
Yale University
EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Medicine Thesis Digital Library School of Medicine

January 2011

Improving Prognostic Models In Breast Cancer
With Biostatistical Analysis Of The Phosphatidyl
Inositol 3-Kinase Pathway
Elliot Rapp

Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl

This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital
Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

Recommended Citation
Rapp, Elliot, "Improving Prognostic Models In Breast Cancer With Biostatistical Analysis Of The Phosphatidyl Inositol 3-Kinase
Pathway" (2011). Yale Medicine Thesis Digital Library. 1586.
http://elischolar.library.yale.edu/ymtdl/1586

http://elischolar.library.yale.edu?utm_source=elischolar.library.yale.edu%2Fymtdl%2F1586&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F1586&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/yale_med?utm_source=elischolar.library.yale.edu%2Fymtdl%2F1586&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F1586&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl/1586?utm_source=elischolar.library.yale.edu%2Fymtdl%2F1586&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu


 

 
 
 
 
 
 
 
 
 

Improving	
  Prognostic	
  Models	
  in	
  Breast	
  Cancer	
  

with	
  Biostatistical	
  Analysis	
  of	
  the	
  	
  

Phosphatidyl	
  Inositol	
  3-­‐Kinase	
  Pathway	
  
 
 
 
 
 
 
 
 

A	
  Thesis	
  Submitted	
  to	
  the	
  

Yale	
  University	
  School	
  of	
  Medicine	
  

in	
  Partial	
  Fulfillment	
  of	
  the	
  Requirements	
  for	
  the	
  

Degree	
  of	
  Doctor	
  of	
  Medicine	
  

 
 

 
 
 
 
 
by	
  

Elliot	
  James	
  Rapp	
  

2011	
  



 

Abstract	
  
IMPROVING PROGNOSTIC MODELS IN BREAST CANCER WITH BIOSTATISTICAL 

ANALYSIS OF THE PI3-KINASE PATHWAY.  

Elliot James Rapp, Jena P. Giltnane, David L. Rimm, Annette Molinaro.  

Department of Biostatistics, Yale School of Public Health, Yale University 

School of Medicine, New Haven, CT. 

Our hypothesis was that prognostic models for breast cancer that 

incorporate both clinical variables and biomarkers in the PI3 Kinase molecular 

pathway will improve upon the clinical models of TNM staging and the 

Nottingham Prognostic Index (NPI). Our specific aim was to develop models 

that misclassify fewer patients than TNM and NPI with the outcome of dead of 

disease at ten years. Our population cohort was the YTMA49 cohort, a series of 

688 samples of invasive ductal breast carcinoma collected between 1961 and 

1983 by the Yale University Department of Pathology. Tissue MicroArray (TMA) 

analysis was performed and biomarker expression level was determined using 

Automated Quantitative Analysis (AQUA) technology for thirteen biomarkers in 

the PI3 Kinase pathway, including an overall expression level and expression 

levels by subcellular compartment.  Eleven clinical variables were also 

assembled from our cohort.  Exhaustively searching the multivariate space, we 

used logistic regression to predict our outcome of dead of disease at ten years.  

Validation was performed using Leave One Out Cross Validation (LOOCV).  

Misclassification estimates provided the means to compare different models, 

with lower misclassification estimates indicating superior models.  Confidence 



 

intervals were constructed using bootstrapping with one thousand iterations.  

We developed a helper computer program named Combination Magic to enable 

us to develop sophisticated models that included both interactions between 

variables and transformations of variables (e.g. logarithm).   

Overall our best univariate models were NPI (misclassification estimate 

(ME): 0.326, confidence interval (CI): 0.292 to 0.359), Nodal status (ME: 0.353, 

CI: 0.322 to 0.493), and TNM (ME: 0.367, CI: 0.313 to 0.447). Our best 

univariate models from the PI3 Kinase biomarkers were FOX01_NU (ME: 0.369, 

CI: 0.336 to 0.415), AKT1_TM (ME: 0.373, CI: 0.335 to 0.412), and PI3Kp110_TM 

(ME: 0.377, CI: 0.343 to 0.431).  Our best bivariate models were 

pTumor*PathER (ME: 0.328, CI: 0.308 to 0.443), pNode + NuGrade (ME: 0.333, 

CI: 0.305 to 0.434), and AKT1_NN + Fox01_NU (ME: 0.338, CI: 0.307 to 0.391).  

Our best trivariate models were pTumor + mTOR_NN + PI3Kp110_TM + 

pTumor*PI3Kp110_TM (ME: 0.296, CI: 0.273 to 0.375), pTumor + AKT1_NU + 

Fox01_NU + pTumor*AKT1_NU (ME: 0.298, CI: 0.275 to 0.38), and pTumor + 

mTOR_TM + PI3Kp110_TM + pTumor*PI3Kp110_TM (ME: 0.299, CI: 0.276 to 

0.378).  Our best multi-variate model was Fox01_NU + AKT1_NU + mTOR_MB + 

p70S6K_NU + AVG_BCL2_TM + Fox01_NU*AKT1_NU*mTOR_MB (ME: 0.295, CI: 

0.274 to 0.393).  None of these models was statistically superior to the clinical 

models of TNM and NPI.
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Introduction	
  
Although many advances have been made in breast cancer treatment 

over the last few decades, it remains a deadly disease with significant 

financial, health, and emotional costs for breast cancer patients and survivors.  

Of particular concern for both doctors and patients is likelihood of recurrence 

after resection of the primary tumor.  This likelihood can have an immediate 

impact on choice of treatment, including the type of medical treatment and 

the type of surgical resection, from lumpectomy to simple mastectomy to 

radical mastectomy. 

The likelihood of recurrence also carries an emotional toll long after 

treatment of the primary tumor is completed.  Many patients live in fear of 

recurrence.  Patients may choose a more aggressive chemotherapy treatment 

than necessary, which carries its own health risks and litany of side effects.  

Patients with a particularly high risk profile may even opt for prophylactic 

mastectomy of a healthy breast. 

Clinical models have been developed to assess the risk of metastasis in 

breast cancer and are widely used in clinical practice, despite the fact that 

their utility continues to be a matter of debate.  The best known are TNM 

staging and the Nottingham Prognostic Index (NPI).  Each has been validated in 

numerous clinical trials.   

TNM staging is based on tumor size, number of positive lymph nodes, and 

the presence of metastasis.  The TNM classification of breast cancer was 

updated in 2002 and again in 2009.  As our work was performed prior to the 
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2009 definition, the 2002 definition was used for this analysis.  Although widely 

used historically, TNM staging of breast cancer has been criticized as having 

limited utility in actual clinical practice.  As far back as 1992 Barr and Baum 

called for its removal from clinical decision making, arguing that it ignores 

many factors relevant to both surgical treatment and prognosis, and that 

factors it does include are difficult to reliably assess clinically, with 

unacceptably high false positive and negative rates (1).   

More recently, Benson continues the criticism of the clinical utility of 

TNM staging in breast cancer (2).  He notes that TNM staging was developed at 

a time when the pathological model of cancer metastasis was thought to 

happen in an orderly, Halstedian fashion, with cancer spreading in a logical 

manner from its site of origin to local lymph nodes to distant sites of 

metastasis.  However, small tumors with aggressive hematogenous spread do 

not follow this model, and tend to be more aggressive than larger tumors with 

lymphatic spread.  Thus, TNM staging is particularly unhelpful for this type of 

tumor, motivating the need for a more helpful alternative.  

The NPI prognostic model is based on tumor size, number of positive 

lymph nodes, and the histologic grade.  It yields a continuous number that falls 

into one of six prognostic groups, from Excellent Prognostic Group (EPG) to 

Very poor Prognostic Group (VPG).  NPI is the only breast cancer staging model 

with prospective validation both intra and inter-center (3).  It differs from TNM 

in that it includes histologic grade, yet like TNM it does not incorporate 

biomarkers. Thus, neither TNM staging nor the Nottingham Prognostic Index 
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incorporate the growing body of knowledge regarding the significance of 

different subtypes of breast cancer and the importance of metabolic and 

signaling pathways in breast cancer growth and metastasis. 

With advances in our understanding of the molecular pathways involved 

in breast cancer, there has been renewed interest in developing prognostic 

models that include biomarkers to overcome limitations of TNM staging and the 

Nottingham Prognostic Index and more accurately predict metastasis and/or 

recurrence in breast cancer.  Significantly, laboratory tools such as Automated 

Quantitative Analysis (HistoRX, New Haven, Connecticut) also allow us to more 

accurately quantify expression levels of biomarkers in various pathways 

significant in cancer, improving the accuracy and reproducibility of models 

using biomarkers.   

More accurate prognostic models will provide value to both physicians 

and patients.  Biomarker analysis can also provide important information about 

the likely efficacy of various drugs that are targeted at different molecular 

pathways active in breast cancer.  A notable example is the use of the 

pharmaceutical Trastuzumab to target the HER2/neu receptor, which has been 

widely used in clinical practice since its FDA approval in 1998 (4). 

After mutations of the p53 tumor suppressor gene, mutations within the 

Phosphatidyl Inositol-3 Kinase (PI3 Kinase or PI3K) pathway are the most 

common mutations leading to human cancer (5).  Recent work has shown the 

particular significance of PI3 Kinase mutations in human breast cancer (6).  

Given the need for more accurate prognostic models in breast cancer, the 
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likelihood that inclusion of biomarkers in prognostic models can improve upon 

the existing clinical models, and the importance of the PI3K pathway in breast 

cancer, we chose to evaluate whether a search of the covariate space of 

various messengers in the PI3 Kinase pathway and clinical variables can offer 

improved prognostic models when compared to the clinical gold standards of 

TNM and NPI.  

Specific	
  Aims	
  of	
  Thesis	
  

Aim	
  1	
  

Determine whether an exhaustive search of the covariate space of the 

PI3 Kinase molecular pathway and clinical variables in metastatic breast cancer  

can improve prognostic models over the existing clinical standards of TNM 

staging and the Nottingham Prognostic Index (NPI) with the outcome of dead of 

disease at ten years. Evaluate whether interactions between different 

biomarkers in the PI3 Kinase pathway and logarithmic values can improve upon 

the prognostic models previously identified. 

Aim2	
  

Develop a reliable methodology to create and evaluate prognostic 

models with an arbitrary number of interactions, sub-interactions, and custom 

terms.  In addition, structure our computational analysis to allow us to both 

exhaustively search the model space and selectively create models by hand.  
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Methods	
  

Statistical	
  Platform	
  

All computations were performed using The R Project for Statistical 

Computing, an open-source statistical language and environment freely 

available on the Internet (7).   

Tumor	
  Cohort	
  

The YTMA49 cohort has been previously described (8).  Briefly, it 

consists of 688 samples of invasive ductal breast carcinoma collected between 

1961 and 1983 from the Yale University Department of Pathology archives.  The 

mean and median age of diagnosis were 58.1 and 58.0, respectively.  The mean 

and median follow-up times were 12.8 and 8.9 years, respectively.  The cohort 

contains approximately half node-positive and half node-negative specimens. 

Data	
  Acquisition	
  

Data acquisition was performed by Jena Giltnane, at the time a MD/PhD 

candidate at Yale University School of Medicine.  She analyzed 539 metastatic 

breast cancer biopsy cores from the YTMA49 cohort using Automated 

Quantitative Analysis (described below).  In addition to quantifying expression 

levels of thirteen biomarkers in the PI3 Kinase pathway (see Table One), she 

assembled eleven clinical variables (see Table Two).  Together, these 24 

variables were included as the covariates for model building.  However, as 

noted below, each biomarker was further characterized by its expression level 

in three subcellular compartments.  Thus, there were a total of 63 possible 

inputs to our model generation (52 biomarkers and 11 clinical variables). 
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AQUA	
  Analysis	
  of	
  the	
  PI3	
  Kinase	
  Pathway	
  

Automated Quantitative Analysis (HistoRX, New Haven, Connecticut), 

known as AQUA, has been previously described (9).  Traditional scoring of 

protein expression performed by pathologists using immunohistochemistry and 

visual inspection of tumor slides is limited by inter-operator variability and lack 

of reproducibility.  AQUA technology assigns a value from 0 to 255 to represent 

the level of biomarker expression, with a higher number indicating greater 

expression.  Its increased granularity of expression levels and high 

reproducibility when compared to traditional methods is designed to allow for 

more accurate prognostic models. 

When performing AQUA quantification, the technician distinguishes areas 

of tumor from stromal elements by staining with antikeratin and creating an 

epithelial tumor mask.  After the operator visual sets an intensity threshold to 

distinguish between cancerous and non-cancerous areas, the AQUA software 

defines each area as “on” (tumor) or “off” (non-tumor).  By convention, TM 

(“Tumor Mask”) describes the overall expression level in cancerous cells.   

In addition, AQUA allows quantification of protein expression by 

subcellular compartmentalization.  NU (“Nuclear”) describes the expression 

level in the nuclear compartment.  MB (“Membrane”) describes the expression 

level in the cellular membrane.  NN (“Non-Nuclear”) describes the expression 

level in the non-nuclear, non-membranous portion of the cell.  The ability to 

localize biomarkers in the PI3 Kinase pathway by subcellular compartment is 
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designed to allow for improved prognostic models by more precisely describing 

the metabolic activity of the pathway. 

Model	
  Search	
  

One of the challenges of our analysis was model selection.  One 

possibility is to use artificial intelligence algorithms to search the model space 

and use pruning techniques to eliminate unfavorable portions of the covariate 

space.  This is potentially advantageous given limited computing resources.  

However, without deep understanding of the domain space, it is difficult to 

accurately predict which portions of the covariate space are unfavorable for 

analysis.  Another possibility is to use classic Classification and Regression 

Trees (CART) (10) to determine good variables on which to split and then 

construct models by hand.  Although this lessens the dependence of model 

quality on the researcher’s domain expertise, it remains prone to error.   The 

most foolproof method, given sufficient computing resources, is to exhaustively 

search the variable space.  With the availability of two high-performance 

clusters (described below) on which to perform our analysis, we chose the 

exhaustive search option.   

With exhaustive search of the covariate space, it becomes imperative to 

accurately create all possible combinations of variables for models of varying 

complexity (e.g., univariate, bivariate, trivariate, and so forth).  Given 

combinatorial explosion, this can be a time-consuming task.  In addition, we 

desired the ability to create specialized runs with models that included 

straightforward interactions of the form “Y ~ A*B*C”, where Y is the outcome 
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and A, B, and C are inputs, sub-interactions of the form “Y ~ A + B+ C + A*B”, 

where “A*B” defines an interaction between A and B in addition to their 

independent effects, and custom and/or transformed terms (e.g., logarithmic 

terms, such as Y ~ A + log(B/C)). 

Logistic	
  Regression	
  Analysis	
  and	
  Misclassification	
  

Given that our goal was to improve prognostic models of breast cancer, 

we chose dead or alive of disease as our outcome.  An important consideration 

was the appropriate time interval.  Shorter time intervals would classify 

patients with later recurrence as having “survived” breast cancer.  Longer time 

intervals would compromise the analysis by introducing the confounding nature 

of comorbidities that are common in older patients, as well as increasing the 

number of patients that did not have sufficient follow up.  A ten year time 

interval was chosen as a compromise.  Thus, our outcome was death due to 

breast cancer within ten years of the initial diagnosis. 

As we needed a statistical methodology that would predict this binary 

outcome, we chose logistic regression.  The logistic regression computation was 

performed using R’s glm (“generalized linear model”) function.   

Leave	
  One	
  Out	
  Cross	
  Validation	
  

In order to estimate prediction error of our models, we chose Leave One 

Out Cross Validation (LOOCV).  In this methodology, each patient is left out of 

the training set in turn and used in the test set.  A logistic regression analysis is 

performed on the training set.  Maintaining the parameters of the resulting 

model, if it correctly predicts the outcome (i.e., alive or dead at ten years) for 
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the patient left out (i.e., the single patient in the test set), then its 

classification is correct.  If it incorrectly predicts this outcome, then its 

classification is incorrect.  After all n-iterations of LOOCV, there are as many 

classifications as patients.  By dividing the incorrect classifications by the total 

number of classifications, we arrive at a misclassification estimate.  Our goal in 

this research project was to minimize the misclassification estimate, thereby 

improving our ability to accurately predict alive/dead status at ten years. 

Note that due to missing data values, not every patient will be included 

in the analysis when creating a misclassification estimate for a given model.  

Thus, as a measure of quality, we counted the number of successful predictions 

that were used to construct each misclassification estimate (the denominator 

of the misclassification estimate).  

In addition to misclassification, we computed Area Under the Curve 

(AUC) from ROC curves (Receiver Operator Curves).  The ROC curves were 

constructed using R’s rcorr.cens function from the Hmisc library (11). 

In order to format the data in a manner palatable to R, we were 

required to make a number of changes.  For example, R does not allow 

numerals at the start of column or row names in a data table.  Another 

potential issue was “factor” variables.  These include classification variables 

(e.g., TumorType could be Ductal or Lobular) and ordinal variables 

(pathologist-scored biomarker expression level scored as a 0, 1, 2 or 3).  In R, 

the former group is automatically recognized, whereas the latter group must 
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be explicitly designated as a factor; otherwise, it will be interpreted as a 

continuous variable.   

Another consideration was the alphabetical order of the factor names.  

This is due to the fact that R designates whichever factor is first alphabetically 

as the baseline.  In order to set the factor with the largest number of instances 

as baseline, we would programmatically recode the values when necessary, 

using 0, 1, 2 … n to represent the various categories in order of prevalence, 

and then explicitly designate each relevant variable as a factor to prevent its 

interpretation as a continuous variable. 

Bootstrapping	
  and	
  Confidence	
  Intervals	
  

Next, we needed to develop confidence intervals for our models, 

allowing us to compare two models and determine whether their 

misclassification estimates were statistically different. A common method for 

forming confidence intervals is via bootstrapping, which entails building 

training sets by sampling the data with replacement (12).  This did not change 

the total number of patients in the training set, but it did mean that patients 

could be included two or more times, whereas other patients would not be 

included at all.  By repeating this process 1000 times,  it was possible to 

construct a confidence interval by evaluating the 2.5 and 97.5 percentiles.  

Cluster	
  Runs	
  

Runs were performed on two different high-performance computing 

clusters maintained by the Yale University Life Sciences Computing Center, 

supported by NIH Grant RR19895.  The first, BulldogC, contains one hundred 
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and thirty compute nodes.  Each consists of dual 3.2 Ghz EM64T Xeon, 64-bit 

processors with eight GB of available RAM.  The second, BulldogI, contains one 

hundred and seventy compute nodes. Each consists of two dual core 3.0 GHz 

Xeon 5160 processors with sixteen GB of available RAM.  Runs varied greatly in 

complexity and required anywhere from a few hours to a week of processing 

time spread over one to one hundred and eighty processors. 

Given the enormous size and complexity of the runs, gracefully 

recovering from errors and having the ability to re-run selective inputs became 

a priority.  As noted earlier, we gained the ability to reproduce parts of the run 

by extracting model creation from the analysis code and passing discrete units 

of work into the R analysis function (represented by our input files).   

R was particularly sensitive to some data configurations.  This was 

especially true in the case of factor variables.  For example, in cases of a 

patient with a unique value for a factor variable, a R run-time error would 

occur when the patient was left out of model creation and then used for 

prediction during LOOCV.  Such a failure would cause the entire input file to 

fail and it was difficult to pinpoint the responsible formula.  To gracefully 

recover from these errors, we wrapped with R’s tryCatch function the code for 

generating the logistic regression model, making the prediction, and computing 

the Area Under the Curve (AUC).   
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Results	
  

Univariate	
  Results	
  

Univariate Mis.Est. AUC n Mean 0.025 0.975 

NPI 0.326 0.644 473 0.326 0.292 0.359 

~pNodal Stage 0.353 0.597 539 0.372 0.322 0.493 

TNM 0.367 0.609  0.367 0.313 0.447 

~Metastasis 
Stage 0.368 0.537 536 0.367 0.334 0.398 

~Fox01_NU 0.369 0.524 434 0.375 0.336 0.415 

~AKT1_TM 0.373 0.5 415 0.374 0.335 0.412 

~PI3Kp110_TM 0.377 0.539 403 0.386 0.343 0.431 

~mTOR_TM 0.382 0.5 429 0.383 0.346 0.419 

~NFkB_TM 0.383 0.5 439 0.389 0.35 0.433 

~HER2_MB 0.385 0.524 535 0.391 0.357 0.425 

 
Figure	
  1:	
  Selected	
  Univariate	
  Results	
  

Not surprisingly, the clinical models of NPI and TNM were superior to any 

single biomarker in the PI3 Kinase pathway.  This is likely because each of 

these clinical models incorporates multiple data points into a single marker of 

disease severity.  Interestingly, nodal status (the presence of metastasis in 

adjacent lymph nodes) was by itself slightly (but not significantly) more 

predictive than TNM overall, followed closely by whether or not the disease 

had metastasized distantly.  Of the PI3 Kinase variables, the nuclear 

localization of Fox01 and the overall expression of AKT1 were most predictive. 
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Bivariate	
  Results	
  

Bivariate Mis.Est. AUC n Mean 0.025 0.975 

pTumor * PathER 0.328 0.632 472 0.357 0.308 0.443 

pNode + NuGrade 0.333 0.645 502 0.357 0.305 0.434 

AKT1_NN + 
Fox01_NU 0.338 0.54 349 0.349 0.307 0.391 

 
Figure	
  2:	
  Selected	
  Bivariate	
  Results	
  

Although our top three bivariate models all approached the univariate 

NPI model with misclassifications of 0.328, 0.333, and 0.338, respectively, 

none of them were quite able to match its 0.326 misclassification estimate.  

Furthermore, whereas the 95% confidence interval for misclassification by NPI 

was only 0.067 wide, the confidence intervals for two of our two top three 

bivariate models were considerably wider, indicating a greater likelihood that 

in future analysis our favorable results would not be replicated on independent 

data sets 

Trivariate	
  Results	
  

Trivariate 
Mis.Est. AUC n Mean 0.025 0.975 

pTumor + 
mTOR_NN + 

PI3Kp110_TM + 
pTumor*PI3Kp110

_TM 

0.296 0.648 311 0.322 0.273 0.375 

pTumor + 
AKT1_NU + 
Fox01_NU + 

pTumor*AKT1_N
U 

0.298 0.620 332 0.323 0.275 0.38 
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pTumor + 
mTOR_TM + 

PI3Kp110_TM + 
pTumor*PI3Kp110

_TM 

0.299 0.648 311 0.326 0.276 0.378 

 
Figure	
  3:	
  Selected	
  Trivariate	
  Results	
  

With the additional information provided by a third variable, our top 

three trivariate results showed considerable improvement over our best 

bivariate results. They each had an improved misclassification estimate over 

NPI.  However, they also had a relatively wide 95% confidence interval of 

approximately 0.1.  Thus, the 95% confidence intervals of each overlapped with 

the 95% confidence intervals of the clinical models of TNM and NPI, and as a 

result none of the results were statistically significant. 

Multi-­‐Variate	
  Results	
  

 Mis. 
Est. AUC n Mean 0.025 0.975 

Fox01_NU + AKT1_NU + 
mTOR_MB + p70S6K_NU 

+ AVG_BCL2_TM + 
Fox01_NU*AKT1_NU*mT

OR_MB 

0.295 0.587 285 0.33 0.274 0.393 

Fox01_NU + AKT1_NU + 
mTOR_MB + 

AVG_BCL2_TM + 
p70S6K_NN + 

Fox01_NU*mTOR_MB*p7
0S6K_NN 

0.302 0.574 285 0.33 0.277 0.391 

Fox01_NU + AKT1_NU + 
mTOR_MB + AKT2_NN + 

AVG_BCL2_TM + 
p70S6K_NN + 

Fox01_NU*AKT1_NU*mT
OR_MB 

0.295 0.593 285 0.331 0.273 0.401 

Fox01_NU + AKT1_NU + 
mTOR_MB + cmyc_NU + 0.297 0.627 195 0.333 0.266 0.403 
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AVG_BCL2_TM + 
p70S6K_NN + 

AKT1_NU*p70S6K_NN 

 
Figure	
  4:	
  Selected	
  Multivariate	
  Results	
  

Our top multivariate (i.e., greater than trivariate) results did not show 

improvement over our best trivariate models.  Misclassification estimates were 

similar but the confidence intervals widened.    

 

Discussion	
  

Significance	
  of	
  Study	
  Results	
  

Our results were not significant when compared to the commonly used 

clinical models of TNM and NPI.  There are several possible reasons for this, 

including issues with missing data values, incomplete patient follow up in the 

YTMA49 cohort, choice of statistical methodology, and the significance of other 

biological pathways besides the PI3 Kinase pathway in breast cancer.   

First, there was a moderate amount of missing data, including clinical 

variables that were not available and AQUA variables that could not be 

computed due to inadequate tumor cores.  Logistic regression drops patients 

that do not have all values for all variables in the model, which leads to 

reduced accuracy of the model.   

Furthermore, patients with missing data values were also not available 

when creating our confidence intervals with bootstrapping.  With a smaller 

number of patients, this may have caused our confidence intervals to be wider 

than they would have been otherwise, and could have sacrificed statistical 
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significance in some cases.  Although it carries its own risks, imputing data may 

have improved our model accuracy and reduced our confidence intervals by 

making these patients available for regression analysis. 

Second, there was incomplete and inconsistent follow up of patients in 

the YTMA49 cohort.  This may have led to patients that were incorrectly 

classified as dead of disease that in actuality died of another cause.  It may 

also have led to patients that were incorrectly classified as dying of another 

cause.  In addition, some patients were lost to follow up altogether.   

Third, our results may also have suffered from our choice of outcome.  

The use of dead-of-disease at ten years arbitrarily separates a patient who has 

recurrence leading to death at nine years from one having the same outcome 

at ten years, even though these patients are effectively the same from a 

survival perspective.  Instead, choosing random forests with survival trees may 

have improved our results by eliminating the arbitrary cutoff of ten years (13, 

14).  Another option would be to use dead of disease at 15 years instead of 10 

years, given that the longer timeframe should eliminate the majority of late 

recurrences.  Separately, removing patients older than 80 would eliminate the 

confounding nature of the significant comorbidities in this elderly group of 

patients. 

Perhaps most significantly, since our study was designed, the importance 

of other pathways in breast cancer besides the PI3 Kinase pathway has become 

increasingly apparent.  This includes the p53 pathway and several others as 

well (15).  In some cases, multiple pathways may operate independently.  In 
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other cases, the pathways may have a dependency on each other.  For this 

reason, despite the tradeoff of a smaller cohort of patients, our analysis may 

have benefited from a focus only on the HER2-positive cases, as these are the 

cases for which the activity of the PI3-Kinase pathway has the most 

importance.   

Obviously, future studies of the potential of biomarker analysis to 

improve breast cancer prognosis would likely also benefit from the inclusion of 

other biological pathways that are significant in breast cancer. 

Statistical	
  Methodology	
  

Commonly, two statistical methodologies are used to create prognostic 

models to predict a binary outcome in human disease.  These are logistic 

regression and artificial neural network models (16). Other methodologies 

include k-Nearest Neighbors, Linear Discriminant Analysis, and Classification 

and Regression Trees (10). 

Significant advantages of logistic regression are that the methodology is 

well established and the coefficients of the models have intuitive clinical 

interpretations (17).  This allows us to compare the relative importance of 

various actors within the dysregulated PI3 Kinase pathway in breast cancer.  

Furthermore, logistic regression has been used in previous studies attempting 

to evaluate clinical models for breast cancer diagnosis (18, 19), and we were 

interested in comparing molecular models developed by this methodology to 

the clinical models used in practice.   
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Artificial neural networks are another viable option.  They have the 

advantage of not assuming a linear relationship between the model inputs and 

its outcome.  However, they are prone to over-fitting.  Additionally, their 

“black box” nature makes it impossible to reliably compare the relative 

importance of the various inputs in the model (17).  For the above reasons, we 

chose to use logistic regression over artificial neural networks in our analysis. 

However, in practice artificial neural networks have often performed 

well in elucidating previously unforeseen predictors in prognostic studies.  It 

would be instructive in a future study to compare the performance of artificial 

neural networks to the performance of logistic regression with regard to 

predicting survival in the YTMA49 cohort.   

Cross	
  Validation	
  

There are many methods of performing cross validation.  The three most 

commonly used are v-fold Cross Validation, Leave One Out Cross Validation, 

and Monte Carlo Cross Validation. 
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Figure	
  5:	
  v-­‐fold	
  Cross	
  Validation	
  

In v-fold Cross Validation, the cohort is split into v equal partitions.  v-1 

of these partitions are used for the training set, while the vth partition is used 

for the test set.  In the next iteration, a different partition is used for the test 

set, while the remaining partitions are again used for the training set, and the 

process repeats.  Thus, each partition is used as the test set exactly once and 

is included in the training set v-1 times.  

Leave One Out Cross Validation (LOOCV) is the most extreme example of 

v-fold cross validation, where n is the size of the sample and v = n.  This means 
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that the regression analysis is performed n times, the size of the training set is 

n-1 patients, the size of the test set is one patient, and each patient is in the 

test set exactly once.  Its thoroughness results in a smaller bias than lesser 

forms of v-fold cross validation.  A tradeoff is that it is the most 

computationally intensive form of v-old cross validation.   

 

Figure	
  6:	
  Leave	
  One	
  Out	
  Cross	
  Validation	
  

However, the fact that it is the most computationally intensive does not 

necessarily make it superior to cross validation with smaller values for v.  This 

is due to the fact that the n test sets are very similar to each other, resulting 

in a high variance.  The computational strain of LOOCV has made it less popular 

for large data sets, and as a result, its effectiveness in estimating 

generalization error has not been thoroughly studied (20). 

Monte Carlo Cross Validation is a third method of cross validation.  It 

introduces randomness by randomly splitting the cohort into a training set and 

a test set.  This process is repeated many times (e.g., 20, 50, or 1000 times).  
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It often employs similar splits to v-fold Cross Validation.  For example, with 

each iteration 90% of the observations may be in the training set and 10% in the 

test set.  As the number of iterations increases, this form of cross validation 

becomes increasingly computationally expensive. 

We chose to use (LOOCV) to estimate prediction error of our logistic 

regression models.  Despite its computational burden, LOOCV was chosen in 

part because we had sufficient computing power to perform it.  However, as 

noted by Molinaro (20), it has a high variance when compared to less extreme 

forms of v-fold cross validation.  Compared to n-fold or Monte Carlo cross 

validation, this may have created artificially large 95% confidence intervals, 

decreasing the likelihood that we would achieve statistical significance with 

our prognostic models when comparing them to the clinical gold standards of 

TNM and NPI. 

Model	
  Creation	
  with	
  Combination	
  Magic	
  

All computations were performed using The R Project for Statistical 

Computing (RPS), an open-source language and environment.  In pre-study 

trials, the code for creating models was written in R alongside the R code for 

analyzing the logistic regression model and computing the misclassification.   

The limitation of this approach was several-fold.  First, while R is an 

excellent language for statistical analysis, data manipulation, and graphing, it 

lacks the advanced programming features found in more traditional 

programming languages.  Examples include the availability of classic data 

structures and strong debugging support.  As a result, it was difficult to create 
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a generalized algorithm for selecting all possible combinations of r from n, and 

such an algorithm would still not have the flexibility for custom model creation 

of the form we desired.  Second, by integrating model selection into a 

monolithic analysis run, we would not have the opportunity to selectively re-

run part of the analysis in case of failure.  Third, a graphical environment for 

manipulating parameters related to model selection would be significantly 

more user-friendly and offer improved ability to visualize the results of model 

construction in advance of our computing runs. 

We realized that by extracting the process of model creation from 

execution of the statistical runs, we could solve each of these issues.  A more 

conventional programming language would provide us with the libraries and GUI 

environment to create a flexible, generalized tool for model generation.  Given 

our familiarity with Java, this is the language we chose.  By generating our 

models in advance of the analysis run, and writing them out to multiple input 

files, the failure of any one file would allow the others to proceed, and the 

failed file could be re-run independently. 

We wrote a Java program (Combination Magic) to accomplish this task of 

model generation.  Combination Magic evolved to handle several additional 

features, which we will describe in the next paragraphs.   
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Figure	
  7:	
  Combination	
  Magic	
  

Most simply, Combination Magic takes a list of variables (of length n) and 

a “comparison level” (r) parameter that specifies how many variables should be 

in each combination.  For example, asking for all trivariate runs (taking r=3 

from n=84) yielded 95,284 combinations (i.e., models) for our data set.  (This is 

according to the formula for combinations of r objects from n choices, n!/[r! * 

(n-r)! )  The program’s output is two-fold.  The text box on the left contains all 

the possible combinations of the input variables.  In turn, this is the input to 

the model generator, which creates one or more models for each combination.  

These models are displayed in the textbox on the right.   
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Fundamentally, there are two types of models in Combination Magic, 

which we call “additive” (e.g., A + B + C) and “interactive” (e.g., A*B*C).  Note 

that interactive models, such as “A*B”, should be used when the variables A 

and B influence each other, with the expectation that the product of these two 

variables will meaningfully improve the predictive value of the model.     

Various parameters control the way that Combination Magic generates 

models from the combinations.  First, an “Include Smaller Levels” checkbox 

allows the user to include multiple levels in the output; for example, 

trivariate, bivariate, and univariate.  Second, the “Exclude Non-Interactions” 

checkbox allows you to remove pure additive models from the output.  Often 

you will want to run all additive models, and do all interactive models in a 

following run.  Third, Interaction Level specifies the level at which interactions 

are produced.  Note that this interaction level must be within the range of the 

Comparison Level (from 2 to Comparison Level if “Include Smaller Levels” is 

checked, otherwise just Comparison Level) to have any effect.  Fourth, the 

Sub-Interactions checkbox turns on generation of sub-interactions, while the 

adjacent Vars input designates the maximum number of terms in each sub-

interaction.  For example, when processing a quadvariate model, Vars = 3 

would yield sub-interaction terms that included both two variables and three 

variables, whereas Vars = 2 would just include the two-variable sub-

interactions. 
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Combination	
  Magic	
  Use	
  Cases	
  

 
Figure	
  8:	
  Combination	
  Magic	
  Use	
  Case	
  #1	
  

This is a simple example of model creation.  There are five variables and 

the comparison level is one.  Since each variable is only compared to itself, this 

yields five possible models.  Note that we specified Z as the outcome variable.  

We also specified that the variable X should be included in every formula.  

Note that any variable included in this manner will not participate in 

comparisons, although this variable can be of any arbitrary form (e.g., an 

interaction such as X*Y or a logarithmic variable such as log X). 
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Figure	
  9:	
  Combination	
  Magic	
  Use	
  Case	
  #2	
  

Now we have specified a comparison level of 3.  This creates models of 

the form “Z~A+B+C”.  Since we have checked “Include Smaller Levels”, we also 

have models of the form “Z~A+B” (i.e., a comparison level of 2).  In total, 25 

models are created. 
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Figure	
  10:	
  Combination	
  Magic	
  Use	
  Case	
  #3	
  

Now, in addition to a comparison level of 3, we have specified an 

interaction level of 3.  This interaction level creates interactions of the form 

“A*B*C”.  Since we have selected the “Sub-Interactions” check box, models will 

also be created with smaller interactions up to the level specified.  In this 

case, this means the inclusion of interactions of 2 (e.g., A*B).  In total, 10 

combinations and 50 models are created. 
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Combinatorial	
  Explosion	
  and	
  Java	
  Heap	
  Restrictions	
  

We quickly realized that combinatorial explosion would not only slow 

down completion of our runs on the clusters, but also impact our ability to 

generate the models in Combination Magic due to heap and stack overflows.  In 

order to solve the stack overflow problem, the recursive combination algorithm 

was rewritten to avoid calling itself.  (It is only a pseudo-recursive function in 

that each call to the function only necessitates one “recursive” call until the 

base case is eventually reached, not two or more.)   

The heap overflow problem was more problematic.  Java has a heap size 

limit on various operating systems.  On Windows, it is 1.6 gigabytes.  Even after 

optimization and allocation of the maximum amount of memory, heap size 

would be exceeded whenever the number of models reached the low millions.  

To solve this, we added the ability to selectively generate ranges of output 

(e.g., combinations 500,000 to 999,999, and so forth).  We also added a small 

calculator, available in the “Calculate Combinations” tab, to calculate the 

number of combinations to expect from a set of parameters r and n.  This 

assisted in our planning of runs, allowing us to generate maximum model 

output without causing a heap overflow.  

Despite these optimizations and workarounds, we reached a limit beyond 

which we could not search exhaustively.  For our data, exhaustively searching 

the 5-variable space would require examining 30,872,016 models (5 from 84).  

Because LOOCV requires repeating the generation of each logistic regression 

model 539 times, alternating leaving out each patient, exhaustively searching 



34 

the 5-variable space would actually require more than 16 billion distinct and 

expensive logistic regression calculations, and that’s without interactions, sub-

interactions, or custom terms.  We did not have enough computer power to 

accomplish this task.  Thus, we needed a new strategy. 

For runs beyond quadvariate, instead of selecting from all 100 variables 

(recall that each PI3-Kinase biomarker has several subcellular compartmental 

expression levels), we split the variables into two "families".  One family 

consisted of the best subcellular compartmentalizations of the PI3K 

biomarkers.  The second family consisted of the AQUA and pathologist-scored 

ErbB family markers and ER/PR, along with the clinical variables pTumor, 

pMet, and pNode. We will refer to these as the PI3K and ErbB families, 

respectively.  5- and 6-variable runs were performed on each family. 

Next, we merged the results from each family into an aggregate run that 

included the best models from each family.  Combination Magic was extended 

with new functionality to enable the merge.  We will use the example of 

creating a six-variable "merged" run from the best thirty models of the two 5-

variable runs of each family.  The merge consisted of selecting six variables 

from the pool of variables created by all pair-wise combinations of the top 

models from one run with the top models of the second run.  Variables were 

extracted from each pair and then combined into one pool, with redundant 

variables, when they existed, thrown out.   If each 5-variable model lacks 

redundant variables, this leaves a pool of ten variables, and selecting 

combinations of six yields 210 combinations.   
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There are 900 pair-wise combinations of 30 with 30, leading to 900 total 

pools. Thus, the total number of models is potentially 900*210 = 189,000.  In 

practice, many duplicate models existed and were eliminated, but the 

elimination of duplicate models was offset by the expansion of sub-interaction 

terms.  Thus, the pool actually involved twelve or more variables.  In our case, 

merging the top thirty models from the PI3K and ErbB families yielded 284,301 

unique additive models without sub-interactions or interactions.   

After completing a run with additive models only, we went one step 

farther by also performing logarithmic expansion (each variable’s logarithmic 

term was also added to the pool), treating sub-interaction terms as a variable 

in their own right, and creating models with interactions and sub-interactions.  

Due to combinatorial explosion, this required a reduction in the number of 

models merged.  We took the top ten models from the PI3K and ErbB families 

and merged them together.  This yielded 880,000 models with interactions and 

sub-interactions, not including the additive models that had already been 

processed.   

Summary	
  
In summary, our attempts to find improved prognostic models in invasive 

breast cancer when compared to the clinical gold standards of TNM staging and 

the Nottingham Prognostic Index were not statistically significant.  The 

inability to achieve statistical significance was likely multifactorial.  Broadly, 

our focus on biological markers in the PI3 Kinase pathway only may have been 

insufficient.  There are many biological pathways important in human breast 



36 

cancer, and their interactions are complex and not fully understood.  Subgroup 

analysis of HER2 positive patients may have increased the significance of our 

results as the importance of the PI3 Kinase pathway is amplified in this group.  

Refinement of our statistical methodology may have further increased 

significance.  Imputing missing data points may have lead to more accurate 

models and narrower confidence intervals.  Use of n-fold or Monte Carlo cross 

validation methods may have also led to narrower confidence intervals.  

Removing patients older than 80 from our cohort may have reduced the 

influence of confounding comorbidities.   Most significantly, we continue to 

believe in the potential of biomarker analysis to improve upon existing 

prognostic models in breast cancer and believe that this is an area deserving of 

continued attention and research efforts.
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R	
  Statistical	
  Code	
  
 
doInit <- function() { 
 
logistic = function(form, dat.sam, samx=samx, res.name, n.fold) { 
 
  options(warn = -1) 
  cv = unique(samx)[order(unique(samx))] 
  n.fold<-length(cv) 
  ret = list() 
  error = numeric(n.fold) 
  failures = 0 
  outcomes = 0 
 
  for( j in cv ) { 
    model.input = data.frame(dat.sam[which(samx!=j),]) 
    names(model.input) = c(names(dat.sam)) 
    #note: line below returns to original data to get the input row 
    outcome.input = data.frame(datx[j,])  
    outcome = NA #in case of failure 
    fxoutput = tryCatch({ 
      model = glm(form, family=binomial, model.input) 
      outcome = predict( model, outcome.input, type="response") 
    }, error = function(ex) { 
        failed = "yes" 
      } ) 
    if(!(is.numeric(fxoutput)) && !(is.na(fxoutput))) {  
      failures = failures + 1 
    } else if(!(is.na(fxoutput))) {  
      outcomes = outcomes + 1  
    } 
    error[j] = as.numeric((outcome > 0.5) != outcome.input$tenyrcens) 
  } 
  ret[[1]] = sum(error[cv], na.rm=T)/sum(!is.na(error[cv])) 
  ret[[2]] = outcomes 
  ret[[3]] = failures 
  return ( ret ) 
} 
 
  assign("logistic", logistic, envir=globalenv()) 
 
  #read in data from data file 
  datx = data.frame(read.table("../YTMA49cleanNPI.txt", sep="\t", 
header=T)) 
  datx$tenyrcens = 1-datx$tenyrcens 
  #specify variables as factors here 
  datx$TumorType = factor(ifelse(datx$TumorType=="IDC-
NOS",0,ifelse(datx$TumorType=="IDC-
lobft",1,ifelse(datx$TumorType=="IDC-
LowRisk",2,ifelse(datx$TumorType=="ILC",3,NA)))))   
  datx$HistoGrade = 
factor(ifelse(datx$HistoGrade==1,"Low",ifelse(datx$HistoGrade==2,"Mediu
m",ifelse(datx$HistoGrade==3,"High",NA)))) 
  datx$NuGrade = factor(datx$NuGrade) 
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  datx$Laterality = factor(ifelse(datx$Laterality == 
"L","L",ifelse(datx$Laterality=="R","R",ifelse(datx$Laterality=="B","Z"
,NA)))) 
  datx$pTumor = factor(datx$pTumor) 
  datx$pMet = factor(datx$pMet) 
  datx$pNode = factor(datx$pNode) 
  datx$PathER = factor(datx$PathER) 
  datx$PathPR = factor(datx$PathPR) 
  datx$PathHER2 = factor(datx$PathHER2) 
  datx$NPI = factor(datx$NPI) 
  assign("datx", datx, envir=globalenv()) 
} 
 
doBootstrap <- function(iter, offset) { 
  res.name <- "tenyrcens" 
  set.seed(as.integer(iter)) #sets seed for random number generator 
  #read in formulas from text file 
  formulas = 
data.frame(read.table(paste("formulas",iter,".txt",sep=""))) 
  #only takes one formula per input file 
  form = as.formula(as.character(formulas[1,1]))    
  n.confidence = 1000 
  misclassifications = numeric(1:n.confidence) 
  successes = numeric(1:n.confidence) 
  failures = numeric(1:n.confidence) 
  for( i in 1:n.confidence ) { 
    #build an array of the row values to sample 
    samx<-sample(c(1:nrow(datx)),nrow(datx),replace=TRUE)  
    #the data transformed by sampling  
    dat.sam <- datx[samx,]  
    #rerun the sampling algorithm if all rows are 0 or 1 
    while( sum(dat.sam[,res.name]) == nrow(dat.sam) | 
sum(dat.sam[,res.name]) == 0 ) {  
      samx = sample(c(1:nrow(datx)), nrow(datx), replace=T) 
      dat.sam = datx[samx,] 
    } 
     
    ret = logistic(form, dat.sam, samx=samx, res.name=res.name, 
n.fold=nrow(dat.sam)) 
    misclassifications[i] = ret[[1]] 
    successes[i] = ret[[2]] 
    failures[i] = ret[[3]] 
  } 
   
  quants = quantile(misclassifications,c(0.025,0.975),na.rm=TRUE) 
  results.names = 
list(c(as.character(formulas[1,1])),c("mean","median",".025",".975","su
ccesses","failures")) 
  results = matrix(nrow=1, ncol=6, dimnames=results.names) 
  results[1,] = 
rbind(mean(misclassifications),median(misclassifications),quants[1],qua
nts[2],mean(successes),mean(failures)) 
  results = round(results,3) 
  #write the results out to a numbered text file 
  write.table(results,file=paste("results",iter,".txt",sep="")) 
} 
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#for running the bootstrap 
doInit() 
doBootstrap(commandArgs()[5], commandArgs()[6]) 
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Tables	
  

Table	
  One:	
  AQUA-­‐Measured	
  Variables	
  (Hormonal	
  Receptors	
  and	
  PI3	
  
Kinase	
  pathway)	
  

Variable Explanation Variable Explanation 
ER Estrogen Receptor PR Progesterone Receptor 
EGFR Endothelial Growth 

Factor Receptor 
HER2 Human Epidermal 

Growth Factor Receptor 
2 

HER3 Human Epidermal 
Growth Factor Receptor 
3 

HER4 Human Epidermal 
Growth Factor Receptor 
4 

ERK Extracellular signal-
Related Kinases 

PTEN Phosphatase and Tensin 
Homolog 

PI3Kp85 PI3 Kinase Pathway FOX03 PI3 Kinase Pathway 
eIF4E PI3 Kinase Pathway p27kip1 PI3 Kinase Pathway 
BCL2 PI3 Kinase Pathway AKT1 PI3 Kinase Pathway 
AKT2 PI3 Kinase Pathway AKT3 PI3 Kinase Pathway 
CMYC PI3 Kinase Pathway CyclinD1 PI3 Kinase Pathway 
FOX01 PI3 Kinase Pathway MTOR PI3 Kinase Pathway 
NFkB PI3 Kinase Pathway p70S6K PI3 Kinase Pathway 
PI3Kp110 PI3 Kinase Pathway   

Table	
  Two:	
  Clinical	
  Variables	
  

Variable Explanation Variable Explanation 
DiagAge Age at Diagnosis pMet Metastasis (TMN) 
pTumor Tumor Size (TMN) pNode Nodal status (TMN) 
HistoGrade Histologic Grade NuGrade Nuclear Grade 
Laterality Light or Right PathER Estrogen Receptor 

(pathologist-scored) 
PathPR Progesterone Receptor 

(pathologist-scored) 
PathHER2 HER2 Receptor 

(pathologist-scored) 
TumorType Histologic Type   
 

Complete	
  Univariate	
  Results	
  	
  

Univariate Mis.Est. AUC n Mean 0.025 0.975 

NPI 0.326 0.644 473 0.326 0.292 0.359 

~pNodal Stage 0.353 0.597 539 0.372 0.322 0.493 
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TNM 0.367 0.609  0.367 0.313 0.447 

~Metastasis 
Stage 0.368 0.537 536 0.367 0.334 0.398 

~Fox01_NU 0.369 0.524 434 0.375 0.336 0.415 

~AKT1_TM 0.373 0.5 415 0.374 0.335 0.412 

~PI3Kp110_TM 0.377 0.539 403 0.386 0.343 0.431 

~mTOR_TM 0.382 0.5 429 0.383 0.346 0.419 

~NFkB_TM 0.383 0.5 439 0.389 0.35 0.433 

~HER2_MB 0.385 0.524 535 0.391 0.357 0.425 

~PR_NU 0.385 0.5 473 0.385 0.352 0.421 

~PTEN_TM 0.386 0.5 446 0.387 0.353 0.434 

~p70S6K_NU 0.387 0.506 439 0.389 0.353 0.428 

~CyclinD1_TM 0.388 0.5 456 0.389 0.356 0.424 

~Nuclear Grade 0.39 0.569 502 0.400 0.358 0.538 

~cmyc_TM 0.39 0.506 323 0.393 0.346 0.443 

~Tumor Stage 0.392 0.566 502 0.373 0.332 0.506 

~p70S6K_TM 
(repeat) 0.392 0.506 439 0.388 0.351 0.423 

~AKT2_TM 0.392 0.5 449 0.395 0.359 0.433 

~eIF4E_NN 0.394 0.505 480 0.402 0.364 0.442 

~BCL2_TM 0.394 0.5 462 0.396 0.359 0.449 

~Age at 
Diagnosis 0.395 0.5 539 0.399 0.366 0.441 

~PI3Kp85_NU 0.397 0.498 466 0.399 0.365 0.436 

~Laterality 0.398 0.5 530 0.407 0.367 0.47 

~p27kip1_NU 0.398 0.5 427 0.402 0.363 0.439 
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~ER_NU 0.4 0.5 515 0.423 0.369 0.444 

~AKT3_NU 0.401 0.5 362 0.403 0.361 0.446 

~FOXO3A_MB 0.401 0.498 401 0.401 0.363 0.442 

~PI3Kp85_NN 
(repeat) 0.401 0.495 466 0.400 0.365 0.435 

~AKT3_MB 
(repeat) 0.403 0.508 362 0.404 0.363 0.449 

~p27kip1_MB  0.403 0.5 427 0.404 0.365 0.447 

~HER3_NN 0.404 0.511 488 0.402 0.365 0.439 

~EGFR_MB 0.405 0.506 514 0.395 0.359 0.432 

~PathER 0.407 0.5 509 0.424 0.372 0.642 

~HER4_NN 0.409 0.5 472 0.409 0.373 0.446 

~PathPR 0.409 0.5 494 0.433 0.377 0.664 

~AKT3_NN 
(repeat) 0.412 0.497 362 0.403 0.362 0.444 

~ERK_TM 0.413 0.5 404 0.417 0.377 0.466 

~TumorType 0.423 0.515 539 0.406 0.365 0.462 

~Histologic 
Grade 0.460 0.510 265 0.500 0.414 0.766 

~PathHER2 0.471 0.5 499 0.423 0.379 0.492 

Selected	
  Multivariate	
  Results	
  

5-variate Mis. 
Est. AUC n Mean 0.025 0.975 

Fox01_NU + AKT1_NU + 
mTOR_MB + p70S6K_NU 

+ AVG_BCL2_TM + 
Fox01_NU*AKT1_NU*mT

OR_MB 

0.295 0.587 285 0.33 0.274 0.393 

Fox01_NU + AKT1_NU + 
mTOR_MB + 

AVG_BCL2_TM + 
0.302 0.574 285 0.33 0.277 0.391 
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p70S6K_NN + 
Fox01_NU*mTOR_MB*p7

0S6K_NN 

Fox01_NU + 
PI3Kp110_TM + 

mTOR_MB + p70S6K_NN 
+ FOXO3A_NN + 

Fox01_NU*PI3Kp110_TM
*mTOR_MB*FOXO3A_N

N 

0.301 0.666 279 0.337 0.28 0.401 

ER_NU + HER3_NN + 
HER4_NN + pMet + 

pTumor + 
HER3_NN*pTumor 

0.310 0.663 393 0.345 0.294 0.399 

ER_NU + HER3_NN + 
HER4_TM + pMet + 

pTumor + 
HER3_NN*pTumor 

0.315 0.659 394 0.348 0.295 0.406 

HER3_NN + 
log(HER4_NU/HER4_NN) 
+ PathPR + PathHER2 + 

pTumor + 
log(HER4_NU/HER4_NN)

*PathPR*PathHER2 

0.316 0.702 380 0.355 0.301 0.411 

log(HER4_NU/HER4_NN) 
+ PathER + PathPR + 

pMet + pNode + 
PathER*PathPR*pNode 

0.317 0.699 441 0.373 0.314 0.443 

 
 

6-variate Mis. 
Est. AUC n Mean 0.025 0.975 

Fox01_NU + AKT1_NU 
+ mTOR_MB + 

AKT2_NN + 
AVG_BCL2_TM + 

p70S6K_NN + 
Fox01_NU*AKT1_NU*m

TOR_MB 

0.295 0.593 285 0.331 0.273 0.401 

Fox01_NU + AKT1_NU 
+ mTOR_MB + 

cmyc_NU + 
AVG_BCL2_TM + 

p70S6K_NN + 
AKT1_NU*p70S6K_NN 

0.297 0.627 195 0.333 0.266 0.403 

Fox01_NU + AKT1_NN 0.295 0.590 285 0.334 0.277 0.403 
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+ mTOR_MB + 
p70S6K_NU + 
AKT2_NN + 

AVG_BCL2_TM + 
Fox01_NU*mTOR_MB*p

70S6K_NU 

ER_NU + HER3_NN + 
HER4_NN + 

log(HER4_NU/HER4_N
N) + pMet + pTumor + 

HER3_NN*pTumor 

0.313 0.663 393 0.348 0.298 0.41 

ER_NU + HER2_MB + 
HER3_NN + HER4_MB 
+ HER4_NN + pTumor + 

HER3_NN*pTumor 

0.311 0.658 395 0.348 0.3 0.402 
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6-variate “Merge” Mis. 
Est. AUC n Mean 0.025 0.975 

AVG_BCL2_TM + 
Fox01_NU*AKT1_NU*m
TOR_MB + HER4_MB + 

HER4_NN + 
p70S6K_NU + pTumor + 

HER4_NN*pTumor 

0.247 0.728 243 0.303 0.240 0.370 

AKT1_NU + 
AVG_BCL2_TM + 

Fox01_NU*mTOR_MB*p
70S6K_NN + HER4_MB 
+ HER4_NN + pTumor + 

HER4_MB*pTumor 

0.259 0.704 243 0.304 0.243 0.379 

AKT1_NU + 
AVG_BCL2_TM + 

Fox01_NU*mTOR_MB*p
70S6K_NN + HER4_MB 
+ HER4_NN + pTumor + 

HER4_NN*pTumor 

0.259 0.713 243 0.304 0.238 0.371 

AVG_BCL2_TM + 
Fox01_NU*AKT1_NU*m
TOR_MB + HER4_MB + 

HER4_NN + 
p70S6K_NN + pTumor + 

HER4_NN*pTumor 

0.247 0.728 243 0.305 0.241 0.374 

AVG_BCL2_TM + 
Fox01_NU*AKT1_NU*m
TOR_MB + HER4_MB + 

HER4_NN + 
p70S6K_NN + pTumor + 

HER4_MB*pTumor 

0.259 0.731 243 0.305 0.240 0.378 

Fox01_NU + 
Fox01_NU*AKT1_NU*m

TOR_MB + 
HER3_NN*pTumor + 

HER4_NN + 
p70S6K_NU + pMet + 

Fox01_NU*HER3_NN*p
Tumor 

0.258 0.690 260 0.325 0.263 0.394 
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