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PREDICTORS AND POTENTIAL MECHANISMS OF IMPROVEMENT IN ASTHMA CONTROL  

IN CHILDREN FOLLOWING ADENOTONSILLECTOMY. 

Maria B. Koenigs, Jonathan C. Levin, Lisa Gagnon, David E. Karas, and Geoffrey L. 

Chupp. Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal 

Medicine, Yale University School of Medicine, New Haven, CT.  

Recent small observational studies suggest that asthmatic children receive clinical benefit in 

asthma control following adenotonsillectomy (TA), but little is known about which clinical 

and biological characteristics impact improvement. We enrolled 213 children undergoing TA, 

including 136 children with asthma and 78 controls, in a longitudinal observational cohort 

study (YCAAD). An asthma questionnaire, Asthma Control Test (ACT) scores, and serum 

asthma biomarkers levels were obtained at baseline and at six-months. Interim analysis 

compared patient characteristics to a historical cohort (CT-Kids) of 49 children with asthma 

who underwent TA. Urgent care visits (P < 0.001), oral steroid courses (P < 0.001), and 

ACT scores (P < 0.001) all improved in children with asthma following TA. Serum Th2 

inflammatory markers, including IL-4 (P = 0.022) and IL-5 (P = 0.002), decreased following 

TA. Decreased IL-5 levels following surgery correlated with improvement in urgent care 

visits (P = 0.021), decreases in oral steroids (P = 0.02), and overall improvement in asthma 

control (P = 0.008). Children who were low or healthy weight, younger, female, had a 

history of sinusitis, and/or had a history of persistent asthma were more likely have 

improvement in their asthma following surgery. Elevations of serum IL-2, IL-4, IL-5, IL-13, 

IFN-γ, TNF-α, and GM-CSF levels were found in children whose asthma improved after TA.  

These clinical characteristics and biomarkers may help predict which children will receive 

maximum benefit in asthma control following TA.  
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INTRODUCTION 

Asthma is a common inflammatory disease of the lower airways with significant 

morbidity and mortality worldwide. There is a growing understanding that the 

pathophysiologic processes that contribute to asthmatic inflammation exist beyond the 

lower airway. Recent work has demonstrated that upper airway disease, including 

adenotonsillar disease in children, may worsen asthma control. [1, 2] Despite the 

prevalence of adenotonsillar disease in childhood, there has only been limited 

investigation on the impact of adenotonsillectomy (TA) on asthma control.   

The Economic Burden of Asthma is Substantial 

Asthma is one of the most common chronic morbidities in children in Western 

countries. In the United States approximately 14% of children are diagnosed with asthma 

during their lifetime and 9.6% of children carry a current diagnosis of asthma. [3] Over 

300 billion people worldwide of all ages carry a diagnosis of asthma [4] with a significant 

of proportion of disease in the pediatric population. There is increasing recognition that 

asthma is a global disease, with a significant increase in disease prevalence in Latin 

America, Northern Europe, Eastern Europe, and Africa. Over a five to ten year period in 

the International Study of Asthma and Allergies in Childhood (ISAAC)—a large 

multicountry cross sectional-survey of over 50 countries—there was increasing global 

prevalence of asthma of 0.13% per year worldwide. [5] Although high-income countries 

have higher prevalence rates of asthma in childhood, severe disease is more common in 

less affluent countries. [6] With the increasing prevalance of asthma worldwide and 

increasing recognition of impact disease in the less affleunt countries, the economic 

burden of disease will continue to expand unless better disease interventions are found.  

 



	
   Koenigs et al. 7 

The current economic burden of asthma is substantial. The treatment of asthma 

alone accounts for eight billion dollars of US health care expenditure annually [7], with 

$3,856 spent per asthmatic per year. [8]  In 2004 in the United States it was estimated that 

pediatric asthma was accountable for 12.8 million missed school days, 750,000 

emergency room visits, 198,000 hospitalizations, and 186 childhood deaths. [6] As the 

prevalence of asthma only continues to increase, having interventions that improve and 

modulate asthma control are necessary to reduce disease burden. 

What is asthma?  

Asthma is an inflammatory disease of the lower airways that results in 

intermittent airway obstruction as evidenced by increased airway hyperreactivity; 

symptoms of dyspnea, wheezing, shortness of breath; and/or nocturnal coughing. [9, 10] 

A major in challenge both the diagnosis and treatment of asthma is that is a 

heterogeneous disease; the natural history of disease varies largely between individuals 

and depends on factors such as age of first symptoms onset, overall disease severity, and 

the patient’s sex. [1, 11]  

Although descriptions of asthma exacerbations date back to the second century 

A.D.[12], the exact etiology of asthma remains unclear. It is hypothesized that asthma 

occurs as a combination of both early environmental exposures and underlying genetic 

and biological susceptibility. [9] Over one hundred gene loci are associated with asthma 

including genes candidates that are part of inflammatory pathways (e.g. IL-4 cluster on 

chromosome 5), remodeling (e.g. ADAM33), and medication response (beta-adrenergic 

receptor mutations). But genetic susceptibility alone fails to fully explain the clinical 

spectrum of disease. Early infantile and prenatal exposures, such as early childhood viral 
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bronchiolitis, allergen exposure, secondhand smoke exposure, and pollutants exposure, 

also contribute to childhood risk of asthma. As such, the exact nature of the interaction 

between the biologic susceptibility and environmental exposures is poorly understood 

and currently an active area of research. For example, although it has been described that 

early childhood bronchiolitis with wheezing in infants is a risk factor for development of 

asthma, the majority of children with early respiratory virus associated wheezing do not 

develop asthma [13]. Recent work with the COAST birth cohort demonstrated that 

children with a homozygous gene mutation in the 17q21 locus who had an episode of 

rhinovirus-associated wheezing as an infant had an increased risk (OR=26.1) of 

developing asthma compared to children without this genetic susceptibility. [14] 

Connecting underlying genetic susceptibility with environmental triggers may be 

essential in helping to understand the pathophysiologic processes that drive development 

in asthma and to help with management of disease.  

Inflammation and asthma  

Although the exact etiology of asthma remains to be elucidated, there is strong 

evidence that inflammation of the lower airways drives the airway hyperresponsiveness 

that is responsible for the intermittent wheezing and shortness of breath that characterizes 

asthma. [15] In allergic asthma—the most common form of asthmatic inflammation 

found in children (See Clinical Manifestations of Asthma in the Pediatric Population)—

the walls of the lower airways are infiltrated with mononuclear (primarily CD4+ T-helper 

cells) and eosinophils, although other proinflammatory cells such as mast cells, 

macrophages and neutrophils are also in abundance.  T-helper cells Type II (Th2) are 

thought to both initiate and perpetuate asthmatic inflammation by priming the allergic 
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airway and increasing antigen-induced allergic inflammation. [16] After initial 

sensitization of the airway to aeroallergen, Th2 cells upregulate inflammation through the 

expression of cytokines including IL-4, IL-5, and IL-13 that promote inflammatory cell 

recruitment and perpetuate of the allergic response. This inflammation is further 

worsened through increased expression of other proinflammatory molecules such as 

TGF-beta, GM-CSF, and MMP may also trigger airway remodeling, with increase in 

respiratory smooth muscle mass that is also associated with airway hyperresponsiveness. 

[17] 

One of the challenges with characterizing the exact immune response in pediatric 

asthma specifically is that it is a clinically heterogeneous disease that affects children 

differently depending on age of onset and disease severity. Therefore, it is reasonable that 

the underlying biochemical and physiologic basis of disease could differ between 

different phenotypes of asthma. In asthmatic mouse models there are a significant 

pathologic differences found sensitized infantile mice compared with juvenile and adult 

mice. [18] Hypersensitized infantile mice developed goblet cell hypertrophy compared to 

juvenile mice who were more likely to develop airway smooth muscle hypertrophy and 

have increased IL-5 expression, suggesting a fundamental pathological difference 

between asthma development based on age of symptom onset. Therefore, the exact 

pathophysiology of asthmatic inflammation may vary based on asthmatic phenotype.  

Clinical Manifestations of Asthma in the Pediatric Population  

The heterogeneity of asthma makes it a challenging disease to both diagnose and 

treat. There is a growing interest to classify asthmatic phenotypes to better predict natural 

history of disease, to connect clinical outcomes with underlying pathophysiologic 
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differences, and to individualize treatment regimens. The heterogeneity of clinical course 

of asthma and early childhood wheezing is evident even in the pediatric population 

making both diagnosis and management of the disease challenging. A major goal in 

pediatric asthma care is to improve in early identification of asthma subtypes that might 

improvement long-term management of disease.  

Pediatric asthma is frequently classified into three major phenotypes: 1) early 

onset allergic, 2) exercise-induced, and 3) obesity-related disease. [19] Early onset 

allergic onset asthma covers a full range of severity and is often associated with allergy, 

atopy and rhinitis. On a molecular level this phenotype is connect with increased serum 

IgE, elevation of Th2 cytokines, and potentially related to 17q12 gene mutations. In 

contrast, exercised induced asthma in children tends to be mild, intermittent, and airway 

hyperreactivity related to mast-cell activation, intermittent Th2 cytokine spikes, and 

cysteinyl leukotrienes. A third major clinical asthma phenotype in children, primarily 

found in adolescent females, is an obesity-associated phenotype. Obesity-associated 

asthma may be a distinct pathophysiologic entity from general childhood allergic asthma 

characterized by increased Th1 inflammation and a non-atopic phenotype. [20-23] 

Although these clinical phenotypes have been described, often clinical characteristics are 

not easily evident in early childhood, making it challenging to predict long-term 

pulmonary outcomes.  

Another major challenge in the diagnosis of asthma in childhood is that wheezing 

is common in children under the age of three; up to thirty-three percent of all children 

have wheezing prior to this age but only 40% of that population goes on to develop 

persistence of disease. [13] Martinez et al. in a birth cohort of 1,246 infants in Tucson, 
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AZ identified three major phenotypes of childhood asthma: 1) early onset intermittent 

wheezing, 2) early onset persistent wheezing, and 3) late onset wheezing (where age of 

onset is demarcated by the being less or earlier than age three). [13] These wheezing 

phenotypes correlated with long-term response to treatment and lung function. Using 

patient characteristics associated with wheezing the Tucson group developed an “Asthma 

Prediction Index” where if an infant with greater than or equal to four wheezing episodes 

neither met one major criteria (parental history of asthma or physician diagnosis of atopic 

dermatitis) or two minor criteria (physician diagnosed allergic rhinitis, wheezing 

unrelated with colds, or blood eosinophilia) they had a NPV of 91.6% for developing 

asthma by 6 years of age. [24] Despite the importance of clinical prediction of disease, 

the Tucson classification does not explain on a molecular basis the variation in asthma 

phenotypes nor aide in clinical  decision-making. 

Interestingly, despite the specific characteristics underlying the aforementioned 

classification strategies, there has been less success in connecting these clinical 

characteristics with specific inflammatory markers that predict long-term outcomes and 

explain biological differences between phenotypes. Because of concern for bias in the 

phenotypic classification of asthma, there has been increasing interest in using unbiased 

approaches in classification schemes. Especially as the majority children have relatively 

normal lung function during symptom free periods, even with clinically severe asthma, 

there is a need to identify high-risk individuals to better target interventions. In the 

Severe Asthma Research Program (SARP) in school-aged children, four phenotypes of 

pediatric asthma were identified using an unbiased cluster analysis: 1) late onset 

symptomatic asthma with normal lung function 2) early onset atopic asthma with normal 
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lung function 3) early onset atopic asthma with mild airflow limitation 4) early onset 

atopic asthma with advanced airflow limitation. [25] These phenotypes correspond 

directly with asthma duration, number of asthma medication, baseline FEV1 and 

potentially with the biomarker eNO. This understanding of these phenotypes may 

eventually help practitioners to better target disease and to be able to educate parents on a 

child’s course of disease. 

Alternatively, Woodruff et al used a genome-wide profiling of airway epithelial 

cells of moderate and found two major phenotypes of asthma: Th2 high (associated with 

the regulatory genes for IL-4, IL-13, and IL-5 expression) and Th2 low. [26] 

Interestingly, the Th2 high group airway hyperesponsiveness had a much-improved 

response to corticosteroids compared to the Th2 low phenotype [27], suggesting that a 

better understanding molecular characteristics of disease may help clinicians guide 

treatment in a more directed fashion. 

Approach to the management of asthma in children 

The main goal of asthma care is to control symptoms with minimal medical 

intervention. Asthma control is defined by the degree to which symptoms, functional 

impairment, risk of adverse events is minimized by treatment. [9] Asthma control in 

children is monitored by patient description of symptoms of breathlessness, interference 

with normal activity, and nighttime/early daytime awakenings.  Validated questionnaires 

of asthma control, such as the Asthma Control Test (ACT), the Childhood Asthma 

Control Test (c-ACT) and Test for Respiratory and Asthma Control (TRACK) are 

particularly useful in both clinical practice and in research as they both evaluate a 
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patient’s control over a defined period of time and have well-defined clinical thresholds 

for changing medical management. [28-30]  

A major challenge in asthma care is the limitation in available objective data that 

guides diagnosis and management of disease. Pulmonary function tests are the 

cornerstone of objective testing in both diagnosis and treatment in asthma in both 

pediatric and adult patients. Although FEV1 in the presence or absence of bronchodilator 

response helps clinicians to diagnose and manage of disease, most children under the age 

of six cannot reliably perform the full exhalation needed for testing.  As 80% of children 

have symptom onset by one year of age [9, 12], there is a need for more reliable testing in 

children of younger age groups.  Because of the limitations of PFTs in younger children, 

there has been growing interest in the role of biomarkers to diagnose, monitor control, 

and evaluate treatment response of asthma in young children (see Asthma Biomarkers 

Section).  

Biomarkers in Asthma Care 

NIH criteria defines a biomarker as a measurable substance that characterizes a 

biologic, physiologic or pathologic response to either a therapeutic treatment or disease 

management [15]. In asthma care there has been limited success in finding readily 

available biomarkers of that correlate with clinical disease outcomes.  Exhaled nitric 

oxide (eNO) is considered to be a marker of allergic inflammation in the lower airways 

and may be a useful biomarker for allergic asthma in younger children, as it testing for it 

is non-invasive, inexpensive, and can be reliably done in young children. Although 

elevations of eNO correlate with asthma diagnosis and have a dose dependent decrease 

after treatment with ICS, its clinical utility remains uncertain, especially as the marker is 
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also elevated in atopic children without asthma. [9] Th2 associated cytokines, such as IL-

4, IL-5, and IL-13 have been to found to be elevated in the serum, bronchoalveolar lavage 

fluid (BALF) and the sputum of children with asthma. But as cytokines have a large 

variable range across the population, they have limited utility as a strict predictive 

biomarker of disease activity. Despite this limitation, changes in cytokine levels 

following treatment strategy may connect a biological response to a clinical intervention. 

[15, 31]  

Another potential family of asthma biomarkers is the chitinase and chitinase-like 

proteins. Chitinases are evolutionarily conserved enzymes that degrade chitin, a complex 

polysaccharide found in insect and fungal debris that triggers host inflammation. In 

children, elevated chitotriosidase—the primary active chitinase of the lung—has been 

associated with clinical asthma severity. [32] The chitinase-like protein YKL-40, which 

binds and sequesters chitin, has been found to be elevated in the serum of asthmatics and 

correlates with disease severity. [33, 34] In children elevation of YKL-40 has been 

correlated with treatment resistant disease and asthma severity. [35] Therefore, chitinase 

and chitinase-like proteins may be important surrogate biomarkers that aid in the 

management of pediatric asthma.  

Benefits and Limitations of Pharmacologic Management of Asthma Symptoms 

Pharmacologic treatment of asthma focuses on both alleviating acute respiratory 

symptoms and improving chronic airway hyperresponsiveness. The long-term goal of 

management is to relieve both short-term impairment (e.g. shortness of breath, nocturnal 

cough) and to minimize risk of adverse events (e.g. intubation, death). Therefore, the 
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treatment strategy is two-fold: short term agents that help in acute exacerbation of airway 

responsiveness and long-term anti-inflammatory agents.  

For short-term airway hyperresponsiveness, the cornerstone of management is the 

use of short acting beta-agonists such as albuterol. The goal of short acting beta-agonist 

use is to aid in improvement symptoms of airway hyperreactivity and prevent anticipated 

bronchospasm prior to exercise (specifically for patients with exercise sensitivity).  For 

acute exacerbations, systemic corticosteroids may be required and are rarely required for 

long-term control of severe asthma in children. Although excellent at reducing 

inflammation and acute symptoms, the long-term consequences of systemic 

corticosteroid use are profound—including metabolic effects, growth suppression, 

osteoporosis, and cataract formation[9]. Therefore, a major goal in pediatric asthma care 

is to limit a child’s exposure to oral corticosteroids by decreasing acute exacerbations.  

Adequate treatment of persistent asthma with preventative asthma medication has 

shown to both decrease asthma morbidity and to improve asthma control. [36] The 

general approach taken to asthma pharmacotherapy in persistent asthmatics is a “step up, 

step down management plan” in which patients are placed on a medication regimen that 

completely controls symptoms and with a decrease in symptoms medications are tapered 

off.  For persistent asthma, inhaled corticosteroids (ICS) are the preferred first-line 

therapy as they both improve lung function and asthma control. Although they aid in 

improving asthma, ICS do not alter the natural history of disease [9] and have significant 

adverse side effects including oral candidiasis and vocal dysphonia. In children, concern 

has also been raised that long-term use of ICS may result in growth suppression and 

osteoporosis; in the CAMP cohort—a large cohort of 1041 children being treated with 
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either with daily ICS or daily inhaled non-ICS—there was a 1.7 cm decrease in height of 

girls being treated with chronic ICS. [9, 37] Alternative agents to aid in improving 

asthma control include leukotriene receptor antagonists, cromones, and theophylline, 

although generally these medications are added as additional therapy in patients who do 

not respond to ICS compared to primary therapy. There is increasing interest in the use of 

long-acting beta-agonists in the support of moderate persistent asthma in children who 

suffer from nocturnal symptoms [38], although concern has been raised for worsening of 

status asthmaticus in children [9]. Although general incidence of preventative asthma 

medication use has doubled since 1988 [36], there is still a need for improved treatment 

adherence and optimization of management of disease beyond conventional treatment.  

Management of Asthma Beyond Targeting the Lower Airway  

Because of the impact that environmental exposures have on asthma, there is 

interest in expanding the treatment of asthma beyond targeting the lower airways. 

Although home environmental interventions (such as avoidance of allergens and second-

hand smoke) have been a mainstay in pediatric asthma education, there is growing 

evidence that avoidance of allergens in early life may alter the natural course of disease. 

As allergy and asthma are frequently co-morbid, prevention of early life exposure to 

allergens associated with worse asthma control in high-risk children may impact 

development of disease. In Canada, in a high-risk cohort of 308 asthmatic children, in 

children who underwent early preventative measures to avoid allergen exposure and were 

breast fed there was a decreased prevalence (12.9%) of asthma compared to children 

without these measure in place (prevalence 25%) at seven years of age. [39] Similar 

studies in the Netherlands[40] and in the Isle of Wight[41] have shown consistent results 
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of decreasing asthma symptom development by decreasing early childhood allergen 

exposure. But greater sample size, follow-up time, and stratification of patient 

characterizes are needed to asses if the intervention does impact natural history of 

disease.[42] 

There is also a growing understanding there is an interaction between chronic 

upper airway inflammation and worsening of asthma control, which is often termed the 

“One Airway Hypothesis.” For example, rhinitis is a common co-morbidity with asthma, 

especially in the pediatric population. Approximately 90% of children with asthma have 

rhinitis[2] and up to 60-78% of children with asthma have allergic rhinitis. [43] Chronic 

rhinitis may worsen asthma by limiting the humidification and warming that nasal 

berathing normally provides and by filtering of allergens from environment.[2] 

Improvement in allergic rhinitis improves inflammation in the lower airways, asthma 

symptoms, and decreases asthma medication use. [9] Treatment of allergic rhinitis, 

including nasal steroids and anti-histamines is now considered a peripheral treatment for 

asthma. [2, 9, 44] 

Adenotonsillar disease is a common form of upper airway disease in children with 

as many as 2-3% of children in the general population having sufficient adenotonsillar 

hypertrophy to cause polysomnographic evidence of obstructive sleep apnea.[45] In 

severe and moderate asthmatic children, there is a higher prevalence of obstructive sleep 

apnea compared to a general pediatric population. [46] Ross et al described in a cohort of 

108 asthmatic children that individuals with sleep disordered breathing had a 5.02 OR of 

developing severe asthma over a one year period. [46] Despite the prevalence of 

adenotonsillar disease in childhood [47], there has been limited investigation of how 
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surgical management of adenotonsillar disease may impact asthma control (See Asthma 

and Adenotonsillectomy).  

Adenotonsillar Disease in Children 

The adenoids and tonsils are the largest accumulation of lymphoid tissues in 

Weldeyer’s ring, the collection lymphoid tissue along the upper edge of pharynx.  

Dominated by B-cells, they are of thought to play a role in primary antigen surveillance 

of the upper airway and immunoglobulin production. [48, 49] The immune role of the 

adenoids and tonsils is most profund in children, as they involute in both size and activity 

during puberty.  

Adentonsillectomy (TA) is one of the oldest described surgeries, with the first 

operation being performed in 10 A.D. by the Greek Physician Celsus. [49] In 2006, 

530,000 adenotonsillectomies (TAs) were performed in the US alone and accounted for 

16% of all ambulatory surgery in children. [48, 50] The two most common indications for 

tonsillectomy are recurrent infection (i.e. recurrent tonsillitis, recurrent adenoiditis, 

peritonsillar abscess) and for sleep disordered breathing. [47, 48]  Sleep disordered 

breathing (SDB) represents a spectrum of upper airway disease that ranges from primary 

snoring to obstructive sleep apnea (OSA). Obstructive sleep apnea in children is defined 

at least one obstructive apneic episode or evidence of obstructive hypoventilation during 

nocturnal polysomnography. [51] Unlike in adults, adenotonsillar hypertrophy is a major 

contributor to dynamic airway obstruction in children, especially as the adenoid to airway 

ratio is largest in early childhood. [52] Airway narrowing in children with OSA occurs 

along the upper two-thirds of the airway and the maximal obstruction is where the tonsils 

overlap the adenoid tissue. [53] Concern has been raised about long-term complications 
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arising from chronic OSA in children—including worse neurocognitive outcomes, 

cardiovascular strain, and poor behavior—and now SDB is the most common indication 

for TA.   

Although there still remains debate on the absolute indications for TA and timing 

of surgery [48, 54, 55], many children receive significant benefit from surgery in 

decreasing upper airway obstruction, decreasing incidence of infection, improving overall 

health and quality of life. [55] The current recommendation for TA in children with 

recurrent tonsillitis (RT) follows the Paradise Criteria: removal is indicated if a child has 

seven episodes of RT in one year, five in two consecutive years, or three in three 

consecutive years. For children with SDB, if SBD is accompanied by growth retardation, 

poor school performance, behavioral problems, and enuresis, TA should be considered. 

[55] For children with less clear symptoms of SDB but with a nocturnal PSG consistent 

with OSA, TA is indicated.  

Asthma and Adenotonsillectomy 

Despite the prevalence of adenotonsillar disease in childhood, there has been 

limited investigation of how surgical management of adenotonsillar disease may impact 

asthma control.  In several small retrospective cohort studies, researchers observed that 

patient-reported asthma control improved following TA, with a decrease in use of 

asthma-related medications, a decrease healthcare utilization and an increase in Asthma 

Control Test (ACT) scores. [56-59] In the Childhood Adenotonsillectomy Trial (CHAT), 

a large cohort of 454 children undergoing either immediate adenotonsillectomy or 

tonsillectomy delayed for three months, it was noted that there were only three asthma 
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exacerbations for children receiving early adenotonsillectomy compared with 18 

exacerbations in the watchful waiting arm, including three serious adverse events. [54] 

Kheirandish-Gozal et al. found in cohort of 35 children with asthma and OSA 

after undergoing TA they had improvement in number of oral steroid courses, decrease in 

asthma symptom scores, and decrease in beta-agonist use. [58] Previous work in our lab, 

demonstrated in a cohort of sixty children with asthma undergoing TA [1, 60] that 

children with asthma had robust post-operative improvement in asthma control and 

decreased healthcare utilization after surgery.  In addition to improvement in clinical 

asthma control, it was also found that chitinase activity—which reflects serum 

chitotriosidase activity—decreased following surgery selectively in asthmatic children 

and was elevated prior to surgery in children whose asthma improved following surgery 

suggesting that baseline chitinase may be useful in predicting which children’s asthma 

will improve following surgery. [60] In addition to changes in chitinase expression, we 

found that in a limited sample of whole blood mRNA microarrays that the plasmin 

activation inhibitor SERPIN B2, a genomic signature that has previously been associated 

with asthma and related to IL-13 expression [26], may also decrease in asthmatic children 

with improvement in symptoms following surgery [1]. These findings suggest that 

mediators of asthmatic inflammation may decrease in children undergoing 

adenotonsillectomy and may play a role in explaining post-operative improvement in 

asthma.  
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HYPOTHESES AND AIMS 

Despite a growing understanding of the impact that TA has on improving asthma 

control, there still has been only limited investigation on specific clinical and biological 

characteristics that influence which children have improvement in their asthma following 

surgery. We hypothesized that we could identify both patient characteristics and 

molecular signatures that correlate with post-operative improvement in asthma control. 

We postulate that molecular signatures related to asthmatic inflammation will change 

following TA and that these changes in molecular signature will correlate to 

improvement in asthma.  

Specific Aims of the Study 

I. To expand the established cohort of pediatric patients, both children with and without 

asthma who undergo TA for reasons other than asthma control.   

II. Determine clinical asthma response following TA with a focus on change in ACT 

score and patient reported outcomes.  

III. To investigate biochemical alterations following TA using proteomic analysis in 

order to better understand the changes in systemic inflammation that drive 

improvement in asthma symptomatology post-operatively. 

IV. To identify clinical and biological characteristics that correlate with improvement 

after surgery. 
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METHODS 

YCAAD cohorta 

Over a 25-month enrollment period (December 2011-February 2013), as part of 

currently ongoing trial, children ages 2-18 who were undergoing TA for standard 

indications were enrolled at Yale New Haven Children’s Hospital or at the North Haven 

Surgical Center. This study was approved by the Yale IRB; parental consent and child 

assent (if older than age 7) were obtained prior to enrollment in study.  

YCAAD Enrollment and Follow-Up  

As previously described [60] parents completed an asthma questionnaire and 

either age-appropriate ACT (ACT or c-ACT) or TRACK score on the day of surgery. A 

child was classified as asthmatic if a primary care provider, allergist, or pulmonologist 

had diagnosed the child with asthma prior to enrollment in the study. The questionnaire 

included an extensive pulmonary history (including age of onset of asthma symptoms, 

asthma triggers, current asthma medication use, urgent care visits, and oral steroid 

courses), presence of asthma-associated comorbidities (including sinus disease, allergy, 

atopy, and GERD) and demographic data. Race and Ethnicity data were self-reported 

according to the guidelines of the US Census. TRACK and c-ACT scores were rescaled 

to a 25 scale to be compared with the teen ACT score as described previously. [60] 

Intraoperatively, with the help of the anesthesia team, serum serum blood samples were 

obtained.   

Six months following surgery, patients were contacted for follow-up visit either 

by telephone or email. A modified questionnaire was completed either over the phone or 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
a	
  This thesis is a continuation of the work started by Jonathan Levin, MD. Subjects were enrolled by Lisa 
Gagnon, APRN, Jonathan Levin, MD, or this author. Chitinase assays were either performed by Jonathan 
Levin or this author.  
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at a clinical site visit. Venous sampling was additionally offered to children at the follow-

up visit, and children who agreed to participate received compensation. Incidence of 

clinical events, were rate-adjusted to a standardized twelve-month period as described 

previously[60].  

CT Kids Cohortb 

Asthmatic children ages 2-18 who were undergoing TA for standard indications 

were enrolled over a 24-month period from 2008-2010. All children included in the study 

had previous clinician diagnosis of asthma. This study was independently approved by 

the Yale IRB; parental consent and child assent (if older than age 7) were obtained prior 

to enrollment in study.  

Parents completed an asthma questionnaire prior to the day of surgery that 

included healthcare utilization over the last year (number of emergency room visits and 

pediatrician visits), socioeconomic burden of disease (missed school days and missed 

work days), asthma medication use, asthma phenotype, and other co-morbidities 

(sinusitis, GERD, atopy). One-year following surgery parents were contacted for follow-

up, at which time the baseline asthma questionnaire was repeated. 

Weight Data (Both CT Kids and YCAAD) 

Pre-operative height and weight were obtained either by nursing staff on the day 

of surgery or from communication with the parents about their child’s measured height 

and weight within six months of the surgical date. Each child’s body mass index (BMI) 

and age appropriate BMI percentile was calculated using the Center for Disease Control 

and Prevention BMI calculator. [61] Children were classified as overweight if their BMI 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
b CT-Kids Cohort data was collected by Lisa Gagnon, APRN. All statistics run on this patient population were 
performed by the primary author of this study.  
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was greater than the 85th percentile or low/healthy weight (LHW) if their BMI was less 

than the 85th percentile. For the YCAAD Cohort, parents were asked on the day of 

surgery about their perception of child’s weight as Low Weight, Normal, Overweight, or 

Obese. For children with available BMI data, the BMI data was compared with parent’s 

reported weight perception. If the child BMI did not correlate with parent’s description, 

they were re-categorized based on BMI. Children were then clustered into LHW or 

Overweight groups to form the composite variable of parent-adjusted weight (PAW). 

Serum Sample Collection and Processing (YCAAD Only) 

Serum was isolated by centrifugation of whole blood 405 xg for 10 minutes to 

separate RBC from serum immediately after collection. The samples were stored at either 

-20°C or -80°C until biological assays were performed.  

Chitinase activity 

Chitinase activity was determined using a standard fluorometric assay described 

previously. [60, 62] Briefly, 20 µL of serum was added to 180µL of 22 µMol solution of 

4-methylumbelliferyl-β-D-N,N’,N’’-triacetylchiotrioside in McIlvain Buffer. The 

reaction was incubated at 37°C for 30 minutes after which enzymatic reaction was 

terminated with the addition of 2 mL of 0.3 M glycine-NaOH, pH 10.6. Samples were 

excited at 365 nm and emission was measured at 445 nM using a Sequoia Turner 

fluorometer. Enzymatic activity was calculated in nM/mL*h using a standard curve of 4-

methylumbelliferone.  

YKL-40 ELISA Assay 

Serum YKL-40 levels were determined by ELISA per manufacturer’s protocol 

(Quidel, San Diego, CA). In brief, 20 µL of serum or standards were added to 
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streptavidin ELISA coated-strips. Samples were incubated with 100 µL of capture 

solution (mouse monoclonal anti-YKL-40 fAb conjugated to biotin) for one hour at room 

temperature. All incubation steps were performed covered (out of direct light) to prevent 

photobleaching. Reaction wells were emptied and washed with 300 µL of wash buffer 

solution three times. To the reaction wells, 100 µL of enzyme conjugate solution 

(polyclonal rabbit polyclonal anti-YKL-40 antibody conjugated to alkaline phosphate) 

was added and allowed to incubate at room temperature for one hour. Reaction wells 

were emptied and washed three times as described previously. One hundred µL of 

substrate solution (diethanolamine and magnesium chloride solution) was then added to 

well, and allowed to incubate for another hour at room temperature. To the final reaction 

solution, 100 µL of Stop solution (0.5 M NaOH) was added. Optical density of ELISA 

was read at 405 nm within 15 minutes of addition of stop solution. All samples were run 

in duplicate and concentrations were averaged. Any sample with confidence interval (CI) 

of greater than 25% between wells was rerun until the CI was less than 25%.  

Bio-Plex Assay 

Serum cytokine levels were determined using magnetic bead Luminex platform 

(Bio-Plex Pro Human Th1/Th2 Cytokine Panel, Biorad, Hercules, CA) per the 

manufacturer’s protocol. Briefly, the provided lyophilized standard was reconstituted in 

500 µL standard diluent for 30 minutes on ice and diluted as recommended. Samples 

were then diluted 1:4 in sample diluent. Magnetic beads were diluted to 1X concentration 

in assay buffer from 10X stock and 50 µL aliquots were distributed to each well of the 

fluorescent plate. Beads were washed two times with 100 µL of wash buffer. Once 

samples and standards were brought to room temperature, 50 µL of samples and 
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standards were distributed to each well. All samples and standards were run in duplicate. 

Reaction was incubated covered for one hour at room temperature with shaking at 600 

rpm. The plate was washed three times with 100 µL of wash buffer then 25 µL of 1X 

detection antibody solution was added to each well. Reaction was incubated covered for 

thirty minutes at room temperature with shaking at 600 rpm. The sample was again 

washed three times with 100 µL of wash buffer then 50 µL of 1X streptavidin was added 

to each well. The reaction was incubated covered for ten minutes at room temperature 

with shaking at 600 rpm. The plate was washed three times as described previously and 

magnetic beads were resuspended in 150 µL of assay buffer. The plate was read on a Bio-

plex (Bio-plex 200 System, Biorad) and data was acquired (Bio-plex Manager Software 

5.0, Biorad). Outliers on standard curve were removed after visual inspection. 

Concentrations for cytokines were calculated based on the average readings between 

duplicate cells.  

Statistical Analysis  

Clinical data from the YCAAD cohort was uploaded onto the YCAAD computer 

online database. Statistical analysis was performed using SPSS software version 20 

(IBM, Armonk, NY). Baseline values were only compared in children who also had 

available follow-up data. Nominal data was compared using the Fisher’s exact and 

Pearson’s Chi-Squared tests. All scaled data was confirmed to be of non-normal 

distribution using Shapiro-Wilk’s test, therefore, non-parametric tests, including 

Wilcoxon Signed-Rank, Mann-Whitney, and Sign test were used.  
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Definition of improvement in Asthma Control 

Improvement in asthma following surgery was defined by four distinct variables: 

ACT/TRACK reached MCID, any improvement in urgent care visits, any improvement 

in steroid courses, and composite improvement. The minimal clinically indicated 

difference (MCID) is a previously defined term that indicates the minimal difference in 

ACT or TRACK score that is associated with significant clinical outcomes. [63, 64] We 

used the previously described MCID scores as an improvement in ACT score greater than 

or equal to three or an improvement in TRACK score greater than or equal to 10. 

Although the MCID has not been formally described for the c-ACT questionnaire, we 

used the same cut-off that has been described for the teen/adult ACT score. We also used 

a composite score for improvement (composite improvement) in asthma control as 

defined previously [60] as any improvement in albuterol use frequency, decreased rate of 

steroid courses, decreased rate of urgent care visits, or a change in ACT /TRACK score 

that reached MCID.  
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RESULTS 

Baseline demographics YCAAD Cohort 

In an ongoing trial, over a 25-month period 136 children with asthma undergoing 

TA were enrolled with an average follow-up time of 7.2 months. Formal analysis was 

conducted when the first 100 children with asthma completed follow-up, with a follow-

up rate of 74%. One child was excluded from analysis because there was no clinician 

diagnosis asthma despite symptoms and medication use consistent with disease. The 

cohort was generally young (mean age 6.5), predominately male (63%), and with a large 

percentage of Hispanic children (44%). Consistent with current trends in TA for all 

children [47], 74% of children had their tonsils removed for SDB and 22% for recurrent 

tonsillitis. About one-third of children had either GERD or sinusitis and almost three-

quarters of children with asthma were atopic (Table 1).  

In parallel, 78 children without a diagnosis of asthma were also enrolled as 

controls. Fifty-seven of those children completed follow-up for a follow-up rate of 73%. 

Three children were excluded from analysis as they were diagnosed with asthma during 

the course of the study.  Compared with asthmatic peers, control subjects had less asthma 

related co-morbidities (i.e. sinusitis P = 0.018, GERD P = 0.004, and atopy P = 0.003, 

Mann-Whitney U), were less likely to be Hispanic, and were more likely to come from a 

higher socioeconomic background (Table 1).  

Improvement in Asthma Control Following TA 

Evidence of improvement in asthma symptoms after TA was demonstrated by 

comparing paired changes from baseline to follow-up in parent reported clinical 

outcomes. Urgent care visits (mean decrease from 2.37 to 0.78 visits per year, P < 0.001) 
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oral steroid courses (mean decrease from 1.74 to 0.5 visits per year, P < 0.001), and 

ACT/TRACK scores (median increase of adjusted ACT scores from 20 to 22, P < 0.001), 

all decreased in children following surgery (Figure 1). Children also had decreased use of 

controller medications (decrease from 52% to 37%, P = 0.004) but no significant change 

in albuterol use (P = 0.27).  

Circulating Inflammatory Markers after TA 

At baseline, children with asthma had higher levels of serum IL-5 (median 2.4 

pg/mL versus 1.0 pg/mL, P = 0.002) and IL-13 (median 1.7 pg/mL versus 0.9 pg/mL, P 

= 0.008) compared to non-asthmatic peers (Figure 2). In contrast, children without 

asthma had higher baseline levels of chitinase activity compared at baseline compared to 

children without asthma (median 3.8 nMol /mL*hr versus 3.2 nMol/mL*hr vs P = 0.014) 

(Summarized in Table 2).  

We found that neither chitinase activity (P = 0.63) nor YKL-40 levels (P = 0.26) 

changed following surgery (Table 2). The inflammatory cytokines IL-4 and IL-5 

significantly decreased (P = 0.022 and P = 0.002 respectively) selectively in children 

with asthma following TA (Figure 3).  IL-13 levels decreased in both children with and 

without asthma following surgery but were only significant for children without asthma 

(P = 0.088 and P = 0.029 respectively). All other cytokines did not significantly change 

following TA (Table 2). 

Effect of weight on improvement in asthma control following TA 

Because of the hypothesized impact of obesity on asthma control and the limited BMI 

data available in the YCAAD cohort, we compared the impact that a child’s weight had 



	
   Koenigs et al. 30 

on asthma control in two cohorts: the YCAAD Cohort (interim analysis of 88 children) 

and CT-Kids Cohort.   

Baseline demographics CT Kids Cohort 

Over a one-year period, 88 children with asthma undergoing TA were enrolled. 

One-year follow-up was completed for 76 (86%) children. BMI data was available for 49 

(66%) of the children who completed follow-up. LHW children made up of 61% of the 

cohort (n = 30) and overweight children 39% (n =19).  There was no significant 

difference between LHW and overweight children in age, gender, race/ethnicity, 

indication for tonsillectomy, or asthma related co-morbidities (summarized in Table 3A). 

Baseline demographics interim YCAAD Cohort 

An interim analysis on the effect of weight on asthma control was carried on the 

first 62 (86%) children with asthma that completed follow-up in the YCAAD Cohort. 

Strict BMI data was available for 47 (76%). Sixty-two percent of the cohort was LHW (n 

= 29) while 38% was overweight (n = 18). There was no significant difference between 

LHW and overweight children in sex, race/ethnicity, or asthma-related co-morbidities 

(Table 3A). Children in the overweight group were more likely to be older (range 2-17) 

compared with LHW peers (range 2-12, P = 0.01) and have tonsillectomy for sleep 

disordered breathing (P = 0.05).  

Baseline Asthma Control by Weight Category 

Baseline asthma control, as assessed by medication use, emergency room or 

urgent care visits, and missed school/work days was comparable between LHW children 

and overweight children in both cohorts (Table 3B). Additionally, in the YCAAD cohort, 

ACT scores were similar between LHW children and overweight children (P = 0.30). 
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Baseline oral steroid use was significantly lower for overweight compared to LHW 

children in the YCAAD cohort (P = 0.013) but was equivalent in the CT Kids cohort (P = 

0.57). 

Post-operative Asthma Medication Use by Weight Category 

At the follow-up visit—either at six months (YCAAD) or at one-year (CT-

Kids)—LHW children had decreased inhaled corticosteroid (ICS) use post-operatively 

(YCAAD, P = 0.008, CT Kids P = 0.016), while overweight children had no significant 

change in use (Table 3C, Table 3D). In the YCAAD cohort, frequency of albuterol use 

decreased in LHW children (median initial use of one time a week versus follow-up of no 

weekly albuterol use, P = 0.002), but did not change for overweight children. Leukotriene 

receptor antagonists (LTRA) were used less frequently post-operatively only for LHW 

children in the CT Kids cohort (P = 0.016). There was no significant change in long-

acting β2-agonists (LABA) in either cohort for both LHW and overweight children. The 

number of oral steroid courses decreased post-operatively for both cohorts of LHW 

children (P < 0.05, P < 0.02) but did not decrease significantly in overweight children in 

either cohort. 

Asthma Control and Health Care Utilization by Weight Category 

In the YCAAD cohort, ACT scores were significantly improved in LHW children (P = 

0.001) but not for overweight children (P = 0.48) following surgery (Table 3D). In the 

CT Kids Cohort, both LWH and overweight children had post-operative improvement in 

the number of emergency visits (P < 0.01, P < 0.05, respectively) and pediatrician visits 

(P = 0.001, P < 0.001) (Table 3C). Urgent care visits so decreased in both LWH and 
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overweight children in the YCAAD cohort but this change was not significant (Table 

3D). 

Clinical and Biomarker Characteristics that Impact Improvement in Asthma Control 

following TA 

For the first one hundred children in the YCAAD cohort with asthma who 

achieved follow-up, we identified baseline clinical and molecular signatures that 

correlated with improvement in asthma after TA.  

Minimally Clinical Indicated Difference in ACT and TRACK Scores  

Paired ACT, c-ACT, or TRACK scores were available for 74% of children. 

Improvement in asthma as defined by a MCID cutoff of a change of greater than three for 

the rescaled ACT score (see methods) and greater than 10 for the TRACK score. 

Improved asthma control occurred for 46% (n = 34) of children after TA. Children whose 

asthma improved were younger (median age 5.5 versus 7, P = 0.027), female (53% 

versus 27%, P = 0.03), on controller medications at baseline (68% versus 32% P < 

0.001), and children who had never been symptom free for one year (6% versus 23%, P 

= 0.055) were more likely to have improvement in ACT/TRACK score (Table 4). 

Indication for tonsillectomy, demographics, asthma triggers, and previous hospitalization 

history for asthma did not impact improvement in ACT/TRACK score following surgery 

(Table 4). 

For the children with ACT/TRACK score data, 80% (n = 60) had baseline 

cytokine data available and 95% (n = 70) had baseline chitinase activity/YKL-40 levels. 

Children whose asthma improved by MCID level following surgery had higher baseline 



	
   Koenigs et al. 33 

levels of IL-2 (P = 0.015), IFN-γ (P = 0.039), GM-CSF (P = 0.02) and TNF-α (P = 

0.04) (Table 4).  

Improvement in Urgent Care Visits 

Urgent care visits decreased for 41% (n = 41) of children with asthma following 

TA. Children who had improvement in ER visits were more likely to have exercise (P = 

0.023) and “other”  (P = 0.003) listed as asthma triggers, to be on controller medications 

(P < 0.001), to have moderate or severe asthma (P = 0.002), children who had never 

been symptom free for one year (P = 0.007), and to have had a higher number of lifetime 

hospitalizations (P = 0.04). There was also a higher frequency of children with sinusitis 

(P = 0.02) in the population who had a decrease in ER visits following TA (See Table 5).  

Cytokine data was available for 83% (n = 83) of children and chitinase and YKL-

40 levels were available for 94% (n = 94). Children who had improvement in ER visits 

had elevated IL-4 (P = 0.014), IL-4 (P = 0.023), and IL-13 (P = 0.013) (Table 5).  

Improvement in Oral Steroid Courses 

Steroid courses decreased for 39% (n = 39) of asthmatic children after TA. 

Children who had improvement in steroid courses were more likely to have “other”  (P = 

0.002) as an asthma trigger, have asthma that limited normal activities of daily life (P = 

0.043), to be on controller medications (P < 0.001), to have moderate or severe asthma 

(P < 0.001), to have had a higher number of lifetime hospitalizations (P = 0.018), to have 

been hospitalized in the year prior to surgery (P = 0.002). There was also a higher 

frequency of children with sinusitis (P = 0.007) in the population who had a decrease in 

steroid visits following TA (See Table 6).  
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Cytokine data was available for 83% (n = 82) of children and chitinase and YKL-

40 levels were available for 95% (n = 94). No baseline biomarker levels correlated with 

improvement in steroid courses following surgery (Table 6).  

Composite variable improvement 

Asthma improved for 70% (n = 70) of children with asthma following TA using 

the composite variable that has been previously described. [60] Children whose asthma 

improved more likely to be younger (P = 0.012), have “other”  (P = 0.002) as an asthma 

trigger, to be on controller medications (P < 0.001), to have moderate or severe asthma 

(P = 0.001), and to never have been symptom free for one year (P = 0.001) (Table 6).  

Cytokine data was available for 83% (n = 83) of children and chitinase and YKL-

40 levels were available for 94% (n = 94). No baseline biomarker levels correlated with 

improvement in steroid courses following surgery (Table 6). Children whose asthma 

improved had elevated IL-4 (P = 0.042), IL-4 (P = 0.025), and IL-13 (P = 0.029) and 

TNF-α (P = 0.041) levels at baseline compared to peers whose asthma did not improve 

(Table 6). 

Decreases in IL-5 Correspond to Improvement in Asthma Control  

To observe if changes in inflammatory cytokines impacted improvement in 

asthma control after surgery, we compared median changes in cytokines levels in 

children whose asthma improved versus did not improve. Interleukin-5 levels dropped in 

children who had improvement in urgent care visits (-1.3 pg/mL versus -0.2 pg/mL, P = 

0.021), number of steroid courses (-1.25 pg/mL versus -0.15 pg/mL, P = 0.022), and 

overall composite control of asthma (-1.2 pg/mL versus -0.05 pg/mL, P = 0.008) after 

surgery compared to peers who did not improve. Neither changes of IL-4 (composite 
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improvement, P = 0.09;  urgent care improved P = 0.13; steroids improved, P = 0.95) 

nor IL-13 (composite improvement, P = 0.51;  urgent care improved P = 0.11; steroids 

improved, P = 0.70)  correlated with improvement in asthma.  
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DISCUSSION 

Though retrospective cohort studies have examined the role of TA on asthma 

control and healthcare utilization, this is the first study that identifies inflammatory 

markers and specific patient characteristics that may predict improvement in asthma after 

TA. In addition, this is the first study that demonstrates that TA modulates Th2 

inflammation in asthmatic children, which may play an important role in explaining 

symptoms resolution after surgery.  

Baseline Cohort Demographics 

In general, our cohort is similar to other pediatric asthma cohorts. The male 

predominance, large Hispanic population, and higher rates of asthma co-morbidities 

compared with the general population, are consistent with other pediatric asthma cohorts. 

One notable difference is that the mean age is significantly younger in our cohort. The 

younger age may be explained by the general trend in pediatric asthma research to delay 

enrollment of children until age six. Because wheezing is a common occurrence in the 

pre-school aged child [13], frequently birth cohorts delay official diagnosis of asthma 

until a child can undergo pulmonary function testing with bronchodilator response at age 

six. [9, 14, 37] Therefore, because our study does not rely on PFTs for diagnosis we may 

capture a few children with recurrent wheezing of childhood rather than asthma. On the 

other hand, this study may capture an earlier life intervention that could impact natural 

history of disease.  

Another notable difference between our asthmatic population and control subjects 

was the difference in maternal education level. Control subjects were more likely to have 

parents with an advanced educational background compared to asthmatic subjects. 
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Although there is not an evident explanation for this distinction, it is possible this effect 

may be partially explained by a reluctance of parents with a less education to enroll their 

children in clinical research if the results do not directly apply to their child.  

Asthma Improves Following TA 

There was robust clinical improvement in asthma control—including 

improvement in ACT/TRACK scores, urgent care visits, and steroid courses—following 

TA. This clinical improvement is likely a multifactorial resulting from improvement in 

overall airway resistance, decreasing potential for microaspiration, and decreasing 

systemic inflammation.    

There has been increasing interest in the role for microaspiration in the worsening 

of asthma control. Bacterial toxins and bacterial colonizers of the nasal passage, 

adenoids, and tonsils may be silently aspirated in the lungs, thereby triggering worsening 

inflammation of the lower airways. [65] In children with adenoid hypertrophy there may 

be increased stasis of nasal secretions and increased bacterial colonization of tissue 

leading to increased susceptibility for antigen triggering of the lower airways, thereby 

worsening asthma control. Therefore, by removing the nidus of inflammation, there may 

decreased triggering of the lower airways and improved asthma control.  

Alternatively TA may improve asthma symptoms by decreasing systemic inflammation. 

In children with adenotonsillar disease there may be low-level systemic inflammation as 

a consequence of misregulation of normal adenoid and tonsillar immune function[49] or 

from systemic inflammation associated with long-standing OSA/SDB. Sleep disordered 

breathing in children is associated with higher levels of pro-inflammatory cytokines 

associated with asthma including hs-CRP, leptin, and adiponectin.[46] Therefore, if 
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surgery decreases low-level circulating pro-inflammatory agents, it may contribute to 

improving airway inflammation leading to overall improvement in asthma control (See 

below). 

Biomarkers of Th2 associated asthmatic inflammation improve following TA 

Although improvement in asthma control following TA has been described 

previously, less is known about its impact on asthmatic inflammation. Inflammatory 

cytokines are an appealing target as a post-tonsillectomy biomarker as Th2 inflammatory 

cytokines are expressed by CD4+extrafollicular T-cells in pediatric tonsillar tissue. [66] 

Additionally, it was previously found in our lab that Serpin B2—a gene that is regulated 

by IL-4 and IL-13 in vitro [60, 67]—expression levels decrease in children whose asthma 

improves following surgery [1], thereby suggesting a connection between Th2 cytokine 

pathways and TA.  

There was a significant decrease in IL-4 and IL-5 levels in the serum of asthmatic 

children following TA. Interleukin-4 and IL-5 are two of the classically described 

cytokines involved with Th2 allergic inflammation in asthmatic children. Therefore, if 

TA modulates expression of inflammatory cytokines involved with asthma pathogenesis, 

it may explain the improvement in asthma symptoms following surgery.  

Interleukin-4 has a broad range of clinical activities but in asthma it may initiate 

allergic sensitization and prime the Th2 immune response leading to recruitment of 

eosinophils into the airway, increasing bronchial hyperreactivity, and elevating IgE 

levels. [68, 69] Expression of IL-4 is increased at both the proteomic and genomic level 

in the bronchoalveolar lavage fluid (BALF) of asthmatics. A decrease in IL-4 levels 
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following surgery may modulate Th2 response and decrease allergic sensitization, 

thereby improving asthma symptoms.   

Despite the decrease in IL-4 levels in children following TA, this decrease did not 

correlate with clinical improvement of asthma. The absence of improvement is consistent 

with efforts to target IL-4 therapeutically in adult asthmatics; Phase II trials that targeted 

IL-4 expression using either soluble IL-4R or anti-IL-4 antibodies did not improve 

asthma symptoms or improve FEV1. [70, 71] The failure of anti-IL-4 agents suggests that 

IL-4 may be more important in the initial allergic sensitization phase compared to long-

standing remodeling and disease persistence. [72, 73] Additionally, IL-4 levels were 

difficult to detect in the serum, therefore differences in expression were subtle and the 

entire impact of the effect of surgery on this biomarker may not be fully captured by our 

assay. Therefore, modulation of expression of IL-4 in the serum of asthmatic children, 

may have less clinical relevance in describing improvement in asthma following TA.  

Interleukin-5 is another important Th2 cytokine in allergic asthmatic 

inflammation that contributed to response to TA in our cohort. Interleukin-5 promotes the 

maturation, activation, and mobilization of eosinophils within the lung in atopic 

asthmatic individuals. Exogenous exposure to IL-5 increases sputum eosinophilia and 

airway hyperresponsiveness. [74] Interleukin-5 is overexpressed in the serum and in the 

BALF in asthmatic individuals and mRNA expression has been shown to correlate with 

asthma severity. [75, 76] Similarly, we found that children with asthma had higher levels 

of circulating IL-5 compared with non-asthmatic peers. As atopic asthmatic 

inflammation—the most commonly described type of asthmatic inflammation in 

children—is characterized by eosinophillic infiltration and bronchial 
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hyperresponsiveness, a decrease in IL-5 levels could decrease asthmatic inflammation 

following surgery.  

Interleukin-5 levels decreased in our cohort following TA and a decrease in 

circulating levels correlated with improved urgent care visits and overall control. There 

may be elevation of serum IL-5 in children with acute asthma exacerbation and levels 

decreases once asthma is stabilized [77], suggesting a decrease in IL-5 levels may 

correlate with improved asthma control. Unlike attempts to target IL-4, therapeutic agents 

that target IL-5 have had modest success in improving asthma symptoms in patient 

cohorts with significant sputum eosinophilia with a history of frequent exacerbations. 

[75] The best-described anti-IL-5 agent is the humanized monoclonal antibody 

Mepolizumab (SB240563, GlaxoSmithKline, Research Triangle Park, NC), which in 

phase II trials in patients with significant sputum eosinophilia on chronic ICS has shown 

to decrease asthma exacerbations. [78] In adults with significant response to 

Mepolizumab decreasing peripheral eosinophil counts, rather than measuring serum IL-5, 

are the standard of response to therapy. Although serum eosinophil counts were 

unavailable for our cohort, future correlation in circulating eosinophils would enrich our 

understanding of response to surgery., In children who have a change in IL-5 expression 

following surgery there may be improvement in symptoms secondary to decreasing 

airway eosinophilia.  

Interleukin-13 levels were also elevated in the serum of asthmatic children 

compared to controls. Interleukin-13 is another Th2 cytokine also present in the asthmatic 

airway. Although similar in structure and function to IL-4, it is thought perpetuate of 

allergic airway response rather than to initiate response.[79] Unlike IL-4 and IL-5 levels, 
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IL-13 did not significantly decrease in asthmatic children following surgery. It is possible 

that IL-13 levels did not fall following surgery as in general they were expressed at lower 

levels in the serum compared to IL-4 and IL-5 and levels may be suppressed by oral 

steroid use, therefore biological proteomic assays may not be able to detect levels are 

readily as other cytokines. In contrast, IL-13 did decrease significantly in children 

without a clinician diagnosis of asthma. This change suggests that even in children 

without asthma, TA may impact systemic inflammation.   

Previously in the YCAAD cohort we found that asthmatic children undergoing 

TA, in addition to having post-operative improvement in asthma control, had a decrease 

in chitinase activity.[60] With enlargement of the cohort, this effect was eliminated; there 

was no significant decrease in chitinase activity in children with or without asthma 

following surgery. Additionally, control subjects had higher baseline chitinase activity 

compared with asthmatic peers. This contradicts previous findings that serum 

chitotriosidase is elevated in the serum of asthmatic individuals compared with controls. 

[32] As chitotriosidase has been found to be overexpressed in the hypertrophied adenoids 

of children with chronic rhinosinusitis, otitis media with effusion, and allergic rhinitis 

[80], in children with adenotonsillar disease chitinase activity may reflect degree of 

adenotonsillar inflammation rather than asthmatic inflammation, therefore decreasing its 

utility as an asthma biomarker in the setting of adenotonsillar disease. Alternatively, this 

study did not address the role of genetic mutations of chitotriosidase and difference in 

expression may be a result of differing genetic background between asthmatic and non-

asthmatic children in our cohort.   
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Clinical Characteristics that May Predict Improvement in Asthma Following Surgery  

Though previous studies have examined the role of TA on asthma control and 

healthcare utilization, this is the first study that identifies specific clinical 

characteristics—such as being LHW, being younger, being female, having a history of 

sinusitis, and having persistent asthma—correlated with improvement in asthma 

following surgery. 

Children who are overweight receive less benefit from TA for asthma control compared 

to LHW peers  

We found in two independent cohorts that LHW children are more likely to have 

clinical improvement in asthma control and medication usage following TA compared to 

their overweight peers. LHW children used less asthma medications post-TA and had a 

more robust increase in ACT scores while overweight peers had no significant change in 

medication use or ACT scores. The strong decline in oral steroid courses post-operatively 

for LHW children in both cohorts suggests a decline in frequency of asthma 

exacerbations following surgery that was more robust in LHW children compared to 

overweight peers.  

The absence of change in ICS use for overweight children may reflect a general 

increased resistance to inhaled corticosteroids in obese asthmatic children. Forno et al 

found that overweight asthmatic children were less likely to have improvement in lung 

function following budesonide administration compared with non-overweight weight 

peers. [81] Obesity-associated inflammation may contribute to persistence of clinical 

resistance to ICS post-operatively, especially as pro-inflammatory cytokines have been 
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implicated in the regulation of the expression of the β-isoform of the glucocorticoid 

receptor associated with resistance to ICS in asthmatic adults. [82, 83] 

Overweight children may receive less benefit in asthma control following TA 

because of persistent mechanical obstruction of the upper airway secondary to redundant 

neck soft-tissue and adiposity. Even at baseline in the YCAAD cohort, overweight 

children were more likely to have TA for obstructive airway disease compared to 

recurrent tonsillitis. Chu et al observed that in children undergoing TA for OSA, 59% of 

obese children have persistent polysomnographic evidence of OSA post-operatively 

compared with less than 22% of non-obese children. [84] Persistence of upper airway 

obstruction after TA may contribute to lack of improvement in asthma control.  

Alternatively, obesity-associated asthma may be associated with Th1 

inflammation compared with the Th2 atopic phenotype found in classical pediatric 

asthma. [20, 85] If removal of the adenoids and tonsils predominately impacts Th2 

inflammatory pathways, the impact on asthmatic inflammation may be less dramatic for 

obese asthmatic children. Persistence of upper airway obstruction in obese children post-

operatively may contribute to continued activation of inflammatory pathways that 

influence asthma control, especially as both obstructive sleep apnea and sleep disordered 

breathing are associated with increased expression of pro-inflammatory markers such as 

IL-6 and hs-CRP. [46, 86, 87] 

Interestingly, with enlargement of the cohort to 100 children in the YCAAD 

cohort, neither BMI percentile nor parent adjusted weight correlated with improvement in 

asthma. The effect of being overweight may have been diminished in larger sample size 

as the robust improvement following TA may modulate the effect of obesity on 
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improvement. A more detailed understanding of the obesity sub-phenotypes, including 

measurements such as waist-circumference and percent body fat, may further elucidate 

the importance of obesity on post TA improvement in asthma control.  

Asthma control in younger children is more likely to improve following TA 

Younger children were more likely to have improvement in their asthma control 

after TA as measured by the ACT, c-ACT, or TRACK scores and by the composite 

variable for improvement. Younger children with asthma are at higher risk for 

hospitalization and have significantly longer hospitalizations compared with older peers. 

[88] As younger children have anatomically narrower lower airways compared to older 

peers, they are at increased risk for obstruction with inflammation, often in the setting 

viral infections. Therefore, TA has the potential to reduce disease burden in this at risk 

population. 

Age is also an important factor both anatomically and physiologically in 

adenotonsillar disease. The adenoids to airway ratio size is largest in children ages two to 

eight [52], therefore, in younger children there is an increased likelihood that adenoid 

hypertrophy may cause obstruction of airflow. As nasal airflow plays an important role in 

humidification, warming, and filtering inspired antigens, the increased airway obstruction 

in younger children may play a significant role in exacerbating asthma control. [2, 89] 

Additionally, adenotonsillar disease is considered to be the primary risk factor for OSA 

and SDB in younger children. Magnetic resonance imaging shows a direction correlation 

between increasing adenoid and tonsillar volume in relationship to airway size with an 

increasing apnea-hypopnea index. [53] Bhattacharjee et al found in a cohort of 578 

children that following adenotonsillectomy, children had improvement in apnea-
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hypopnea index and total sleep time, suggesting improvement in OSA following 

surgery.[58] Interestingly, this effect was diminished in subjects older than age seven, 

suggesting TA may have greater benefit in improving OSA symptoms for younger 

children. Sleep disordered breathing and OSA may worsen asthma control through by 

increasing systemic circulatory inflammation [46] increasing neurocirculatory 

bronchoconstriction, or worsening of GERD. [2] Therefore, if there is greater 

improvement OSA and SDB following TA in younger children, they may receive 

superior improvement in asthma control.  

Beyond anatomical considerations, the tonsils and the adenoids are most 

immunologically active in younger children. Although the exact immune function of the 

tonsils remains to be elucidated, they are thought to play a significant role in antigen 

surveillance, immunoglobulin production, and the development of adaptive immune 

response. [49, 90]  In children with OSA, there is increased proliferation of T-cells and 

expression of the pro-inflammatory cytokines TNF-alpha, IL-1 alpha, and IL-6 within 

tonsillar tissue, suggesting that adenotonsillar hypertrophy may contribute to increasing 

overall systemic inflammation. [90, 91] Especially as lymphocytes activated in the 

tonsillar tissue can selectively migrate to the lung [92], increased tonsillar inflammation 

may lead to lower airway inflammation in children with asthma. Therefore, in younger 

children who have more immunologically robust tonsillar tissue, there may be and 

increased role in adenotonsillar disease and contribution to lower airways inflammation.  

One of the major challenges with assessing asthma in younger children is that 

clinician diagnosis of disease frequently occurs without objective pulmonary function 

tests. Considering that wheezing is common in early childhood, it is possible that we are 
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capturing improvement in children transient wheezing of childhood rather than with a 

true diagnosis of asthma. Nevertheless, the improvement in clinical outcomes suggests 

that TA may be particularly beneficial in a young pediatric cohort.  

Asthma control is more likely to be improved in girls than boys following 

adenotonsillectomy 

After TA we found that females were more likely to have a clinically significant 

improvement ACT or TRACK scores compared to male peers. There is well-described 

gender imbalance in pediatric asthma, where boys are twice as likely to wheeze under the 

age of ten compared to girls. [93, 94] This trend reverses during puberty with an 

increasing incidence in asthma in females during adolescence.  It has been hypothesized 

that male children are at increased risk for asthma in early childhood because of smaller 

airway diameter [95] and increased allergen sensitization compared to female peers. 

Males have increased level of IgE compared to females. [96, 97] and are more likely to 

have positive allergy skin testing compared to female peers. [96, 98] This gender 

inequality also translates into clinical disease severity as younger boys were more likely 

to have increased length of hospitalization in childhood compared to female peers. [88] 

Therefore, if male children have underlying anatomic and inflammatory susceptibility 

that puts them at increased risk for worse control, they may not receive the same benefit 

from surgery.  The fact that gender only significantly impacted the asthma control scores 

and not changes in urgent care visits, steroid courses, or composite improvement, it likely 

plays a lesser role in predicting improvement after TA.   
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Children with baseline sinusitis have decreased urgent care visits and steroid courses 

following TA 

A history of baseline sinusitis correlated with improvement in urgent care visits 

and steroid courses following TA. Sinus disease has a higher prevalence in both children 

and adults with asthma than in the general population. [2, 99] Chronic rhinosinusitis may 

trigger asthmatic inflammation through post-nasal drainage of inflammatory mediators, 

shared mucosal inflammatory mediators between the nasal passages and the lower 

airways, and pharyngobronchial reflux. [65] Previously, it has been shown that both 

medical treatment (nasal steroids, antimicrobial agents, and oral decongestants)[100] and 

surgical management (functional endoscopic sinus surgery) [101, 102] decreased 

requirements for glucocorticoids, decreased asthma-related hospitalizations, missed 

school days, and improved lung function. [65]  

The high of baseline history of sinus disease in our cohort suggests that sinusitis 

worsens baseline asthma control in the setting of adenotonsillar disease. Adenoid 

hypertrophy aggravates sinus disease by acting as a local reservoir for the local spread of 

bacterial flora to the sinuses and by mechanical outflow obstruction of nasal secretions. 

[103, 104] Adenoidectomy is an alternative treatment for refractory sinusitis in children. 

[105] Vandeburg et al found that 50-79% of children with rhinosinusitis refractory to 

medical management had improvement in symptoms following adenoidectomy.[106] 

Consistent with our findings, for asthmatic children with chronic rhinosinusitis TA may 

be particularly beneficial in improving asthma symptoms following surgery.  
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Children with Persistent Asthma have improvement in asthma control following TA  

The impact of persistent asthma on lung function is profound. In the Tucson 

cohort children who have persistent wheezing by age six are more likely to have long-

term decrease in lung function. [13] Persistent asthma is especially challenging to 

manage clinically in children. The mainstay of treatment for persistent asthma is inhaled 

corticosteroids, but in younger children adequate medication delivery through inhalers is 

less reliable and there are concerns for long-term metabolic consequences. Although 

there is recent evidence that oral LTRA may be an alternative therapy to improve asthma 

symptoms in young children [107], there is still a need for improvement in management 

of persistent disease.  

The decrease in controller medication use following surgery suggests that TA 

may play a role in altering inflammatory pathways that lead to persistence of disease. Not 

only did controller use decrease as a result of TA, but also children on controller 

medications were also more likely to have improvement in asthma following surgery in 

all improvement variables.  Additionally, children who had a one-year symptom free 

period were less likely to have improvement in asthma control and health care utilization 

for asthma. At baseline, children with persistent disease might have a higher likelihood to 

improve because they had worse baseline metrics (higher number of emergency room 

visits, lower baseline ACT/TRACK scores, and higher hospitalization rate) compared to 

children not on controllers. But beyond baseline metrics, children on controller 

medications were more likely to have chronic allergies and rhinosinusitis, suggesting a 

more atopic phenotype with higher baseline levels of IL-4 and IL-5. Therefore, a baseline 

inflammatory Th2 profile may contribute to why children improve following surgery. 
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Not only did persistence of asthma symptoms influence improvement, but 

severity of asthma impacted which children received benefit from surgery; moderate to 

severe asthmatics had a greater improvement in asthma control compared to mild 

asthmatics. This difference may be explained partially by inequality of baseline metrics, 

but also may reflect the relationship between upper airway obstruction and worsening 

asthma control in severe asthma. Severe and moderate asthmatics are more likely to have 

OSA compared to mild-asthmatics. [46] Therefore, in children—where adenotonsillar 

disease is the major contributor to OSA—removal of the tonsils and adenoids may have a 

more profound impact on children with moderate to severe disease rather than to children 

with milder disease.  

Inflammatory asthma biomarkers are elevated in children’s whose asthma improves 

following TA 

Children whose asthma improves following TA have elevation of Th2 Cytokines prior to 

surgery 

Serum levels of IL-4, IL-5, and IL-13 were elevated in children who had improvement in 

overall asthma control and in urgent care visits following TA. Although the specific 

actions of these cytokines in asthmatic inflammation have been discussed previously (See 

Biomarkers of Asthmatic Inflammation Improve Following TA), it is worth noting the 

importance of these markers in the classical Th2 inflammatory response associated with 

allergic asthma. Because an increase in Th2 immune response is thought to be a driving 

force for inflammatory infiltration and development of bronchial hyperreactivity in 

asthma in early-onset atopic asthma, elevation of these cytokines at baseline suggests that 

the individuals who receive the most benefit from surgery are children who have an 
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asthma phenotype associated with early-onset Th2 inflammation.[108] Additionally, 

expression of IL-5, and IL-13 also correspond with asthma severity and poorer control. 

[109, 110] As more severe asthmatics are more likely to have improvement following 

surgery, elevation of cytokine levels may reflect baseline severity in addition to atopic 

phenotype associated with improvement.  

Non-Th2 inflammatory cytokines are elevated in asthmatics whose asthma improve after 

surgery 

In our cohort we found that TNF- α, GM-CSF, IL-2, and IFN-gamma were 

elevated in children who had clinically significant improvement in ACT/TRACK scores 

after surgery. Tumor necrosis factor-α is an inflammatory cytokine that is essential for 

leukocyte recruitment, expression of vascular endothelial growth factors, and stimulation 

of fibroblasts and smooth muscles cells. Inhalation of exogenous TNF-α leads to airway 

hyper-responsiveness and increased sputum neutrophils counts, similar to asthmatic 

inflammation. [16] Tumor necrosis factor-α may be essential in that pathophysiology of 

acute exacerbations as acute exacerbations are related increased sputum neutrophilia. 

[111] The baseline elevation of TNF-α in our cohort may be related to poorer baseline 

control and recent asthma exacerbation as children with lower baseline scores (thus 

suggesting increased likelihood of recent exacerbation) as lower baseline scores correlate 

significantly with change in ACT/TRACK score after TA. As the ACT evaluates asthma 

control over relatively short time period of four weeks, if a child has had worsening 

asthma control and associated changes in circulating TNF-α during that period it would 

be captured in a lower baseline score.  
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Children whose ACT score reached MCID following adenotonsillectomy also 

were more likely to have increased baseline expression of GM-CSF compared to those 

who did not improve. Overexpression of GM-CSF in the lungs in animal shows severe 

lung eosinophilia, alveolar macrophage expansion and fibrosis consistent with asthmatic 

inflammation. [112] In humans, genetic polymorphisms of GM-CSF are related to 

asthma. [113] Although physiologic expression GM-CSF may play an essential role in 

priming Th1 immunity, with its overexpression there is an imbalance of cytokine and 

chemokine response as overexpression leads to transient increased expression of IL-4 and 

IL-5. [114] Therefore, in children with elevated GM-CSF at baseline it is possible that 

they have misregulation of Th2 cytokine expression. As improvement in asthma 

following surgery correlates with IL-5 regulation, misregulation of GM-CSF may 

contribute to a baseline inflammatory profile that identifies children whose asthma 

improves following surgery.  

We found that baseline elevation of IL-2 and IFN-γ was associated with clinically 

significant improvement in ACT/TRACK scores following surgery. Interferon-γ and IL-2 

are cytokines most frequently associated with Th1 response, a response that is generally 

suppressed in asthmatics. [16, 115] Interferon-γ specifically manipulates the balance of 

Th1 and Th2 inflammation. But studies looking at BALF of asthma found that in severe 

asthmatics there is elevation of IFN-γ and IL-2. [16, 116] Additionally, there may be 

overproduction of IFN-γ by CD8+ T-cells in asthmatic individuals, but levels are not 

significant enough to exceed the exaggerated Th2 response. [115] Therefore, the 

elevation of IFN-γ and IL-2 in children whose asthma improves following surgery 

suggests a phenotype associated with generalized elevation systemic inflammation. As 
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increased total systemic inflammation is associated with asthma persistence and severity, 

baseline elevation of IFN-γ and IL-2 may help identify persistent asthmatics who may 

improve post-operatively. (See Children with Persistent Asthma have improvement in 

asthma control following TA).  

Study Strengths and Limitations  

A major strength of this study is that we correlated both clinical and biological 

data to improvement in asthma after surgery. To our knowledge this is the largest cohort 

of pediatric asthma patients undergoing adenotonsillectomy and the only cohort that has 

both clinical and biological data.  

Continued follow-up of this cohort would demonstrate if the effect of TA has a 

long-standing effect on the natural history asthma or a more transient effect in the 

relatively short follow-up time. Further comparison of the biological and clinical 

response to TA with asthmatic children undergoing surgery other than TA would aide in 

understanding the direct relationship of clinical and biologic response after TA. 

Comparison with an asthma surgical control group would also help to account for the 

placebo effect of surgery on improving asthma control.  

Additionally, the majority of therapeutic research in the pediatric population 

occurs in school-aged children in order to minimize the risk of treatment in the very 

young child. Therefore the largest pediatric asthma cohorts have an average age of about 

nine [37], thereby making interpretation of clinical outcomes for our younger cohort 

compared to other interventions more difficult. Furthermore, characterization of OSA 

pre-operatively would also help characterize the degree of upper airway obstruction in 

children prior to surgery. Nocturnal polysomnography (PSG) is increasingly used in 
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pediatric population for the diagnosis and management of OSA. As children with 

recurrent tonsillitis and OSA can have tonsillar hypertrophy and SDB, further 

characterization with nocturnal PSG may aide in helping to determine the role of tonsillar 

hypertrophy and functional obstruction on asthma control.  

CONCLUSIONS AND FUTURE DIRECTIONS 

This is the first study that specifically connects specific patient characteristics—

both clinical and biological—to improvement in asthma after TA. By characterizing a 

phenotype of child whose asthma responds to surgery, we eventually may be able to 

predict which children with asthma will have a response to TA. By predicting which 

children will have a good response to surgery, it is possible that asthmatic children 

without standard indications for TA could be identified that may receive benefit from TA 

selectively for asthma control. Additionally, to our knowledge, this is the first time 

anyone has demonstrated that TA modulates the allergic response found in asthmatic 

children and that modulation of this response corresponds to improvement in asthma. 

Further characterization of this allergic response is needed to better understand the 

complex pathways that drive the marked clinical improvement and to determine if this 

modulation has long-lasting impact on asthma control.  

	
  

 

 

 

 

 



	
   Koenigs et al. 54 

TABLES 

	
  
Table 1. Baseline Demographics of YCAAD Cohort. P-values represent comparisons 
between asthma and control populations. *Fisher’s exact, ≠Pearson’s χ2,  °Mann-Whitney 
U Test.  
 
 
	
  
	
  
	
  
	
  
	
  
	
  

Variable Asthma  
n = 100 

Controls  
n=54 

P-value 

Age  
Mean [Range] 

6.5 [2-17] 5.7 [2-18] 0.09° 

Male Gender (%) 63 50 0.13* 
Race (%) 

White/Caucasian 
African American 
Asian 
Other 

 
77 
17 
0 
6 

 
72 
26 
2 
0 

0.086* 

Latino Ethnicity (%) 44 21 0.02≠ 

BMI Percentile  
Mean [Range] 

65 [0-100] 68 [0.2-99] 0.92° 

Gross Income (%) 
< 19,999 
20,000-39,999 
40,000-59,999 
60,000-99,999 
>100,000 
Declined 

 
26 
24 
14 
18 
16 
2 

 
19 
17 
7 

24 
33 
0 

0.09≠ 

Maternal Education (%) 
< 8th Grade 
Some HS 
HS Graduate 
Trade School 
College Graduate 
Graduate School 
Declined 

 
0 

10 
43 
17 
23 
6 
1 

 
4 
4 

30 
13 
24 
24 
1 

0.009≠ 

Location (%) 
Rural 
Suburban 
Urban 
Declined 

 
12 
51 
36 
1 

 
15 
59 
26 
0 

0.51≠ 

Second Hand Smoke  31 29 0.84* 
Indication TA 

SDB/OSA 
RT 
Other 

 
74 
22 
4 

 
80 
20 
0 

0.31≠ 

Asthma Comorbidities (%) 
Sinusitis 
Atopy 
GERD 

 
39 
78 
36 

 
20 
53 
13 

 
0.018* 
0.003* 
0.004* 
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Biomarker Asthma  Controls Baseline 
 Pre Post ∞P-value Pre Post ∞P-value °P-value 
Chitinase 
Activity 

3.2 
[0.2-35] 

3.6 
[0.2-22] 

0.63 3.8 
[1.0-15] 

4.0 
[0-11.5] 

0.26 0.014 

YKL-40 32 
[13-194] 

34 
[8-171] 

0.58 32 
[9-234] 

31 
[7-85] 

084 0.51 

IL-2  2.4 
[0-1062] 

3.3 
[0-628] 

0.23 2.5 
[0-100] 

0  
[0-74.14] 

0.39 0.39 

IL-4  0.5 
[0-6.6] 

0.3 
[0-2.7] 

0.022 0.5 
[0-13] 

0.3 
[0-8.15] 

0.21 0.82 

IL-5   2.4 
[0-31.6] 

1.2 
[0-7.2] 

0.002 1.0 
[0-35] 

0.9 
[0-14] 

0.15 0.002 

IL-10 7.5 
[0-1918] 

6.7 
[0-787] 

0.66 9.6 
[0-66] 

5.1 
[0-76] 

0.41 0.80 

IL-12 7.5 
[0-6787] 

2.6 
[0-2729] 

0.79 0 
[0-368] 

0 
[0-340] 

0.44 0.06 

IL-13  1.7 
[0-64] 

0.9 
[0-20] 

0.088 0.7 
[0-37] 

0.6 
[0-6.1] 

0.029 0.008 

IFN-γ  30 
[0-1014] 

24 
[0-494] 

0.062 41 
[0-680] 

29 
[0-905] 

0.329 0.57 

TNF-α  6.9 
[0-500] 

5.1 
[0-971] 

0.95 4.0 
[0-186] 

2.5 
[0-65] 

0.40 0.064 

GM-CSF  12 
[0-1136] 

11 
[0-158] 

0.45 19 
[0-162] 

9.9 
[0-192] 

0.11 0.67 

 
Table 2. Asthma Biomarkers in response to TA. P-values represent ∞Wilcoxon Rank Sum and 
°Mann-Whitney U. Baseline represents comparison of biomarker data between children with 
asthma and controls on the day of surgery. Values represent median and range is demarcated by 
[ ]. Cytokine levels are in pg/mL, YKL-40 in ng/mL and Chitinase Activity in nMol/mL*hr.  
  
 
 

 YCAAD (n=47)  CT Kids (n = 49)  
 LHW 

(n=29) 
Overweight 

(n=18) 
P-

value 
LHW 

 (n=30) 
Overweight  

(n= 19) 
P-value 

Age 5.8 [2-10] 8.7 [2-17] 0.023* 6 [2-16] 7.5 [2-15] 0.24* 
Gender 
Male 
Female 

 
18 (62) 
11 (38) 

 
9 (50) 
9 (50) 

0.55§  
19 (63) 
11 (37) 

 
11 (58) 
8 (42) 

0.77§ 

Race  
White 
African-American 
Other 

 
26 (90) 

2 (7) 
1 (3) 

 
12 (67) 
6 (33) 

0 

0.06≠  
27 (90) 

2 (7) 
1 (3) 

 
12 (90) 

1 (5) 
1 (5) 

0.93≠ 

Hispanic 12 (41) 11 (61) 0.24§ 3 (10) 2 (11) 1.00§ 
Indication 
OSA 
Tonsillitis 
Other 

 
16 (55) 
11 (38) 

2 (7) 

 
16 (89) 
5 (11) 

0  

0.05≠  
21 (72) 
1 (3.4) 
7(24) 

 
10 (59) 
4 (23.5) 
3 (18) 

0.11≠ 

Co-morbidities 
Atopy 
Sinusitis 
GERD 

 
18 (64) 
9 (31) 

14 (48) 

 
15 (88) 
8 (44) 
4 (22) 

 
0.20§ 
0.37§ 
0.12§ 

 
23 (77) 
4 (13) 
4 (13) 

 
12 (63) 
2 (10.5) 
4 (21) 

 
0.35§ 

1.00§ 

0.69§ 

 
Table 3A. Baseline demographics interim YCAAD Cohort and CT-Kids Cohort. Age 
expressed as mean, all other values represent n. () represent percentage, [ ] represent range,* 

Mann-Whitney, ≠Pearson’s χ2 test, and §Fisher’s Exact Test.  
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 YCAAD (n=47)  CT Kids(n = 49)  

 LHW 
(n =29) 

Overweight 
(n=18) 

P-value LHW   
(n=30) 

Overweight  
(n=19) 

P-value 

Medication Use 
ICS 
LTRA 
LABA 

 
19(65) 
7 (24) 
5 (17) 

 
10 (55) 
4 (22) 
1 (6) 

 
0.55§ 
1.00§ 
0.35§ 

 
26 (87) 
16 (53) 

2 (7) 

 
12 (63) 
8 (42) 
1 (5.3) 

 
0.08§ 

0.56§ 

1.00§ 

Albuterol Use 
≥3 times per day 
1-2 times per day 
2-3 times per 
week 
Once a week or 
less 
Never 

 
4 (14) 
3 (11) 
3 (11) 
5 (19) 

12 (44) 

 
1 (6) 

2 (12) 
1 (6) 

8 (47) 
5 (29) 

0.34≠ 30 (100) 19 (100) 1.00§ 

Oral Steroid 
Courses 

1.45 [0-8] 0.33 [0-4] 0.013* 0.97 [0-4] 0.95 [0-4] 0.57* 

Urgent Care Visits 2.86 [0-50] 0.72 [0-6] 0.15* 0.67 [0-5] 0.53 [0-3] 0.43* 
Pediatrician Visits N/A N/A  6.48 [0-30] 4.94  [0-17] 0.65* 
Baseline ACT™ 18 [7-27] 22 [17-27] 0.30* N/A N/A N/A 

 
Table 3B. Baseline Asthma Control and Healthcare Utilization of interim YCAAD Cohort 
and CT-Kids Cohort. Medication use and Albuterol expressed as n, all other values represent 
mean. () represents percentage, [ ] represent range,    *Mann-Whitney, ≠Pearson’s χ2 test, and 
§Fisher’s Exact Test. 
 
 
 
 
 
 
 

  LHW   Overweight  
  Baseline Follow-Up P-value Baseline Follow-Up P-value 
Medication Use 
ICS 
LTRA 
LABA 
Albuterol 

  
26 (86.7) 
16 (53.3) 

2 (6.7) 
30 (100) 

 
18 (60) 
9 (30) 
3 (10) 

27 (90) 

 
0.008° 
0.016° 
1.00° 
0.25° 

 
12 (63.2) 
8 (42.1) 
1 (5.3) 

19 (100) 

 
9 (47.4) 
4 (21.1) 
1 (5.3) 
18 (95) 

 
0.38° 
0.22° 
1.0° 
1.0° 

Oral Steroid 
Courses 

 0.97 [0-4] 0.47 [0-3] 0.048∞ 0.95 [0-4] 
 

0.21 [0-2] 0.056∞ 

ER Visits  0.67 [0-5] 0.07 [0-5] 0.003∞ 0.53 [0-3] 0 0.04∞ 
Pediatrician 
Visits 

 6.48 [0-30] 2.57 [0-15] 0.001∞ 4.94  [0-17] 0.84 [0-8] <0.001∞ 

 
Table 3C.  Post-operative change medication usage and healthcare utilization in the CT 
Kids Cohort. Medication use and Albuterol expressed as n, all other values represent mean. () 
represents percentage, [ ] represent range. °Sign test, ∞Wilcoxon-Signed Rank Test. 
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Table 3D.  Post-operative change medication usage and healthcare utilization in the 
YCAAD Cohort. Medication use and Albuterol expressed as n, all other values represent mean. 
() represents percentage, [ ] represent range. °Sign test, ∞Wilcoxon-Signed Rank Test. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
	
  

  LHW   Overweight  
  Baseline Follow-Up P-value Baseline Follow-Up P-value 
Medication Use 
ICS 
LTRA 
LABA 

  
19(65) 
7 (24) 
5 (17) 

 
12 (41) 
9 (31) 
3(10) 

 
0.016° 
0.50° 
0.50° 

 
10 (55) 
4 (22) 
1 (6) 

 
7 (39) 
3 (17) 
1 (6) 

 
0.25° 
1.00° 
1.00° 

Albuterol Use 
≥3 times per day 
1-2 times per 
day 
2-3 times per 
week 
Once a week or 
less 
Never 

  
4 (14) 
3 (11) 
3 (11) 
5 (19) 

12 (44) 

 
2 (8) 
2 (8) 
1 (4) 

3 (11) 
18 (69) 

0.002°  
1 (6) 

2 (12) 
1 (6) 

8 (47) 
5 (29) 

 
0 

2 (11) 
2 (11) 
5 (22) 

10 (56) 

0.453° 

Oral Steroid 
Courses 

 1.45 [0-8] 0.41 [0-5] 0.014∞ 0.33 [0-4] 0 0.18 

Urgent Care Visits  2.86 [0-50] 1.45 [0-8] 0.12∞ 0.72 [0-6] 0.0 0.18∞ 
ACT Score  18 [7-27] 23 [7-27]  0.001∞ 22 [17-27] 23 [17-27] 0.48∞ 
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Variable + MCID 
n = 34 

- MCID 
n = 40 

P-value 

Age median [range] 5.5 [2-17] 7 [2-14] 0.023° 
Male %(n) 47(16) 73(29) 0.033* 
Latino Ethnicity %(n) 44(15) 45(18) 0.1* 
Race %(n) 

Caucasian 
African American 
Other 

 
77(26) 
14(5) 
9(3) 

 
77(31) 
23 (9) 

0.073≠ 

BMI Percentile 
median [range] 

78 [2-100] 79 [0-100] 0.72° 

Overweight (PAW) %(n) 44(15) 38(15) 0.64* 
Inner City %(n) 33(11) 43(17) 0.47* 
Second Hand Smoke %(n) 21(7) 40(15) 0.13* 
Indication TA %(n) 

SDB/OSA 
RT 

 
76(26) 
24(8) 

 
78(31) 
17(7) 

0.77* 

Asthma Co-Morbidities %(n) 
Chronic Allergies 
Atopy 
Sinusitis 
GERD 

 
68(23) 
76(25) 
47(14) 
33(11) 

 
68(26) 
82(31) 
33(13) 
39(15) 

 
1.00* 
0.57* 
0.46* 
0.81* 

Age Asthma Diagnosis 
median [range] 

2.0 [1-16] 2.0 [1-12] 0.77° 

Age Lung Sx Onset 
median [range] 

1.0 [1-14] 1.0 [1-8] 0.94* 

Asthma Triggers %(n) 
Respiratory Infection 
Seasonal 
Environment 
Home 
Exercise 
Other 

 
88(30) 
62(21) 
41(14) 
32(11) 
56(19) 

3(1) 

 
85(33) 
62(24) 
36(14) 
18(7) 

59(23) 
10(4) 

 
0.74* 
1.00* 
0.81* 
0.18* 
0.82* 
0.36* 

Asthma Limits Activity %(n) 12(4) 13(13) 0.32* 
One year symptom free %(n) 6(2) 23(9) 0.055* 
Controller %(n) 68(23) 32(12) 0.004* 
Mild vs. Mod/Severe  %(n) 35(12) 17.5(7) 0.11* 
History ICU for asthma %(n) 3 (1) 5 (2) 1.00* 
Lifetime Hospitalizations 
median [range] 

0 [0-8] 0 [0-20] 0.46° 

Hospitalized last year %(n) 6(2) 5(2) 1.00° 
Chitinase Activity 3.2 [0.2-35] 3.3 [0.2-21] 0.70° 
YKL-40 34 [13-172] 29 [13-194] 0.37° 
IL-2  8.9 [0-1062] 1.6 [0-253] 0.015° 
IL-4  0.6 [0-6.6] 0.4 [0-2.6] 0.064° 
IL-5   2.4 [0.4-7.8] 1.8 [0-18] 0.24° 
IL-10 12 [0-1918] 5.9 [0-113] 0.33° 
IL-12 16 [0-6787] 7.3 [0-3221] 0.12° 
IL-13  2.4 [0-13] 1.3 [0-23] 0.14° 
IFN-γ  38 [3.3-1014] 25 [0-295] 0.039° 
TNF-α  13 [0-310] 5.3 [0-500] 0.04° 
GM-CSF  29 [0-279] 5.6 [0-91] 0.02° 

 
Table 4. Baseline characteristics that influence if child has clinically significant 
improvement in ACT/TRACK score. All biological data is represented as median [range]. 
Values represent percentage (number). *Fisher’s exact, ≠Pearson’s χ2,  °Mann-Whitney U Test. 
Cytokine levels are in pg/mL, YKL-40 in ng/mL and Chitinase Activity in nMol/mL*hr. 
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Variable Improved 

n = 41 
Not Improved 

n = 59 
P-value  

Age median [range] 5 [2-17] 6 [2-14] 0.28° 
Male %(n) 61(25) 64(38) 0.83* 
Latino Ethnicity %(n) 44(19) 43(25) 0.42* 
Race %(n) 

Caucasian 
African American 
Other 

 
83(34) 
10(4) 
7(3) 

 
73(43) 
22(13) 
9 (3) 

0.26≠ 

BMI Percentile 
median [range] 

73 [2-100] 82 [0-100] 0.91° 

Overweight (PAW) %(n) 42(17) 41(24) 0.97* 
Inner City %(n) 37(15) 26(15) 1.00* 
Second Hand Smoke %(n) 39(15) 26(15) 0.26* 
Indication TA %(n) 

SDB/OSA 
RT 
Other 

 
81(33) 
65(6) 
8(2) 

 
70(41) 
27(16) 

3(2) 

0.15* 

Asthma Co-Morbidities %(n) 
Chronic Allergies 
Atopy 
Sinusitis 
GERD 

 
77(30) 
82(31) 
54(22) 
46(18) 

 
60(35) 
75(43) 
29(17) 
31(18) 

 
0.12* 
0.62* 
0.02* 
0.14* 

Age Asthma Diagnosis 
median [range] 

2.0 [1-16] 2.0 [1-9] 0.08° 

Age Lung Sx Onset°  
median [range] 

1.0 [1-14] 1.0 [1-8] 0.70° 

Asthma Triggers %(n) 
Respiratory Infection 
Seasonal 
Environment 
Home 
Exercise 
Other 

 
83(34) 
59(24) 
39(16) 
15(6) 

71(29) 
20(8) 

 
86(50) 
55(32) 
41(24) 
28(16) 
47(16) 

2(1) 

 
0.78* 
0.84* 
0.84* 
0.15* 

0.023* 
0.003* 

Asthma Limits Activity %(n) 24(10) 17(10) 0.40* 
One year symptom free %(n) 3(1) 23(13) 0.007* 
Controller %(n) 82(32) 34(20) < 0.001* 
Mild vs. Mod/Severe  %(n) 46(19) 17(10) 0.002* 
History ICU for asthma %(n) 7.3(3) 3.4(2) 0.40* 
Lifetime Hospitalizations 
median [range] 

0 [0-35] 0 [0-10] 0.04° 

Hospitalized last year %(n) 20(8) 2(1) 0.003* 
Chitinase Activity 2.6 [0.2-35] 3.4 [0.2-21] 0.09° 
YKL-40 35 [13-172] 30 [13-194] 0.61° 
IL-2  1.2 [0-1062] 2.6 [0-253] 0.73° 
IL-4  0.8 [0-6.6] 0.4 [0-2.7] 0.014° 
IL-5   3.6 [0.4-18] 1.8 [0-32] 0.023° 
IL-10 7.4 [0-1918] 7.7 [0-187] 0.85° 
IL-12 7.3 [0-6787] 9.8 [0-495] 0.80° 
IL-13  3.2 [0-23] 1.4 [0-64] 0.021° 
IFN-γ  36 [0-1014] 28 [2.7-503] 0.43° 
TNF-α  11 [0-310] 6.3 [0-500] 0.33° 
GM-CSF  6 [0-279] 18 [0-1136] 0.17° 

 
Table 5. Baseline characteristics that influence if child has improvement in Urgent Care 
Visits following surgery. All biological data is represented as median [range]. Values represent 
percentage (number). *Fisher’s exact, ≠Pearson’s χ2,  °Mann-Whitney U Test. Cytokine levels are 
in pg/mL, YKL-40 in ng/mL and Chitinase Activity in nMol/mL*hr. 
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Variable Improved 
n = 39 

Not Improved 
n = 60 

P - value  

Age median [range] 5 [2-17] 6 [2-17] 0.16° 
Male %(n) 64 (25) 62 (37) 0.84* 
Latino Ethnicity %(n) 47(17) 45(27) 0.84* 
Race %(n) 

Caucasian 
African American 
Other 

 
82(32) 

8(3) 
10(4) 

 
73(44) 
23(14) 

4(2) 

0.07≠ 

BMI Percentile 
median [range] 

71 [2-100] 86 [0-100] 0.40° 

Overweight (PAW) %(n) 39(15) 43(26) 0.68* 
Inner City %(n) 28(11) 42 (25) 0.20* 
Second Hand Smoke %(n) 37(13) 28(17) 0.49* 
Indication TA %(n) 

SDB/OSA 
RT 
Other 

 
77(30) 
18(7) 
5(2) 

 
72(43) 
25(15) 

3(2) 

0.47* 

Asthma Co-Morbidities %(n) 
Chronic Allergies 
Atopy 
Sinusitis 
GERD 

 
77(28) 
81(29) 
56(22) 
42(16) 

 
63(37) 
76(44) 
28(17) 
32(19) 

 
0.26* 
0.80* 

0.007* 
0.39* 

Age Asthma Diagnosis 
median [range] 

2 [1-12] 2 [1-12] 0.84° 

Age Lung Sx Onset° 
median [range]  

1 [1-5] 1[1-5] 0.60° 

Asthma Triggers %(n) 
Respiratory Infection 
Seasonal 
Environment 
Home 
Exercise 
Other 

 
85(33) 
51(20) 
41(16) 
23(9) 

64(25) 
21(8) 

 
85(51) 
60(36) 
40(24) 
22(13) 
52(42) 

2(1) 

 
1.00* 
0.41* 
1.00* 
1.00* 
0.07* 

0.002* 
Asthma Limits Activity %(n) 31(12) 13(8) 0.043* 
One year symptom free %(n) 8(3) 19(11) 0.24* 
Controller %(n) 84(32) 34(20) < 0.001* 
Mild vs. Mod/Severe  %(n) 62(24) 8(5) <0.001* 
History ICU for asthma %(n) 10.3(4) 2(1) 0.07* 
Lifetime Hospitalizations 
median [range] 

0 [0-35] 0 [0-20] 0.018° 

Hospitalized last year %(n) 21(8) 2(1) 0.002* 
Chitinase Activity 2.9 [0.2-35] 3.3 [0.2-21] 0.58°  
YKL-40 36 [13-172] 31 [13-194] 0.30° 
IL-2  2.0 [0-171] 2.6 [0-1062] 0.97° 
IL-4  0.6 [0-6.6] 0.4 [0-6.6] 0.36° 
IL-5   3.0 [0.4-9] 2.2 [0-32] 0.17° 
IL-10 7.6 [0-108] 7.6 [0-1918] 0.54° 
IL-12 7.0 [0-267] 10 [0-6787] 0.51° 
IL-13  2.3 [0-23] 1.4 [0-64] 0.37° 
IFN-γ  34 [0-704] 30 [0-1014] 0.68° 
TNF-α  11 [0-310] 5.8 [0-500] 0.20° 
GM-CSF  9.3 [0-193] 18 [0-1136] 0.57° 

Table 6. Baseline characteristics that influence if child has clinically significant 
improvement in steroid courses. All biological data is represented as median [range]. Values 
represent percentage (number). *Fisher’s exact, ≠Pearson’s χ2,  °Mann-Whitney U Test. 
Cytokine levels are in pg/mL, YKL-40 in ng/mL and Chitinase Activity in nMol/mL*hr. 
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Variable Improved 
n = 70 

Not Improved 
n = 30 

P - value 

Age median [range] 5 [2-17] 8 [2-14] 0.012° 
Male %(n) 59(41) 73(22) 0.18* 
Latino Ethnicity %(n) 45(30) 47(14) 1.00* 
Race %(n) 

Caucasian 
African American 
Other 

 
79(55) 
13 (9) 
9 (6) 

 
73 (22) 
27 (8) 

0.082≠ 

BMI Percentile 
median [range] 

78.9 [2-100] 63 [0-100] 0.25* 

Overweight (PAW) %(n) 43(30) 37(11) 0.66* 
Inner City %(n) 36(25) 37(11) 1.00* 
Second Hand Smoke %(n) 33(22) 27(8) 0.64* 
Indication TA %(n) 

SDB/OSA 
RT 
Other 

 
77(54) 
20(14) 

3(2) 

 
67(28) 
27(8) 
7(2) 

0.43* 

Asthma Co-Morbidities %(n) 
Chronic Allergies 
Atopy 
Sinusitis 
GERD 

 
74(52) 
79(52) 
44(31) 
40(27) 

 
55(16) 
76(22) 
27(8) 
30(9) 

 
0.16* 
0.79* 
0.12* 
0.50* 

Age Asthma Diagnosis 
median [range] 

2 [1-12] 2 [1-16] 0.69° 

Age Lung Sx Onset° 
median [range]  

1 [1-5] 1 [1-14] 0.98° 

Asthma Triggers %(n) 
Respiratory Infection 
Seasonal 
Environment 
Home 
Exercise 
Other 

 
86(60) 
57(40) 
40(28) 
21(15) 
60(42) 
13(16) 

 
83(24) 
55(16) 
41(12) 
24(7) 

48(14) 
0(0) 

 
0.76* 
1.00* 
1.00* 
0.79* 
0.37* 

0.043* 
Asthma Limits Activity %(n) 23(16) 14(4) 0.18* 
One year symptom free %(n) 6(4) 35(10) 0.001* 
Controller %(n) 68(46) 20(6) < 0.001* 
Mild vs. Mod/Severe  %(n) 39(27) 7(2) 0.001* 
History ICU for asthma %(n) 7(5) 0(0) 0.32* 
Lifetime Hospitalizations 
median [range] 

0 [0-35] 0 [0-10] 0.36° 

Hospitalized last year %(n) 13(9) 0(0) 0.055* 
Chitinase Activity 3.2 [0.2-35] 3.1 [0.2-7.9] 0.25° 
YKL-40 34 [13-172] 30 [13-194] 0.70° 
IL-2  4.1 [0-1062] 1.8 [0-253] 0.17° 
IL-4  0.6 [0-6.6] 0.4 [0-2.6] 0.042° 
IL-5   3.0 [0.4-18] 1.5 [0-32] 0.025° 
IL-10 8.3 [0-1918] 4.5 [0-187] 0.17° 
IL-12 7.4 [0-6787] 8.5 [0-495] 0.50° 
IL-13  2.4 [0-23] 1.0 [0-64] 0.029° 
IFN-γ  36 [0-1014] 25 [2.7-503] 0.16° 
TNF-α  11 [0-310] 4.9 [0-500] 0.041° 
GM-CSF  12 [0-279] 12 [0-1136] 0.88° 

Table 7. Baseline characteristics that influence if child has clinically significant 
improvement in Composite Improvement. All biological data is represented as median [range]. 
Values represent percentage (number). *Fisher’s exact, ≠Pearson’s χ2,  °Mann-Whitney U 
Test. Cytokine levels are in pg/mL, YKL-40 in ng/mL and Chitinase Activity in nMol/mL*hr. 
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FIGURES 
	
  

	
  
 
Figure 1. Children’s asthma improves following TA. P-values represent Wilcoxon Signed-
Rank test A) ACT and TRACK scores rescaled to 25-point scale. B) Number of urgent care visits 
(per year). C) Number of steroid courses (per year). 
 
 
 
 
 
 
 
 
 

 
 
Figure 2. Serum biomarker levels differ in children with and without asthma prior to TA. P-
values represent Mann-Whitney-U Test. Median bar is displayed with interquartile ranges. Error 
bars represent minimum and maximum values. A) IL-5. B) IL-13. C) Chitinase Activity. 
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Figure 3. Th2 cytokines decrease in children with asthma following TA. P-values represent 
Wilcoxon Signed-Rank Test. Median bar is displayed with interquartile ranges. Error bars 
represent minimum and maximum values. A) IL-4. B) IL-5. 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 4. Improvement in Asthma Correlates with Decreases in IL-5. Asthma improves 
measured using the composite variable for improvement. P-value represents Mann-Whitney-U.   
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