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Abstract 
 
This project investigates the clinical occurrence of concurrent thoracic aortic aneurysms 
(TAA) and intracranial aneurysms (ICA). We hypothesized that patients with a TAA 
have an increased risk of harboring a concurrent ICA, and likewise that patients with an 
ICA have an increased risk of harboring a concurrent TAA relative to the general 
population. In a separate arm of this project, we hypothesized that a pre-defined gene 
expression profile, based on the expression levels of 41 specific genes measured in 
peripheral blood cells, will be exhibit a characteristic expression pattern in ICA patients 
and thereby have utility in detecting the presence of ICA.  
 
To accomplish the first objective of this project, we reviewed the charts of patients with 
TAA who also had recent intracranial imaging to document the prevalence of concurrent 
ICA and compared this rate to the ICA prevalence in the general population. Likewise, 
we reviewed the charts of patients with ICA who also had recent thoracic imaging to 
document the prevalence of concurrent TAA. To investigate the gene expression profile 
for detecting ICA, we collected peripheral blood samples from ICA patients and non-
aneurysmal controls and measured the expression levels of 39 pre-defined genes in a 
signature aneurysm profile using real-time PCR. The observed pattern of expression of 
these genes was compared to a pre-defined signature aneurysm pattern to predict the 
aneurysm status of each sample.  
 
We found that 9.0% of 212 TAA patients we studied harbor a concurrent ICA. Patients 
with descending TAA and hypertension had significantly higher rates of concurrent ICA. 
We also found that 4.5% of 359 ICA patients we studied harbor a concurrent TAA. ICA 
patients over 70 years of age had an increased rate of concurrent TAA. We also analyzed 
gene expression in the blood samples of 17 ICA patients and 15 controls. By comparing 
the observed pattern of gene expression to a predefined signature aneurysm pattern, we 
were able to detect ICA from a peripheral blood test with an 88% sensitivity and overall 
accuracy of 63%.  
 
In conclusion, this project finds that patients with TAA are at an increased risk relative to 
the general population of harboring a concurrent ICA. Likewise, patients with ICA are at 
an increased risk relative to the general population of harboring a concurrent TAA. Our 
early results show that a peripheral blood test based on the gene expression pattern of 39 
genes holds promise as a sensitive screening test for ICA.   
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Introduction  

 

 

The Clinical and Molecular Relationships Between Intracranial Aneurysms and Thoracic 

Aortic Aneurysms  

 

A marked genetic component has been noted in the development of both intracranial 

aneurysms (ICA) and thoracic aortic aneurysms (TAA). For example, up to 20% of 

patients with an ICA have a first-degree relative with this same condition.[1-3] There 

have been recent strides in elucidating the genetic markers associated with ICA 

formation. A recent multinational genome-wide association study comprising nearly 

6,000 cases and over 14,000 controls identified five loci associated with ICA 

development.[4] Earlier work has also identified numerous additional loci that may play a 

role in conferring susceptibility to ICA formation.[5] The development of TAA has also 

been shown to be strongly influenced by genetic factors.[3,6-8] It has previously been 

shown that over 21% of TAA patients without a known vascular connective tissue 

disorder have at least one first-degree relative with TAA.[8] 

 

ICA and TAA are known to occur together in a number of recognized inheritable 

disorders. Patients with Ehlers-Danlos syndrome type IV, which is caused by mutations 

in the gene for the collagen type III pro α-1 chain (COL3A1), are prone to developing 

both TAA and ICA.[9] Likewise, the recently described aneurysm osteoarthritis 

syndrome predisposes to both TAA and ICA.[10] This syndrome is caused by mutations 
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in SMAD3, a gene encoding a downstream signaling mediator of transforming growth 

factor-β (TGF-β) via the TGFBR1 and TGFBR2 receptors.[11] Defects in the TGF-β 

pathway appear to be particularly important in the development of aneurysms in multiple 

vascular beds, including the aorta and the cerebrovasculature.[12-15] For instance, there 

has been recent evidence that Loeys-Dietz syndrome, a Marfan-spectrum syndrome 

caused by mutations in the genes encoding the TGFBR1 and TGFBR2 receptors 

(TGFBR1 and TGFBR2 respectively), also predisposes to the development of ICA.[16] 

 

However, even in the absence of these recognized connective tissue disorders, there is 

evidence for a common genetic foundation underlying the development of TAA and ICA. 

Common chromosomal loci important in the pathogenesis of both ICA and TAA have 

been identified.[17] Ruigrok et al. conducted a review of the literature on whole-genome 

linkage studies investigating genetic susceptibility loci for TAA, ICA, and abdominal 

aortic aneurysms (AAA) and identified three loci that may play a role in conferring 

increased risk for developing both TAA and ICA.[17] One of these loci contained the 

TGFBR2 gene, further implicating the TGF-β pathway in ICA and TAA development.  

 

Milewicz and colleagues recently reported on 514 families with familial thoracic aortic 

aneurysm/dissection syndrome (TAAD) and found that, in 15 families, 17 individuals 

genetically at risk for inheriting TAAD had saccular ICA.[18] This phenotype was 

inherited as a single gene disorder in an autosomal dominant fashion with incomplete 

penetrance and variable expressivity. In four families in which primarily fusiform ICA 

occurred, mutations in genes known to cause familial TAAD (TGFBR1, TGFBR2, and 
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ACTA2) were identified. In addition, a separate report on a single family with an inherited 

pattern of TAA, ICA, and AAA revealed a frameshift mutation in SMAD3.[19] However, 

mutations in these known TAAD genes were not observed in the majority of families 

studied, suggesting that mutations in an unidentified gene or additional environmental 

factors may be responsible for the concurrent TAA-ICA phenotype.  

 

At the molecular level, both TAA and ICA share common pathogenic mediators, which is 

consistent with their shared genetic underpinnings. One such mediator that has been 

demonstrated to play a role in aneurysm formation is matrix metalloproteinase-9 (MMP-

9; elastolytic gelatinase), a protease that targets numerous substrates in the extracellular 

matrix of arterial walls, including elastin, fibrillin, and collagen, and is known to mediate 

destructive changes in arterial wall architecture.[20] Animal models have demonstrated 

that these destructive tissue alterations precede aneurysm formation.[21] MMP-9 has 

been found to be locally upregulated in the vascular walls of both TAA and ICA.[20,22]  

 

Likewise, in both TAA and ICA, the ratio of matrix metalloproteinases to tissue 

inhibitors of metalloproteinases has been found to be elevated.[20,23] Koullias et al. 

compared the levels of MMP-9 expression to that of tissue inhibitor of metalloproteinase 

1 (TIMP-1) in the arterial walls of TAA specimens and found that the MMP-9:TIMP-1 

ratio was elevated relative to controls, suggesting an overall proteolytic 

microenvironment.[20] These molecular findings promoting degradation of the 

extracellular matrix are consistent with the similar histopathologic findings observed in 

both TAA and ICA. TAA are microscopically distinguished by cystic medial 
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degeneration, in which the elastic fibers in the medial layer of the arterial wall are 

lost.[24] In ICA, the media is similarly destroyed with fragmentation of the internal 

elastic lamina.[1]  

 

Clinically, TAA and ICA have been shown to occur together at high rates within certain 

families.[15,18,25,26] One study showed that among patients with diagnosed saccular 

cerebral aneurysms, 10.5% had a family history of aortic aneurysms.[25] Moreover, 

clustering of aortic and cerebral aneurysm disease was noted only in families with certain 

ethnic characteristics, further supporting a primarily genetic cause. A common 

mechanism in the formation of both ICA and TAA suggests that both types of aneurysm 

could occur in an individual with a single genetic defect. 

 

However, reports in the literature of TAA and ICA occurring concurrently in individual 

patients are rare. In their study of familial TAAD, Milewicz and colleagues found 15 

subjects from 12 unrelated families that had both TAA and either an ICA or a history of 

intracranial hemorrhage.[18] A separate case report describes a patient with concurrent 

TAA and ICA.[27] One aim of this project is to further investigate patients with 

concurrent ICA and TAA, specifically the rates at which these two types of aneurysms 

occur concurrently.  
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The Prevalence of Intracranial Aneurysms and Thoracic Aortic Aneurysms  

  

The rates at which TAA and ICA occur concurrently in patients without known 

connective tissue disorders had not been previously reported prior to the data described in 

this project. However, in order to evaluate the elevated risk that having TAA confers for 

harboring a concurrent ICA or vice versa in the absence of a known connective tissue 

syndrome, it is important to define the background prevalence of ICA and TAA in the 

general population. The prevalence of ICA in the general population of the United States 

has been well defined and is approximately 1%. This number is based on robust data 

from large angiography and autopsy studies.[1,28,29] 

 

The true prevalence of TAA in the general population is currently poorly understood, and 

reports in the literature on this topic are limited. There are a number of reasons for this 

gap in our understanding of this disease, as detailed by Elefteriades and Rizzo.[30] 

Primarily, identification of TAA is hindered by the fact that such aneurysms are 

asymptomatic in over 95% of affected patients. For this reason, TAA is often called a 

“silent killer” because it most commonly presents with catastrophic rupture or 

dissection.[31,32] Thus, most TAA remain undetected unless they are incidentally 

discovered by imaging studies done for other purposes or result in a symptomatic 

complication.  Study of TAA is also complicated by referral center bias. Tertiary care 

centers that specialize in treating aortic disease preferentially receive referrals for patients 

with TAA. The number of TAA patients presenting to these specialized centers is 

therefore not representative of the TAA prevalence in the general population.  
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Furthermore, traditional administrative databases such as insurance or hospital databases 

are typically not sufficiently detailed to distinguish various aortic pathologies (aneurysm 

rupture vs. dissection, for example), confounding conclusions based on these sources.  

Finally, many cases of fatal TAA rupture or dissection are likely misdiagnosed as 

myocardial infarction, thereby underestimating the true prevalence of TAA.[33] 

 

It is currently estimated that the incidence of TAA is approximately six to ten cases per 

100,000 patient-years.[34,35] However, these studies were conducted in the racially 

homogeneous population of Olmsted County, Minnesota, and all patients identified with 

TAA were Caucasian. The findings are therefore likely not generalizable to the general 

population. A more recent study from Itani et al., reporting directly on the prevalence of 

TAA, examined 6,971 patients who underwent non-contrast computed tomography (CT) 

scans of the chest and found that 0.16% of patients had a TAA (either ascending, 

descending, or thoracoabdominal).[36] However, aortic aneurysms in this study were 

defined by an arbitrary size cut-off of aortic diameters > 5 cm, thereby overlooking 

potentially clinically significant aneurysms between 4 and 5 cm. The more rigorous 

definition of an aneurysm (a focal dilation of at least 50% greater than the normal aortic 

diameter) endorsed by numerous professional organizations accounts for differences in 

baseline aortic diameter, which is known to increase with increasing body surface 

area.[37-39] Kalsch et al. studied 4,129 patients with non-contrast CT scans in a 

population-based study and found that 0.34% of patients had asymptomatic TAA.[40] 

But TAA in this study was similarly defined by an arbitrary size cut-off. Interestingly, the 

incidence of TAA appears to be increasing.[35] Additional factors aside from more 
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frequent use of thoracic imaging may be at play.[41] Nevertheless, the true prevalence of 

TAA in the general population of non-syndromic individuals remains unknown.  

 

 

Improved Screening is Needed for Intracranial Aneurysms  

 

Developing a convenient and reliable screening test for ICA would be a significant 

clinical innovation. ICA is a predominantly asymptomatic disease and most commonly 

presents with rupture resulting in subarachnoid hemorrhage (SAH).[42] The incidence of 

SAH is approximately 1 in 10,000 per year, accounting for 27,000 ruptures annually in 

the United States.[42] In addition, aneurysmal SAH accounts for up to 9% of all 

strokes.[43] If ICA remain undetected and untreated, up to 50% will rupture during a 

patient’s lifetime with devastating consequences.[42] SAH secondary to ICA rupture is a 

catastrophic event associated with high rates of morbidity and mortality: 10% of patients 

die before reaching a hospital, 40% of hospitalized patients die within one month, and 

more than 30% of survivors have persistent neurological deficits.[1,44] 

 

Consequently, early detection of ICA and prophylactic treatment prior to rupture can be 

life saving. Certain patients, depending on the size and location of their ICA, may benefit 

from early prophylactic surgical or endovascular treatment of their aneurysm.[45] 

Minimally invasive endovascular coiling of ICA carries a complication risk as low as 

approximately 5%.[42] In other patients where immediate intervention is not warranted, 

early identification of ICA allows for conservative management strategies to reduce the 
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risk of rupture. Such strategies include strict blood pressure control, smoking cessation, 

avoiding heavy alcohol consumption, prohibiting stimulant medication use, and avoiding 

excessive straining or Valsalva maneuvers.[46] 

 

Routine screening of certain populations for ICA is currently recommended. The 

American Stroke Association guidelines recommend that individuals with two or more 

first-degree family members with diagnosed ICA be screened on a regular basis due to 

their increased risk for ICA.[47] Other populations where routine screening is considered 

include those with prior history of SAH and patients with heritable disorders associated 

with ICA, such as autosomal dominant polycystic kidney disease.   

 

Screening for ICA is currently conducted via computed tomography angiography (CTA) 

or magnetic resonance angiography (MRA). However these methods have a number of 

drawbacks. These techniques are expensive, time-consuming, often rely on contrast dyes 

that can cause severe kidney damage, and – in the case of CTA – expose the patient to 

harmful x-rays. Furthermore, even in high-risk populations, the cost-effectiveness of 

these methods has not been measured, and the high cost barrier of these studies may 

preclude broad accessibility to the general population. At this time, there is no alternative 

method for detecting asymptomatic ICA. An ideal modality would address all of the 

shortcomings of our current diagnostic tools and feature 1) low cost, 2) minimal 

invasiveness, 3) minimal health risks to the patient, and 4) an ability to predict aneurysm 

stability or impending rupture at the time of screening. The development of such a 

screening modality would be a significant clinical innovation, and patients with relatives 
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who have known aneurysms, patients with relatives who died from intracranial 

hemorrhage, and patients with other types of aneurysms may benefit from screening.  

 

 

Using Peripheral Blood Biomarkers to Screen for Aneurysm Disease 

 

For both aortic and intracranial aneurysms, detection of early, treatable, asymptomatic 

disease is difficult due to the innate characteristics of these conditions. Screening 

peripheral blood cells (PBCs) for markers of disease, including gene expression profiles, 

has an alluring role in diagnostics given the ease of testing and the diversity of molecular 

targets available. Such PBC-based biomarkers have been applied to other vascular 

diseases such as coronary artery disease, arterial hypertension, and atherosclerosis.[48-

50] PBCs represent an ideal source of biomarkers for vascular disease because circulating 

blood cells are in constant contact with the entire vasculature.  

 

Most aneurysm biomarkers identified up to now pertain to the diagnosis of AAA. D-

dimers, for example, are breakdown products of fibrin clots, and have been found to be 

elevated in patients following thoracic and abdominal aortic dissection.[51] Circulating 

MMP-9 levels have been found to be elevated in patients with AAA versus non-

aneurysmal controls.[52] Likewise, acute-phase reactants such as C-reactive peptide have 

also been found to be elevated in patients with AAA. Other previously-identified 

biomarkers include coagulation factors, tissue-specific components of smooth muscle, 

and immune mediators, such as IL-1, IL-6, TNF-α, and IF-γ.[53-55] However, the 
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exploration of genetic-based markers, such as PBC mRNA expression, for aneurysm 

disease may be more specific than serum markers and may have prognostic value as 

mRNA expression presents a “biological snapshot” of the currently active processes 

within the body.  

 

The investigation of biomarkers specifically for unruptured ICA has, to date, been 

limited. The recent advances in elucidating genetic markers associated with ICA 

formation through a genome sequencing approach, while important, do not fulfill the role 

of a diagnostic screening test reflecting the current disease state within an individual. A 

number of studies have demonstrated altered gene expression profiles in ICA vessel 

walls.[56-58] However sampling the vessel wall itself for diagnostic purposes is 

unreasonable, and these profiles are unlikely to translate into easily measurable peripheral 

markers of disease. There have been some preliminary reports of serum markers of ICA, 

including elastase and lipoprotein-a, however none have been validated.[59,60] 

Measuring mRNA expression in PBCs as a marker of ICA has not previously been 

described. This approach holds promise because development of aneurysms is likely to 

involve an inflammatory process employing multiple components of the immune 

system.[55,61,62] Therefore, profiling peripheral white blood cells is an inherently 

rational approach for analysis of aneurysm disease.  

 

Our group recently conducted a study evaluating an mRNA expression profile to detect 

TAA.[63] This initial study established the basic methodology that was used in one arm 

of this project. In the recently published report, a comprehensive gene expression analysis 
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of PBCs was conducted on blood samples from 58 TAA patients, with 36 spouses as 

controls.  Using the Applied Biosystems Human Genome Survey Microarray, which 

represents 29,098 individual human genes, this study analyzed the relative expression 

levels of mRNA transcripts extracted from the peripheral blood sample of these patients. 

Genes that were most up-regulated or down-regulated in expression relative to control 

genes were identified. This study looked at the 41 genes that were most significantly 

differentially expressed between the TAA group and the control group, and found that 

these 41 genes were expressed in a consistent pattern in the TAA group.  

 

This pattern was used in a classifier set of subjects to define a molecular aneurysm 

mRNA “signature” that was characteristic of aneurysm patients. This signature aneurysm 

pattern was then tested on an independent cohort of patients (22 TAA patients and 11 

controls). If the observed pattern of expression of these 41 genes in a testing sample 

closely matched the expression pattern of the defined signature aneurysm profile, then a 

prediction was made that the testing sample came from an aneurysm patient. If the 

observed expression pattern was not a close match to the signature profile, then a 

prediction was made that the tested sample was a control.  

 

This method of detecting aneurysms had a sensitivity of 72%, a specificity of 90%, and 

an overall accuracy of 78%.  These results, based on gene expression levels measured via 

microarray, were reassessed through real-time PCR using the TaqMan system, which 

provides more precise quantification of gene expression levels than microarray. The PCR 
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assay data was 80% accurate (sensitivity 71%, specificity 100%) and had 89% 

concordance with the microarray data.  

 

Given the documented link between TAA and ICA and the shared pathogenic mediators 

between the two diseases, we hypothesized that the signature RNA aneurysm profile that 

has been shown to be sensitive and specific in detecting TAA will have similar utility in 

detecting ICA.  

 

 

Specific Aims 

 

This project investigated the link between TAA and ICA via three approaches. The first 

arm aims to investigate the occurrence of concurrent ICA in patients with TAA. We 

hypothesize that patients with TAA will harbor concurrent ICA at a rate higher than the 

general population.  Our specific aim for this approach is the following: 

 

• To document the rate of concurrent ICA within a TAA patient population  

 

The second arm aims to investigate this relationship of concurrent aneurysms in the 

opposite direction. We hypothesized that patients with ICA will harbor concurrent TAA 

at rates higher than that found in the general population. Our specific aim for this 

approach is the following: 
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• To document the rate of concurrent TAA within an ICA patient population  

 

 

The third arm aims to evaluate whether the signature aneurysm RNA expression profile, 

defined in a previous study from our research group, that has been shown to be highly 

accurate, sensitive, and specific in detecting TAA is also able to detect ICA from a 

peripheral blood sample.[63] We hypothesize that this signature peripheral RNA 

expression profile, based on the expression levels of 41 specific genes, will detect the 

presence of ICA with a high degree of accuracy, sensitivity, and specificity. Our specific 

aims for this approach are the following: 

 

• To analyze the RNA expression levels of 41 predefined genes using custom-made 

real-time PCR arrays in peripheral blood samples of ICA patients and controls   

• To classify each sample as either an ICA case or a non-ICA control using 

previously defined formulas based on the pattern of gene expression of the 41 

genes in our signature aneurysm profile 

• To evaluate the accuracy, sensitivity, and specificity of ICA detection using the 

signature aneurysm profile by comparing the expression profile-predicted ICA 

classification to the known clinical ICA status of the subjects 
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Methods 

 

 

Arm 1: Concurrent ICA in a TAA Patient Population  

 

We retrospectively reviewed patient records from 1997 to 2009 in the thoracic aortic 

aneurysm database maintained by Dr. John Elefteriades to identify patients with TAA 

who also had available preoperative high-quality intracranial images by either CTA or 

MRA. Patients with a diagnosis of a connective tissue disorder, such as Ehlers-Danlos 

syndrome or Loeys-Dietz syndrome, were excluded. We identified 212 patients the met 

inclusion criteria out of approximately 1560 patients who underwent TAA repair during 

that time period.  

 

The cerebral imaging scans in these 212 patients were obtained for one of two purposes. 

Imaging studies in 160 (75%) patients were obtained by our thoracic aortic team 

specifically for the purpose of ICA screening prior to surgical TAA repair. These patients 

were termed the “prospective group.” The remaining 52 (25%) patients were termed the 

“non-prospective group” and underwent intracranial imaging for non-specific neurologic 

symptoms (e.g. headache, neck pain) or oncologic reasons. Forty-five patients in the non-

prospective group (87%; 21% of the entire cohort) had the brain scans in the past for 

largely non-specific neurologic symptoms unrelated to the aneurysm (dizziness, 

weakness, headache in 37 patients) or for oncologic screening (4 patients).  In addition, 1 

patient in the non-prospective group had a history of stroke, 1 patient had a history of 
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transient ischemic attack, and 1 patient had a history of mental status changes.  Four non-

prospective patients also had a known ICA at the time of TAA repair. All brain images 

were reviewed by a staff neuroradiologist at Yale-New Haven Hospital. The 1,348 

patients who did not receive any preoperative cerebral imaging (and thus excluded from 

this study) were not screened for a variety of reasons including emergent surgical 

circumstances, lack of compliance, inability to travel, and cost or lack of insurance 

coverage. 

 

Data was collected from each patient record including age (at time of surgical TAA 

repair), gender, ethnicity, blood pressure status, smoking status, and the characteristics of 

aneurysms present (diameter, anatomic location, and rupture status). Patients were 

divided into the ascending or descending TAA group based on the most clinically 

significant portion of aneurysmal aorta. Arch aneurysms were classified with the portion 

of the aorta to which they were most closely related anatomically. The prevalence of ICA 

in the general population was identified through literature review, and was based on 

thousands of autopsies and angiographies which served as our comparison 

population.[1,28,29] Statistical comparison of ICA-positive and ICA-negative patients 

groups in various categories was done with Fisher’s exact test using SPSS software 

(version 19; IBM Corporation). All statistical tests were two-tailed and significance was 

defined at the 0.05 level. This study protocol was approved by the Yale University 

Human Investigation Committee (#0509000633). 
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Arm 2: Concurrent TAA in an ICA Patient Population  

 

We retrospectively reviewed the 1,224 medical records of all patients presenting to the 

neurosurgery service at Yale-New Haven Hospital over 6 years (from July 2005 to July 

2011) for evaluation or treatment of ruptured or unruptured ICA. The presence of an ICA 

was confirmed by a staff neuroradiologist at Yale-New Haven Hospital. We evaluated the 

radiographic records of these patients to identify those with high-quality thoracic imaging 

including trans-thoracic echocardiography (TTE), trans-esophageal echocardiography 

(TEE), CT of the chest, or MRA of the chest that allowed for assessment of aortic 

diameter. These imaging modalities were considered reliable assessments of only specific 

portions of the thoracic aorta: TTE for the ascending aorta, TEE for the descending aorta, 

and both CT and MRA for the entire thoracic aorta. A total of 359 patients presenting 

with ICA were found to have high-quality thoracic imaging and were included in this 

study. Patients with connective tissue disorders known to predispose to both TAA and 

ICA, such as Loeys-Dietz syndrome or Ehlers-Danlos syndrome, were excluded from this 

study, as were those with mycotic intracranial aneurysms. Thoracic imaging studies in 

these patients were performed as part of a pre-operative work-up for ICA treatment 

(either microsurgical clipping or endovascular coiling) in 64% of patients, or for 

unrelated reasons such as trauma or cancer screening in the remaining 36%.  

 

Data from eligible patient records were collected including age (at time of presentation 

with ICA), gender, ethnicity, blood pressure status, smoking status, and the 

characteristics of aneurysms present (diameter, anatomic location, and rupture status). 
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We recorded the number of these patients with concurrent TAA. TAA was defined by 

official radiology reports documenting a focal aortic dilation relative to the adjacent 

vessel diameter rather than by arbitrary size cut-offs.  

 

Bivariate statistical comparison of various characteristics between the TAA-positive and 

TAA-negative patient groups was done using Fisher’s exact tests for categorical variables 

and Wilcoxon rank-sum test for continuous variables. Using a p-value of 0.1 in bivariate 

logistic regression as cut-off for inclusion in a multivariate model, age in years and ICA 

size were selected to be included in the multivariate logistic regression model. These 

analyses were conducted using SAS (version 9.2; SAS Institute, Inc.) by collaborators at 

the Yale Center for Analytical Sciences at the Yale School of Public Health (Maria M. 

Ciarleglio, PhD and Xiangyu Cong, PhD MPH). All statistical tests were two-tailed and 

significance was defined at the 0.05 level. This study protocol was approved by the Yale 

University Human Investigation Committee (#0509000633). 

 

 

Arm 3: Detecting ICA via a Peripheral Blood mRNA Expression Profile  

 

We prospectively enrolled patients who presented for evaluation and/or treatment of 

diagnosed ICA to the neurovascular clinic of the Department of Neurosurgery at Yale-

New Haven Hospital. The presence of ICA in patients was confirmed using standard 

imaging modalities (CTA, MRA, or formal angiography). All imaging studies were read 

and verified by a staff neuroradiologist or neurosurgeon at Yale-New Haven Hospital. 
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Any patient who presented with at least one radiographically verified ICA, regardless of 

rupture or treatment status, was eligible to participate in this study. Exclusion criteria 

included a diagnosis of active leukemia or other blood dyscrasias that may distort the 

constituents of the peripheral blood sample collected, treatment with chemotherapy 

within the past year that may likewise distort the peripheral blood sample, or the known 

presence or history of aortic aneurysms.  

 

Questionnaires and review of medical records were utilized to collect subjects’ 

demographic information and aneurysm risk factors, including age, gender, sex, race, 

smoking status, blood pressure status, medications, and family history of aneurysms or 

cardiovascular disease. Aneurysms size, location, and detection modality were also 

recorded. 

 

Spouses of TAA patients served as non-aneurysmal controls (these subjects were enrolled 

and their blood was collected and processed by my classmate Adam X. Sang). A standard 

questionnaire addressing symptoms and history of TAA or ICA was used to exclude the 

presence of these aneurysms in controls (necessary to avoid confounding the results of 

our analysis, given the above-described ability of the RNA signature to detect TAA). 

Given the low prevalence of both types of aneurysms in the general population, and the 

risks and costs inherent in subjecting spousal controls with CT or MRA, a non-invasive 

questionnaire was deemed suitable for these purposes. As in the ICA patients enrolled, 

questionnaires were utilized to collect the same demographic, medical history, and 

aneurysm risk factor information from controls.   
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A power calculation was performed to estimate the necessary sample size for this study.  

We hypothesized that the signature peripheral expression profile will have a 70% 

sensitivity and 95% specificity in detecting ICA based on the results of our prior study in 

TAA patients. Using an α of 0.05 and a β of 0.10, corresponding to a 90% power level, 

and conservatively assuming a 4:1 case:control ratio consistent with our prior study 

experience, a necessary total sample size of 24 patients was calculated using a standard 

formula[64]: 

 

 

 

where N is the total number of subjects required in the study, zα is 1.96 (for an α of 0.05), 

zβ is 1.282 (for a β of 0.10), P1 is the expected rate of a test result indicating aneurysm in 

the case group (0.7 given an estimated 70% sensitivity), P2 is the expected rate of a test 

result indicating aneurysm in the control group (0.05 given an estimated 95% sensitivity), 

q1 is the anticipated proportion of subjects in the case group (0.75), q2 is the anticipated 

proportion of subjects in the control group (0.25), and P = q1P1 + q2P2.  

 

Peripheral blood samples (3 ml) from each case and control were obtained using 

collection tubes specifically formulated for preserving RNA (Tempus Blood RNA tubes, 

Life Technologies). Blood draws for the ICA patients were carried out by staff 

phlebotomists at the Yale Physicians Building; blood draws for the non-aneurysmal 
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controls were carried out by Adam X. Sang. Following collection, blood samples were 

kept at room temperature for 2 hours to allow for thorough blood cell lysis. Samples were 

then stored at -80°C until RNA extraction.  

 

The Tempus blood tubes were subsequently thawed on ice and the contents transferred to 

a centrifuge-compatible tube with 3 ml of 1x phosphate-buffered saline. This mixture was 

then centrifuged at 4°C at 3000 g for 30 minutes. The resulting supernatant was discarded 

and the pellet containing the total RNA was resuspended in 400 µL of RNA Purification 

Resuspension Solution (Applied Biosystems). Total RNA was extracted from the PBCs 

following the protocol of the Tempus Spin RNA Isolation Kit (Life Technologies).  

 

Integrity of the extracted RNA was assessed by measuring the RNA integrity number 

(RIN) using an institutional 2100 Bioanalyzer (Agilent); this was carried out by the staff 

at the Yale West Campus core facilities and analyzed by me. A RIN of 7.0 was used as 

the minimum threshold for sample inclusion (on a total scale of 1 to 10, where 1 

represents high RNA degradation and 10 represents fully intact RNA).[65] RNA 

concentration and purity was measured using a Nanodrop spectrophotometer (Thermo 

Scientific); this was carried out by the staff at the Yale West Campus core facilities and 

analyzed by me. The A260/A280 ratio was used to assess sample purity. The wavelength 

of maximum absorbance for RNA is 260 nm, while absorbance at 280 nm is used to 

assess for protein concentration. An A260/A280 ratio of 1.8 was used as the minimum 

threshold for sample purity in this study. Low quality samples were noted and excluded 

prior to the real-time PCR stage (one sample in this study was excluded for this reason).  
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400 nanograms of the extracted total RNA were taken to synthesize complimentary DNA 

(cDNA) following the protocol of the QuantiTect Reverse Transcription Kit (Qiagen). 

The collected cDNA was used to perform real-time quantitative PCR (qPCR) in order to 

measure gene expression of our genes of interest in the signature aneurysm profile. We 

used the TaqMan platform (Life Technologies) for all qPCR steps of this project. 

TaqMan probes contain both a fluorophore and a quencher molecule and are individually 

designed to be complementary to a region of the target cDNA flanked by the 

amplification primers. The fluorophore will only fluoresce once the probe is bound to its 

specific target and subsequently degraded by the 5’ to 3’ exonuclease activity of the 

TaqMan DNA polymerase (thereby separating the fluorophore from the quencher). The 

fluorescence resonance energy transfer (FRET) feature of TaqMan reporter probes 

thereby reduces false-positive fluorescence and provides enhanced specificity over 

traditional intercalating fluorophore-based qPCR. 

 

The qPCR reactions in this study were conducted using custom premade TaqMan arrays 

supplied by Life Technologies. Each array has 384 wells in which an individual qPCR 

reaction is carried out. Each well on these custom cards has a reaction primer for one of 

the genes in the signature aneurysm profile or a control gene, and each array can analyze 

up to eight blood samples. At the time of this study, it was noted that the custom-made 

TaqMan array cards held primers for only 39 of the 41 genes (including control genes) in 

the original signature aneurysm profile. Therefore, further analysis was carried out using 

the expression levels of these 39 genes only (Table 1). Four additional genes, CDH13, 
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IL10, JUN, MMP15, were also included on the TaqMan array cards because they have 

been hypothesized to be related to TAA, but the expression levels of these genes were not 

analyzed as part of this study.  

 

The qPCR reactions were carried out using a 7900HT TaqMan thermal 

cycler/fluorescence detector (Life Technologies). SDS v2.3 software (Applied 

Biosystems) was used with the manufacturer-recommended default settings to operate the 

thermocycler. The cDNA synthesized from 200 ng of total RNA was added to each lane 

of the TaqMan array cards per the manufacturer recommendations. Each sample was 

assayed in duplicate to minimize technical variation, thereby consuming of total of 400 

ng of total RNA per sample. 50 µL of the TaqMan real-time PCR gene expression master 

mix (Life Technologies) containing the TaqMan DNA polymerase, nucleotides, and 

reference dye for the qPCR system was also added to each lane of the TaqMan cards. A 

variable volume of sterile water was also added to each lane of the TaqMan cards to bring 

the up volume in each lane to an even 100 µL per the manufacturer recommendations. 

The TaqMan array cards were then centrifuged for two 1-minute intervals at 331 g to 

distribute the loaded cDNA sample and mastermix into each well of the card.  The 

expression levels of the endogenous control genes ACTB, B2M, GAPDH, and PPIA 

(cyclophilin A) were measured for each sample, as in our prior study, to normalize the 

measured expression levels across all samples.[63] This gene were chosen because they 

have relatively constant expression levels in all blood cells. 
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The expression pattern of the 39 genes was then used to classify each sample as either an 

ICA case or non-ICA control using the methods previously validated in our group’s prior 

study.[63] Relative gene expression and statistical analysis using the ΔΔCT method was 

conducted by a collaborating statistician at Life Technologies (Catalin Barbacioru).[66] 

In this process, the raw qPCR output for each of the 41 genes in our signature profile is a 

relative expression level of that gene versus the expression level of an endogenous 

control gene, expressed as ΔCT. The ΔCT is thus a normalized expression level that is 

averaged across replicates to remove sample input errors and natural biological variation. 

The ΔCT value of each gene for each sample is then compared to the average ΔCT value 

of that same gene in the signature profile. The resulting ΔΔCT of a gene will be the 

relative quantity (relative-fold expression level) of that gene compared to the “expected” 

expression level of that gene. The ΔΔCT values for each gene in each sample are then 

entered into a multiple regression model (the classifier formula) that predicts whether the 

sample is an ICA case or a non-ICA control based on how closely the observed pattern of 

expression matches the pre-defined signature aneurysm pattern of expression.  

 

We then compared the algorithm-predicted “case” and “control” classification to the 

actual clinical aneurysm status of each subject to compute an absolute number of true 

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). The 

sensitivity (TP/(TP+FN)), specificity (TN/(FP+TN)), and accuracy ((TP+TN)/total) of 

this method of ICA detection were calculated to determine overall efficacy of the profile. 

This study protocol was approved by the Yale University Human Investigation 

Committee (#0109012617). 
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Results 

 

 

Arm 1: Concurrent ICA in a TAA Patient Population  

 

In our cohort of 212 patients with intracranial imaging, there were 141 males (67%) and 

71 females (33%). Ages ranged from 18 to 92 years old (mean 62 years). There were 197 

patients with ascending TAA (93%) and 15 patients with descending TAA (7%). 

Nineteen patients within the cohort (9.0%) harbored a concurrent ICA (Table 2). The 

ICA ranged from 1.0 to 11.0 mm in size (mean 3.7 mm, standard deviation 2.6 mm). 

Among only the prospective patient group, 10 patients (6.3%) had a concurrent ICA. Of 

the nine patients with concurrent ICA from the non-prospective group, five patients had 

cerebral imaging due to non-specific symptoms of headache or neck pain and the ICA 

was an incidental finding. Among the other four patients, two had undergone ICA 

clipping in the past, one had a prior ICA rupture, and one was screened by clinicians 

outside our study due to a family history of ICA. 

 

Patients with descending TAA had a higher prevalence of ICA (5/15, 33%) than patients 

with ascending TAA (18/197, 7.1%) (p = 0.006) (Figure 1A).  Considering only the 

prospective patient group, there was a strong trend in the same direction, but statistical 

significance was not achieved in this smaller sample (p = 0.08). Patients with 

hypertension also had a higher prevalence of ICA (18/153, 11.8%), compared to patients 
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without hypertension (1/59, 1.7%) (p = 0.03). Considering just the prospective group, 

there was a trend in the same direction, but statistical significance was not achieved.   

 

Thirteen of 105 (12.4%) patients with a current or past history of smoking harbored an 

ICA, while 6/107 (5.6%) non-smokers had an ICA (p = 0.096) (Figure 1B).  Among just 

the prospective group, 8/76 (10.5%) of TAA patients with a current or past history of 

smoking had a concurrent ICA, while 2/84 (2.4%) of patients without a smoking history 

had an ICA (p = 0.05).  Patients were also divided into two groups based on age: younger 

and older than 60 years of age. There were 4/88 (4.5%) patients younger than 60 with an 

ICA, while 15/124 (12.1%) patients older than 60 had an ICA (p = 0.09). Among the 

prospective group, there was no significant difference in age distribution between ICA-

positive and ICA-negative individuals.   

 

Eight of 71 (11.3%) females had an ICA, while 11/141 (7.8%) males had an ICA (p = 

>0.2).  Among the prospective group, there was also no significant difference in gender 

distribution between ICA-positive and ICA-negative individuals. Sixteen of 185 (8.6%) 

of Caucasians had an ICA, while 3/16 (18.7%) of African Americans had an ICA (p = 

0.18).  Eleven individuals of other races were included in this study, none of which had 

an ICA. Among the prospective group, there was also no significant difference in race 

distribution between ICA-positive and ICA-negative individuals.   

 

The data in Arm 1 of this project has been previously published.[67] 
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Arm 2: Concurrent TAA in an ICA Patient Population  

 

In our cohort of 359 patients with ICA and recent thoracic imaging, thoracic imaging 

modality was TTE in 205 patients (57%), TEE in 7 (2%), CT in 146 (41%), and MRA in 

one patient. Additional patient characteristics are listed in Table 3. Of the 359 patients, a 

total of 16 (4.5%) were found to have concurrent TAA. Thoracic imaging modality was 

CT in nine of these patients revealing six ascending TAA, two aortic arch TAA, and three 

descending TAA (two patients had multiple TAA). The remaining seven of these patients 

had TTE and were found to have ascending TAA. Characteristics of patients with 

concurrent TAA are also given in Table 3.  

 

Of the 18 total TAA identified, 13 (81%) TAA were located in the ascending aorta (mean 

diameter 4.4 cm, range 3.7 – 6.3 cm), two (13%) in the aortic arch (mean diameter 5.4 

cm, range 4.8 – 6.0 cm), and three (19%) in the descending aorta (mean diameter 3.7 cm, 

range 3.2 – 4.3 cm). The prevalence of ascending TAA among patients with thoracic 

imaging modalities suited to detect lesions is this location (TTE, CT, MRA) was 

therefore 3.7% (13/352). Among patients with imaging suitable to select descending 

TAA (TEE, CT, MRA), the rate of concurrent descending TAA was 1.9% (3/154). 

Similarly, the prevalence of aortic arch TAA among patients with adequate arch imaging 

(CTA, MRA) was 1.4% (2/147). 
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One patient with an ascending TAA also had a known abdominal aortic aneurysm, and a 

second patient with an ascending TAA was found to have a bicuspid aortic valve. One 

patient with an aortic arch TAA was also diagnosed with a diverticulum of Kommerell at 

the origin of the left subclavian artery. One patient with a descending TAA also had a 

history of descending aortic dissection and a left main coronary artery aneurysm. In all 

other patients with concurrent TAA and ICA, there were no known additional aneurysms 

or vascular abnormalities. None of the patients carried a diagnosis of a connective tissue 

disease.  

 

Patients were categorized according to their age (> 70 years old or < 70 years old), and 

patients over 70 years of age had a significantly higher rate of concurrent TAA (9.5%) 

compared to patients < 70 years old (3.2%, p = 0.03) based on univariate analysis (Figure 

2A). Older age analyzed as a continuous variable was likewise significantly correlated 

with increased rate of concurrent TAA (p = 0.016). Patients were further categorized 

according to the size of their ICA (> 4.0 mm and < 4.0 mm), and patients with ICA > 4.0 

mm had a higher prevalence of concurrent TAA (6%) compared to those with ICA < 4.0 

mm (1.7%) (Figure 2A). This difference represented a trend towards higher prevalence of 

concurrent TAA with large ICA diameter, but statistical significance was not reached (p 

= 0.10). Gender (p > 0.2), ethnicity, (p > 0.2), hypertension (p = 0.20), smoking status (p 

> 0.2), and the presence of multiple ICA (p > 0.2) did not significantly affect the risk of 

concurrent TAA (Figure 2B). The proportion of patients presenting with ruptured ICA 

was not significantly different between the TAA (56.3%) and non-TAA (64.1%) groups 
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(p >0.2). Likewise, ICA location within the cerebrovasculature was not significantly 

associated with the prevalence of concurrent TAA (Table 3).  

 

Univariate logistic regression identified age (in years), age (dichotomized as < 70 and 

>70 years), and ICA size (dichotomized as < 4.0 mm and >4.0 mm) as significantly 

associated with the odds of TAA at the 0.10 level. Including age (as a continuous 

variable) and ICA size together in a multivariate model (Table 4), the effect of ICA size 

is not significant at the 0.05 level after controlling for age in the model (p = 0.13), 

although age remains statistically significant (p = 0.03) with an odds ratio of 1.05.  

 

The data in Arm 2 of this project as been previously presented at a national meeting.[68] 

 

 

Arm 3: Detecting ICA via a Peripheral Blood mRNA Expression Profile  

 

To date, 17 blood samples from ICA patients and 15 samples from non-aneurysmal 

controls have been analyzed. Mean age of ICA patients was 60 years old (range 37-83 

years), and 15 patients (89%) were female (consistent with the known female 

predominance among ICA patients). Mean age of the control group was 59 years, and 

80% were female. The ICA group had 20 ICA among the 17 patients. Aneurysm 

locations are tabulated in Table 5. Two patients had bilateral internal carotid artery 

aneurysms, and one patient had ICA of both the middle cerebral artery and the posterior 

communicating artery. Mean aneurysm size was 5.8 mm (range 1 to 20 mm). Four 
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patients (24%) in the cohort had previously treated ICA, three with endovascular coiling 

and one with endovascular flow-diverting stent placement. Two patients (12%) had 

previously ruptured ICA, both of which had their aneurysms treated via endovascular 

coiling. Nine patients (53%) had a history of hypertension, six patients (35%) had a 

history of smoking, and six patients (35%) had a positive family history of ICA. No 

patients had a known connective tissue disorder. Eight patients (47%) were being treated 

with an anti-inflammatory medication at the time of blood sample collection. These 

medications included aspirin, prednisone, hydroxychloroquine, and statin medications.  

 

Total RNA was extracted and analyzed from 18 ICA patient samples. All included 

samples had a RIN above 7.0 (minimum 7.7) and an A260/280 ratio above 1.8 (minimum 

1.99). Mean RNA concentration was 137.8 ng/ul (range 74.8 to 395.2 ng/ul), mean RIN 

was 8.7 (range 7.7 to 9.7), and mean A260/A280 ratio was 2.07 (range 1.99 to 2.11). 

These values are individually tabulated for each sample in Table 6. One sample was 

excluded from these calculations and prior to cDNA synthesis for insufficient RNA 

concentration (a total nucleic acid concentration of only 5.5 ng/µl as measured by 

spectrophotometry; a RIN was not calculated and the A260/280 ratio was disregarded). 

 

Once gene expression levels for each sample were collected and analyzed by our 

collaborating statisticians, the classifier algorithm successfully predicted that 15 of the 17 

ICA samples were aneurysm patients (88% sensitivity). The classifier algorithm 

predicted that 10 of the 15 control patients were also aneurysm patients (67% false 

positive rate) (Figure 3). This resulted in a specificity of 33% and an overall accuracy of 
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63%. Of the four patients with previously treated ICA, three were predicted to be in the 

ICA group. The one treated ICA patient that was predicted by the classifier algorithm to 

be a control had a previously ruptured ICA that was treated by endovascular coiling. The 

other false negative patient had a small 3mm ICA of the posterior inferior cerebellar 

artery.  

 

 

Discussion 

 

 

Concurrent Intracranial and Thoracic Aortic Aneurysms  

 

Arm 1 of this study illustrates that patients with TAA have a higher prevalence of ICA 

than the general population. In our overall cohort, 9.0% of TAA patients had concurrent 

ICA. Considering only the prospective group, the prevalence of ICA was 6.3%. This rate 

was compared to the background prevalence of ICA in the general population, drawn 

from >10,000 autopsies and angiograms reported in multiple studies.[1,28,29] These 

studies found the prevalence of ICA to be approximately 1% in the general population. 

The prevalence of ICA in our cohort of patients with TAA thus far exceeds the expected 

ICA prevalence in the general population. 

 

Patients in the prospective group, who underwent cerebral imaging solely for the purpose 

of this study, were analyzed separately to reduce possible selection bias in our results. 
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Nonetheless, to completely exclude those patients in the non-prospective group would 

inevitably undercount the true prevalence of ICA in our TAA patient population. We 

believe the introduction of bias from including the non-prospective patients is minimal, 

as most symptoms prompting the prior scans were non-specific and not likely directly 

attributable to an ICA. Nonetheless, we performed analysis excluding the patients from 

the non-prospective group to obviate this concern. Even the most conservative estimate 

(from analysis of the prospective group only) finds that 6.3% of TAA patients harbor a 

concurrent ICA– indicating that the risk of TAA patients for developing ICA is manyfold 

higher than that of the general population. 

 

This association between ICA and TAA is consistent with the common proteolytic 

mechanisms that underlie these two conditions.[20,22] MMPs have been implicated in 

the proteolytic activity that precedes aneurysm formation and rupture in multiple vascular 

trees.[21,69] MMP-9, in particular, exhibits elevated local expression in both ICA and 

TAA.[20,22] Our results are also consistent with observations by Milewicz and 

colleagues that there may be a common genetic basis for both ICA and TAA.[25] 

 

In this study, we found a higher prevalence of ICA in patients with descending TAA than 

with ascending TAA. Such differences are consistent with our group’s prior genetic 

observations that ascending and descending aneurysms are different diseases.[8] It is 

thought that the embryology, pathophysiology, and clinical manifestations of aortic 

aneurysms divide TAA into 2 diseases based on location in the aorta: proximal to the 

ligamentum arteriosum (ascending) and distal to the ligamentum (descending and 
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thoracoabdominal).[70] One salient clinical difference, supporting the notion the 

ascending TAA fundamentally differ from descending TAA, is the finding that ascending 

aneurysms tend to be arteriosclerosis-free, while those located in the descending, 

thoracoabdominal, and abdominal aorta tend to be arteriosclerotic.[71] Thus, it appears 

reasonable that there could be differences in the relative prevalence of ICA between 

ascending and descending TAA patients, as found in our study. Interestingly, a similar 

finding was recently reported in a study correlating aortic coarctation to ICA.[72] The 

authors found that patients with ascending aortopathy had lower rates of concurrent ICA 

than those without ascending aortic disease. 

 

We also found that systemic hypertension significantly increased the prevalence of ICA 

in TAA patients. There are multiple studies that document the relation between 

hypertension and aneurysms.[2,73,74] Therefore it is not surprising that this risk factor 

contributes to ICA formation in a patient population that has already proven to be 

aneurysm-prone. It is important to note, however, that hypertension is an important risk 

factor for SAH, a condition with a mortality rate of up to 50%.[73,75,76] Hypertensive 

TAA patients may therefore be at particularly increased risk for the consequences of 

SAH.   

 

Additionally, we found that TAA patients with a current or past history of smoking have 

an elevated prevalence of concurrent ICA. Among patients in the prospective group, 

smokers had a significantly higher prevalence of concurrent ICA. Among all patients, 

there was a strong trend in the same direction, although statistical significance was not 
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achieved. While this anomaly is likely a result of sample size limitation, the data strongly 

suggest that TAA smokers are at high risk for ICA. Moreover, smoking is a known risk 

factor for ICA and SAH.[1] Our results additionally suggest that individuals greater than 

60 years of age may have an elevated prevalence of concurrent ICA, but the data do not 

reach statistical significance.   

 

One limitation of our analysis of concurrent ICA in the TAA patient population is our 

relatively small sample size, particularly limiting the number of patients available for 

sub-group analysis. Further study in larger populations will be necessary to determine if 

the trend toward higher prevalence of concurrent ICA in the elderly and in smokers is 

validated. Our findings should also be interpreted with caution due to the small event size 

of ICA. Another apparent shortcoming of the study is our comparison to the prevalence 

of ICA in the general population derived from the literature. Our study population may 

not be identical to the population in which the baseline ICA prevalence was determined 

due to the age, atherosclerosis, and hypertension associated with TAA. However, the 

studies in the literature from which the general population ICA prevalence was 

determined are comprehensive and based on thousands of patients. It would not be 

possible to recreate such investigations into the rate of ICA in the general population as 

part of this project. In fact, such data from the literature is likely much more powerful 

than any small comparison group that might be identified in our own institution.  

 

Another concern, discussed above, is the possibility of selection bias – that is, that among 

our overall group of TAA patients, those with prior neurologic symptoms were more 
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likely to have a brain image available, making it more likely for them to be included in 

this study, and thus skewing the results towards a higher prevalence of concurrent ICA. 

We feel that our separate analysis of the prospective patients mitigates this concern, as 

our finding of elevated ICA prevalence among TAA patients was upheld in this more 

selected group.  In addition, only four patients had intracranial imaging for a known ICA, 

while the neurological symptoms that prompted intracranial imaging in the non-

prospective group were non-specific and likely unattributable to an ICA.  

 

Another weakness of this study was the lack of confirmation by angiography of the ICA 

detected by MRA or CTA. This is salient in light of the fact that these modalities may 

have substantial false-positive rates. In the recently published experience of Pradilla et 

al., CTA had a false-positive rate of 20.5%.[77] Likewise, the same group reported that 

MRA may have a false-positive rate of up to 38%.[78] Accordingly, our findings should 

be interpreted with caution and will require further investigation for confirmation.  

 

In Arm 2 of this project, we document the rate of concurrent TAA in an ICA patient 

population, finding that 4.5% of our cohort harbored concurrent TAA. We used data 

drawn from population-based studies as a comparison group.[36,40] While the 

prevalence of TAA in the general population remains poorly defined, the available 

evidence suggests that it is less than 1%. Therefore, our findings suggest that ICA 

patients are at substantially increased risk for harboring a concurrent TAA. Similar 

conclusions have been recently reported. In a study of patients with aortic coarctation, 

Curtis et al. report that a group of ICA patients had a higher rate of concurrent TAA than 
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a non-ICA group (17% vs. 10% rate of concurrent TAA), although this difference was 

not statistically significant.[72] 

 

Identification of groups at high risk for TAA is an important piece of clinical knowledge 

that can aid in the early detection and treatment of such aneurysms. Because an 

unrecognized TAA that remains untreated can result in the lethal events of aortic rupture 

or dissection, it is important to identify TAA early before they grow to reach a dangerous 

diameter. Identifying populations that are at elevated risk for developing TAA therefore 

has particular clinical significance and has the potential to save lives through early 

detection of these typically asymptomatic aneurysms.  

 

In this study, the majority (81%) of concurrent TAA in the ICA patient population were 

found in the ascending aorta. This contrasts with the data from Arm 1 of this project in 

which concurrent ICA were more strongly linked with descending TAA. This may be a 

reflection of the disproportionate use of TTE imaging in 57% of our study population that 

is unable to adequately visualize descending TAA. When analyzing just the subgroup of 

patients with thoracic imaging modalities adequate to visualize the descending aorta 

(TEE, MRA, CT), the prevalence of concurrent TAA was 1.9% (3/154). While smaller 

than the TAA prevalence in our overall cohort, this number is still likely greater than that 

of the general population. We also found that increasing age was significantly related to 

increased risk of concurrent TAA. This is logical given the advanced age at which TAA 

typically develop compared to ICA. There was a strong trend towards ICA diameter >4.0 

mm being associated with increased risk of concurrent TAA, however statistical 
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significance was not achieved. No other factors measured were found to be significantly 

associated with increased prevalence of concurrent TAA.  

 

One weakness of this study is the lack of a selected comparison group to define the 

prevalence of TAA in the non-ICA patient population. However, it was not feasible to 

select a suitable control group of sufficient size from a single hospital radiology database 

to determine a background TAA prevalence. Selecting a set of thoracic imaging scans 

from a tertiary-care hospital database would have been subject to considerable selection 

bias that would likely overestimate the prevalence of TAA.  Furthermore, a very large 

comparison group would be required given the rarity of TAA in the general population. 

We believe an overall 4.5% rate of concurrent TAA in the ICA patient population is 

clinically relevant given the overall rarity of TAA and the substantial consequences of 

leaving an unrecognized TAA untreated.  

 

 

Detecting ICA via a Peripheral Blood mRNA Expression Profile 

 

Taking only a peripheral blood sample from a standard blood draw, and using automated 

methods with standard laboratory techniques for measuring gene expression, we achieved 

an 88% sensitivity in detecting ICA. This approach holds promise as an initial screening 

test for ICA due to its high sensitivity, convenience, relatively low cost compared to CTA 

or MRA, lack of health risks associated with those radiographic modalities, and the 

automated high-throughput nature of the TaqMan array cards that will make this 
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approach easily translatable to a clinical setting. Nonetheless, these early results should 

be interpreted with caution and will require further investigation to be validated. The 

current primary limitation is that our sample size remains very small.  Additionally, the 

specificity of our approach is currently unacceptably low. We anticipate that this may 

improve with a larger sample size given the high specificity of this approach in the initial 

study in which the signature aneurysm profile was defined.[63] 

 

Another potential benefit of this approach is that an mRNA profile has the potential to 

shed light on specific biological processes at play in the pathogenesis of ICA. Prior 

studies have demonstrated the viability of this approach in elucidating novel pathogenic 

mechanisms of disease.[49] Other studies have used this approach to validate targeted 

disease therapies. One study of patients with atherosclerosis utilized gene expression 

analysis in PBCs to identify the genes that were differentially expressed between patients 

with the disease and controls.[50] The authors identified the FOS gene as being 

significantly upregulated in atherosclerosis patients. They were subsequently able to 

rationally select a small molecular inhibitor of the FOS protein and found that this 

targeted inhibitor reduced monocyte activation, thereby modulating an important 

pathogenic mechanism of the disease.  

 

One unanswered question regarding the gene expression profile detected in PBCs is 

whether it reflects the body’s detection of, response to, or primary cause of a dilated, 

weakened, and aneurysmal vessel wall. The identity of a number of the genes identified 

whose expression level was associated with the presence of an aneurysm suggests that the 

signature aneurysm profile may reflect the biological processes that lead to aneurysm 
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formation. Genes in the classifier set included those integral to interleukin signaling, T-

cell activation, and apoptosis. These biological pathways have all been shown to be 

associated with aneurysm formation.[55,62,79,80] Accordingly, the signature aneurysm 

profile holds promise not just for screening for aneurysms, but for identifying a 

predisposition to later developing ICA. This finding highlights the utility of this 

methodology for elucidating candidate genes and biological pathways that may underlie 

the pathogenesis of aneurysm disease and may be future therapeutic targets.   

 

One limitation of this study was that ICA patients were not radiographically screened to 

conclusively rule out the presence of a TAA. The presence of a TAA may have resulted 

in a false positive prediction by the classifier algorithm based on its demonstrated ability 

to detect TAA.  However, given the low prevalence of TAA in the general population (as 

well as the ICA population) as discussed above, the impact of this potentiality would be 

low and was outweighed by the costs, risks, and logistical limitations of screening all 

ICA patients for TAA.  

 

Another weakness of this study is the use of spouses of TAA patients as controls. 

Limitations of using this control population include possible gender- and age-based 

differences in the expression levels of one or more of our genes of interest and 

differences in comorbidities that are not gender- or age-neutral (for example, 

atherosclerosis). However, even though patients and controls in this study were not 

formally matched, both the gender ratio (89% female in the ICA group vs. 80% of 

controls) and mean age (60 years in the ICA group vs. 59 years among controls) were 
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comparable, thereby minimizing any differences based on gender and age. Control 

subjects enrolled in this study were likewise not formally screened for the presence of 

TAA and ICA aside from a medical history questionnaire. While undetected aneurysms 

have the potential to confound our results, the low prevalences of ICA and TAA in the 

general population minimize this potential. Given the risks and costs inherent in 

subjecting healthy spousal controls to CTA or MRA to screen for aneurysms, the non-

invasive questionnaire was deemed appropriate. 
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Figures 
 
 

 

 
 
Figure 1. Rates of concurrent ICA among different TAA patient subgroups. Error bars 
represent 95% confidence intervals. (A) Patients with descending TAA had significantly 
greater incidence of ICA than patients with ascending TAA, and hypertensive patients 
had significantly greater incidence of ICA than normotensive patients. (B) Age, gender, 
smoking status, and ethnicity did not have a significant effect on rates of concurrent ICA 
among all patients. HTN = hypertension. Adapted with permission from reference 67. 
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Figure 2. Rates of concurrent TAA among different ICA patient subgroups. (A) Rates of 
concurrent TAA based on age and size of maximal ICA diameter. Patients over 70 years 
old had a significantly higher rate of TAA. There was a strong trend towards a higher rate 
of TAA in patients with ICA larger than 4.0 mm. (B) Rates of concurrent TAA based on 
gender, number of ICA, blood pressure status, and smoking status. These characteristics 
did not significantly differ between the TAA and non-TAA groups. HTN = hypertension. 
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Figure 3. Output of the classifier algorithm for each ICA case (left) and non-ICA control 
(right). Each blue data point represents the probability that a given sample has an ICA 
(i.e. is a close match to the signature aneurysm profile; a value of 1 on the y-axis 
represents a perfect match to the signature aneurysm profile). The red data points 
represent 1 minus the probability that a given sample has an ICA. Any sample with a 
predicted ICA probability (blue data point) greater than the 0.5 threshold line is predicted 
by the algorithm to be an ICA case, and is classified as such. Samples with blue data 
points below the 0.5 threshold are predicted to be non-ICA controls. 
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Tables 
 
Table 1. Gene symbols of the 39 genes included in the signature aneurysm profile.  
 
ACTB NR1I2 

AKR1B1 NUDC 

APOA1BP NUDT5 

ATAD3A PCDHA12 

ATP5G1 PHB 

B2M PPAN 

C10orf99 PPIA 

C14orf138 RGS3 

C15orf63 RUVBL1 

CDK4 SBSN 

CUTA SERF2 

EDF1 SLC25A24 

ENPP4 SNRPC 

GAPDH SOS2 

HMOX2 SSU72 

IL18R1 SYNGAP1 

IMPDH2 THOC6 

MED6 VKORC1 

MIF VPS72 

NOSIP  

 
Genes used as controls are indicated in bold.  
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Table 2. Characteristics of TAA patients with concurrent ICA 
 

Age 

(years) 

Gender TAA 

Location 

ICA 

Location 

Intracranial 

Imaging Modality 

HTN Smoker Ethnicity 

36 M Des ACA MRA + 0 AA 

56 F Asc Left IC CTA + + [quit] C 

57 F Asc Left MCA CTA + + AA 

59 M Des MCA CTA + 0 C 

61 M Asc Basilar CTA + + C 

64 M Asc Left vertebral CTA 0 + C 

64 F Asc Left IC CTA + + C 

66 F Des Left IC MRA + + AA 

67 M Asc Left IC CTA + + C 

67 M Asc Left IC CTA + + C 

68 F Asc Right IC CTA + + C 

71 M Asc Right ACA MRA + 0 C 

75 M Asc Right IC CTA + 0 C 

77 F Asc Left IC CTA + + C 

77 F Asc Left IC CTA + 0 C 

79 M Des Right IC MRA + + C 

81 M Des Basilar MRA + + C 

82 M Asc ACA CTA + 0 C 

86 F Asc Right MCA CTA + + C 

 
AA = African American; ACA = anterior cerebral artery; Asc = ascending aorta, C = 
Caucasian; Des = descending aorta; HTN = hypertension; IC = internal carotid artery; 
MCA = middle cerebral artery. A “+” indicates the patient had a history of hypertension 
or smoking. A “0” indicates the patient did not have a history of hypertension or 
smoking. Adapted with permission from reference 67. 
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Table 3. Characteristics of ICA patients with concurrent TAA 
 

 Non-TAA patients (n = 343) TAA patients (n = 16) 
p 

value 

Method of 

Thoracic Imaging  

CT: 137 (40%)  

TTE/TEE: 205 (60%)  

MRA: 1 (< 1%)  

CT: 9 (56%)  

TEE: 7 (44%)  
>0.2  

Mean Age  58.0 years  66.4 years  0.014  

Gender  65% Female  50% Female  >0.2  

Ethnicity  
69% Caucasian  

31% Non-Caucasian  

63% Caucasian  

37% Non-Caucasian  
>0.2  

Blood Pressure  54% Hypertensive  75% Hypertensive  0.20  

Smoking  57% Smokers  42% Smokers  >0.2  

ICA Presentation  64% Ruptured  56% Ruptured  >0.2  

Mean ICA Size  6.53 mm  7.62 mm  >0.2  

Multiple ICA  74 (21.6%)  2 (12.5%)  >0.2  

ICA Location 

(75 patients with 

multiple ICA; 472 

Total ICA)  

33 ACA (7%) 88 

Acom (20%) 30 

Basilar (6%) 105 

IC (22%) 106 MCA 

(23%) 

3 PCA (<1%)  

64 Pcom 

(14%) 

4 PICA (1%) 

8 SCA (2%) 

13 Vert (3%) 

2 Other (1%)  

1 ACA 

(6%) 

6 Acom 

(38%) 1 

IC (6%) 

4 MCA 

(25%)  

2 Pcom (13%) 2 

Vert (13%) 

2 Other (13%) 

(anterior spinal & 

ophthalmic 

arteries)  

>0.2  

ACA = anterior cerebral artery; Acom = anterior communicating artery; IC = internal 
carotid artery; MCA = middle cerebral artery; PCA = posterior cerebral artery; Pcom = 
posterior communicating artery; PICA = posterior inferior cerebellar artery; SCA = 
superior cerebellar artery; Vert = vertebral artery  
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Table 4. Multiple logistic regression including age (as a continuous variable) and 
ICA size (4.0 mm as cut-off) measuring the risk of concurrent TAA 
 

Characteristics 

Odds Ratio of 

Concurrent TAA (95% 

CI) 

p value 

Age (in years) 1.05 ( 1.01 – 1.09) 0.025 

ICA size (in mm)  0.127 

< 4.0mm 0.31 ( 0.07 – 1.40)  

> 4.0mm Ref.  
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Table 5. Characteristics of ICA patients enrolled in Arm 3 of the project 
 

 

 
Acom = anterior communicating artery; HTN = hypertension; IC = internal carotid 
artery; MCA = middle cerebral artery; Pcom = posterior communicating artery; PICA = 
posterior inferior cerebellar artery; Vert = vertebral artery

 ICA patients (n = 17) 

Age 59 years (range 37 – 83 years) 

Gender 89% Female 

ICA Location 

(20 Aneurysms) 

10 IC, 2 MCA, 3 Basilar, 2 

Acom, 1 Pcom, 1 PICA, 1 Vert 

ICA Size 5.8 mm (range 1 – 20 mm) 

Multiple ICA 18% 

ICA Ruptured 12% 

ICA Previously Treated 24% 

HTN 53% 

Smoking 35% 

+ Family History of ICA 35% 

Anti-Inflammatory Meds 47% 
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Table 6. Nucleic acid concentration, purity, and integrity for peripheral blood samples 
analyzed for the signature mRNA aneurysm profile. 
 

Sample ID 

Nucleic Acid 

Concentration 

ng/ul A260 A280 260/280 RIN 

1 115 2.874 1.442 1.99 8.3 

2 144.7 3.618 1.771 2.04 8.6 

3 231.1 5.776 2.779 2.08 7.7 

4 100.4 2.509 1.237 2.03 8.6 

5 101.2 2.529 1.24 2.04 7.7 

6 142 3.549 1.726 2.06 8.8 

7 161.3 4.032 1.958 2.06 8.3 

8 102.8 2.571 1.258 2.04 8.2 

9 142.3 3.556 1.705 2.09 9.5 

10 113.5 2.839 1.353 2.1 9.5 

11 395.2 9.88 4.696 2.1 8.5 

12 124.7 3.116 1.478 2.11 9.1 

13 5.5 0.138 0.04 3.47 NA 

14 152.3 3.806 1.838 2.07 9.7 

15 74.8 1.871 0.905 2.07 9.1 

16 148.3 3.708 1.774 2.09 8.9 

17 148.9 3.722 1.778 2.09 8.6 

18 75.7 1.892 0.92 2.06 9.5 

 
Sample 13 was excluded from analysis prior to the cDNA synthesis stage due to 
inadequate RNA concentration. RIN was not calculated for this sample. RIN = RNA 
integrity number.  
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