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ISOLATION OF BONE MARROW MONONUCLEAR CELLS FOR FABRICATION 

OF TISSUE-ENGINEERED VASCULAR GRAFTS: EVALUATION OF TWO 

METHODS. Paul S. Bagi, Hirotsugu Kurobe, Shuhei Tara and Christopher K. Breuer. 

Division of Pediatric Surgery, Department of Surgery, Nationwide Children’s Hospital, 

Columbus, OH. (Sponsored by Edward L. Snyder, Department of Laboratory Medicine, 

Yale University, School of Medicine, New Haven, CT). 

 

Tissue engineered vascular grafts (TEVGs) are useful in the surgical treatment of 

congenital heart defects. The development of TEVGs requires seeding of scaffolds 

composed of biodegradable polymers with bone marrow-derived mononuclear cells (BM-

MNCs). The most common method used to isolate BM-MNCs involves density 

centrifugation in Ficoll. This process requires an International Organization for 

Standardization (ISO) class 7 clean room, is labor intensive, time intensive, and 

susceptible to operator variability. A recently developed filtration-based method for BM-

MNC isolation uses a closed, sterile, and disposable system that removes the need for a 

clean room, decreases processing time, and is operator-independent.  This study 

compared the efficacy of each method of BM-MNC isolation by evaluating the viability 

of cells recovered using each method, and by assessing the biologic and structure 

equivalence between neo-vessels created from scaffolds seeded using cells isolated by 

either method. 

 

BM-MNCs were isolated from the bone marrow of immunocompetent syngeneic 

C57BL/6 wild type mice by either density centrifugation in Ficoll or using a filter-based 



method. The cells were seeded onto scaffolds fabricated from a polyglycolic acid (PGA) 

mesh coated with a 50:50 copolymer sealant of poly-L-lactide-co-ε-caprolactone. Seeded 

scaffolds were incubated overnight and then implanted as inferior vena cava (IVC) 

interposition grafts in 10-week-old wild type mice (n = 23 for each group). Grafts were 

explanted at 2 weeks post-implantation for analysis. 

 

Significantly greater total (filter: 44.3 ± 12.6x106 cells/mouse versus density 

centrifugation: 24.8 ± 8.8x106 cells/mouse, p=0.02) and viable (filter: 32.8 ± 6.7x106 

cells/mouse versus density centrifugation: 20.6 ± 8.7x106 cells/mouse, p=0.04) BM-

MNCs were isolated using filtration versus density centrifugation-based isolation. There 

was no significant difference in graft patency (filter: 78% patency versus density 

centrifugation: 87% patency, p=0.7), luminal diameter (filter: 633 ± 131 μm versus 

density centrifugation: 620 ± 82.9 μm, p=0.72) or neointimal thickness (filter: 37.9 ± 11.2 

μm versus density centrifugation: 37.9 ± 7.8 μm, p=0.99) between groups at explantation. 

There was also no significant difference in quantitative macrophage infiltration between 

the two methods at explantation (filter: 1887 ± 907.7 cells/mm2 versus density 

centrifugation: 2041 ± 1078 cells/mm2, p=0.59). 

 

BM-MNCs isolated using density centrifugation or the filter-based method were 

biologically equivalent and TEVGs formed from scaffolds seeded by each method were 

structurally similar when examined up to 14-days post-implantation in our in vivo murine 

model. 
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LIST OF ABBREVIATIONS 

 

α -SMA – alpha smooth muscle actin 
BMC – bone marrow cell 
BM-MNC – bone marrow-derived mononuclear cell 
cDNA – complementary deoxyribonucleic acid 
cGMP- current Good Manufacturing Practice 
CHD – congenital heart disease 
CMV – cytomegalovirus 
CT – computed tomography 
Ct – cycle threshold 
CTA – computed tomography angiography 
DNA – deoxyribonucleic acid 
ePTFE – expanded polytetrafluoroethylene 
EVG – elastica van Gieson 
FACS – fluorescence-activated cell sorting 
FDA – Food and Drug Administration 
H&E – hematoxylin and eosin 
hBM-MNC – human bone marrow-derived mononuclear cell 
HLA – human leukocyte antigen 
HPRT – hypoxanthine phosphoribosyltransferase 
INR – International Normalized Ratio 
ISO – International Organization for Standardization 
IVC – inferior vena cava 
LRF – leukocyte reduction filter 
MCP-1 – monocyte chemotactic protein 1 
MMP-2 – matrix metalloproteinase-2 
MRI – magnetic resonance imaging 
OCT – optimal cutting temperature 
P(CL/LA) – poly (ɛ)-caprolactone and L-lactide copolymer 
PBS – phosphate-buffered solution 
PET – polyethelene terephthalate (Dacron) 
PGA – polyglycolic acid 
PLA –polylactic acid 
PLLA – poly-L-lactic acid 
PTFE – polytetrafluoroethylene 
qPCR – quantitative polymerase chain reaction 
RNA – ribonucleic acid 
RPMI-1640 – Roswell Park Memorial Institute medium 
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SCID/bg – scid/scid, beige/beige double-mutant mouse strain 
SEM – scanning electron microgram 
TEVG – tissue engineered vascular graft 
VEGF – vascular endothelial growth factor 
vWF – von Willebrand factor 
WHO – World Health Organization 
YARC – Yale Animal Resource Center 
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INTRODUCTION 

 

The field of vascular tissue engineering is driven by the demand for durable vascular 

conduits that mirror the performance of native blood vessels. One important limitation in 

this process is the time required to create a viable neo-vessel. At first, tissue engineered 

scaffolds were seeded in vitro and incubated for several weeks to allow for the 

development of a vascular architecture prior to implantation. For the next generation of 

tissue engineered grafts, scaffolds were seeded and incubated in vitro for several hours 

before being implanted and allowed to transform into a viable vessel in vivo. In the 

current study, we strive to decrease the time and labor required to isolate the cells used 

for seeding. If this process can be streamlined appropriately then the entire process from 

obtaining cells to seeding the scaffold and implanting the graft into a patient can all occur 

during the intraoperative time frame of one operation. To understand this process, some 

background is required.  

 

In the United States, congenital heart disease (CHD) affects approximately 1% of live 

births. Most infants born with a single functional ventricle, which include those with 

hypoplastic left heart syndrome, pulmonary atresia or tricuspid atresia, require surgical 

treatment to prevent cyanosis, volume overload, and congestive heart failure. The goal of 

surgical correction is to separate systemic circulation from pulmonary circulation to 

prevent the mixing of deoxygenated and oxygenated blood.  

 



4 
 

This correction is most often accomplished through a staged Fontan operative procedure 

in which systemic venous blood returning to the right heart is instead routed directly to 

the pulmonary artery, bypassing the single functional ventricle. Following passage 

through the lungs, the oxygenated blood returns to the single functional ventricle through 

the pulmonary veins and is pumped in normal fashion into the aorta to deliver oxygen to 

tissues1. The Fontan procedure is conducted in two separate stages. During the first stage 

of the Fontan procedure, the superior vena cava is connected to the pulmonary artery, 

thereby decreasing the workload of the single ventricle. However, these patients often 

display significant hypoxia because deoxygenated blood carried by the inferior vena cava 

(IVC) continues to return directly to the single ventricle where it mixes with oxygenated 

blood returning from the lungs. Therefore, most patients undergo the second stage of the 

Fontan procedure, which connects the IVC to the pulmonary artery and allows all 

deoxygenated blood to bypass the heart and flow directly to the lungs. However, because 

the IVC is not adjacent to the pulmonary artery, this distance is bridged by placing a 

vascular conduit between the IVC and the pulmonary vasculature.  

 

Types of grafts: 

Currently, grafts are most often composed of biocompatible, but synthetic, polymers 

including polyethylene terephthalate (PET, Dacron), expanded-polytetrafluoroethylene 

(ePTFE, Gore-Tex), polytetrafluoroethylene (PTFE, Teflon) and polyurethanes2. These 

synthetic polymers, however, are associated with a number of short and long-term 

complications that most notably include stenosis, thromboembolism, calcium deposition, 

and infection3,4. Furthermore, the 5-year patency rate in pediatric cardiac surgery for 
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these procedures remains between 65% and 90% while long-term follow-up 

demonstrated high graft failure with between 70% and 100% failing at 10-15 years5. 

 

In addition to synthetic grafts, biologic grafts may be used. These grafts are crafted using 

autologous tissues, including saphenous vein and pericardium, allografts, and 

xenografts6. Biologic grafts have lower rates of thromboembolism than synthetic grafts. 

However, they also have increased rates of calcification, graft failure, and 

pseudoaneurysm formation compared with synthetic grafts7,8. Most significantly, 

however, none of these graft material options have the ability grow with the patient. 

Since pediatric patients often outgrow surgically implanted grafts, patients with such a 

surgical scenario require reoperation9. Such redo procedures are reported to have 

significantly higher mortality and morbidity than initial sternotomies10. 

 

Any new graft material should address the limitations of both synthetic and biologic 

grafts to reduce the overall mortality and morbidity in patients with CHD and improve 

their postoperative quality of life. The ideal vascular graft would be easily implantable 

with ease of handling during surgery, have low levels of stenosis, low rates of 

thromboembolism, high growth potential, and be resistant to infection. 

 

Scaffolds: 

The goal of tissue engineering is to provide materials that incorporate into and function 

similarly to the patient’s native tissue thus allowing normal physiologic function. This is 

accomplished using scaffolds that function as a surface for cell attachment and growth 
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followed by new tissue formation on the scaffold. To promote the creation of functional 

tissue, the scaffolds must resemble the desired tissue in both size and shape11. The 

formation of new tissue is followed by degradation of the original scaffold leaving a fully 

functional neo-vessel composed solely of autologous tissue. Pluri- or multipotent stem 

cells are often used in the process to create these tissue engineered vascular grafts 

(TEVGs) (Figure 1). 

 

A successful TEVG scaffold material should have the following three characteristics: 1) 

be biodegradable, 2) be anti-thrombotic, and 3) have adequate porosity and pore size to 

allow for cell attachment12. The most common polymers used for tissue engineered 

scaffolds include variations of polyglycolic acid (PGA) and polylactic acid (PLA) used in 

conjunction with poly (ɛ)-caprolactone13,14.  

 

Some researchers have developed TEVGs using decellularized allogeneic human or 

xenogenic porcine vessels seeded with autologous endothelial cells from the recipient15. 

However, allo- or xenotransplantation carries the risk of developing an immunologic 

response with subsequent destruction of the graft. Choosing the correct material is 

essential for the creation of TEVGs that will adequately remodel into a viable neovessel. 

Several important factors include biocompatablity, mechanical properties, and the 

biodegradation profile.  

 

It is important to note that TEVGs have rigidity. Their lumen does not collapse when 

implanted in vivo due to the biomechanical properties of the scaffolds. The tensile 
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strength of PGA with a 50:50 copolymer sealant solution of poly-(ε)-caprolactone and L-

lactide (P(CL/LA)) is approximately twice the tensile strength of native venous tissue16. 

In addition, the suture retention strength of PGA-P(CL/LA) scaffolds are greater than the 

corresponding values for native veins17. Further, the resultant burst pressure of PGA-

P(CL/LA) scaffolds under increasing pneumatic pressure is significantly greater than the 

physiologic burst pressure for native veins18. Finally, the intrinsic elasticity of PGA-

P(CL/LA) scaffolds, measured using Young’s modulus, indicates that these scaffolds are 

more elastic than synthetic ePTFE grafts but stiffer than native venous tissue18-20. 

Young’s modulus is defined as the ratio of stress (force per unit area) along an axis to the 

strain (ratio of deformation from initial length) along the same axis21. 

 

TEVGs have a rich history with initial development in the early 90s of highly porous 

biocompatible scaffolds cultured with smooth muscle22. Subsequently, TEVGs 

constructed using autologous myofibroblasts and endothelial cells seeded in vitro onto 

PGA fiber scaffolds were surgically implanted into lambs. These were the first studies to 

successfully create viable vascular conduits in a large animal model23. In this lamb 

model, venous cells were harvested from explanted autologous vein and expanded in cell 

culture. These cultured cells were labeled with acetylated low-density lipoprotein that is 

selectively absorbed by endothelial cells. Following an additional 24-hours of incubation, 

cells were sorted into endothelial cell (low-density lipoprotein positive) or smooth muscle 

cell and fibroblast (low-density lipoprotein negative) populations. These two populations 

of cells were then seeded onto PGA scaffolds. The scaffold was maintained in culture for 

seven days after which the endothelial-rich population from the original cell culture was 
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seeded onto the inner lumen. This scaffold was maintained in culture for an additional 

day. When harvested six months after implantation, all seeded scaffolds remained patent 

and free of aneurysm formation, and histology showed significant collagen formation, 

elastic fiber content, and endothelialization of the lumen23.  

 

Scaffold seeding: 

The previously described method of seeding TEVGs was successful and firmly 

established the feasibility of using TEVGs for the surgical treatment of congenital heart 

defects. However, the widespread clinical utility of this process was severely limited by 

the labor intensive process of obtaining the precursor cells and the prolonged time period 

needed to adequately expand the cells in culture before they could be used for scaffold 

seeding.  

 

In search of a more efficient method of seeding biodegradable scaffolds Noishiki et al. 

had noted that grafts seeded with bone marrow cells (BMCs) would release autocrine 

molecules leading to the formation of a luminal endothelial monolayer in a canine aortic 

model24. The early development of a luminal endothelium is important because it 

prevents the formation of acute thrombosis and subsequent graft occlusion. However, 

because they had used a synthetic, non-biodegradable ePTFE scaffold in their 

experiment, Matsumura et al. decided to test the feasibility of creating viable TEVGs 

using biodegradable scaffolds seeded with the more easily obtained BMCs25. In this 

experiment, bone marrow was aspirated from the iliac crest of dogs and bone marrow-

derived mononuclear cells (BM-MNCs) were isolated using density centrifugation. These 
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cells were seeded onto the luminal surface of a poly-L-lactic acid (PLLA)-P(CL/LA) 

scaffold and incubated in culture for two hours to promote cell adhesion. The scaffolds 

were implanted as intrathoracic IVC interposition grafts and harvested over a period of 

two years. For an interposition graft, a segment of the native vessel is removed and 

replaced with the TEVG. The two ends are reconnected (anastomosed) using sutures. 

Over the course of the experiment, all seeded grafts remained patent without evidence of 

aneurysm formation, thrombosis or stenosis. Pre-implantation analysis demonstrated 

retention and adherence of BM-MNCs to the scaffold and immunohistochemical analysis 

of explanted tissue was positive for luminal endothelial markers (von Willebrand factor 

(vWF), factor VIII, CD31 and CD146), medial smooth muscle markers (SM1, SM2, 

SMemb, and α-actin), and markers of angiogenesis (vascular endothelial growth factor 

(VEGF) and Ang-1)25. This study illustrated that autologous BM-MNCs could be used to 

create viable TEVGs with several benefits over using cells from explanted venous tissue. 

First, obtaining venous cells from explanted tissue requires an invasive procedure with 

numerous risks, especially wound complications such as dehiscence, prolonged drainage, 

cellulitis, and hematoma formation26. Second, cells cannot always be obtained from 

explanted tissue and this is affected by the patient’s comorbidities and age due to the 

limited capacity of adult somatic cells to replicate27. Third, the expansion of cells from 

explanted tissue takes weeks and severely limits the usefulness of this method in clinical 

settings. Fourth, the prolonged exposure of the cells to environmental factors from the 

culture media, pathogens, and even autologous molecules increases the risk of 

contamination or cellular dedifferentiation. BM-MNCs overcome these issues by 

eliminating the need for invasive harvesting techniques and prolonged cell-line 
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expansion. This in turn limits the risk of bacterial contamination and mitigates decreases 

in cellular viability and function. 

 

Clinical studies: 

The first human clinical trial using TEVGs to treat children with CHD was started at 

Tokyo Women’s Medical University in April 1999. For the first three patients in the trial, 

venous cells were obtained through vein harvesting, expansion in ex vivo cell culture and 

followed by incubation of the seeded scaffolds. In 2001, the method of scaffold seeding 

was changed first to direct bone marrow seeding and finally to seeding using BM-MNCs 

as based on the results described above28-30. Scaffolds seeded with BM-MNCs were 

incubated preoperatively for two to four hours before implantation. In 2005, at midterm 

follow-up of 42 patients who underwent surgery between 2001 and 2004, with average 

time since operation of 1.3 years, there were no graft related complications. This included 

no aneurysm formation, ectopic calcification, acute thrombosis, stenosis, or graft 

occlusion. While all grafts remained patent at time of analysis, the diameter of the grafts 

had increased on average to 110 ± 7% of their original size. One patient with hypoplastic 

left heart syndrome had died of complications unrelated to TEVG function 3 months 

following operation27. 

 

At long-term follow up of 25 patients with implanted grafts with average time from 

operation of 5.8 years, there was no graft-related mortality, graft infection, ectopic 

calcification, graft failure, or aneurysm formation. Three patients had died of causes 

unrelated to TEVG function and serial cineangiography or computed tomography (CT) 
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taken prior to death showed patent grafts31. This is in sharp contrast to outcomes in 

patients undergoing Fontan procedures using synthetic grafts. In a study of 193 patients 

undergoing extracardiac Fontan procedures, overall freedom from graft failure was 89% 

at five years and 85% at 10 years. At 15 years, 6.7% of surviving patients had developed 

thrombosis with 3% presenting with significant obstruction diagnosed during Doppler 

echocardiography. At 15 years, cumulative freedom from cavopulmonary pathway 

obstruction was 89%3. In a study of 200 patients at 10-year follow-up, reoperation was 

performed in 12% of patients and thromboembolism occurred in 6.5% of patients with 

84.6% of these occurring within one year of their operation32. Patients in the TEVG study 

received three to six months of anticoagulation with warfarin and aspirin (INR-

International Normalized Ratio recommended between 1.5 and 2). From six to 12 

months, patients were maintained on aspirin alone after which time anticoagulation was 

discontinued28. Patients with synthetic grafts, in contrast, often remained on anti-

aggregation therapy indefinitely3,33. 

 

TEVG growth potential: 

As discussed earlier, one of the main advantages of using TEVGs in the pediatric 

population is their ability to grow with the child. To characterize and evaluate the growth 

potential of TEVGs, Brennan et al. implanted PGA grafts into a juvenile lamb model34. It 

is important to note that each animal model has specific characteristics that make it ideal 

for the evaluation of certain biological processes. In pediatric patients undergoing 

corrective surgery for congenital heart disease, ectopic calcification is a leading cause of 

graft failure23. Importantly, lamb vasculature undergoes accelerated ectopic calcification 
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during growth as compared to other large animal models such as pigs and dogs35. The 

juvenile lamb study demonstrated patent TEVGs at six months with no evidence of 

rupture, thromboembolism or significant ectopic calcification. Serial magnetic resonance 

imaging (MRI) showed an increase in TEVG size proportional to the unaltered right 

pulmonary artery (control). Quantitative analysis revealed the volume of TEVGs at six 

months averaged 126.9 ± 9.9% of their volume at one month and that wall thickness was 

comparable between the TEVG and native IVC (control). At six months, histological 

analysis demonstrated that the implanted TEVGs and native vein had comparable 

amounts of elastin, collagen and glycosaminoglycan. Immunohistochemistry revealed 

endothelialization of the lumen with surrounding layers of smooth muscle cells. 

Importantly, this was the first study to demonstrate expression of Eph-B4 in TEVGs, 

which is a marker of venous differentiation expressed during native venous tissue 

growth34. This finding suggests that TEVG remodeling resembles normal venous 

development. 

 

Promising results from the aforementioned studies and improvements in the efficiency of 

creating and seeding TEVGs led to the 2009 Food and Drug Administration (FDA) 

approval at Yale of a US clinical trial of TEVGs in pediatric patients with single ventricle 

cardiac anomalies. 

 

Small animal models: 

Large animal models are an essential step in providing important data on the safety and 

efficacy of TEVGs that can be readily translated to human clinical trials. However, these 
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models are less ideal for analyzing the molecular and cellular mechanisms responsible for 

graft remodeling and for elucidating the processes involved in the development of 

neovessels. Mice are an ideal organism for studying the biologic development of 

cardiovascular tissue due to their short generation time, accelerated lifespan, and the 

homology between human and murine genes responsible for numerous complex genetic 

pathologies such as atherosclerosis36,37. One major limitation for using a murine model 

was developing a functional scaffold with a sub-1 mm internal diameter that could then 

be implanted using microsurgical techniques. The development of the first small-

diameter biodegradable scaffold was reported in 2008 by Roh et al18. They developed a 

dual cylinder system that allowed nonwoven felts of PGA to be shaped into tubes during 

insertion into the dual cylinder chamber. Next, 21 gauge stainless steel rods were 

introduced into the lumen of the scaffolds before application of a 50:50 copolymer 

sealant solution of P(CL/LA) to prevent collapse of the scaffold inner lumen. The 

resulting tubes were rapidly frozen to transform the P(CL/LA) sealant from the liquid to 

the solid phase leading to a solid, non-collapsing porous scaffold. Scanning electron 

microgram (SEM) revealed an internal diameter of 0.9 mm with a wall thickness of 150 

μm18. Of note, current synthetic materials such as PTFE or PET (Dacron) cannot be used 

to create clinically functional grafts with sub-1 mm internal diameters38. 

 

Density centrifugation versus filter collection: 

At this juncture, our group had developed viable animal models to characterize the 

molecular development of neo-vessels and had shown the effectiveness of BM-MNCs in 

this process numerous times. However, several important limitations remained as 
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obstacles to the widespread clinical application of TEVGs. Currently, BM-MNCs are 

generally isolated from bone marrow using density centrifugation with Ficoll, a soluble 

high-mass polysaccharide used to facilitate the separation of blood into its components39. 

Lower density mononuclear cells and platelets collect on top of the Ficoll layer, while 

higher density erythrocytes and granulocytes collect below the Ficoll layer. Subsequent 

centrifugation and washing of the top layer with phosphate-buffered saline (PBS) can be 

used to separate mononuclear cells from platelets40. There are, however, several 

drawbacks to using Ficoll density gradient centrifugation to isolate BM-MNCs. First, 

erythrocytes may form aggregates with mononuclear cells causing unwanted 

sedimentation of the mononuclear cells into the bottom layer. Second, repeated and 

prolonged handling of the sample may decrease viability of isolated cells. Third, cellular 

damage may cause cell aggregation leading to decreased yield of mononuclear cells41. 

Fourth, density centrifugation is affected by operator proficiency leading to significant 

variability42. Fifth, Ficoll isolation uses an open method that exposes the sample to the 

environment during isolation. In clinical practice, an open system must use an 

International Organization for Standardization (ISO) class 7 clean room to limit the risk 

of bacterial contamination and meet the standard of current Good Manufacturing Practice 

(cGMP). These clean rooms are expensive to construct and maintain in compliance with 

sterile production standards. They also require substantial human resources to operate43.  

 

If a sterile disposable blood filter could be integrated into a closed system of collection, it 

would not require a clean room, would be operator-independent, would decrease the risk 

of contamination, would reduce cellular damage and facilitate the clinical use of TEVGs. 
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The World Health Organization (WHO) defines a closed system as the aseptic collection 

and separation of blood components under clean conditions sealed from the external 

environment44. In this system, bone marrow can be transferred directly into a sterile 

plastic holding chamber using a syringe. The bone marrow is filtered by gravity-mediated 

downward longitudinal flow and mononuclear cells are captured on a nonwoven 

polyester fiber filter media by interception. The trapped BM-MNCs are recovered by 

back-flushing the filter and reversing the direction of flow through the closed system. 

This filter was originally adapted from leukocyte reduction filter-based systems (LRF) 

used by blood banks to facilitate the isolation of white blood cells from blood products. 

Use of this blood filter in clinical transfusion practice helps expedite the removal of some 

cell associated viruses (CMV-cytomegalovirus) and decrease human leukocyte antigen 

(HLA) alloimmunization, which in turn decrease transfusion reactions, infections and 

febrile episodes45. 

 

The ability of a filter-based method to effectively isolate mononuclear cells was 

illustrated by Hibino et al when they successfully isolated MNCs from human bone 

marrow (hBM-MNCs)46. They subsequently seeded PGA-P(CL/LA) with hBM-MNCs 

isolated using either the traditional density centrifugation with Ficoll method or using the 

experimental filter-based method. These seeded scaffolds were implanted as IVC 

interposition grafts in immunocompromised SCID/bg mice. These mice have impaired 

lymphoid development and reduced natural killer cell activity which prevents host 

rejection of the implanted human cells47. It took significantly less time for cell isolation 

by filtration (10 ± 12 min) compared to density centrifugation (106 ± 11 min). Despite 
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this, there was no significant difference in the number of hBM-MNCs isolated by either 

method. Fluorescence-activated cell sorting (FACS) showed that the percentage of viable 

cells and the ratio of stem cells to mononuclear cells were comparable between both 

groups. Analysis of TEVG histology at 10 weeks post-implantation revealed no 

difference between scaffolds seeded by either method. Both graft groups demonstrated an 

endothelial monolayer as evidenced by positive luminal vWF staining. Positive alpha 

smooth muscle actin (α-SMA) and calponin staining demonstrated the formation of a 

smooth muscle layer in both groups. Serial monitoring by ultrasonography, CT 

angiography (CTA) and post-explant analysis revealed no aneurysm formation or graft 

rupture over 10 weeks in both groups. 

 

This technique was subsequently used to create TEVGs that were effectively implanted 

into a large animal model48. Specifically, bone marrow was obtained from lambs and 

BM-MNCs were isolated using an open system density centrifugation method or a closed 

system filter-based method. PGA-P(CL/LA) scaffolds were seeded with cells isolated 

using either method and implanted into juvenile lambs as intrathoracic IVC interposition 

grafts. Results demonstrated that total procedure time from removal of bone marrow to 

insertion of graft was significantly less using the closed system (2 hrs 17 min) compared 

to the open method (4 hrs 28 min). Further, there was no significant difference in the 

number of cells seeded onto scaffolds in either group. Two animals in the open method 

group developed significant graft stenosis requiring early sacrifice, while all six lambs in 

the closed method group survived without any evidence of graft related complications 

including acute thrombosis, stenosis, or aneurysm formation. Histologic analysis of tissue 
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explanted six months after implantation demonstrated that the cellular architecture in 

both groups mirrored native vein (control) with the development of three distinct layers 

including an intimia, media and adventitia48.  

 

Current thesis research: 

At this stage, it had been shown that scaffolds seeded with BM-MNCs isolated via a 

closed filter-based system could develop viable TEVGs that resembled native tissue in 

immunocompromised mice46. However, we needed to show that this was possible in 

immunocompetent mice. Therefore, to compare the effectiveness of the novel filter-based 

collection method with the conventional density centrifugation technique using Ficoll, we 

isolated BM-MNCs from the bone marrow of wild type, immunocompetent C57BL/6 

mice using the two methods. Then we seeded biodegradable scaffolds with the isolated 

BM-MNCs and implanted them as IVC interposition grafts into the same strain of mice. 

We hypothesized that neo-tissue formed from the biodegradable scaffolds seeded using 

BM-MNCs isolated from each method would be biologically, structurally, and 

functionally equivalent. 
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METHODS AND MATERIALS 

 

Scaffolds: 

A 50:50 fiber mesh constructed with a poly-glycolic acid coated with copolymer sealant 

solution of poly-L-lactide-co-ε-caprolactone was used for scaffold construction18,49. 

Scaffolds were 4 mm long with a diameter of 0.9 mm. 

 

Bone marrow-mononuclear cell preparation and scaffold seeding: 

BM-MNCs were extracted from the bone marrow of immunocompetent CB57BL/6 wild 

type mice through two distinct methods, specifically, density centrifugation using Ficoll 

versus filtration. For the filtration method, BM-MNCs were isolated from bone marrow 

as follows: 5 mL of bone marrow was extracted from a minimum of five mice and the 

resulting volume was increased to 15 mL by adding RPMI 1640. Using a syringe, this 

mixture was transferred to a sterile storage chamber that was connected to a scaled down 

version of the commercially available polyester fiber human blood cell filter. This filter 

functions to capture BM-MNCs in the filter media through interception, thus retaining the 

needed cells. The filters were washed twice with PBS to remove entrapped and unwanted 

erythrocytes from the filter. The BM-MNCs that were retained in the filter were isolated 

by reverse-flushing the filter with 6 mL of 10% dextran 40/saline solution. This solution 

was centrifuged and the resulting pellet was diluted using RPMI-1640 (Figure 2)48. For 

Ficoll density centrifugation, bone marrow was extracted and centrifuged at 400 g for 30 

min in Histopaque-1083. The low density layer containing monocytes was removed and 

transferred into a new tube. This was washed with PBS and centrifuged at 100 g for 10 
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min. The supernatant was removed and fresh PBS was added to the resulting pellet. This 

pellet was centrifuged for a third time at 100 g for 10 min. The supernatant was again 

removed and the isolated BM-MNCs were suspended in RPMI 164049. For scaffold 

seeding, 1.0x106 BM-MNCs isolated using either method were seeded onto the luminal 

graft surface manually using a pipet. The seeded scaffolds were placed in 1 mL of sterile 

RPMI-1640 in a CO2 incubator for 24 hours at 37 oC to promote adherence of BM-MNCs 

to the scaffold49. 

 

Seeded scaffold cell counts: 

Following BM-MNC isolation using the density centrifugation and filter methods, 

manual cell counts were performed for each group. In addition, cell viability was 

assessed using trypan blue staining also followed by manual cell counting. The 

deoxyribonucleic acid (DNA) content of seeded scaffolds following 24 hour incubation 

was obtained using a PicoGreen DNA detection assay42.  

 

Surgical implantation into murine model: 

Animals were treated appropriately as required by the National Institutes of Health Guide 

for the Care of, and the Yale University policy on, Use of Laboratory Animals. The Yale 

Institutional Animal Care and Use Committee approved the use of animals and 

procedures for this study. All mice were 10-week-old ‘wild type’ C57BL/6 mice 

purchased from Jackson Laboratories. 
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TEVGs were implanted as IVC grafts by members of our lab in CB57BL/6 mice with n = 

23 for each group, group 1 (density centrifugation) and group 2 (filter), using standard 

microsurgical technique as follows: All mice were anesthetized with an intraperitoneal 

injection of 0.10 ketamine/xylazine mixture. A midline laparotomy incision from the 

xyphoid to the suprapubic region was made and the intestines were wrapped in saline-

moistened gauze to approach the inferior vena cava. Microvascular clamps were used to 

clamp the IVC followed by transection of the vessel. The interposition graft was 

introduced and secured using end-to-end anastomoses with sutures. Heparinized solution 

was used frequently to prevent formation of an acute thrombosis18,49. Mice were kept in 

regularly cleaned and maintained cages by the Yale Animal Resource Center (YARC) 

where they were fed ad libitum. All mice were sacrificed 14-days following implantation 

and grafts were explanted following saline perfusion of the circulatory system.  

 

Ultrasound monitoring of implanted TEVGs: 

At 3, 7, and 14-days post-implantation graft luminal diameter was determined using 

ultrasonography and graft patency was determined by assessing flow velocity both 

proximal and distal to the graft using Doppler ultrasonography. To perform 

ultrasonography on mice, 1.5% isoflurane was used as an anesthetic.  

 

Histology: 

Following graft explantation at 14-days, grafts were fixed using 4% para-formaldehyde, 

embedded in paraffin, sliced into 5 μm sections, and mounted onto slides. These sections 

were stained using Hematoxylin and Eosin (H&E), Alcian Blue (mucins), von Kossa 
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(calcium), Masson’s trichrome (collagen), and Elastica van Gieson (EVG) (elastin). On 

H&E stained specimens, the intima, media, and adventitia were identified and measured 

manually using ZEN lite, and post-explantation graft patency was defined as a luminal 

diameter greater that 50% compared to the graft diameter prior to implantation.  

 

Immunohistochemistry:  

Paraffin embedded sections of explanted graft, created as described above, were stained 

with anti-vWF, anti-SMA, anti-matrix metalloproteinase-2 (MMP-2) and anti-F4/80 

antibodies to identify murine endothelial cells, smooth muscle cells, MMP-2 and 

macrophages respectively. Anti-iNOS and anti-CD206 antibodies were used to identify 

M1 and M2 macrophage phenotypes respectively. Biotinylated IgG was used to detect 

primary antibody attachment. This was followed by streptavidin-horse radish peroxidase 

binding and color development, which was accomplished using 3,3-diaminobenzidine. 

 

Macrophage quantification: 

Macrophages were identified using F4/80 expression as described above. Each stained 

graft section was dived into eight regions and stained macrophage nuclei were counted 

manually in three of the eight regions at 400x magnification.  

 

Ribonucleic acid (RNA) extraction real time-quantitative polymerase chain reaction: 

Grafts explanted following 14-days of implantation were embedded in optimal cutting 

temperature (OCT) compound and rapidly frozen in a -80 oC freezer. These frozen grafts 

were sliced into twenty 30 μm sections and total RNA was extracted and purified using a 
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Qiagen RNeasy mini kit according to the manufacturer’s instructions. Reverse 

transcription was performed using an Applied Biosystems high capacity RNA-to-cDNA 

kit. Quantitative polymerase chain reaction (qPCR) was performed using a Step One Plus 

Real-Time PCR system using a TaqMan Universal PCR Master mix Kit with the 

following primers and reference numbers: CCR2 (Mm00438270_m1), itgam 

(Mm00434455_m1), ym1 (Mm00657889_mH), and HPRT (Mm00446968_m1) as a 

control. In real-time qPCR, gene replication is detected by an increase in fluorescent 

signaling and cycle threshold (Ct) is defined by the number of replication cycles required 

to surpass a predefined threshold (which is based on a background level of gene 

expression). Therefore, Ct levels are inversely proportional to the amount of target 

messenger RNA in the sample. Relative quantification compares the change in expression 

of the target gene in the TEVG from native IVC in relation to the change in expression of 

an endogenous reference gene, hypoxanthine phosphoribosyltransferase (HPRT), 

between the TEVG and native IVC. This is referred to as the comparative cycle threshold 

method and results as reported as ΔΔ Ct which describes the change in expression of the 

target gene in the TEVG compared to expression in control native IVC50.  

 

Statistical analysis: 

Based on results by Hibino et al. in 2011, a patency rate of 70% in grafts seeded with 

density centrifugation isolated BM-MNCs versus 30% in unseeded grafts at 14-days post-

implantation was assumed51. Based on these data, sample size was calculated using 

Fisher’s exact probability test using an alpha-error of 0.05 and a power of 0.8. 
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All numerical values are listed as the mean ± 1 standard deviation and the sample size is 

also included. Statistical significance was determined as a P value < 0.05. The Student’s t 

test was used for continuous variables with normal distribution while the Welch’s t test 

was used for two groups with unequal variance (substantially different standard 

deviations). Continuous variables with non-normal distribution were evaluated using the 

nonparametric Mann-Whitney test. Dichotomous variables were evaluated using the 

Fisher’s exact test. 

 
Procedure Involvement 

Scaffold construction and seeding Primary 

BM-MNC isolation Primary 

Seeded scaffold cell counting Primary 

Surgical implantation of scaffolds Assistant to Tai Yi and Hirotsugu Kurobe 

TEVG ultrasound monitoring Primary 

Histology preparation Yale Histology and Histomorphometry Laboratory 

Histology analysis Primary 

Immunohistochemistry Primary 

Macrophage quantification Primary 

RNA extraction and RT-qPCR Primary 

Statistical analysis Primary 

 

Table 1. Involvement with specific procedures conducted during the course of this 

experiment. The author had primary involvement with all aspects of the experiment except 

surgical implantation of scaffolds in the murine model and with preparation of histology slides.  
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RESULTS 

 

Comparison of BM-MNC isolation: 

Both total BM-MNC and viable BM-MNC counts following filtration were significantly 

greater than those seen following density centrifugation-based cell isolation (total cells, 

filter: 44.3 ± 12.6x106 cells/mouse versus density centrifugation: 24.8 ± 8.8x106 

cells/mouse, p=0.02; viable cells, filter: 32.8 ± 6.7x106 cells/mouse versus density 

centrifugation: 20.6 ± 8.7x106 cells/mouse, p=0.04; Figure 3). The filter-based BM-MNC 

isolation method also showed significantly greater cell attachment following 24-hour 

scaffold incubation as detected by PicoGreen DNA assay evaluation of scaffold DNA 

content between the two groups (filter: 15.5 ± 6.3x103/mm2 versus density centrifugation: 

12.4 ± 2.5x103/mm2, p=0.04; Figure 4). 

 

TEVG monitoring via ultrasound: 

Serial ultrasonographic evaluation on day 3, 7, and 14 showed no significant difference in 

luminal diameter of graft patency between the filtration and density centrifugation 

methods. In both groups, the graft patency and the luminal diameter decreased with each 

time point. However, no aneurysm formation, hemorrhagic complications, thrombus 

formation or embolization was detected in either group.  

 

Evaluation of graft patency and luminal diameter: 

There was no statistically significant difference in graft patency between the two groups 

as determined using H&E stained slides of grafts explanted following 2 weeks of 
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implantation (filter: 78% patency versus density centrifugation: 87% patency, p=0.7; 

Figure 5A). Manual measurement of patent grafts did not show any statistically 

significant difference in neointimal thickness (filter: 37.9 ± 11.2 μm versus density 

centrifugation: 37.9 ± 7.8 μm, p=0.99) or lumen diameter (filter: 633 ± 131 μm versus 

density centrifugation: 620 ± 82.9 μm, p=0.72) (Figure 5B). 

 

TEVG histology: 

Neovessel formation, cellular infiltration into the TEVG, cellular distribution in the 

TEVG, and cellular architecture appeared similar between the two groups (filter and 

density centrifugation) using H&E staining of grafts explanted after 2 weeks of 

implantation. Both groups demonstrated abundant collagen deposition within TEVGs as 

evidenced by Alcian blue and Masson’s trichrome extracellular matrix stains. Elastica 

van Gieson stain demonstrated a paucity of elastin in both groups, while the absence of 

von Kossa staining demonstrated lack of graft calcification in either group. Of note, 

unabsorbed poly-glycolic acid fibers resulted in non-specific staining by both von Kossa 

and Alcian blue stain, and they resemble capillaries or vacuoles on H&E stain. 

 

TEVG immunohistochemistry: 

SMA immunohistochemical staining of smooth muscle cells was found mainly in the 

media of explanted TEVGs of both groups. vWF staining was used to identify the 

luminal intima of TEVGs in each group and it demonstrated endothelialization of the 

explanted tissue. Matrix metalloproteinase-2 is a central component for effective 

remodeling of seeded scaffolds into neovessels and previous studies have shown that 
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MMP-2 activity is greatest two weeks post-implantation in mice52. In our results, MMP-2 

staining showed similar activity in grafts explanted from both groups at 14 days post-

implantation.  

 

TEVG macrophage analysis: 

Abundant F4/80 immunohistochemical staining in TEVGs demonstrated that infiltration 

by macrophages occurred in both groups. There did not appear to be any difference in 

infiltration by the two major macrophage phenotypes, M1 and M2, in TEVGs seeded 

using either method of cell isolation. There was no statistically significant difference in 

quantitative macrophage infiltration between the number of F4/80 positive cells between 

the two groups (filter: 1887 ± 907.7 cells/mm2 versus density centrifugation: 2041 ± 1078 

cells/mm2, p=0.59; Figure 6). Variation in macrophage phenotype, M1 (filter: 0.82 ± 0.67 

versus density centrifugation: 1.00 ± 0.99, p=0.67) and M2 (filter: 1.26 ± 1.30 versus 

density centrifugation: 0.92 ± 0.67, p=0.52) , between the two groups was assessed using 

qPCR in explanted grafts and no statistically significant difference was found (Figure 7). 

Macrophage gene expression as determined by qPCR using the monocyte marker CD11b 

demonstrated no statistical significance between the two groups at the following time 

points: following isolation but prior to seeding (filter: 1.38 ± 0.68 versus density 

centrifugation: 1.00 ± 0.60, p=0.16) and following explantation at 2 weeks (filter: 1.03 ± 

0.71 versus density centrifugation: 1.00 ± 0.55, p=0.97) (Figure 7). 
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DISCUSSION 

 

The goal of our study was to assess the difference between BM-MNCs isolated using a 

conventional density centrifugation in Ficoll method versus a unique filter-based method. 

Furthermore, we analyzed the effect of each method on neo-vessel formation and 

remodeling of implanted scaffolds, using an immunocompetent murine model. 

 

We found no difference in luminal diameter, graft patency, or incidence of stenosis 

between grafts created using scaffolds seeded by either method.  There was also no 

difference between the histologic or immunohistochemical structure of neo-tissue with 

regard to intima, media, and adventitia formation, location of collagen deposition, 

endothelial cell attachment, smooth muscle infiltration or graft calcification. A previous 

study had shown differences in macrophage phenotype in isolated BM-MNCs based on 

method of bone marrow filtration46. However, we found no difference in macrophage 

phenotype both following bone marrow isolation and in grafts, explanted after two weeks 

of implantation. Further, macrophage polarization and amount of infiltration was similar 

in grafts seeded by either method. 

 

These findings are important because host-initiated macrophage infiltration into the 

implanted TEVG is essential for vascular neo-tissue formation. In 2011, Hibino et al. 

analyzed the role of host macrophages in the development of TEVG stenosis51. When 

PLLA-P(CL/LA) scaffolds, unseeded or seeded were implanted as infrarenal IVC 

interposition grafts in CB57BL/6 wild type mice, the amount of macrophage infiltration 
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was directly related to the extent of graft stenosis at 14-days, but inversely proportional to 

BM-MNC seeding. It is important to note that macrophages are a heterogeneous subset of 

mononuclear cells that are an active part of a host immune response to foreign implanted 

grafts53. In an effort to characterize the function of the varying types of macrophages, 

they have been divided into phenotypes based on their biological function, surface 

markers, and cytokine profile54. These macrophages are often referred to as M1 or M2 

cells. M1 macrophages are pro-inflammatory, cytotoxic cells that promote pathogen 

killing and chronic inflammation while M2 macrophages are anti-inflammatory cells that 

promote tissue remodeling, tissue repair and immunoregulation55. The 2011 study 

illustrated that seeded scaffolds express significantly less pro-inflammatory M1 

phenotype macrophages than unseeded scaffolds51. It also showed that macrophages 

infiltrating patent grafts shift towards the M2 phenotype while those found in stenotic 

grafts show increased expression of the M1 phenotype suggesting that scaffold seeding 

decreased rates of stenosis by modulating the macrophage response51,56. In the same 

study, TEVGs were implanted into mice that were macrophage-depleted following the 

application of clodronate liposomes, which cause clodronate-induced apoptosis following 

endocytosis by macrophages51,57. These mice had grafts with reduced cellularity, 

decreased concentration of DNA per scaffold, absence of luminal endothelial cells as 

seen by a lack of vWF staining, absence of smooth muscle cells as evidenced by a lack of 

SMA staining, and decreased collagen. These findings suggest that inhibiting 

macrophage infiltration into implanted grafts prevents the formation of vascular neotissue 

and attest to the importance of macrophage involvement in neo-vessel development. To 

certify that this finding was not caused directly by clodronate liposome treatment, 
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TEVGs were implanted as infrarenal IVC interposition grafts in CD11b-diptheria toxin 

receptor knockout mice that were depleted of macrophages by intraperitoneal injection of 

diphtheria toxin. These mice exhibited diminished F4/80 staining, and absent vWF, SMA 

and collagen staining. Together these results suggest that lack of macrophage infiltration 

prevents adequate neo-vessel formation in TEVGs51. 

 

At this stage our lab had determined the importance of host macrophage infiltration for 

neotissue formation and the role of seeded mononuclear cells in recruiting macrophages. 

However, the exact molecular mechanism responsible for this recruitment remained 

elusive. To determine which molecules may be responsible for early monocyte 

(macrophage precursor) recruitment, the cytokine profile of scaffolds seeded with 

hBMCs was examined56. While there was a significant increase in the production of 

multiple cytokines, there were particularly high levels of monocyte chemotactic protein 1 

(MCP-1). In 2000, Salcedo et al. had shown the importance of MCP-1 in angiogenesis, 

especially for the chemotaxis of human endothelial cells and an associated inflammatory 

response composed primarily of monocytes58. To investigate the isolated effect of MCP-

1, biodegradable alginate microparticles were constructed and used to encapsulate 

recombinant human MCP-156. These microparticles were embedded into scaffolds and 

implanted as IVC interposition grafts in SCID/bg mice where they released MCP-1 over 

a span of 72 hours. At one week post-implantation, monocyte recruitment was 

significantly greater in MCP-1 eluting scaffolds (200 ± 60 monocytes/hpf) compared to 

unseeded scaffolds (60 ± 12 monocytes/hpf). At 10 weeks following implantation, all 

MCP-1 eluting scaffolds remained patent and histologic analysis showed a monolayer of 
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luminal endothelial cells surrounded by smooth muscle cells and abundant collagen 

deposition in a pattern identical to that seen in scaffolds seeded with BM-MNCs56.  

 

In a parallel study, Mirensky et al. examined the importance of monocytes in graft 

formation59. PGA-P(CL/LA) scaffolds were seeded with 1) heterogeneous BM-MNC, 2) 

BM-MNC minus CD14+/CD45+ monocytes, or 3) isolated CD14+/CD45+ monocytes and 

implanted as infrarenal IVC interposition grafts in immunocompromised SCID/bg mice. 

When grafts were explanted at six months post-implantation, internal diameters were 

significantly greater in scaffolds seeded with only monocytes (1.022 ± 0.155 mm) 

compared to scaffolds seeded without monocytes (0.771 ± 0.121 mm)59. These 

differences allude to the importance of monocytes in the maintenance of long-term graft 

patency through the reduction of graft stenosis. 

 

The results of the current study are important for several reasons. First, the presently 

accepted methods of BM-MNC isolation rely on density centrifugation, which is labor 

and resource intensive, time-consuming, and has significant variability based on operator 

technique42. A filter-based isolation method, similar to the one used in this study, was 

first used to isolate mononuclear cells from peripheral human blood where it was 

extremely effective60. Then it was successfully used to isolate BM-MNCs from human 

bone marrow and demonstrate that scaffolds seeded with either the filter-based method or 

density centrifugation would develop morphologically equivalent neo-vessels when 

implanted as IVC interposition grafts in immune-deficient SCID/bg mice46. As discussed 

earlier, however, elements of the host-mediated immune response, specifically infiltrating 
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macrophages, are essential for development of a neo-vessel resembling native tissue. In 

the present study, autologous BM-MNCs were isolated from wild type mice using filter-

based versus density centrifugation methods and then implanted into immune-competent 

CB57BL/6 mice. This difference is significant because the host immune system is intact 

in these mice and it plays an integral role in the development of endothelial cells, smooth 

muscle cells, and collagen in neo-vessels61,62. Our results show that filter-based collection 

works just as well in an immunocompetent model as in an immunocompromised model. 

These results provide small animal model data that supports the safe and efficacious use 

for this vascular graft system in human clinical studies. 
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CONCLUSION 

 

In this study a significantly greater number of total cells were isolated using the filter-

based method suggesting it is more efficient than density centrifugation at BM-MNCs 

isolation. Further, the number of viable cells following filtration and cellular attachment 

measured by DNA content after 24 hour incubation of seeded scaffolds suggest the filter-

based method is less destructive and damaging to cells than density centrifugation.  

 

These results, as compared with the Ficoll density method of MNC isolation, show no 

difference in the biological activity of cells isolated by the filter-based method and no 

difference in the TEVGs created from scaffolds subsequently seeded by these cells. 

Importantly, the equivalence of the safety and efficacy of the filter versus density 

centrifugation based methods of TEVG formation, has been demonstrated in a large 

animal model48. Based on the results of this and previous studies, the filter-based method 

of BM-MNC isolation from bone marrow for scaffold seeding and the composition of the 

tissue in resulting TEVGs can be considered as biologically and structurally similar to 

TEVGs formed via the original density centrifugation based method. Since the filter-

based method can be fabricated as a closed, sterile, and disposable system that is effective 

for scaffold seeding and TEVG formation, it can be utilized commercially as a method 

that significantly reduces cost, risk of infection, time required for cell isolation and 

removes operator variability. It is important to note that although a manual pipet was 

used for scaffold seeding in this study, a fully closed system would require vacuum 

seeding method as previously described42. The efficacy of the filter-based method has 
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now been established in small and large animal studies using both murine and human 

BM-MNCs. As the next step, process improvement studies of the filter-based method 

should be conducted in human patients where it has the potential to significantly reduce 

time under anesthesia and time in the operating room while the MNCs are collected and 

processed. This would substantially reduce both cost and potential patient complications 

from prolonged anesthesia exposure and an extended time of surgery. Further, the filter-

based method would allow these operations to be performed at many more hospitals 

because ISO class 7 clean rooms would no longer be required. Even in large academic 

centers with established clean rooms, these facilities are often not in close proximity to 

operating rooms and bone marrow may need to be transported between buildings while 

an anesthetized patient is waiting on the operating table. This is especially concerning for 

pediatric patients.  With the ability to extract bone marrow, isolate cells for seeding, seed 

the scaffold and implant the graft all within the operating room, the chance of mixing 

samples between patients is essentially eliminated. These improvements would expand 

the number of patients able to safely and quickly undergo procedures involving TEVG 

implantation thus leading to a substantial cost savings and advance in surgical care. 
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FIGURES 

 

Figure 1. Neo-vessel formation from bone marrow-derived mononuclear cell (BM-MNC) 

seeded biodegradable scaffolds. Seeded BM-MNCs secrete monocyte chemotactic protein 1 

(MCP-1) leading to monocyte infiltration. Incoming monocytes release cytokines that promote 

the influx of endothelial and smooth muscle cells from adjacent native vessel segments. These 

incoming cells create a neotissue on the luminal surface of the scaffold that resembles native 

tissue. The original monocytes exit the graft as the scaffold degrades leaving behind a complete 

neo-vessel. Reproduced from Roh et al., Ref 56, with permission from PNAS. 
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Figure 2.  Closed disposable filter-based seeding system. (1) A 15 mL mixture of extracted 

bone marrow plus RPMI-1640 is injected into the elevated sterile bone marrow bag. (2) The 

mixture is passed downward through the filter media by gravitational flow, which entraps bone 

marrow-derived mononuclear cells (BM-MNCs) through interception. (3) Retained BM-MNCs 

are recovered from the filter media by reverse flushing 6 mL of harvest solution (10% dextran 

40/saline) through the filter. (4) The retrieved solution is centrifuged at 1500 rpm for 10 minutes. 

Figure from Breuer lab. 
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Figure 3. Evaluation of bone marrow-derived mononuclear cells (BM-MNCs) following 

isolation. Manual cell count was used to determine number of total BM-MNCs and trypan blue 

stain was used to define viable BM-MNCs. The filter-based isolation group had significantly 

greater total and viable BM-MNCs than the density centrifugation group following evaluation by 

the Student’s t test. 
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Figure 4. Cell attachment to scaffolds following seeding and incubation. DNA quantification 

was utilized to determine BM-MNC attachment to scaffolds following seeding and 24-hour 

incubation. The DNA content, used as a measurement of cell attachment, in the filter group was 

significantly greater than in the density centrifugation group using Welch’s t test. 
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Figure 5. Analysis of TEVG structural parameters. A) Graft patency was defined as a luminal 

diameter greater than 50% compared to the pre-implantation graft.  There was no significant 

difference in graft patency between the filter and density centrifugation groups according to data 

analyzed using the Fisher’s exact test. B) Luminal diameter and neointimal thickness did not 

differ significantly between TEVGs constructed from either group following evaluation using the 

Welch’s t test. 
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Figure 6. Macrophage infiltration in TEVGs. Macrophages were counted manually after 

staining for F4/80 positive cells in grafts 2 weeks after implantation. There was no significant 

difference between the two groups following analysis of data using the Mann-Whitney test. 

 



40 
 

 

Figure 7. Gene expression of macrophage phenotypes in TEVGs. Gene expression was 

assessed using the ΔΔ Ct method following real time quantitative reverse transcription 

polymerase chain reaction (RT-qPCR). Gene expression of the macrophage marker CD11b 

following isolation (upper panel) and 2 weeks after implantation (lower panel) showed no 

difference between the filter and density centrifugation methods. In addition, gene expression of 

the macrophage M1 phenotype marker iNOS and M2 phenotype marker CD206 was not 

significantly different 2 weeks after implantation. This data was analyzed using the Student’s t 

test. 
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