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Abstract

Assessment of HIN1 vaccine effectiveness in preventing hospitalization in children

Felicity Lenes-Voit, Alexandra P. Grizas, Novagrami George, Nancy Holabird,
Rebekah Stein and Marietta Vazquez. Department of Pediatrics. Yale School of

Medicine. New Haven, CT.

2013

In 2009, the first influenza epidemic of the new millennium emerged. HIN1
disproportionately infected, hospitalized and killed pediatric patients, but the bulk
of research on effective prevention was centered on the adult population. In order to
address this gap, we conducted a matched case-control study to investigate the
effectiveness of HIN1 vaccination in preventing hospitalization due to influenza-
related illness in children and adolescents aged 6 months to 17 years of age. We
found that one dose of HIN1 vaccine is only 30.5% effective in protecting against
hospitalization for HIN1 influenza and identified several risk factors for an
increased likelihood of hospitalization for influenza that can be used to guide future

immunization policy.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Three times in the last century, and for the first time during the new millennium
in 2009, a pandemic influenza strain emerged: H1N1. By altering the subtype of flu
virus that predominates globally, HIN1 exacted a large toll of morbidity and
mortality via the introduction of unfamiliar, mutated cell surface antigens, the
molecules that allow a host immune system to recognize and repel viral invaders.
Vaccines are crucial in preventing widespread epidemics of seasonal flu, which has
comparatively fewer differences from strains previously experienced by humans
than pandemic flu. Therefore, vaccines are even more important in containing
pandemics because they train the immune system to recognize and respond to novel
pathogenic threats, thereby enabling prevention of disease—when a vaccine is

effective-- whereas otherwise the body would only have more limited defenses.

Similarities to previously circulating strains of influenza, a rapid response by the
healthcare community, and more advanced healthcare technologies for individuals
who contracted influenza and experienced influenza-related complications,
restrained the morbidity and mortality of this pandemic in older adults. But in

children, lack of exposure to previous strains of HIN1 flu dealt a harsher hand and



led to unusually high attack rates, hospitalizations and deaths. As we look to the
future, it is ever more critical that our prevention methods are effective, particularly
in children whose immune systems are less developed compared to adults, having
been exposed to a smaller number of immunologic threats. Accordingly, evaluation
of vaccine effectiveness in pediatric patients contributes significantly to our
preparedness for future pandemics by identifying gaps in effectiveness, which will

help save lives during subsequent outbreaks.

1.2 Influenza

Influenza, commonly called “the flu,” is a contagious respiratory illness caused
by influenza viruses, single-stranded RNA viruses of the Orthomyxoviridae family,
which includes types A, B and C flu (1). Infections with the A or B types of this virus
are most common and can result in illness ranging from mild to severe with life-
threatening complications, with severity correlated to which viral surface molecules
are expressed for Type A influenza. There is only one subtype of Influenza B,
although there are two lineages (2). However, Type A viruses express two variable

hallmark surface antigens: hemagglutinin and neuramidinase.

Hemagglutinins are antigenic glycoproteins that facilitate binding of the virus to
cells, cause red blood cell aggregation in vitro, and are the primary targets of host
immune systems. Glycoside hydrolase enzymes called neuraminidases allow

penetration through the respiratory tract mucosa and are a common antiviral target



(3). Seventeen hemagglutinins have been identified in human and avian influenza A
viruses, as well as 9 forms of influenza neuraminidase, leading to substantial
variation in the types of viruses that can cause disease. H1-3 and N1 and N2 are far
more common in human strains of the flu virus, and worldwide pandemics have
thus far been caused by only four of the subtypes: HIN1, HIN2, H2N2 and H3N2

(1,4,5).

There is a particularly high rate of point mutation in the hemagglutinin gene,
which allows the virus to evade recognition by the host immune system via
antigenic drift - small evolutionary changes over time in response to selection
pressures. Less frequent, but more dramatic, is a phenomenon known as antigenic
shift, which is a reassortment of viral genomes due to either cross-species
transmission or concurrent infection by multiple viruses in the same host which
leads to gene fracture and recombination (6,7). Type B viruses mutate much more
slowly and are therefore substantially less likely to cause pandemics, though they
occasionally cause epidemics. In addition to being classified by type, influenza
viruses are also subclassified according to the location and year they were first

isolated , for example A/California/2009 H1N1 (1,5).



1.3 Epidemiology

Although each season is unique, the Centers for Disease Control and Prevention
(CDC) estimate that every year, 10% of U.S. residents contract influenza and
approximately 200,000 persons are hospitalized for flu-related complications.
Nationally, the total annual mortality due to influenza ranges from 3,000-49,000,
usually due to complications of the illness; mortality also tends to be much more
severe in years when an H3N2 virus predominates (8). The influenza viruses are
spread from person to person via respiratory droplets. On occasion, they are also
transferred species to species, mutating swiftly in the process. Several times per
century, strains sufficiently immunologically distinct emerge, eluding crossover

recognition by both B- and T-cells, and resulting in pandemics (1).

There were three influenza pandemics during the 20t century: an H1N1 variant
in 1918 that is estimated to have cost more lives than the Great War, an H2N2 strain
in 1957, and a H3N2 strain in 1968 that predominated until recently (9,10,11). The
most recent pandemic influenza, 2009 H1N1, was notable not only because its death
toll of at least 30,000 Americans was over five times the expected mortality from an
H1N1 virus, but also because instead of preying most heavily on the elderly and
immunocompromised, it was particularly virulent in the young and in persons with
intact immune systems. Consistent with previous pandemics, it is likely that 2009

H1N1’s much higher attack rates, mortality rates, and hospitalization rates in young



children and adolescents than what is typically observed with seasonal flu was due
to an epidemiologic shift in the susceptible population because older adults had
been previously exposed to HIN1 strains, which provided protection through

antibody production with a residual memory effect (1, 5, 12, 13, 56).

Sixty percent of HIN1 cases occurred in children or adolescents under the age of
18 (14). In contrast to the seasonal flu trend of influenza-associated deaths
occurring almost exclusively in individuals >65 years, 2009 H1N1 claimed more
than 90%of its mortalities in persons <65 years (15), and ten times as many
pediatric victims as seasonal flu in the preceding years (16). Pandemic 2009 HIN1
influenza is a type A influenza virus first diagnosed in the United States in April
2009 after being identified in Mexico as causing an outbreak of respiratory illness
(17). Within weeks, it had spread across North America and in June 2009, the World
Health Organization (WHO) upgraded the novel influenza virus to a Grade 6 alert,
signifying it had become a global pandemic (9,18). Its emergence substantially
altered the predominant subtypes of flu since the 1970s from >90% H3N2 globally
to >98% H1N1 as of the 2011-2012 influenza season (see Figure 2) (6, 19).
Seropositivity studies suggest that more than 20% of the US population, and 53% of

U.S. children aged 5-17, had been infected with HIN1 by December 2009 (20).



1.4 Prevention Techniques

The best prevention against influenza infection is annual vaccination, which
several large retrospective cohort studies have found to be protective against all-
cause mortality (21, 22, 23). The CDC recommends that all children and adolescents
be vaccinated with influenza vaccine as a protective measure against flu-related
disease. For children from 6 months to nine years of age, the first time a vaccinee is
immunized against influenza, it is recommended to receive two doses at least one

month apart.

Some of the more serious complications caused by influenza include bacterial
pneumonia, dehydration, and worsening of chronic medical conditions, such as
congestive heart failure, asthma, or diabetes. Children may also develop sinus
problems, ear infections and gastrointestinal distress (1). Although it is more
difficult to measure health care demands associated with influenza infections not
requiring hospitalization, Neuzil et al found, on average, a fifteen percent increase in
outpatient provider visits, and a 3-9 percent increase in (unnecessary) antibiotic
prescriptions for patients ultimately found to have the flu (24). Since children shed
live virus for longer periods of time than adults, they function as a riskier vector
population, which makes prevention particularly cost-effective among this group
(25). Since vaccination is the best and most cost-effective prevention strategy for

influenza—savings are estimated between $8,000 and $52,000 per successful



immunization—investigating the effectiveness of the H1N1 vaccine in this age group

is particularly relevant to global public health efforts (26, 27).

Unfortunately, inactivated influenza virus vaccine is poorly immunogenicin
children younger than six months of age and is not approved for children in this age
group, even though children < 6 months of age are at highest risk for influenza-
related complications (28). A promising study addressing this issue found that
vaccinating pregnant mothers protects their infants until the children are of age to
be safely and effectively vaccinated themselves (57). Another strategy is to employ
cocooning by vaccinating individuals who may potentially transmit the influenza

virus to a susceptible neonate or infant (58).



1.5 Vaccine Effectiveness

In mid-October 2009, H1N1 vaccine became available only to priority groups in
the United States due to limited supplies (29). Priority vaccines included pregnant
women, household contacts of children younger than six months of age, healthcare
workers, children and young adults aged six months to 24 years, and persons aged
25-64 with chronic medical conditions increasing their risk of complications from
influenza. The bulk of influenza vaccines are grown on chicken eggs, so supply is
constrained and resources had to be diverted from seasonal flu vaccine production
to pandemic vaccine production (30). CDC recommendations for initial influenza
immunization in children dictate receiving two doses spaced one month apart, and
early predictions were that the H1N1 vaccine would require two doses for all
vaccines in order to confer immunity to H1N1 influenza. However, a study published
in September 2009 in the New England Journal of Medicine suggested that one dose
would be sufficient, effectively doubling the number of doses available to the
population (5). This early study only assessed immunization of adults and
concluded that due to well-documented differences in the immune response of
children, further research was needed. The priority list for the limited initial supply
of vaccine included children and adolescents between the ages of 6 months and 24
years of age (rather than individuals over age 65) in response to observations that

previous cases of HIN1 influenza had caused more serious complications in this age



group. Children and adults were administered the vaccine although little data on

efficacy were available.

While subsequent studies have shown good efficacy of the live attenuated
vaccine in provoking an adequate immune response as measured by antigen-
antibody titers when adjuvanted (5), the United States has not yet licensed
adjuvanted influenza vaccines (1, 27, 31). Non-adjuvanted preparations are not
equally efficacious at stimulating a measurable immune response indicated by a
>40:1 antibody titer (12). And even if a vaccine in efficacious, that does not
necessarily mean it will be effective, as measured by preventing clinical disease.
There have been conflicting reports on the effectiveness of the vaccine in preventing
clinically significant flu, with several studies finding that the vaccine is effective in
this age group being funded or conducted by vaccine manufacturers and using
adjuvants not otherwise available (32, 33). The ability to mount a measurable
immune response has been found to vary by age, with a significantly smaller
proportion of 3-11 year olds (younger children were not studied) mounting
satisfactory hemagglutinin-inhibition titers than individuals >12 years of age after
one dose of both alum-adjuvanted and unadjuvanted vaccines (34). One study
published in Lancet in 2010 found that fewer than half of children under the 3 years
of age mounted a protective antibody titer to one dose of the non-adjuvated live
attenuated vaccine licensed in the United States (35). Despite this evidence of a lack

of measurable immunoprotection from the licensed vaccine after one dose, and the



longstanding CDC recommendation for children to receive two doses of influenza
vaccine, in practice few children receive both doses. Therefore, continued evaluation
of the clinical effectiveness of the US-licensed unadjuvanted vaccine - showing that
not only does the vaccine not stimulate a protective immune response, but that this
lack of efficacy also decreases the unadjuvanted vaccine’s effectiveness at
preventing hospitalizations for influenza - is crucial to public health efforts to alter
policy in order to provide the vulnerable pediatric population with effective
vaccination coverage - either by increasing efforts to ensure children complete both
doses, or by licensing adjuvanted vaccines that are effective at lower and fewer
doses - and to help guide vaccination efforts during future seasons and similar

pandemics.

The effectiveness of attenuated viral vaccines in preventing disease depends not
only on the age and immunocompetence of the vaccine recipient, but also on the
degree of similarity between the viruses in the vaccine and those in circulation (1).
The majority of vaccinated children and young adults develop high post-vaccination
antibody titers that are protective against illness caused by strains similar to those
in the vaccine, although attaining a particular titer level is not absolutely
correspondent to immunity and does not translate directly to a measure of a
vaccine’s effectiveness (31). Children aged as young as 6 months can develop
protective levels of antibody after influenza vaccination, although the antibody

response among children at high risk of influenza-related complications might be

10



lower than among healthy children (36, 37). Recommendation to give influenza
vaccine routinely to children over the age of 6 months is based on an assumption
that influenza vaccine will be as effective in preventing hospitalization in these
children as it is in the elderly. However, it may not be reasonable to assume that
influenza vaccine is as efficacious or effective in these children, especially because
existing immunological data suggests a less robust immune response to typical
vaccine doses in individuals younger than twelve years of age (34). The safety of the
pandemic H1IN1 influenza vaccine in children and adolescents has been established,
but it is still not clear what immunization schedule is necessary for effective

vaccination against HIN1 influenza with the licensed unadjuvanted vaccine (38, 39).

11



1.6 Hypothesis

H1N1 vaccine is effective in preventing hospitalization due to H1IN1 influenza-

related illness in a pediatric population.
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CHAPTER 2

MATERIALS AND METHODS

2.1 Matched Case-control Study

Thesis writer Felicity Lenes-Voit designed the study in conjunction with and
under the guidance of Dr. Vazquez, conducted all of the medical records reviews,
helped to (but did not primarily) identify case and control subjects, interview and
consent them and add their information to the database. She checked data in the
database and conducted statistical analysis with SAS code written by Alexandra
Grizas and edited by Emily Bucholz, as well as conducting a literature review and

writing this manuscript.

A matched case-control study was developed to study the effectiveness of HIN1
vaccine in preventing hospitalization due to laboratory-confirmed H1N1 influenza
in children. Potential subjects were identified retrospectively for the 2009-2010 flu
season using the existing hospital infectious disease virology surveillance tool, then
enrolled prospectively for the 2010-2011 and 2011-2012 seasons. Cases were

identified in one of the following ways:

13



1. From an existing active surveillance program conducted by the Connecticut
Emerging Infections Program at Yale (EIP: Multi-state Population Based
surveillance for Influenza-Associated Hospitalizations in Children). This
surveillance includes all children admitted to Yale-New Haven Hospital
(YNHH), an urban academic hospital in the Northeastern United States, due

to influenza and has been in place since 2003.

2. From the daily list of pediatric admissions to YNHH. This list is compiled by

the admitting resident in Pediatrics.

3. Via surveillance of respiratory specimens submitted to the clinical virology
laboratory from children and adolescents hospitalized at YNHH. Policy at
YNHH dictates that all children or adolescents with respiratory complaints

of symptoms during flu season have a specimen sent to virology for analysis.

4. From data from YNHH’s infection control surveillance for influenza—

conducted routinely at YNHH every influenza season.

2.2 Case Subject Definition

A case subject was defined as a child aged 6 months to 17 years who was
hospitalized at Yale-New Haven Hospital (YNHH) due to or with a diagnosis of HIN1

novel influenza tested by Direct Fluorescence Antibody (DFA) test and confirmed as

14



novel HIN1 by RT-PCR lab tests any time between November 1, 2009 and May
2012. This interval began two weeks after the HIN1 vaccine became available to
account for the lag time necessary to mount an immune response to a vaccine. The
age of 6 months was chosen because that is the minimum recommended age for the

vaccine owing to immunological development in infants.

Prospective cases provided a nasal wash for laboratory testing if their influenza

had not already been typed by the hospital’s clinical virology laboratory.

Medical records of identified case-subjects were reviewed to collect
demographic information including race and ethnicity and to confirm that clinical
symptoms at time of diagnosis were consistent with influenza (the combination of
fever, respiratory difficulty, and cough within 48 hours of development of symptoms
is a validated multivariate predictor). The medical records of the case subjects were
also reviewed to gather necessary information to complete a validated influenza
clinical severity score that assessed heart rate, respiratory rate, oxygen saturation,
signs of difficulty breathing (including wheezing, retractions, nasal flaring), whether
mechanical intubation was required, whether the patient’s condition merited
admission to the intensive care unit (ICU), and whether or not there was a
documented abnormal chest radiograph. We obtained informed consent and
conducted interviews to obtain information related to disease processes, household

statistics, and demographics. Otherwise eligible subjects were excluded if they were

15



immunocompromised or informed consent could not be obtained. Nosocomial

infections were also excluded.

2.2 Control Subjects

Control subjects were children matched on admit date (+/- 14 days of case
admission) and date of birth (+/- 28 days for subjects >6 months -<5 years; +/- one
year for patients 5 -<18 years) to case subjects. Put another way, control subjects
were patients hospitalized with non-respiratory complaints at YNHH of similar age
as their matched case subjects and admitted within two weeks of their matched case
subject who did NOT have positive RT-PCR for HIN1. At least two matched controls
were recruited per case, with up to seven matched controls. Controls were also
excluded if they were immunocompromised or informed consent could not be

obtained.

2.3 Informed Consent

Written informed consent was obtained from all study subjects. Participants
completed a short questionnaire by phone providing information about items
deemed to be possible confounders, such as comorbid health conditions, living

conditions, day care or school attendance, second hand smoke exposure, household

16



size and vaccination status. Vaccination status was confirmed from healthcare
provider records. Study subjects were considered vaccinated if they had received a
documented dose of HIN1 influenza vaccine 14 or more days prior to hospital

admission.

2.4 Data Management and Statistical Analysis

A database was created in Microsoft Access. Data were entered twice and
multiple data checks were done to correct and check errors. Data were exported to
Microsoft Excel for statistical analysis in the SAS statistical programs for personal
computers [SAS® for Personal Computers. SAS Institute, Inc., Cary, NC: 1999,
version 9.2] The protective efficacy (PE) of a vaccine, which is the proportional
reduction in the risk of infection among vaccinees that is attributable to the vaccine,

is calculated with data from clinical trials as:

PE = risk of infection in controls - risk of infection in vaccines

risk of infection in controls

This equation reduces to:

1 - risk of infection in vaccinees or 1 - the relative risk.

risk of infection in controls

17



For case-control studies, the standard measure of association is the odds ratio.
We performed a matched analysis, since the controls were matched individually to
the cases based on date of birth and date of hospitalization, with at least two and up
to seven controls per case. Since for this type of study the matched odds ratio closely
approximates the relative risk that would be observed in a prospective
interventional clinical trial, the matched odds ratio can be substituted for the
relative risk in the above equation and the vaccine's protective efficacy is estimated

as: 1 - the matched odds ratio.

Matched odds ratios, with both their associated statistical significance (assessed
with the Mantel-Haenszel x2 for matched triplets) and their 95% confidence
intervals were calculated with the use of conventional techniques. In addition,

conditional logistic regression was used to adjust these estimates.

A 30 percent vaccine coverage rate was used to construct the statistical models
because the CDC and Committee on Infectious Disease estimated 32 percent
coverage (26, 40). It is not clear from existing research precisely what percentage of
coverage is required to establish herd immunity, with computer models predicting
from 80-98% (45). Loeb et al. have demonstrated that it is possible to induce herd
immunity to flu in small communities using the inactivated vaccine (46) but
different yearly strains and vaccines of varying effectiveness present different

coverage demands to reduce outbreaks through the herd effect.

18



Table 1
Power calculations

With 90% power and a = 0.05

Assuming 30% Vaccine Coverage

Ratio of Cases

VE = 60% VE =70% VE = 80%
to Controls
1:1 177 109 67
1:5 97 61 39
1:10 88 56 35
Assuming 40% Vaccine Coverage
Ratio of Cases . _ 540, VE =70% VE = 80%
to Controls
1:1 145 88 53
1:5 79 49 30
1:10 71 44 27
With 80% power and d = 0.05
Assuming 30% Vaccine Coverage
Ratio of Cases b _ (04 VE = 70% VE = 80%
to Controls
1:1 135 84 53
1:5 75 48 31
1:10 68 44 28
Assuming 40% Vaccine Coverage
Ratio of Cases . _ 540, VE =70% VE = 80%
to Controls
1:1 111 68 42
1:5 60 38 24
1:10 54 34 21

19



CHAPTER 3

RESULTS

3.1 Case and control identification

We identified 85 case subjects, 79 of which were retrospective and 6 of which were
prospective. One of the prospective cases resided out of state and was lost to follow
up. Nine retrospective cases refused to be interviewed, one refused to sign consent,
five were ineligible (3 hospitalized for non-respiratory complaint with influenza an
incidental finding, 1 admitted for a nosocomial infection and one resided out of
state.) 16 were not able to be contacted. 47 were interviewed and consented, with
medical record reviews completed. We then obtained their vaccination records for
45 patients from their healthcare providers. Of the 755 identified possible age- and
date of admission-matched controls, 175 were interviewed; 124 gave consent; 25
refused to be interviewed; 2 were excluded and 140 medical record reviews were
completed for documentation of vaccinations. The remaining identified possible

control subjects have not been able to be contacted currently.

3.2 Demographics

Of the case subjects, 57.8% were female and 46.2% were male, while the control

subjects were 48.5% female and 51.5% male. 22.2% of the case subjects were two

20



years of age or younger, whereas in the control population, 17.5% were two or
under. 42.2% of the case subjects were non-Hispanic white; 31.1% were Hispanic;
26.7% were black or other non-white race. The control subjects were 74.2% white,
16.5% Hispanic and 9.3% black or other non-white race. 52.3% of the case subjects
were breastfed, while 66% of the control subjects were breastfed. Our data shows
significant associations between hospitalization for influenza and lower parental
education. Families in which one or both parents were college graduates had a
lower rate of hospitalization for influenza. In our study, 40% of the children
hospitalized due to H1N1 had parents or caregivers who were college graduates,
while 58.5% of control subjects were cared for by college graduates. This difference
was statistically significant (p=0.049). Having a lower household income was also
significantly associated with an increased likelihood of being hospitalized with
H1N1, with 58.8% of case subjects living in households making less than $30,000
per year, but only 35.7% of control subjects living in low-income households
(p=0.021). Preterm birth was not found to be a significant predictor of likelihood
for hospitalization with HIN1 influenza, with 18.6% of the case subjects born before
term and 14.7% of control subjects delivered early. There was also no significant
difference between case and control groups in regards to school or daycare
attendance, with 75% of case subjects attending school or daycare and 80.4% of
control subjects attending school or daycare. Respiratory comorbidities were found

to be correlated with a higher rate of influenza severe enough to warrant

21



hospitalization, with 52.3% of the case subjects reporting a respiratory comorbidity
and 32% of control subjects. The severity of respiratory comorbidities was
consistent across groups. Other comorbidities did not affect the likelihood of
hospitalization for influenza, with 54.5% of case subjects with a non-respiratory
comorbidity and 42.1% of control subjects. 22.2% of case subjects were only
children, whereas 24.7% of control subjects had no siblings. Regarding housing
arrangements, 20% of case subjects lived in single family dwellings or duplexes
whereas 80% lived in multiple family dwellings like apartments. Among control
subjects, 26% lived in stand-along housing. Vaccination status was not significantly
different between those with and without influenza, with 11.1% of the case subjects

being vaccinated and 19.6% of the control subjects.

3.3 Vaccination Status

There were several demographic characteristics that predicted vaccination with at
least one dose of live attenuated H1N1 influenza vaccine in our sample. Younger
children under the age of two were statistically significantly more likely to be
vaccinated than older children, with 41.7% of those who were vaccinated two years
of age or under, and only 14.4% of the unvaccinated study subjects two or younger.
(p=0.002). 41.7% of the study subjects who were vaccinated were female, whereas
53.4% of the unvaccinated were female. 66.7% of those vaccinated were white,

20.8% were black or other non-white race. 12.5% were Hispanic. Of the
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unvaccinated, 63.5% self-identified as white, 12.7% as black or other non-white
race, and 22.8% as Hispanic. 62.5% of the vaccinated were breastfed, whereas
61.4% of the unvaccinated were breastfed by caregiver report. Of those study
subjects whose caregivers were college graduates, there was no statistical difference
in likelihood to be vaccinated, with 56.5% of vaccinated study subjects having a
parent or caregiver with a college degree, and 52.3% of the unvaccinated. Higher
household income did not increase statistical likelihood to vaccinate either: 65.2%
of study participants who were vaccinated lived in households with annual income
exceeding $30,000, whereas 55.8% of the unvaccinated study subjects lived in these
households. Preterm birth narrowly missed statistical significance as a predictor of
vaccination status. 29.2% of the vaccinated were preterm, whereas 13.2% of the
unvaccinated were delivered before term. Similar percentages of individuals
attended daycare and/or school among both the vaccinated (66.7%) and
unvaccinated (81.2%). 37.5% of vaccinees had a respiratory comorbidity reported
in their medical records, but that did not differ from the unvaccinated, 38.5% of
whom carried diagnoses of comorbid respiratory conditions. There was also no
difference between the vaccinated (50%) and unvaccinated (45.2%) in terms of
incidence of other comorbidities. 29.2% of the vaccinated were only children, and
22.9% of the unvaccinated had no siblings. As for housing arrangements, 37.5 of the
vaccinated lived in stand-alone single-family homes or duplexes, compared to

22.0% of the unvaccinated.
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In the univariate, matched bivariate and multivariate analyses, vaccination
status was not associated with a lower likelihood to be hospitalized for influenza
(see tables 1, 3, 4 and 5). In the matched conditional logistic regression, respiratory
comorbidities, non-White race and household income <$30,000 annually each bore
odds ratios indicating an increased risk for hospitalization with HIN1 in our sample.
However, in the multivariate analysis, none of these factors were independently
significant. The odds ratio for the matched, adjusted multivariate analysis
comparing vaccination status with likelihood to be hospitalized due to HIN1
influenza crossed one, but would yield a vaccine protective efficacy of only 30.5%.

(1-0.695).
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Table 2
Comparison of case subjects hospitalized with laboratory proven HINI versus matched case
controls hospitalized with non-respiratory complaints

Patients hospitalized with laboratory-proven H1IN1

Variable Yes® No p-value
(N=142) 45 (%) 97 (%)

Age at Hospitalization* 0.507
> 2 years 35 (77.8) 80 (82.5)
< 2 years 10 (22.2) 17 (17.5)

Gender 0.301
Female 26 (57.8) 47 (48.5)
Male 19 (46.2) 50 (51.5)

Race/Ethnicity ™ 0.002
Hispanic 14 (31.1) 16 (16.5)
Black/other non-white 12 (26.7) 9(9.3)
White 19 (42.2) 72 (74.2)

Breastfed (self-reported) 0.124
Yes 23 (52.3) 62 (66.0)
No 21 (47.7) 32 (34.0)

Caregiver education 0.049
College graduate 16 (40.0) 55 (58.5)
Some college or less 24 (60.0) 39 (41.5)

Household income 0.021
> $30K 14 (41.2) 54 (64.3)
< $30K 20 (58.8) 30 (35.7)

Preterm 0.565
Yes 8 (18.6) 14 (14.7)
No 35 (81.4) 81 (85.7)

School/daycare attendance 0.467
Yes 33 (75.0) 78 (80.4)
No 11 (25.0) 19 (19.6)

Respiratory comorbidity 0.022
Yes 23 (52.3) 31 (32.0)
No 21 (47.7) 66 (68.0)

Other comorbidity<- 0.171
Yes 24 (54.5) 40 (42.1)
No 20 (45.5) 55 (57.9)

Siblings 0.744
0 10 (22.2) 24 (24.7)
+1 35 (77.8) 73 (75.3)

Housing 0.381
Single family/duplex 9 (20.0) 26 (26.8)
Multifamily (items 3-8) 36 (80.0) 71(73.2)

Vaccinated 0.210
1+ doses vaccine 5(11.1) 19 (19.6)
0 doses 40 (88.9) 78 (80.4)
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Table 2 Footnotes

®Column values are n (column %). May not sum to 100% due to rounding and/or missing data.
® Includes only study eligible subjects as described in Materials and Methods.

* Statistically significant at the a = 0.05 level for chi-square test for categorical variables and t-

test or Wilcoxan Rank Sum test for continuous variables.

Other includes multiracial, other race, Asian, American Indian, Native Hawaiian/Pacific Islander.

Other, Black, and White are all non-Hispanic

<> Other comorbidities include sickle cell disease, renal disease, heart problems, immune
deficiencies, birth defects, spinal cord injury, epilepsy, mental retardation, neurologic or

neuromuscular diseases, metabolic or endocrine diseases, other chronic illnesses.
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Table 3

Comparison of vaccinated and unvaccinated study subjects

Comparison by Vaccination Status

Variable Vaccinated® vaccr‘:lig;ted p-value
(N=142) 24 (%) 118 (%)
Age at Hospitalization* 0.002
> 2 years 14 (58.3) 101 (85.6)
< 2 years 10 (41.7) 17 (14.4)
Gender 0.295
Female 10 (41.7) 63 (53.4)
Male 14 (58.3) 55 (46.6)
Race/Ethnicity 0.443
White 16 (66.7) 75 (63.5)
Black or other 5(20.8) 15 (12.7)
Hispanic 3(12.5) 27 (22.8)
Breastfed (self-reported) 0.920
Yes 15 (62.5) 70 (61.4)
No 9 (37.5) 44 (38
Caregiver education 0.709
College graduate 13 (56.5) 58 (52.3)
Some college or less 10 (43.5) 53 (47.7)
Household income 0.412
>$30K 15 (65.2) 53 (55.8)
<$30K 8 (34.8) 42 (44.2)
Preterm 0.052
Yes 7 (29.2) 15 (13.2
No 17 (70.8) 9 (86.8
School/daycare attendance 0.113
Yes 16 (66.7) 95 (8
No 8 (33.3) 22 (1
Respiratory comorbidity 0.930
Yes 9 (37.5) 45 (38.
No 15 (62.5) 72 (61.5)
Other comorbidity<~ 0.669
Yes 12 (50.0) 52 (45.2
No 12 (50.0) 63 (54.8)
Siblings 0.512
0 7 (29.2) 27 (22.9)
1+ 17 (70.8) 91 (77.1)
Housing 0.109
Single family/duplex 9 (37.5) 26 (22.0)
Multifamily (items 3-8) 15 (62.5) 92 (78.0)
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Table 3 Footnotes

®Column values are n (column %). May not sum to 100% due to rounding and/or missing data.

® Received 1 or more doses of non-adjuvanted nasal or live attenuated vaccine >14 days before

hospital admission.

* Statistically significant at the a = 0.05 level for chi-square test for categorical variables and t-

test or Wilcoxan Rank Sum test for continuous variables.

Other includes multiracial, other race, Asian, American Indian, Native Hawaiian/Pacific Islander.

Other, Black, and White are all non-Hispanic

<> Other comorbidities include sickle cell disease, renal disease, heart problems, immune
deficiencies, birth defects, spinal cord injury, epilepsy, mental retardation, neurologic or

neuromuscular diseases, metabolic or endocrine diseases, other chronic illnesses.
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Table 4
Matched conditional logistic regression

Bivariate analysis with Odds Ratio predicting likelihood to be hospitalized for influenza

Variable 0dds Ratio N

Female gender 0.679 (0.319-1.454) 138
Breastfed 0.608 (0.297-1.244) 138

Preterm 1.344 (0.516-3.497) 141
Respiratory Comorbidities 2.743 (1.229-6.119) 139

Other comorbidities  1.949 (0.860-4.419) 111

5.511 (1.481-
20.508)

Hispanic ethnicity 2.074 (0.879-4.891) 142
Vaccinated 0.408 (0.126-1.319) 134

Caregiver graduated college  0.479 (0.222-1.033) 118
Income >30K 0.375 (0.145-0.970) 142

Siblings  1.189 (0.445-3.178) 142

Housing (apartment, multi-
family)

Non-white race 141

1.534 (0.603-3.900) 92

Table 5
Multivariate Odds Ratio predicting likelihood to be hospitalized due to HINI

Controlled for Respiratory Comorbidity, non-white race and income.

Variable 0dds Ratio N

Vaccination 3.327 (0.607-18.242) 120
Respiratory Comorbidity 5.705 (0.897-36.274) 120

Non-White race 5.515 (0.329-92.446) 120
Income >30K  0.259 (0.013-5.201) 120
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Table 6
Adjusted Matched Multivariate Analysis with Odds Ratio of Vaccination status for HINI

influenza versus hospitalization due to laboratory-confirmed HIN1 influenza

Vaccination Status versus hospitalization for influenza

Variable Vaccinated® vaccr‘:liz;ted p-value

(N=120) (%) (%)

Hospitalization Diagnosis 0.374
H1N1 influenza (case subject) 22 (33.3) 15 (27.8)
Non-respiratory (control subject) 44 (41.7) 39 (72.2)

Odds Ratio:
0.695

(0.645-3.218)
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CHAPTER 4

DISCUSSION

Vaccination with one dose of unadjuvanted H1N1 vaccine was only 30.5%
protective against hospitalization for HIN1 influenza-related illness in our sample.
Existing immunological research suggests there is an age-related difference in the
ability to mount a robust response to vaccine antigen required for effective
immunization (34, 35, 48, 50), and that even older children and adolescents—
despite their more competent immune systems compared to younger children—
have lower baseline protection from cross-reactive antibodies due to lack of
exposure to previously circulating HIN1 subtype influenza viruses (1, 19, 40, 55).
Effectiveness studies and long-term immunogenicity studies that found an influenza
vaccine effectiveness of >80% in young children and adolescents, or persistently
elevated protective antibody titers, were conducted using vaccines with adjuvants
(33,41, 52), which are not licensed for flu vaccines in the United States (1, 36).
Further, head-to-head studies of adjuvanted flu vaccines versus conventional
vaccines have found markedly poorer results in the unadjuvanted vaccines in
achieving a protective antibody titer (>1:40) (42).In 2011, The World Health

Organization in its Seventh Meeting on Evaluation of Pandemic Influenza Vaccines in
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Clinical Trials explicitly stated that unadjuvanted vaccines and very-low dose
adjuvanted vaccines were not capable of eliciting reliable seroprotection in children

(17).

Adjuvanted vaccines have suffered a poor public relations image secondary to
concerns that vaccine preservatives such as thimerosal and other additives
including MF59 and AS03 adjuvants, lead to an increased risk of autism in children
despite lack of scientific evidence to support this claim. It is possible that the strong
lobbying efforts by anti-vaccine groups involved in vaccinations has resulted in
adjuvants not being embraced for influenza vaccines in the United States despite
their proven value in producing highly effective vaccines. With every vaccine
administration, there is a risk-reward ratio — and adjuvants are perceived to
contribute substantial risk without commensurate reward, when the evidence
points to the opposite being true. In fact, safety studies have not thus far shown
statistical differences in side effects or serious events in conventional versus
adjuvanted vaccines (39, 43, 44) or in multiple doses of vaccine (38), rendering

safety concerns about vaccine adjuvants without teeth.

Since we found that one dose of unadjuvanted H1IN1 influenza vaccine is not
highly protective in young children, possible solutions include bolstering current
recommendations for young children to receive a second dose (up to nine years old

with certain preparations according to immunological research) (39), a higher
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initial dose of antigen (47), and/or introducing adjuvanted vaccines for influenza.
These options taken together or separately could serve to reduce the toll on the
healthcare system currently observed due to influenza related illnesses, as well as
enable a better risk-reward profile to vaccination. Additionally, research shows that
consumers of influenza vaccines, or in the case of pediatric patients, their parents,
have diminished safety concerns with each subsequent vaccination, and they are
overall more likely to be vaccinated subsequently once they have been initiated into

receiving influenza vaccinations (49, 52).

Other areas of improvement identified by our research include issues of
disparity. Individuals of lower socioeconomic status and minority status are at
greater risk of hospitalization from influenza, and should be priority targets for
effective vaccination programs. Given the average savings to the healthcare
apparatus of an average of $8-52,000 per flu hospitalization prevented (26, 53), it
would be a sound policy choice to subsidize influenza vaccines for individuals not

able to afford them.

It does appear that certain high-risk patients are being targeted for
immunization, as the younger children in our study were significantly more likely to
be vaccinated than those over the age of two. Especially vulnerable groups such as

children and adolescents with respiratory comorbidities including asthma were
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disproportionately hospitalized for influenza complications in our sample, and

would receive particular benefit from effective prevention strategies.

Our study did have some weaknesses. Although we computed a provisional vaccine
efficacy based on our data, we were not powered to detect such a small protective
effectiveness of the vaccine because we designed our study based on published data
from previous influenza vaccines for seasonal influenza which are typically in excess
of 80% effective in preventing influenza infection. Therefore, with a larger sample
size we might detect a different vaccine efficacy. Future research in partnership
with the Connecticut Children’s Medical Center to combine sample sizes may further
elucidate this issue, and will likely alter the protective efficacy of the vaccine in our
sample. Since we were adequately powered to detect an 80% protective effect of the
H1N1 vaccine in preventing hospitalization due to influenza in pediatric patients,
we do know that it is <80% effective and that further study is warranted to help
articulate vaccine policy and promote effective vaccine preparations and vaccine
dosing regimens in order to encourage responsible and prudent use of preventative

healthcare resources.

34



REFERENCES

. Clark NM, Lynch JP. Influenza: Epidemiology, Clinical Features, Therapy, and
Prevention. Seminars in Respiratory and Critical Care Medicine. 2011:32,4.

. Fiore AE, Uyeki TM, Broder K, et al. Prevention and control of influenza with
vaccines: recommendations of the Advisory Committee on Immunization
Practices (ACIP), 2010. MMWR Recomm Rep. 2010;59(RR-8):1-62.

. Dormitzer et al. Influenza Vaccine Immunology. Immunological Reviews
2011.Vol. 239: 167-177.

. von Itzstein M. The war against influenza: discovery and development of
sialidase inhibitors. Nature Reviews. Drug Discovery 6 (12): 967-74.
d0i:10.1038/nrd2400. PMID 18049471.

. Clark TW, Pareek M, Hoschler K, Dillon H, Nicholson KG, Groth N, Stephenson
[. Trial of 2009 influenza A (H1N1) monovalent MF59-adjuvanted vaccine. N
Engl ] Med. 2009 Dec 17;361(25):2424-35. doi: 10.1056/NEJM0a0907650.
Epub 2009 Sep 10.

. Gatherer D. The 2009 H1N1 influenza outbreak in its historical context. ] Clin
Virol 2009;45(3):174-178.

. Hensley SE, Das SR, Bailey AL, et al. Hemagglutininreceptor binding avidity
drives influenza A virus antigenic drift. Science 2009;326(5953):734-736.

. Dushoff ], Plotkin |B, Viboud C, Earn D], Simonsen L. Mortality due to

Influenza in the United States—An Annualized Regression Approach Using

35



Multiple-Cause Mortality Data. Am ] Epidemiol. 2006 Jan 15;163(2):181-7.

Epub 2005 Nov 30.

9. Broadbent AJ], Subbarao K. Influenza Virus Vaccines: Lessons from the 2009
H1N1 pandemic. Curr Opin Virol. 2011 October ; 1(4): 254-262.
d0i:10.1016/j.coviro.2011.08.002.

10. Palese P, Shaw M. Orthomyxoviridae: The Viruses and Their Replication. In:
Knipe D, Griffin D, Lamb R, Straus S, Howley P, Martin M, Roizman B, editors.
Fields Virology. Vol. 2. Wolters Kluwer: Lippincott Williams & Wilkins; 2007.
p. 1647-1689.

11. Wright P, Neumann G, Kawaoka Y. Orthomyxoviruses. In: Knipe D, Griffin D,
Lamb R, Straus S, Howley P, Martin M, Roizman B, editors. Fields Virology.
Vol. 2. Wolters Kluwer: Lippincott Williams & Wilkins; 2007 p. 1691-1740.

12. Walker, Woolf T and Saul N Faust. Vaccine Profile: Monovalent inactivated
split-virion AS03-adjuvanted pandemic influenza A (H1N1) vaccine. Expert

Review of Vaccines. December 2010, Vol. 9, No. 12, Pages 1385-1398, DOI

10.1586/erv.10.141

13. Wei C], Boyington JC, Dai K, et al. Cross-neutralization of 1918 and 2009
influenza viruses: role of glycans in viral evolution and vaccine design. Sci
Transl Med 2010;2:24ra21.

14. Ching EY, Chiang VW. Influenza Vaccination, Diagnosis and Treatment in

Children. Pediatric Emergency Care. 2011: Vol 27 No 8.

36



15. Bautista E, Chotpitayasunondh T, Gao Z, et al; Writing Committee of the WHO
Consultation on Clinical Aspects of Pandemic (H1N1) 2009 Influenza. Clinical
aspects of pandemic 2009 influenza A (H1N1) virus infection. N Engl ] Med
2010;362(18):1708-17109.

16. Libster R, Bugna J, Coviello S, et al. Pediatric hospitalizations associated with
2009 pandemic influenza A (H1N1) in Argentina. N Engl ] Med

2010;362(1):45-55.

17.Report of the 7th meeting on Evaluation of Pandemic Influenza Vaccines in
Clinical Trials, World Health Organization, Geneva, 17-18 February 2011.
doi:10.1016/j.vaccine.2011.08.031

18. Zarocostas J. World Health Organization declares A (H1N1) influenza
pandemic. BM] 2009;338:b2425.

19. Bright RA, Medina MJ, Xu X, et al. Incidence of adamantane resistance among
influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause

for concern. Lancet 2005;366(9492):1175-1181.

20.Reed C, Katz |[M, Hancock K, Balish A, Fry AM: H1N1 Serosurvey Working

Group. Prevalence of seropositivity to pandemic influenza A/H1N1 virus in
the United States following the 2009 pandemic. PLoS One.

2012;7(10):e48187.doi: 10.1371/journal.pone.0048187. Epub 2012 Oct 31.

37



21.Nichol KL, Goodman M. The health and economic benefits of influenza
vaccination for healthy and at-risk persons aged 65 to 74 years.
Pharmacoeconomics 1999;16:63-71.

22.Hak E, Nordin ], Wei FF, et al. Influence of high-risk medical conditions on the
effectiveness of influenza vaccination among elderly members of 3 large
managed-care organizations. Clin Infect Dis 2002;35:370-7.

23. Nichol KL, Nordin J, Mullooly ], et al. Influenza vaccination and reduction in
hospitalizations for cardiac disease and stroke among the elderly. N Engl ]
Med 2003;348:1322-32.

24. Neuzil KM, Mellen BG, Wright PF, Mitchel EF Jr, Griffin MR. The effect of

influenza on hospitalizations, outpatient visits, and courses of antibiotics in
children. N Engl ] Med. 2000 Jan 27;342(4):225-31.

25. Neuzil KM, Zhu Y, Griffin MR, et al. Burden of interpandemic influenza in
children younger than 5 years: a 25-year prospective study. ] Infect Dis
2002;185(2):147-152.

26.Prosser, LA, Lavelle T, Fiore AE, Bridges CB, Reed C and Jain S. Cost-
Effectiveness of 2009 Pandemic Influenza A( HIN1) Vaccination in the
United States. PLoS One. 2011;6(7):e22308. doi:

10.1371/journal.pone.0022308. Epub 2011 Jul 29.

38



27. Centers for Disease Control and Prevention (CDC). Update: influenza activity:
United States, 2009-10 season. MMWR Morb Mortal Wkly Rep.
2010;59(29):901-908.

28. Gruber WC,Darden PM, Still ]G, Lohr ], Reed G, Wright PF. Evaluation of
bivalent live attenuated influenza A vaccines in children 2 months to 3 years
of age: safety, imunogenicity and dose response. Vaccine 1997;15:1379-
1384.

29.Russa P. Pandemic Novel 2009 H1N1 Influenza: What Have We Learned?
Seminars in Respiratory and Critical Care Medicine. 2011:Vol 32. No 4.

30. Rappouli R, Dormitzer PR. Influenza: Options to Improve Pandemic

Preparation. Science. 2012: 336. 1531-1533.

31. Centers for Disease Control and Prevention (CDC). Effectiveness of 2008-
2009 Trivalent Influenza Vaccine Against 2009 Pandemic Influenza (H1N1).

MMWR Morb Mortal Wkly Rep. 2009;58(44):1241-1245.

32.Rafig S, Russell ML, Webby R, Fonseca K, Smieja M, Singh P, Loeb M.

Serological Response to Influenza Vaccination among Children Vaccinated for
Multiple Influenza Seasons. PLoS One. 2012;7(12):e51498. doi:
10.1371/journal.pone.0051498. Epub 2012 Dec 11.

33.Gilca R, Deceuninck G, De Serres G, Boulianne N, Sauvageau C, Quach C,

Boucher FD, Skowronski DM. Effectiveness of pandemic H1N1 vaccine

39



against influenza-related hospitalization in children. Pediatrics. 2011
Nov;128(5):€1084-91. doi: 10.1542 /peds.2010-3492. Epub 2011 Oct 10.
34.Zhu FC, Wang H, Fang HH, Yang ]G, Lin X], Liang XF, Zhang XF, Pan HX, Meng

FY, Hu YM, Liu WD, Li CG, Li W, Zhang X, Hu JM, Peng WB, Yang BP, Xi P,
Wang HQ, Zheng JS. A novel influenza A (H1N1) vaccine in various age
groups. N Engl | Med. 2009 Dec 17;361(25):2414-23. doi:
10.1056/NEJM0a0908535. Epub 2009 Oct 21.
35. Plennevaux E, Sheldon E, Blatter M, Reeves-Hoché MK, Denis M. Immune

response after a single vaccination against 2009 influenza A HIN1 in USA: a

preliminary report of two randomised controlled phase 2 trials. Lancet. 2010
Jan 2;375(9708):41-8. doi: 10.1016/S0140-6736(09)62026-2. Epub 2009
Dec 15.

36. Centers for Disease Control. Prevention and Control of Influenza:
Recommendations of the Advisory Committee on Immunization Practices.

MMWR 55(R10):1-42. July 28, 2006.]

37.Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team. Emergence
of a Novel Swine-Origin Influenza A (H1N1) virus in humans. N Eng ] Med.

2009:360.2605-2615.

38.van't Klooster TM, Kemmeren JM, de Melker HE, Vermeer-de Bondt PE, van

der Maas NA. Two doses of pandemic influenza A(H1N1) vaccine: tolerability

40



39.

40.

41.

42.

in healthy young children in the Netherlands. Hum Vaccin. 2011

Oct;7(10):1048-54. doi: 10.4161/hv.7.10.16692. Epub 2011 Oct 1.

Wijnans L, de Bie S, Dieleman ], Bonhoeffer ], Sturkenboom M. Safety of
pandemic H1N1 vaccines in children and adolescents. Vaccine. 2011 Oct
6;29(43):7559-71. doi: 10.1016/j.vaccine.2011.08.016. Epub 2011 Aug 5.
Committee on Infectious Disease. Policy statement: recommendations for
prevention and control of influenza in children, 2010-2011. Pediatrics.

2010;126:816-826.

Vigano A, Giacomet V, Pariani E, Giani E, Manfredini V, Bedogni G, Erba P,

Amendola A, Zanetti A, Zuccotti G. Long-term immunogenicity after one and

two doses of a monovalent MF59-adjuvanted A/H1N1 Influenza virus
vaccine coadministered with the seasonal 2009-2010 nonadjuvanted
Influenza virus vaccine in HIV-infected children, adolescents, and young

adults in a randomized controlled trial. Clin Vaccine Immunol. 2011

Sep;18(9):1503-9. doi: 10.1128/CVI.05200-11. Epub 2011 Jul 27.

Nassim C, Christensen S, Henry D, Holmes S, Hohenboken M, Kanesa-Thasan
N. Identification of Antigen and Adjuvant Doses Resulting in Optimal
Immunogenicity and Antibody Persistence up to One Year After

Immunization with a Pandemic A/H1N1 Influenza Vaccine in Children 3 to

<9 years of Age. Pediatr Infect Dis J. 2012 Feb 1.

41



43.0h C-E, Lee ], Kang ]J-H, Hong Y-], Kim Y-K, Cheong H-], et al. Safety and
immunogenicity of an inactivated split-virus influenza A/H1N1 vaccine in
healthy children from 6 months to <18 years of age: a prospective, open-
label, multi-center trial. Vaccine 2010; 28(36):5857-63.

44.Lu C-Y, Shao P-L, Chang L-Y, Huang Y-C, Chiu C-H, Hsieh Y-C, et al.
Immunogenicity and safety of a monovalent vaccine for the 2009 pandemic
influenza virus A (H1N1) in children and adolescents. Vaccine 2010;
28(36):5864-70.

45. Plans-Rubio P. The vaccination coverage required to establish herd immunity

to influenza viruses. Preventive Medicine 55 (2012) 72-77.

46. Loeb, M., Russell, M.L., Moss, L., et al., 2010. Effect of influenza vaccination of
children on infection rates in Hutterite communities: a randomized trial.
JAMA 303, 943-950.

47.El Sahly HM, Davis C, Kotloff K, Meier ], Winokur PL, Wald A, Johnston C,

George SL, Brady RC, Lehmann C, Stokes-Riner A, Keitel WA. Higher antigen

content improves the immune response to 2009 H1N1 influenza vaccine in
HIV-infected adults: a randomized clinical trial. | Infect Dis. 2012 Mar
1;205(5):703-12. doi: 10.1093/infdis/jir837. Epub 2012 Jan 24.

48. Rhorer J, Ambrose CS, Dickinson S, Hamilton H, Oleka NA, Malinoski F],

42



49.

50.

51.

52.

Wittes J. Efficacy of live attenuated influenza vaccine in children: A meta-
analysis of nine randomized clinical trials. Vaccine. 2009 Feb 11;27(7):1101-
10. doi: 10.1016/j.vaccine.2008.11.093. Epub 2008 Dec 16.

Drees M, Tambourelli B, Denstman A, Zhang A, Zent R, McGraw P, Ehrenthal
DB. Sustained high influenza vaccination rates and decreased safety concerns
among pregnant women during the 2010-2011 influenza season. Vaccine 31
(2013) 362- 366.

Nolan T, McVernon J, Skeljo M, Richmond P, Wadia U, Lambert S, Nissen M,
Marshall H, Booy R, Heron L, Hartel G, Lai M, Basser R, Gittleson C, Greenberg
M. Immunogenicity of a monovalent 2009 influenza A(H1N1) vaccine in
infants and children: a randomized trial. JAMA. 2010 Jan 6;303(1):37-46. doi:
10.1001/jama.2009.1911. Epub 2009 Dec 21.

Hadler JL, Baker TN, Papadouka V, France AM, Zimmerman C, Livingston KA,
Zucker JR. Effectiveness of 1 Dose of 2009 Influenza A (H1N1) Vaccine at
Preventing Hospitalization With Pandemic HIN1 Influenza in Children Aged
7 Months-9 Years. The Journal of Infectious Diseases 2012 206:49-55.
Tacken MA, Jansen B, Mulder ], Visscher S, Heijnen ML, Campbell SM,
Braspenning JC. Pandemic influenza A(H1N1)pdmO09 improves vaccination
routine in subsequent years: A cohort study from 2009 to 2011. Vaccine.
2012 Dec 16. pii: S0264-410X(12)01754-9. doi:

10.1016/j.vaccine.2012.12.002.

43



53. Lee BY, Tai JHY, Bailey RR, Smith K], Nowalk, A]. Economics of Influenza
Vaccine Administration Timing for Children. Am ] Manag Care.
2010;16(3):e75-e85.

54.Neumann G, Kawaoka Y. The First Pandemic of the New Millenium. Influenza
Other Respi Viruses . 2011 May 1; 5(3): 157-166.

55. Buricchi F, Bardelli M, Malzone C, Capecchi B, Nicolay U, Fragapane E,
Castellino F, Del Giudice G, Galli G, Finco O. Impact of preexisting memory to
seasonal A/H1N1 influenza virus on the immune response following
vaccination against avian A/H5N1 virus. Eur ] Immunol. 2012 Dec 13. doi:
10.1002/€ji.201242563.

56. Miller M, Viboud C, Balinska M, Simonsen L. The Signature Features of
Influenza Pandemics - Implications for Policy. NEJM. 2009 May 7. doi:
10.1056/NEJMp0903906.

57. Benowitz I, Esposito D, Gracey K, Shapiro E, Vazquez M. Influenza Vaccine
Given to Pregnant Women Reduces Hospitalization Due to Influenza in Their
Infants. Clin Infect Dis. 2010 December 15; 51(12): 1355-1361.
doi: 10.1086/657309.

58. Grizas A, Camenga D, Vazquez M. Cocooning: a concept to protect young
children from infectious diseases. Curr Op Ped. 2012 February 24(1): 92-97.

doi: 10.1097/MOP.0b013e32834e8fe9.

44



	Yale University
	EliScholar – A Digital Platform for Scholarly Publishing at Yale
	January 2013

	Assessment Of H1n1 Vaccine Effectiveness In Preventing Hospitalization In Children
	Felicity Lenes-Voit
	Recommended Citation


	Lenes, F. SP13. MD thesis. Yale (02.19.13 6

