with anti-CD11c-FITC and anti-CD8-PerCPCy5.5 
antibody respectively. DC are concentrated at 2e6 in 150ul (for a DC:T cell ratio of 5:1) and T cells at 
1e6/ml (with 0.4e6 in 400ul). When relevant, the proportion of responding T cells (OT1 or DMF5) is varied 
against WT, non-responding cells, keeping total cell number fixed at 0.4e6. DC are mixed with T cells, 
pelleted, and resuspended. Sample conjugates and calcium flux are collected for 7 minutes by flow 
cytometry.  
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Figure 4A: Functional analysis of APC following T cell expansion.  
Co-cultures were set up between APC and T cells at 4 different T:APC ratio (5:1, 10:1, 20:1, and 40:1). 13 
days following co-culture, non-adherent T cells were collected and stained for tetramer positivity. Gp100 
was used as a negative control tetramer. CD8+ were gated on, then the fluorescent plots of gp100 versus 
MART tetramer were plotted, as shown in the figure.  
 
B 
 

Figure 4B: PPM are non-inferior to UM and DC and donor variability is high.  
The average tetramer+ expansion of CD8 cells co-cultured with each of the three myeloid cell types was 
the following: 10.86 % from DC (range=1.73-40.6, SD=11.56, n=6), 9.78% from UM (range=2.32-21.9, 
SD=5.87, n=8), and 7.3 % from PPM (range=1.71-17.4, SD=5.07, n=8). Differences were not significantly 
different. Negative controls were also plated using autologous CD8 cells only average 1.1% (range=0.16-
2.12; SD=0.75, n=8). Dot plots are color-coded by donor, and results from all T:DC ratios are concatenated 
and matched equally among the different APC groups.  
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Figure 4C: The experimental design has a high coefficient of variance. 
Duplicates of some samples were plated for each of the donors. The coefficient of variance (COV) was 
high (which has been reported by others previously). COV ranged from 23.5 to 53%. Donor variability in 
COV was significant by two tailed pair test.  

 
Figure 5: CD4 cells may assist in the expansion of CD8 cells. 
With the addition of CD4 cells into the co-culture (blue bars), CD8 expansions tended to increase, but the 
differences were not significant: for conventional DC, 3.9%, SD 1.64, with CD4 addition, 6.9%, SD 3.7; 
for UM, 9.7%, SD 6.8, with CD4 addition, 7%, SD 3.6; for PPM, 5%, SD 4.7, with CD4 addition, 7%, SD 
4.8. Negative controls, CD8 only, 1.4%, SD 1.4, with CD4 addition, 1.6%, SD 1.61. Red bars represent 
standard co-cultures with CD8 and APC only, except for negative control (no APC). Blue bars represent 
co-cultures with CD4 added to standard co-culture, except for negative control (no APC). 
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Figure 6A, B: As the DC:T cell ratio increases, antigen-specific conjugates increase in OT1 system.  
A: Different DC:T cell ratios were tested. The assay developed is a delicate one for two reasons: when the 
sample was pelleted, but a CD11c+CD8+ gate was not drawn, no ASF could be detected (left).  
B: In this sample gating strategy, the population of interest was defined as all CD11c+ CD8+ events. The 
top and bottom rows depict antigen-specific conjugates (ASC) and non-specific conjugates (NSC). The 
ratios 3:1, 5:1, and 10:1 represent the DC:T cell ratio in which the absolute DC number and concentration 
are increased, keeping the volume (150ul) fixed. These results show that as the DC:T cell ratio increases, 
both ASC and NSC increase, but the ASC increase far outweighs NSC.  
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Figure 6C,D:  
C: Pelleting experiment was repeated, n=4 to confirm positive correlation between ASC and DC:T cell 
ratio. Each color represents an experiment. Results are significant by Student T-test at 10:1 ratio.  
D: Pelleting experiment was repeated, n=4 (6 right-most plots) to confirm positive correlation between 
ASC and DC:T cell ratio. Each color represents an experiment; notably, red and green-colored dots were 
experiments in which an old batch of DMF5 was used- ASC is lower in those as compared with purple and 
orange plots. Results are significant by Student T-test at 5:1 ratio.  
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Figure 7A: Greater ASC translates to higher antigen-specific calcium flux in the OT1 system.  
By gating on CD11c+CD8+ conjugates, we were able to plot calcium flux curves for the T cells that had 
made contact with DC. The data collected for Indo-1 can be plotted as Ratio of calcium-bound-Indo 
(Violet)/ calcium-free-Indo (Blue). Parameters for each of the curves are displayed in the bottom right 
table. Blue and red curves represent T cell stimulation by antigen-specific and non-specific DC, 
respectively. The top plot represents maximal T cell stimulation using anti-CD3 antibody. As the ratio of 
DC:T cell increases from 3:1, 5:1 to 10:1, the difference between antigen-specific flux (ASF) and non-
specific flux (NSF) increases. This is reflected both visually in the curves as well as with the various 
parameters displayed in the table. When the CD11c+ CD8+ gate was drawn, but the mixture was vortexed 
“vigorously” (right), no ASC formed, and no ASF was detected.  
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Figure 7B: ASC and ASF disappear at 10-3uM in the OT1 system.  
As the peptide loading concentration was decreased by a logarithm from 1uM to 10-3uM, the difference 
between antigen-specific flux (ASF) and non-specific flux (NSF) decreased. This is reflected both visually 
in the curves as well as with the various parameters displayed in the table. At 10-3uM the difference 
between ASF and NSF is difficult to make, and there is no difference in ASC.  
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Figure 7C: ASC and ASF disappear on the order of 10-3uM in the DMF5 system.  
The top curve represents positive controls in the DMF5 system: in black are DMF5 cells stimulated non-
specifically with anti-CD3 antibody. In orange are DMF5 cells stimulated with a MART tetramer. Similar 
to the OT1 system, as the peptide loading concentration was decreased by a half-logarithm from 10uM to 
3.2x10-3uM, the difference between antigen-specific flux (ASF) and non-specific flux (NSF) decreased. 
This is reflected both visually in the curves as well as with the various parameters displayed in the table. At 
3.2x10-3uM the difference between ASF and NSF is difficult to make, but, surprisingly, the difference 
between ASC and NSC was preserved.  
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Figure 7D: ASC and ASF disappear at 0.1% dilution in the OT1 system.  
As OT1 cells are increasingly diluted by a logarithm in a pool of wildtype (WT), non responding cells, the 
difference between ASF and NSF decreases. This is reflected both visually in the curves as well as with the 
various parameters displayed in the table. At 0.1% OT1, the difference between ASF and NSF is difficult to 
make, and there is no difference in ASC.  
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Figure 7E: ASC and ASF disappear at 1% dilution in the DMF5 system.  
As DMF5 cells are increasingly diluted by a logarithm in a pool of wildtype (WT), non responding cells, 
the difference between ASF and NSF decreases. This is reflected both visually in the curves as well as with 
the various parameters displayed in the table. At 1% DMF5, the difference between ASF and NSF is 
difficult to make, and there is no difference in ASC.  
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Figure 8A, B: When diluted among WT cells, in vitro pre-activated OT1 cells have  
lower ASF than naïve OT1.  
Both naïve and pre-activated OT1 demonstrated decreased ASF as dilution in WT increases. However, at 
each % tested, pre-activated OT1 consistently had lower ASF, suggesting a reduced ability to activate 
calcium flux.  
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Figure 8C,D: When diluted among WT cells, in vitro pre-activated DMF5 cells have lower ASF than 
untreated DMF5.  
Both untreated and pre-activated DMF5 demonstrated decreased ASF as dilution in WT increases. 
However, at each % tested, pre-activated DMF5 consistently form fewer ASC and the difference between 
ASF and NSF is smaller, suggesting a reduced ability to activate calcium flux. D, bottom 2 plots: 
Intriguingly, when DMF5 were pre-activated using gp100 (a non-specific source of peptide), the ability to 
flux calcium was restored to levels comparable to untreated DMF5 from 7E. 
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Figure 9A,B: T cells from HLA-A2 donor expanded specifically in response to MART-1, and (S) T 
cells demonstrated ASF, whereas (NS) T cells did not.  
A: 7 day co-cultures were set up with HLA-A2+ donor FastDC and autologous naïve cells in the presence 
of IL2 and IL7. T cells in the co-culture were stimulated either specifically (S) with MART-1 SP-loaded 
DC or non-specifically (NS) with gp100 SP-loaded DC. On day 7, cells were harvested and tetramer 
stained. (S) T cells expanded to approximately 9% of the CD8 pool, whereas (NS) T cells did not.   
B: (S) T cells demonstrate ASC formation and ASF compared with (NS) T cells. Intriguingly, when (S) T 
cells are diluted with (NS) T cells at a 50% dilution rate, ASC and ASF are not significantly altered.  
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Figure 10A: Phenotypically, 1-week old antigen-experienced T cells are expanded and activated in 
vivo.  
In this experiment, 2 WT B6 mice were vaccinated with LPS/OVA (Vax) and one was also adoptively 
transferred 5e6 OT1 cells (Vax+AT WT). One week later after vaccination, splenic SIINFEKL-tetramer 
positive cells had expanded to 1.5% in the Vax WT mouse and to 4.4% in the Vax+AT WT mouse from the 
total CD8+ population. For controls, WT and naïve OT1 CD8+ splenocytes were 0% and 100% SIINFEKL 
tetramer positive, respectively. Bottom panels: CD44 expression was used to evaluate activation status with 
naïve OT1 cells as negative control. We compared CD44 intensity in the tetramer+ and tetramer- 
populations in Vax and Vax+AT mice. CD44 activation was high in the tetramer+ population in the 
vaccinated mice, but not the tetramer- population, and relatively low the naïve OT1 mouse.  
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Figure 10B: Depending on the host, 1-week-antigen experienced T cells have distinct activation ability.  
1 week post-vaccination, purified CD8+ splenocytes were diluted or run undiluted, and when possible at 
4%,1%, and 0.5% in order to compare ASF among three different hosts: naïve OT1, Vax WT, and Vax+AT 
WT. Functionally, splenic ASC had lower activation ability in the Vax+AT WT group at all 3 dilutions 
tested. Surprisingly, Vax WT had higher ASF at 1% than both naïve and Vax+AT mice, and at 0.5% ASF 
was comparable to naïve OT1.  
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Figure 11A: Directly vaccinated OT1 cells are less activated than AT cells.  
In this experiment, an OT1 mouse was directly vaccinated with increasing doses of LPS/OVA. Naïve OT1 
and Vax+AT WT were used for controls. CD45.1 was used as a marker of the endogenous WT population. 
One week later after vaccination, splenic CD45.1- tetramer+ (AT) cells had expanded to 6% in the 
Vax+AT WT mouse, and predictably, all cells in the naïve and Vax OT1 mice were tetramer+CD45.1-. 
Bottom panels: CD44 and CD62L expression were used to evaluate activation status with naïve OT1 cells 
as negative control. In the Vax+AT mice (plots representative of 2 mice), CD44 expression was high and 
CD62L low in the tetramer+ population, compared with the endogenous, tetramer- population. In Vax OT1, 
no significant difference in CD44 activation was noted compared with naïve OT1, but there may have been 
some shedding of CD62L.  
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Figure 11B: Directly vaccinated OT1 have reduced ASF compared with naïve OT1 and AT cells.  
1 week post-vaccination, purified CD8+ splenocytes were diluted or run undiluted, and when possible at 
100%, 6%, 1%, and 0.1% in order to compare ASF among three different hosts: naïve OT1, Vax+AT WT, 
and Vax OT1. Functionally, splenic ASC had lower activation ability in the Vax OT1 group at all 4 
dilutions tested, compared with both naïve OT1 and Vax+AT mice. Comparing Vax+ AT WT to naïve 
OT1, Vax+AT may have lower ASF, but the differences were not obvious.  
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Figure 12A: Compared with lymph node and spleen CD8+ cells, peripheral blood cells were the most 
expanded.  
In this experiment, 3 WT B6 mice were vaccinated with LPS/OVA (Vax) and adoptively transferred 5e6 
OT1 cells (Vax+AT WT). One week later after vaccination, lymph nodes (LN), peripheral blood (PBL) and 
spleens (SPL) were harvested and found to be expanded to 7, 25, and 3%, respectively. Bottom panels: 
CD44 and CD62L expression were used to evaluate activation status comparing endogenous . CD44 
expression was high in the AT cells in all 3 compartments, but CD62L was shed most effectively in the AT 
splenocytes.  



65 

B 

 
 
 

 
 
 
Figure 12B: ASF could 
only be detected in the 
lymph node AT cells and 
down to 10-2uM.  
1 week post-vaccination, 
purified CD8+ SPL and 
LN were stimulated with 
DC loaded at different 
peptide concentrations. 
PBL were run undiluted to 
maintain high enough 
numbers for a  
comparison. ASF was 
detected in the LN AT 
cells at 1uM and 10-1uM. 
Neither ASC nor ASF 
could be detected in PBL 
and SPL.  
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Figure 13A, B, C, D: 
A: In this experiment, 2 WT B6 mice were vaccinated with LPS/OVA (Vax) and adoptively transferred 5e6 
OT1 cells (Vax+AT WT) on week -1. One week later after vaccination (week 0), mice were boosted with 
LPS/OVA at the same schedule. Eye bleeds on week 0 revealed significant expansion of the AT cells to 3-
4% (representative plots shown). Phenotypic analysis of CCR7, CD62L, CD127, and KLRG1 revealed no 
distinct population, consistent with the phenotype of primary expanding T cells, as these are markers that 
define memory populations. B: On week 2, eye bleeds revealed significant contraction of the AT cells to 
2.5%. Phenotypic analysis of CCR7, CD62L, CD127, and KLRG1 markers revealed an expression profile 
consistent with TCM, EEC, and SLEC (representative plot). C: On week 4, eye bleeds revealed persistent 
contraction of the AT cells to 1%. Phenotypic analysis showed TCM, EEC, and SLEC were relatively 
unchanged from week 2.  
TCM: central memory T cells; TEM: effector memory cells; SLEC: short-lived effector cells; MPEC: memory 
progenitor cells; EEC: early effector cells.  
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Figure 13D: At week 7, the three compartments displayed markedly different phenotypes.  
7 weeks from the boost, the experiment was terminated. PBL, SPL, and LN were harvested, and stained for 
evaluation of the AT population. AT cells represented 1.75, 0.9, and 0.9% of PBL, SPL and LN cells 
respectively. Because of low-absolute numbers, PBL were used unpurified in functional experiments. AT 
SPL and LN cells were encriched to 36 and 6% of the total population. Phenotypic analysis of CCR7, 
CD62L, CD127, and KLRG1 revealed, in the PBL, cells were both TCM and TEM and had differentiated into 
both MPEC ad SLEC. By contrast, SPL and LN cells displayed increased preference towards TEM and 
produced almost exclusively EEC. SPL produced some SLEC but at a lower rate than in PBL.   
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Figure 13E: Only PBL AT cells demonstrated ASF, but SPL were able to form ASC. 
Enriched AT cells from the SPL and LN and unpurified PBL were evaluated by calcium flux. Anti-CD3 
antibody was used as a positive control to stimulate WT SPL. Surprisingly, while 36% enriched AT from 
SPL demonstrated ASC formation (16% ASC compared with 8.7% NSC), calcium flux was higher in the 
non-specific group! By contrast, 1% AT from PBL demonstrated ASF. No such flux could be obtained 
from the LN at any of the three dilutions tested (6%, 1%, 0.1%). Of note, the overall curves in LN cells are 
higher than in PBL and SPL. 
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