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Abstract. 
 
The present study had several goals. First, we aimed to investigate the 

potential differences in the activation of the corticolimbic structures during emotional 

stress in healthy women across the menstrual cycle using stress imagery. Second, we 

searched for differences in the subjective anxiety under emotional stress across the 

menstrual cycle and tried to correlate the perceived level of anxiety to activation of 

the specific corticolimbic structures. Third, we attempted to compare central neural 

activation of women in follicular and in luteal phases of the menstrual cycle 

separately to that of men during emotional stress to investigate potential differences 

in neural response. We used perfusion based functional magnetic resonance imaging 

(MRI) and blood oxygen level dependent (BOLD) contrast to measure cerebral blood 

flow response to the emotional stress using stress imagery in 29 healthy volunteers (9 

women in follicular phase, 10 women in luteal phase, and 10 men). Cycle-dependent 

comparison of the stress response in women revealed that women in the follicular 

phase had greater activation in the areas of the ventro-medial prefrontal cortex 

(VMPFC), with levels of activation comparable to those of men, and anterior insula, 

while women in the luteal phase of their menstrual cycle demonstrated increase blood 

flow in the areas of the anterior cingulate and hippocampus at P = 0.01. Males 

showed overall greater degree of corticolimbic activation, specifically in the bilateral 

hippocampi and right prefrontal cortex regardless of which group of women they 

were compared to. When compared to women in different phases of the menstrual 

cycle specifically, men showed greater cerebral blood flow in bilateral cingulate 

cortices and right hippocampus compared to women in the follicular phase, and 
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bilateral striatum, amygdala, bilateral hippocampi when compared to women in the 

luteal phase. We did not observe different levels of self-reported anxiety during stress 

imagery across the menstrual cycle, however, women in their luteal phase showed a 

positive correlation of the self-reported anxiety levels and cerebral blood flow in the 

posterior insula at the threshold level of P = 0.05. The results of our study are 

consistent with the previously available information regarding the differences in the 

corticolimbic activation across the menstrual cycle in women and in women vs. men. 

In addition to that, our data supports the correlation of the levels of anxiety and 

insular activation in the luteal phase of the menstrual cycle and could represent an 

initial step in uncovering the mechanisms regulating stress response, anxiety and their 

relation to the hormonal status.  
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            Introduction. 

 

Stress has long been known to have various effects on lives. Through 

numerous studies it has been associated with depression, impairment in cognitive 

function, weakened immune system response and an earlier onset of age-related 

disease [1-5]. Recently, interaction of gender and stress reactivity have been proposed 

as a potentially important influence on prevalence of various health problems in men 

and women, in addition to sociologic, developmental and cultural factors [6, 7]. 

While there is a definitive pattern in prevalence of several physical and psychiatric 

disorders depending on gender [7-10], some of those differences become more 

prominent during women’s reproductive years, and gradually decline after 

menopause, suggesting that the gender-specific pattern of observed prevalence of 

diseases may be partly due to the effects of sex hormones [11].  

 

Although the exact neural circuitry of psychological stress remains unclear, 

considerable progress has been made in the uncovering of cortical and subcortical 

structures that regulate stress response, reporting activations in the prefrontal cortex, 

anterior and posterior cingulate, caudate, putamen, hippocampus, amygdala and 

insula [12, 13]. In emotion and depression research, same regions have been reported 

to be involved in emotional information processing [14-16], and to show altered 

activity in the depressed state [17, 18]. Secondary to the evidence of variation in 

neuroendocrine stress response depending on gender [7, 9], some investigators have 

also approached the idea of difference in neural circuit’s response in males and 
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females, reporting unequal activation of brain structures during psychological stress 

as well as during emotion processing, with changes occurring in the corticolimbic and 

striatal regions that are important in emotional and stress processing [19, 20].  

 

While more imaging evidence is becoming available regarding the activation 

of neural circuits under the influence of stress depending on gender, and proven 

variation in the neuroendocrine stress response in women depending on their 

hormonal status [21-23], few studies have compared brain activation at different 

points in the hormonal cycle. Those that are available tend to focus on cognitive tasks 

such as mental rotation and word-stem-completion tasks [24-26], reporting 

differences in the size and localization of active areas. The only study to compare 

psychological stress at different points of menstrual cycle was Protopopescu et all, 

2005, using words with negative, positive and neutral context as stimuli, and 

reporting differences in the activation of orbitofrontal cortex (OFC), cingulate and 

insula – regions important in the emotional and stress response [27]. These results 

begin to shed light on the question of brain response to the psychological stress across 

menstrual cycle, yet the differences in the brain response to the emotionally stressful 

stimuli are still much unidentified. 

 

To address these questions, we combined functional magnetic resonance 

imaging (fMRI) with investigation of the emotional stress response in females at two 

different phases of the menstrual cycle. Functional MRI blood oxygen level detection 

(BOLD) was used as a neuroimaging technique due to its optimal contrast for brain 
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activation mapping and consistent reproducibility [28, 29]. Three groups, 2 groups of 

females and 1 group of male volunteers participated in the study. All the participants 

were scanned during exposure to two individually developed scripts trials of stress 

and two neutral non-stress situations presented in random order. Based on the 

previous studies we expected to see a different response and activation patter during 

stress trials in structures previously reported to be involved in emotional processing, 

e.g. hippocampus, amygdala, anterior and posterior cingulate, prefrontal cortex and 

insula in women depending on the stage of their menstrual cycle. We also expected 

differences in the activation of women in different phases of the menstrual cycle 

when compared to men during stress imagery. Lastly, we were looking to investigate 

the potential differences in the levels of self-reported anxiety during emotional stress 

in healthy women across the menstrual cycle, and a possible correlation of the levels 

of perceived anxiety and cortical blood flow the specific corticolimbic structures. 
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Methods. 

 

Subjects. Between May 2004 and August 2007 21 healthy, regularly cycling 

women (menstrual cycle length 25-31), reportedly not on birth control (mean age = 

31.0, SD= 8.6) enrolled in the study after given written informed consent. Two 

participants were excluded from the study. One of the participants was excluded due 

to the fact that she reported being on oral contraceptive at the time of the study after, 

the fMRI was completed. Second participant was excluded from analysis secondary 

to the inability to establish the day and phase of her menstrual cycle at the time of 

fMRI. Nineteen women (mean age = 31.6, SD = 9.0) successfully completed the 

study and were included in the analysis. 

Ten of the females included in the analysis were scanned during their luteal 

phase (menstrual cycle days 17-27), and 9 females were scanned during their 

follicular phases (menstrual cycle days 1-13). I have participated in that process, 

guiding the participant through scans and recording their physiological data 

throughout the imaging procedure. 

Also, ten men who were scanned previously (mean age = 28.9, SD = 10.1), 

were chosen to closely resemble both groups of female participants by age, education, 

and race (table 1). All participants completed demographic assessment during initial 

visit. All subjects were recruited through public advertisement in the area of New 

Haven, Connecticut. All procedures were approved by the Human Investigation 

Committee of the Yale University School of Medicine.  
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Groups Education Race 

 t p ChiSquare DF P 
HM vs. HF 0.68 0.507 1.444 3 0.6952 

HM vs. HL -1.22 0.2425 4.8 3 0.1870 

Table 1. Comparison of the groups by education and race.  
 

Hormonal assessment.  

All women underwent hormonal assessment to confirm the phase of their 

menstrual cycle. During the initial visit all women filled out the questionnaire where 

they reported the length of their menstrual cycle and the regularity. During a different 

visit all women underwent a blood draw to verify the expected levels of estrogen and 

progesterone relative to their self-report of where they were expected to be in their 

cycle. On the day of fMRI they were asked to report the day of their menstrual cycle 

again. All the menstrual cycle information was confirmed and verified by me using 

the length and day of the menstrual cycle reported during the first visit for the 

calculation of the expected day to ensure the correct phase on the date of the fMRI 

and date of the laboratory assessment. Hormonal assays were conducted by Yale 

Laboratory for Surgery, Obstetrics and Gynecology (LSOG). 

 

Imagery script development session. 

In the week prior to the fMRI session, scripts for the guided imagery induction 

were developed in a structured clinical interview session. Three stress imagery scripts 

were developed for each subject. They were based on the subjects’ description and 
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ratings of three separate personal, stressful events that were experienced as the “most 

stressful” within the past year. “Most stressful” was determined by having each 

subject rate their level of emotional distress experienced on a 10-point Likert scale, 

where “1=not at all stressful” and “10=the most distress they felt recently in their 

life”. Only situations rated as 8 or above on this scale were accepted as appropriate 

for script development. Examples of stressful situations included breakup with 

significant other, a verbal argument with a family member, or unemployment-related 

incident. In addition to the stress scripts, three neutral-relaxing scripts were also 

developed from personalized, neutral situations. Examples of neutral relaxing 

situations included a day at the park, a summer beach scene, or relaxing Sunday 

afternoon reading.  

A “script” or description of each stress and neutral situation was developed 

using Scene Development Questionnaire (SDQ) and methods described and used 

previously [30-34]. Briefly, the SDQ method obtains specific details on the physical, 

interpersonal, verbal/cognitive context, and bodily responses experienced for each 

situation. On the basis of these detail, two stress and two neutral scripts of 2 min in 

length were developed for each subject and recorded on an audiotape for the fMRI 

session. The order of the stress and neutral scripts was assigned randomly. Subjects 

remained blind to the order of the imagery condition until imagery induction on each 

day.   
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Imagery training session.  

To reduce variability in imagery ability and to train all subjects in progressive 

relaxation, a one-session progressive relaxation and guided imagery training session 

was conducted with all subjects according to procedures outlined by Miller et. al. 

1987 and used previously in imagery studies with healthy controls and cocaine 

abusers by Sinha et al. 1992, 2002, 2005.  

 

 

fMRI acquisition procedure.  

All fMRI scans took place at the Yale Magnetic Resonance Research Center 

(MRRC) in New Haven, Connecticut. All images were acquired using a Siemens 3.0 

T Trio system equipped with a standard quadature head coil, using T2-sensitive 

gradient-recalled single shot echo planar pulse sequence. Head positioning was 

standardized using the canthomeatal line and was secured with foam pillows and a 

band across the forehead. Subjects wore headphones and were fitted with a pulse-

oximeter on their finger to obtain heart rate, recorded every 10 sec. Anatomical 

images of the functional slice locations were next obtained with spin echo imaging in 

the axial plane parallel to the AC-PC line with TR = 300 msec, TE = 2.5 msec, 

bandwidth = 300 Hz/pixel, flip angle = 60 degrees, field of view = 220x220 mm, 

matrix = 256x256, 32 slices with slice thickness = 4mm and no gap. Functional, 

blood oxygen level dependent (BOLD) signals were then acquired with a single-shot 

gradient echo planar imaging (EPI) sequence. Thirty-two axial slices parallel to the 

AC-PC line covering the whole brain were acquired with TR = 2,000 msec, TE = 25 
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msec, bandwidth = 2004 Hz/pixel, flip angle = 85 degrees, field of view = 220x220 

mm, matrix = 64x64, 32 slices with slice thickness = 4mm and no gap, 190 

measurements.  At the end of the functional imaging, a high resolution 3D 

Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence (TR=2530 ms; 

echo time (TE) =3.34 ms; bandwidth=180 Hz/pixel; flip angle (FA) = 7°; slice 

thickness=1mm; field of view=256 x 256 mm; matrix=256 x 256) was used to acquire 

sagittal images for multi-subject registration.   

 

fMRI imaging trials.  

Four functional imaging trials (two stress and two neutral script runs) were 

acquired, lasting 5.5 min each. Each 5.5 min trial consisted of 1.5 min quite baseline 

(B) period, followed by a total 2.5 min guided imagery (I) period that included a 2 

min read-image period and a 30 sec quite-image period, followed by a 1 min quite 

post-imagery period. Before and after the end of each scanning trial, subjects verbally 

rated their level of subjective distress to the question “how stressed or anxious are 

you feeling right now” on an auditory analog Likert scale ranging from 0-10. With 

the participants who were scanned in the between June and August of 2004, I guided 

the imagery trial and recorded all the reported data. I also entered all the recorded 

data in order to use it for the statistical analyses. After each trial, subjects also rated 

the imagery vividness on a 10-point scale. Between imaging trials subjects 

participated in progressive relaxation for 2 min to help reduce any leftover anxiety or 

distress from the previous trial. Subsequent trials were not initiated until the subjects’ 

ratings of anxiety and pulse rate were stabilized down to their baseline levels. Using 
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this procedure, there were no differences in baseline and anxiety across trials. 

Furthermore, all subjects had been trained in progressive relaxation and guided 

imagery training procedure developed by Lang and colleagues [31]that has been used 

in our previous studies [32, 33, 35] and described in detail previously by Sinha et al. 

2003.  

  

fMRI data analysis.  

All data were converted from Digital Imaging and Communication in 

Medicine (DICOM) format to analyze format using XMedCon.  During the 

conversion process, the first ten images at the beginning of each of the four functional 

series were discarded to enable the signal to achieve steady-state equilibrium between 

radio frequency pulsing and relaxation leaving 180 measurements for analysis.  

Images were motion corrected for three translational and three rotational directions 

[36].  Trials with linear motion in excess of 1.5 mm or rotation greater than 2 degrees 

were discarded. No subjects were excluded secondary to the motion. Individual 

subject data was analyzed using a General Linear Model (GLM) on each voxel in the 

entire brain volume with a regressor specific for the task.  The regressor was the 

block of time while the subjects were listening to the particular script (as compared to 

the baseline resting period).  The resulting functional images for each script type were 

spatially smoothed with an 8.08 mm Gaussian kernel to account for variations in the 

location of activation across subjects. The output maps were normalized beta-maps, 

which were in the acquired space (3.44mm x 3.44mm x 4mm). 
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To take these data into a common reference space, three registrations were 

calculated within the Yale BioImage Suite software package 

(http://www.bioimagesuite.org/, Duncan et al 2004). The first registration performs a 

linear registration between the individual subject raw functional image and that 

subject's 2D anatomical image. The 2D anatomical image is then linearly registered to 

the individual's 3D anatomical image. The 3D differs from the 2D in that it has a 

1x1x1 mm resolution whereas the 2D z-dimension is set by slice-thickness and its x-y 

dimensions are set by voxel size.  Finally, a non-linear registration is computed 

between the individual 3D anatomical image and a reference 3D image. The reference 

brain used was the Colin27 Brain [37] which is in Montreal Neurological Institute 

(MNI) space and is commonly applied in SPM and other software packages.  All 

three registrations were applied sequentially to the individual normalized beta-maps 

to bring all data into the common reference space. 

There are several possible ways that whole brain group comparisons can be 

conducted. First, each subject’s stress difference map imagery – baseline (I-B stress) 

could be subtracted from the neutral difference map (I-B neutral), and the dual change 

maps can be contrasted to examine group differences, so called “double subtraction”. 

In a different approach, each subject’s difference map for each condition can be 

contrasted to examine group differences, i.e., both the stress and the neutral condition 

maps are contrasted separately across groups. We selected the former approach. We 

used the dual change maps comparing two groups at a time (e.g. follicular vs. luteal, 

follicular vs. men, luteal vs. men) in order to obtain a more complete information 

about emotional stress response differences across the menstrual cycle in women, and 
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in women vs. men. I participated in the processing of the images, establishing an 

suitable threshold level for the statistical analysis and ensuring that an appropriate 

combination of the imagery and subjects for the analysis. 

According to Phillips et al 2003a, certain brain regions known to be involved 

in emotion processing can be defined as regions of interest (ROI) and were 

hypothesized to be involved in our study. Those were medial prefrontal cortex 

(MPFC), insula and anterior cingulate. A region-of-interest (ROI) approach using the 

normalized beta-weights (an estimate of percent signal change) as a measure of 

activation was selected to test our hypothesis of association between insular cortex, 

anterior cingulate and reported anxiety level and heart rate.  The anterior, posterior 

and median insular cortices were defined in each hemisphere on the reference brain 

using anatomical landmarks and the Yale BioImage Suite software as was described 

by Papademtris et al., 2006.  Normalized beta-weights for response in the right and 

left ROI of the anterior, posterior and median insular cortex was obtained for each 

trial and averaged for the stress, and neutral trials within each group. Spearman’s rho 

correlations were conducted between medial orbitofrontal cortex, anterior cingulate 

and insula activity and reported anxiety levels in all women and in each group of 

women separately. 

 

Physiologic data analysis.  

Comparisons of the heart rate and anxiety ratings to determine the presence of 

the statistically significant variance were done for stress and neutral imagery trials 
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comparing them to baseline within group, as well as for the stress imagery trials 

between groups using Student’s t test. All those statistics were done by me.  
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Results. 

 

Behavioral and Physiologic Data: 

The results of subjects’ self reported anxiety level and recorder heart rate 

suggested that the stress imagery successfully elicited perceivable stress levels (table 

2-4). In all three groups’ average self-report of anxiety and measured heart rate 

increased during stress imagery compared with non-stress trials. In comparison of the 

self-reported and physiological stress response between two groups of women during 

stress imagery, results were not statistically significant in the perceived anxiety, but 

significant in measured heart rate (table 5). Comparison of physiologic response of 

men to those of women in their distinct phases of the menstrual cycle revealed that 

there were no significant differences in the anxiety ratings in men vs. follicular or 

luteal groups (table 6). 

 
 

 
 

B HR 
mean(SD) 

N HR 
mean(SD) 

S HR 
mean(SD) 

B Anx 
mean(SD) 

N Anx 
mean(SD) 

S Anx 
mean(SD) 

Follicular  65 (7.93) 64.5 (7.41) 66.4 (7.45) 0.222 (0.428) 0.444 (1.25) 2.94 (2.82) 

Luteal 71.5 (9.25) 70.4 (8.38) 74.6 (12.0) 0.950 (1.28) 0.800 (1.51) 2.95 (1.96) 

Men 68.1 (7.62) 67.8 (8.05) 68.9 (8.70) 0.700(1.42) 0.500(1.00) 3.65 (2.30) 
Table 2.  Measured heart rate (HR) and self-reported anxiety ratings (Anx) during baseline (B), 
neutral (N) and stress (S) imagery in follicular and luteal group and in men.  
 
 
 
 
 
 
 
 
 
 



 20

Group N-B HR S-B HR S-N HR 

 t sdev p t sdev p t sdev p 

Follicular -1.47 7.94 0.14 2.19 7.66 0.029 3.09 7.43 0.002 

Luteal -1.40 8.77 0.16 3.20 10.9 0.002 4.85 10.4 <0.001

Men -0.438 7.86 0.66 1.21 8.23 0.23 1.97 8.47 0.05 
Table 3.  Comparison of heart rate by group in neutral vs. baseline trial (N-B), stress imagery vs. 
baseline (S-B), and stress vs. neutral imagery (S-N). 
 
 

Group N-B Anx S-B Anx S-N Anx 

 t sdev p t sdev p t sdev p 

Follicular 0.705 0.932 0.48 4.05 2.02 0.003 3.44 2.18 0.002 

Luteal -0.340 1.40 0.74 3.82 1.65 0.001 3.89 1.75 <0.001

Men -0.515 1.23 0.61 4.88 1.91 <0.001 5.62 1.72 <0.001
Table 4. Comparison of self-reported anxiety rating (0-10) by group in neutral vs. baseline trial (N-
B), stress imagery vs. baseline (S-B), and stress vs. neutral imagery (S-N). 
 
 
 
 

Luteal – Follicular Stress Imagery  
 

 t sdev p 

HR 9.57 10.1 0.001 

Anx 0.71E-02 2.40 0.99 

Table 5. Comparison of self-reported anxiety rating (0-10) and recorded heart rate during stress 
imagery between luteal and follicular groups. 
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Men vs. Women Anxiety, Stress Trials 
 

 t sdev p 

M-F 0.849 2.56 0.40 

M-L 1.04 2.14 0.31 

Table 6. Comparison of self-reported anxiety rating (0-10) and recorded heart rate during stress 
imagery between men and women in their follicular and luteal phases. 
 

 

Imaging Data. Comparison between menstrual cycle phases. 

Because the first goal of this study was to assess menstrual cycle influence on 

emotional stress response, the main comparison of interest was between that follicular 

and luteal phases. Nine women were scanned during their follicular phase and ten 

women were scanned in their luteal phase. As discussed above, participants did not 

vary significantly in their age, race, or education level. As predicted, we found that 

previously described stress circuitry, i.e. prefrontal cortex, insula, anterior cingulate 

and hippocampus, were modulated by menstrual cycle phase. Indeed, in follicular 

phase during stress imagery compared to neutral trials, right medial orbitofrontal 

cortex and bilateral anterior insula were activated more than during luteal, while 

luteal group had a greater level of activation in right anterior cingulate and left 

hippocampus. The difference held at p=0.01 (fig 1, table 7). No changes were 

observed in the lateral prefrontal cortex or amygdala.  

Between-sex comparison. We compared our male subjects (n=10) to both 

groups of women separately. While comparing males to follicular group, males 

showed overall greater BOLD response, in particular in the areas of right medial 

prefrontal, hippocampus and dorsal anterior cingulate, and in the left inferior 
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temporal lobe (fig 2, table 8). Similarly, in the comparison of males to females in 

their luteal phase, males showed a greater degree of overall activation. Regions that 

had significant differences were in the right insular and prefrontal cortices and 

bilateral hippocampi (fig 3, table 9), with men showing greater BOLD response. We 

did not observe any regions in during stress imagery where women in either phased 

showed greater cerebral blood flow.  

Correlation with heart rate and anxiety in women. To investigate a 

possible correlation of variations in physiologic data and activation of brain regions in 

women, we examined a relationship of level of activation of the insular, orbitofrontal 

and anterior cingulated cortices and hippocampus with recorded heart rate and 

anxiety reports of participants. Correlations were only done in the regions reported in 

our study as having differences in activation under emotional stress across menstrual. 

In the luteal group, during emotional stress, positive correlation was found between 

activation of the insular cortex and anxiety rating (fig 4). This correlation was also 

present when we used all female participants for the analysis (fig 5), however, that 

was likely secondary to the contribution by the luteal group, since no correlation of 

the self-reported anxiety and insular cortex activation was observed in the females in 

their follicular phase.  
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Fig. 1.  Cross-menstrual cycle phase differences in BOLD response during stress compared to neutral 
imagery. Greater BOLD response during follicular phase in right medial prefrontal and bilateral 
anterior insula. Greater BOLD response during luteal phase in right anterior cingulate and left 
hippocampus. P=0.01 
 
 
 
 

 
Fig. 2. Between-sex differences in BOLD response in males vs. females in the follicular phase during 
stress compared to neutral imagery. Greater BOLD response in males overall. Specific regions of 
increased blood flow in men are right hippocampus, right cingulate, right prefrontal cortex and left 
inferior temporal. P=0.01 
 
 
 
 

 
 
Fig. 3. Between-sex differences in BOLD response in males vs. females in the luteal phase during 
stress compared to neutral imagery. Greater BOLD response in males overall. Specific regions of 
increased blood flow in men are right prefrontal cortex, bilateral striatum, hippocampi and insular 
cortices. P=0.01 

Anterior cingulate and 
prefrontal cortex Left hippocampus Bilateral insula and right medial 

Right hippocampus Right cingulate and 
left inferior temporal Right prefrontal 

Striatum, amygdale and right insula Right prefrontal Right insula and bilateral hippocampus 
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Talairach Coordinate 
Region 

x y z 
ACC (BA 32) 3 49 9 
OFC (BA 10) 5 44 -11 

Hipp ( BA 37, GF ) -33 -38 -11 
Ins L (BA 45 ) -47 17 4 
Ins R (BA 47 ) 44 28 0 

Table 7. Stress imagery vs. neutral. Cross-menstrual cycle analysis. P=0.01 
Presented are the results of the contrast: activation during stress imagery vs. neutral imagery in 
follicular phase vs. luteal with a p=0.01. Abbreviations for all tables: BA=Brodmann area, 
ACC=anterior cingulate cortex, L=left, R=right, GF – fusiform gyrus, Hipp=hippocampus, 
Amyg=amygdala, CG=cingulate gyrus, PCG=posterior cingulate gyrus, TMP=temporal lobe.  
 
 

Talairach Coordinate 
Region 

x y z 
Amyg 20 -5 -15 
Hipp R 26 -16 -12 
Hipp L  -23 -17 -13 

CG R (BA 31) 4 -7 30 
CG L (BA 31) -6 -19 32 

PCG R (BA 31) 6 -38 38 
Table 8. Stress imagery vs. neutral between-sex differences. Presented are results of the contrast: 
activation during stress imagery vs. neutral imagery in men vs. women in their follicular phase with 
p=0.01. 
 
 

Talairach Coordinate 
Region 

x y z 
ACC (BA 31, 32) -8 19 28 

Ins R (BA 41)  32 -26 14 
TMP (BA 21) 56 -30 -13 

Putamen R  25 -2 -3 
Hipp R 27 -17 -9 

Putamen L  -24 -1 -4 
Hipp L -25 -16 -9 

Table 9. Stress imagery vs. neutral between-sex differences. Presented are the results of the contrast: 
activation during stress imagery vs. neutral imagery in men vs. women in their luteal phase.  
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Fig. 4. Correlation between brain activity during stress 
imagery and subjective anxiety rating during the luteal phase 
of the menstrual cycle. During luteal phase stress imagery 
self-reported anxiety of the female subjects positively 
correlated with activity in the insular cortex. Coordinates (Ins 
L): x=-43 , y=-8 , z=4 . P=0.05 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 5. Correlation between brain activity during 
stress imagery and subjective anxiety rating in all 
women regardless of the phase of the menstrual 
cycle. During stress imagery self-reported anxiety 
of the female subjects positively correlated with 
activity in the insular cortex. Coordinates (Ins L): 
x=-43 , y=-10 , z=4. P=0.05 
 

Insula 



 26

Discussion. 

 

Overall Activation. 

The main results of this study support a menstrual cycle specific neural 

activation model underlying the central stress response elicited by stress imagery. 

They feature differences in activation of the cortical and corticolimbic structures in 

the follicular and in luteal phases. Our results also show differences in the stress 

response when contrasting male and female subjects at different points of their 

menstrual cycle (Fig. 1-3). The data shows more similar pattern in activation in men 

and women who are at the beginning of the menstrual cycle (follicular phase), than 

men and women in their luteal stage. Regression analysis approach was primarily 

employed to probe activation of the regions of interest involved in emotional and 

stress processing in women and correlate it to the self reported behavioral and 

measured physiological data. To our knowledge this is the first study to examine the 

effects of menstrual cycle on emotional stress responses when comparing to a non-

stress control imagery control condition. 

The following sections discuss the present finding in the context of the 

existing knowledge about hormonal and gender specific differences in stress. 

 

Women Follicular vs. Luteal Phases. 

Overall differences in cross-cycle brain activation. 

While comparing central neural activation in women in their follicular and 

luteal phases in response to emotional stress compared to the neutral imagery, our 
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results indicate differences in activation of the cortical and corticolimbic structures 

(Fig. 1). When exposed to the stress imagery, women in the follicular phase showed 

greater activity in the insular and medial prefrontal cortex, while women in the luteal 

phase showed greater BOLD response in the anterior cingulate and hippocampus. 

There are previous reports of differential activation of the central neural 

structures depending on the hormonal status of the subjects. However, these studies 

have mostly focused on cognitive tasks [25, 26, 38, 39] and reward processing [40], 

and attributed differences in activation to changing levels of estrogen, progesterone, 

or both. While the data revealing the influence of the ovarian hormones on neural 

activation is present, the reports on specific actions of estrogen and progesterone are 

controversial. Some researchers report increased level of activation in the presence of 

estrogen especially in the areas of midbrain, striatum and frontal cortex [25, 40], and 

others report attenuation of arousal particularly in the amygdala, brainstem, 

orbitofrontal cortex and anterior cingulate [41]. Cerebral asymmetries during various 

tasks are also seem to be affected by the circulating levels of hormonal steroids, 

implicating progesterone [42] or estrogen and progesterone [39] as having the main 

influence. In our results we did not observe a dramatic lateralization response to the 

emotional stress response across the menstrual cycle. We observed bilateral 

differences in the BOLD response in insula, however, the changes in the activation of 

medial prefrontal and anterior cingulate cortices were confined to the right 

hemisphere, and changes in hippocampus occurred on the left.  

All the regions that showed variability in the activation during stress imagery, 

have been previously reported to be involved in processing of stress responses [12, 
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13, 19], however, our results are the first to show variation in the activation of those 

regions under emotional stress at different points of the menstrual cycle. It is possible 

that either estrogen or progesterone may be contributing to the differences in brain 

activations. While we used the level of estrogen and progesterone of our subjects with 

a goal to confirm the day of the menstrual cycle during imaging procedure, those 

measurements were not taken on the day of the fMRI and therefore we were not able 

to investigate a possible correlation between hormonal levels and central neural 

activation pattern. In the past, it has been argued, however, that it is estrogen or ratio 

of estrogen/androgens that influences arousal in women [41]. Although other pituitary 

and gonadotropins also show cyclical changes in women, it has been suggested that 

ovarian steroids are the ones to exhibit greater influence on the brain activity [41, 43, 

44].  

The interactions of gonadal steroids and neuroendocrine stress system have 

been shown in the past. With stress exposure women in their luteal phase tend to 

exhibit similar level of salivary cortisol response to men [22, 23], with women in the 

beginning of the cycle showing responses of a smaller magnitude [21]. More 

specifically interactions of estrogen and HPA axis have been reported, with estrogen 

influencing the transcription of the CRH promoter [45] and variations in intrinsic 

progesterone levels correlating with cyclical changes in GABAa receptor, and 

progesterone upregulating its expression [46]. The detection of estrogen receptors 

alpha and beta in hypothalamic nuclei, hippocampus, amygdala, and frontal cortex 

[47-51] provides the basis for the idea of altered expression of estrogen during 

arousal at specific phases of cycle as shown in the current study, and differences in 
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the levels of expression ER alpha mRNA in patients with affective disorders [50, 52] 

raises the possibility estrogen’s role in mood and mood disorders. 

  

Cross-cycle differences in activation of the specific brain regions: insula, 

anterior cingulate, medial prefrontal cortex and hippocampus. 

All the regions in our study that showed cycle-related variation in activation 

under emotional stress were reported to participate in the emotional processing, 

comprising parts of so-called ventral or dorsal systems as proposed by Phillips et al. 

2003a. After examination of animal and human lesion and neuroimaging studies they 

suggested that emotion processing is a complex process that involves several stages 

of identification of a stimulus, production of affective state in response to it, and 

regulation of the affective state. The network of corticolimbic structures involved in 

the first two processes – ventral system – includes amygdala, insula, ventral striatum, 

and ventral regions of the anterior cingulate and prefrontal cortices; the system 

predominantly regulation the affective state – dorsal – included hippocampus and 

dorsal regions of the anterior cingulate and prefrontal cortices. Given the results of 

our study and previously reported involvement of those structures in emotional stress 

response [12, 27] it is appropriate to briefly address the potential significance of each 

of those regions separately.  

 

Medial prefrontal cortex provides frontal influence over autonomic and 

endocrine function [53] and integrates the function of bodily states and goal-directed 

behavior. It has been suggested in the past the medial OFC carries the representation 
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of emotionally valenced linguistic stimuli that changes across the menstrual cycle 

[27] and different levels of the BOLD response, greater in the follicular phase were 

found during arousal [41], results consistent with ours. In addition it has been 

hypothesized the ventral prefrontal regions modulate amygdalar and pathologic 

limbic activity in depression [18], disorder much more prevalent in women. Also, 

morphological variations of this region were related to certain forms of depression 

[54], which makes it possible to hypothesize that variation in response of that region 

during emotional stress depending on the hormonal status of females is related to 

their higher predisposition for depression.  

 

Hippocampus. Reports that estrogen receptors have been located in the 

hippocampus [55, 56] are consistent with the repots that sex hormones such as 

estrogen can alter the excitability of hippocampal cells, as well as varied excitability 

of hippocampal cells depending on the phase of the menstrual cycle [57]. Ovarian 

hormones also strongly influence dendritic spine density in the CA1 region of the 

female hippocampus, effect specific to females, as estradiol-treated males fail to show 

increase hippocampal spine density [58]. In terms of emotional processing 

hippocampus have been implicated to be one of the regions to regulate the emotional 

state, where cognitive processes are integrated with and can be biased by emotional 

input, supporting effortful regulation of the affective states [15]. With our results 

demonstrating greater BOLD change in the hippocampus in the luteal phase it is 

possible that more effort is required to cope with the emotional stress premenstrually.  
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Anterior cingulate. In our study we observed increased cerebral blood flow 

in the anterior cingulate cortex in women during luteal phase during emotional stress. 

In the past this particular region has been linked multiple times to the emotional and 

stress processing in both healthy controls as well as patients with mood disorders. 

Supporting our results, reports of increased activity in the anterior cingulate in the 

premenstrual phase during inhibition task [59, 60] and during expectation of the 

unpleasant stimuli [61] have been made, implicating it in the task of emotional self-

regulation. Originally, greater activity in the anterior cingulate during anticipation of 

the unpleasant and painful stimuli in women compared to men [62] and, also, 

increased activity within rostral anterior cingulate gyrus to negative emotional stimuli 

in patients with major depressive disorder has been demonstrated [18, 63]. More 

interestingly, one of the recent studies by van Reekum and colleagues in 2007 

attempted to evaluate the relationship of anterior cingulate and psychological well-

being. Their results showed that people with higher psychological well being had an 

increased activation in the ventral ACC for negative relative to neutral information as 

well as slower evaluation of the negative information [64], which showed that those 

subject could effectively recruit the ACC when confronted with potentially aversive 

stimuli, reducing activity in other subcortical regions and increase their psychological 

well-being by perceiving the negative stimuli as less salient (manifested by a reduced 

evaluation speed). Given our results describing a different activation of the anterior 

cingulate in women depending on the phase of the menstrual cycle it is possible that 

luteal phase is associated with better recruitment of the anterior cingulate and 

appraisal of the negative stimuli as less aversive and stressful. Those reports suggest 
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that anterior cingulate cortex is heavily associated with negative emotion processing 

and cognitive aspect of modulation of the affective state and possibly association of 

those mechanisms with menstrual cycle.  

 

Insula. We observed that insula had an increased level of activation in the 

follicular stage during stress imagery, with levels of BOLD comparable to those of 

men; while it did not seem to be activated to the same extend by stressful stimuli in 

luteal phase. In the past insula have been shown to be activated during the 

anticipation of unpleasant stimuli [61, 65], disgust and mutilation pictures [66]. 

Certain studies have also highlighted the role of insula in recall of internally 

generated emotions [67]. Interestingly, increased activity in bilateral insular cortex 

has been observed in anxiety-prone individuals compared to normal controls in 

response to emotional stimuli [68]. Symptom provocation in individuals with 

obsessive-compulsive disorder, simple phobia, or posttraumatic stress disorder has 

been shown to be associated with increased cerebral blood flow in bilateral insular 

cortex [69, 70]. It has been hypothesized in the past that individual prone to anxiety 

have an altered interoceptive prediction signal, i.e. they experience an augmented 

difference between the observed and expected body state [71]. Given that in the 

current study women in the follicular and luteal phases did not report different levels 

of subjective anxiety during stress exposure, greater insula activity during the 

follicular phase could suggest greater sensitivity to interoceptive cues during this 

period in contrast to the luteal phase. 
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Anxiety and insula correlation. 

While some studies tend to underemphasize the observation that bran regions 

implicated in emotional processing are involved in control of autonomic responses 

and peripheral arousal states as was pointed by Critchley et. al. 2003, a strength of 

this study is the availability of subjective and physiological responses concurrent with 

brain response data. Previous research that attempted to investigate this question, 

documents regions of medial prefrontal, anterior cingulate and insular cortices to be 

involved in detection and integration of peripheral autonomic responses and 

physiological condition of the entire body, thereby providing neural representation of 

interoceptive state [72].  

We were most interested in the levels of perceived anxiety in women during 

stress imagery and concurrent brain activation. While we did not find a correlation 

between levels of reported anxiety and BOLD response in anterior cingulate or medal 

prefrontal cortices, we observed significant correlation of the posterior insula and 

anxiety in the luteal phase (Fig. 4), which was not present in the follicular phase. 

Interestingly, our female subjects did not report differences in the subjective anxiety 

ratings depending on the phase of the menstrual cycle. To discuss these finding it is 

necessary to first briefly review what is known about the basis of anxiety, 

interoception and corticolimbic structures that participate in the regulation of those 

processes. Interoception is the sense of the physiological condition of the entire body, 

and the neural systems involved in integrating such afferent signals to an internal 

representation of the current state. It involves the midbrain reticular nuclei, thalamus, 

and the posterior (interoceptive) cortex, which is integrated in the anterior insular 
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cortex [73]. The insular cortex has multiple bidirectional connections with the 

orbitofrontal cortex [74]. Insula, therefore, is centrally placed in order to process and 

integrate information about the environment and how it will affect the perceived body 

state [71]. From the anterior insula the information about the interoceptive state is 

relayed to the anterior cingulate, which is thought to evaluate the difference between 

a predicted and observed body state and event outcome, and to indicate the necessary 

level of the attentional resource in order to adjust behavior or cognition [75]. As it 

was hypothesized and discussed by Paulus and colleagues in 2006, it is the altered 

signal of an impending aversive body state that provides the basic link between 

altered interoception and anxiety, where the predicted and observed states of the body 

are vastly different, and anxiety state ultimately originates from experiencing an 

augmented signal difference between the observed and the expected body states.  

In our study, even though the self-reported anxiety rating did not vary 

significantly across the menstrual cycle, the correlation between the anxiety rating 

and posterior insula activation was observed in the luteal (fig. 4), but not follicular 

phase. Also, the activation of the anterior insular cortex showed greater BOLD 

response during emotional stress in the follicular phase (fig. 1), with levels of the 

cerebral blood flow comparable to those of men. Given the results of the current 

study and the previously available information, it is possible to hypothesize that the 

corticolimbic structures that showed differences in activation during stress imagery 

across the menstrual cycle, same structures that were previously reported to be 

involved in the emotional and stress processing [12, 13, 19], are part of the neural 

circuits that also target processing and integration of the differences in the 
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interoceptive state to regulate anxiety increases across the menstrual cycle. It is 

possible that perception of the internal body state varies across menstrual cycle, 

requiring adjustments in the integration and regulation of this information. Given that 

only women in their luteal phase showed a relationship between posterior insula and 

anxiety and increase blood flow in the anterior cingulate, and women in the follicular 

phase had increase BOLD response in anterior insula, we can provide two different 

explanations for these findings. First, either women in luteal phase had a higher 

awareness on the internal state of their bodies, reflecting it in the activation of the 

posterior insula, and requiring a greater engagement of the region that deploys 

attentional resources in order to modulate cognitive response and behavior, i.e. 

anterior cingulate. Second possibility, is that anterior insular cortex is simply more 

engaged in regulation of the interoceptive state and anxiety in the follicular phase, 

down-regulating activity of the posterior insula, which lowers the necessity to recruit 

a higher executive structure, i.e. anterior cingulate, in order to process the difference 

in the expected and the actual body state and regulate subjective anxiety.  

It is obvious that in order to support or disprove either of these hypothesis 

further studies will be necessary to further investigate the activation of the involved 

structures and their correlation with anxiety. However, previous research documents a 

relationship between insular cortex and anxiety. Altered insular function has already 

been described in patients suffering from various anxiety disorders. It has been shown 

that anxiety-prone individuals have increased insula activation during emotional 

processing [68], while patients with social phobia show insular blood flow decrease 

during a public speaking task [76]. Trials of such pharmaceutical agents as citaprolam 
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and lorazepam in patients with anxiety disorders also seem to affect the activation of 

the insular cortex while reducing the symptoms [77, 78], and according to Wise and 

colleagues, 2007, midasolam reduced activity in the anterior insula preceding painful 

stimuli [79]. Interestingly women have higher prevalence of anxiety disorders than 

men. While our results do not explain this phenomenon, they could potentially serve 

as the first step to understanding its neural basis and future directions for treatment. 

 

 

Men vs. Women. 

Overall differences in between-sex brain activation. 

While fight-or flight response is generally regarded as the prototypic human 

response to stress, characterized by sympathetic nervous system activation and 

hormonal cascade that results in the secretion of catecholamines, increased focus and 

fear [80, 81], and supported by studies in predominantly male subjects, it seems that 

from the evolutionary perspective alternative behavioral responses would likely have 

evolved in females. The female of the species makes a greater investment in 

pregnancy and nursing, and that should lead to selection for female stress responses 

that do not jeopardize the health of the mother and the offspring, and that maximize 

the likelihood that they will survive [82]. That would also mean a possibly blunted 

HPA response, focusing stress response on attachment and caregiving processes 

influenced by oxytocin, variation previously observed by several investigators [7]. 

Although we did not measure the cortisol response at the time of stress imagery, we 

observed a greater degree of central neural activation in males, with no regions of 
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increased BOLD response in females under emotional stress when compared to 

males. While the opposite results have been reported in the past, with females 

showing a greater degree of activation in response to the negative stimuli [83], our 

neuroimaging findings agree with the general trend of greater acute activation of HPA 

in males compared to females [7]. 

In particular male subjects had a more significant level of activation in 

prefrontal cortex, posterior cingulate, hippocampus and amygdala compared to 

females (Fig. 2,3). These finding are consistent with the idea of “fight-or flight” 

response to stressors in males. Greater activation of the right prefrontal cortex – area 

which is important in vigilance – during stress response in males has been reported 

previously [19], and the association between negative emotions and right prefrontal 

activation was originally based on electrophysiological findings [84-86], and further 

confirmed by fMRI data [13, 19]. Reports of the differences in cognitive performance 

while experiencing negative emotions between two genders have been made, 

reporting the activation of the parietal and prefrontal cortices in males – regions 

important for cognition and cognitive control [5]. In addition high levels of right-

sided prefrontal activation have been linked with negative affective style and 

suppressed immune function [87, 88], which could be a plausible neural mechanism 

underlying negative health consequences including hypertension, substance abuse and 

immune suppression seen more often in men [10].  

.  

In addition to the variation in cerebral blood flow of the prefrontal cortex, we 

also observed an increased activation of the hippocampus in males compared to 
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females in both phases of the menstrual cycle. While relatively unknown are 

hippocampal sex differences in the reaction to stress, it has been shown that in both 

rats and monkeys, chronic stress causes damage to the hippocampus in males, but 

does so far less, if at all in females [80]. It is possible, given our results, that male 

hippocampus either plays a greater role in the stress processing in males, or more 

susceptible to stress induced damage through a greater recruitment of that area. 

Chronic stress damage is widely known among neuroscientists in males, but far less 

so among females. It has been suggested that susceptibility of hippocampal cells to 

chronic stress has a role in two psychiatric conditions – post traumatic stress disorder 

(PTSD) and clinical depression [80], both of which have different gender-related 

prevalence. It is obvious that possible resistance of female hippocampal cells to 

stress-induced damage could play an interesting role in pathology and treatment of 

certain psychiatric conditions and demands consideration by anyone attempting to 

link stress-induced cell death to affective disease states.  

 

Our group of males showed an increase in the amygdala activation when 

compared to females during stress imagery. Several studies now report sex influences 

on amygdala function, providing compelling evidence that the amygdala critically 

involved in enabling us to acquire and retain lasting memories of emotional 

experiences; the degree of activation of amygdala by emotional arousal during 

encoding of emotionally arousing material (both pleasant and unpleasant) and 

correlates highly with subsequent recall [89]. The involvement of amygdala in fear 

processing has been shown with greater and more consistent activation during 
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aversive stimuli than to positively valenced ones. It has been also hypothesized that 

activation of the amygdala is associated with modulation of motor readiness, 

autonomic function, and cognitive processes including attention and memory [90] – 

all the necessary components of the effective fight-or flight response to stress in 

males.  

 

Differences in BOLD response in men vs. women at different points of the 

menstrual cycle. 

In the past there has been very few imaging studies comparing brain activity 

in male to females during two distinct phases of the menstrual cycle. Studies that are 

available, chose to focus on motor or cognitive tasks [25, 26] such as word-stem-

completion and mental rotation, reporting increased similarities in the activation 

pattern in males and women in the follicular phase, than in males and luteal. To our 

knowledge we are the first to investigate and report the differences in the central 

neural activation between males and females in two different phases of the hormonal 

cycle during emotional stress. Most brain regions revealed similar differences, 

however insula cortex showed variations, with women in follicular phase activating it 

to the same degree as males (Fig. 2), and greater than women in the luteal phase 

(Fig.1). This could be due to different neuronal or endothelial receptor concentrations, 

differences in synaptic function, or changes in the cerebrovascular anatomy in that 

region, but most likely to a combination of the above factors. However, given the 

association of insula and anxiety and differences in the interoceptive state of the 

subject [71], it is interesting that no significant statistical difference in self-reported 
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anxiety was observed between men and women in either phase. This could potentially 

support the idea of differences in correlation of the self-reported anxiety and insular 

cortex, depending on the hormonal status of females, with similar regulation of the 

insular activity in men and follicular phase. Undoubtedly, further investigation of the 

stress response and anxiety and their correlations with levels of the ovarian hormones 

would benefit a better understanding of the difference in stress regulation between 

sexes and provide a new gender-based approach for the treatment of anxiety-related 

psychiatric conditions.   
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Conclusion. 

The present study revealed cycle-specific differences in healthy menstruating 

women in the neural response to emotional stress elicited by stress imagery, as well 

as the correlation of levels of self-reported anxiety and activation of the corticolimbic 

structures. The differences in cycle-dependent activation were consistent with the 

differences in the between-sex activation, when taking into account the phase of the 

menstrual cycle. The males had a greater overall activation consistent with the 

previous reports of the HPA axis levels of stress response. The cycle-dependent stress 

differences and the anxiety and insular activation in women in their luteal phase are 

consistent with the hypothesis of the insular involvement in the interoception and 

anxiety processing. Our results further adhere with the idea of the corticolimbic 

network that is involved in the stress response and anxiety regulation, where higher 

cortical structures integrate the information about current and expected body state to 

produce and manage an appropriate response. Given that current study is the first one 

to show the cycle-dependent correlation of anxiety and insular cortex activation, it 

could represent an initial step in the understanding the reasons for unequal stress 

response and anxiety-related psychiatric conditions in women and men.



 42

References: 

 
 

1. Caspi, A., et al., Influence of life stress on depression: moderation by a 
polymorphism in the 5-HTT gene. Science, 2003. 301(5631): p. 386-9. 

2. McEwen, B. and R. Sapolsky, Stress and cognitive function. Curr Opin 
Neurobiol, 1995. 5(2): p. 205-16. 

3. Epel, E., et al., Accelerated telomere shortening in response to life stress. Proc 
Natl Acad Sci U S A, 2004. 101(49): p. 17312-5. 

4. Segerstrom, S. and G. Miller, Psychological stress and the human immune 
system: a meta-analytic study of 30 years of inquiry. Psychol Bull, 2004. 
130(4): p. 601-30. 

5. Koch, K., et al., Gender differences in the cognitive control of emotion: An 
fMRI study. Neuropsychologia, 2007. 45(12): p. 2744-54. 

6. Hamann, S. and T. Canli, Individual differences in emotion processing. Curr 
Opin Neurobiol, 2004. 14(2): p. 233-8. 

7. Kajantie, E. and D. Phillips, The effects of sex and hormonal status on the 
physiological response to acute psychosocial stress. 
Psychoneuroendocrinology, 2006. 31(2): p. 151-78. 

8. Holden, C., Sex and the suffering brain. Science, 2005. 308(5728): p. 1574. 
9. Kudielka, B. and C. Kirschbaum, Sex differences in HPA axis responses to 

stress: a review. Biol Psychol, 2005. 69(1): p. 113-32. 
10. Lundberg, U., Stress hormones in health and illness: the roles of work and 

gender. Psychoneuroendocrinology, 2005. 30(10): p. 1017-21. 
11. Otte, C., et al., A meta-analysis of cortisol response to challenge in human 

aging: importance of gender. Psychoneuroendocrinology, 2005. 30(1): p. 80-
91. 

12. Sinha, R., et al., Neural circuits underlying emotional distress in humans. Ann 
N Y Acad Sci, 2004. 1032: p. 254-7. 

13. Wang, J., et al., Perfusion functional MRI reveals cerebral blood flow pattern 
under psychological stress. Proc Natl Acad Sci U S A, 2005. 102(49): p. 
17804-9. 

14. Phan, K., et al., Functional neuroanatomy of emotion: a meta-analysis of 
emotion activation studies in PET and fMRI. Neuroimage, 2002. 16(2): p. 
331-48. 

15. Phillips, M., et al., Neurobiology of emotion perception I: The neural basis of 
normal emotion perception. Biol Psychiatry, 2003. 54(5): p. 504-14. 

16. Phan, K., et al., Functional neuroimaging studies of human emotions. CNS 
Spectr, 2004. 9(4): p. 258-66. 

17. Phillips, M., et al., Neurobiology of emotion perception II: Implications for 
major psychiatric disorders. Biol Psychiatry, 2003. 54(5): p. 515-28. 

18. Drevets, W., Neuroimaging and neuropathological studies of depression: 
implications for the cognitive-emotional features of mood disorders. Curr 
Opin Neurobiol, 2001. 11(2): p. 240-9. 



 43

19. Wang, J., et al., Gender Difference in Neural Response to Psychological 
Stress. Soc Cogn Affect Neurosci, 2007. 2(3): p. 227-239. 

20. Hofer, A., et al., Gender differences in regional cerebral activity during the 
perception of emotion: a functional MRI study. Neuroimage, 2006. 32(2): p. 
854-62. 

21. Kirschbaum, C., et al., Sex-specific effects of social support on cortisol and 
subjective responses to acute psychological stress. Psychosom Med, 1995. 
57(1): p. 23-31. 

22. Rohleder, N., et al., Sex differences in glucocorticoid sensitivity of 
proinflammatory cytokine production after psychosocial stress. Psychosom 
Med, 2001. 63(6): p. 966-72. 

23. Wolf, O., et al., The relationship between stress induced cortisol levels and 
memory differs between men and women. Psychoneuroendocrinology, 2001. 
26(7): p. 711-20. 

24. Keenan, P., et al., Prefrontal cortex as the site of estrogen's effect on 
cognition. Psychoneuroendocrinology, 2001. 26(6): p. 577-90. 

25. Dietrich, T., et al., Effects of blood estrogen level on cortical activation 
patterns during cognitive activation as measured by functional MRI. 
Neuroimage, 2001. 13(3): p. 425-32. 

26. Schöning, S., et al., Functional anatomy of visuo-spatial working memory 
during mental rotation is influenced by sex, menstrual cycle, and sex steroid 
hormones. Neuropsychologia, 2007. 45(14): p. 3203-14. 

27. Protopopescu, X., et al., Orbitofrontal cortex activity related to emotional 
processing changes across the menstrual cycle. Proc Natl Acad Sci U S A, 
2005. 102(44): p. 16060-5. 

28. Leontiev, O. and R. Buxton, Reproducibility of BOLD, perfusion, and 
CMRO2 measurements with calibrated-BOLD fMRI. Neuroimage, 2007. 
35(1): p. 175-84. 

29. Tjandra, T., et al., Quantitative assessment of the reproducibility of functional 
activation measured with BOLD and MR perfusion imaging: implications for 
clinical trial design. Neuroimage, 2005. 27(2): p. 393-401. 

30. Fox, H., et al., Difficulties in emotion regulation and impulse control during 
cocaine abstinence. Drug Alcohol Depend, 2007. 89(2-3): p. 298-301. 

31. Miller, G., et al., Individual Differences in Imagery and Psychophysiology of 
Emotion. 1987: Cogn Emotion. p. 367-390. 

32. Sinha, R., W. Lovallo, and O. Parsons, Cardiovascular differentiation of 
emotions. Psychosom Med, 1992. 54(4): p. 422-35. 

33. Sinha, R., et al., Psychological stress, drug-related cues and cocaine craving. 
Psychopharmacology (Berl), 2000. 152(2): p. 140-8. 

34. Sinha, R., et al., Hypothalamic-pituitary-adrenal axis and sympatho-adreno-
medullary responses during stress-induced and drug cue-induced cocaine 
craving states. Psychopharmacology (Berl), 2003. 170(1): p. 62-72. 

35. Sinha, R., D. Catapano, and S. O'Malley, Stress-induced craving and stress 
response in cocaine dependent individuals. Psychopharmacology (Berl), 1999. 
142(4): p. 343-51. 



 44

36. Friston, K., et al., Movement-related effects in fMRI time-series. Magn Reson 
Med, 1996. 35(3): p. 346-55. 

37. Holmes, C., et al., Enhancement of MR images using registration for signal 
averaging. J Comput Assist Tomogr, 1998. 22(2): p. 324-33. 

38. Maki, P., Re: Prospective assessment of estrogen replacement therapy and 
cognitive functioning: atherosclerosis risk in communities study. Am J 
Epidemiol, 2002. 156(8): p. 785; author reply 785. 

39. Fernández, G., et al., Menstrual cycle-dependent neural plasticity in the adult 
human brain is hormone, task, and region specific. J Neurosci, 2003. 23(9): p. 
3790-5. 

40. Dreher, J., et al., Menstrual cycle phase modulates reward-related neural 
function in women. Proc Natl Acad Sci U S A, 2007. 104(7): p. 2465-70. 

41. Goldstein, J., et al., Hormonal cycle modulates arousal circuitry in women 
using functional magnetic resonance imaging. J Neurosci, 2005. 25(40): p. 
9309-16. 

42. Hausmann, M., et al., Functional cerebral asymmetries during the menstrual 
cycle: a cross-sectional and longitudinal analysis. Neuropsychologia, 2002. 
40(7): p. 808-16. 

43. Berman, K., et al., Modulation of cognition-specific cortical activity by 
gonadal steroids: a positron-emission tomography study in women. Proc Natl 
Acad Sci U S A, 1997. 94(16): p. 8836-41. 

44. Shaywitz, S., et al., Effect of estrogen on brain activation patterns in 
postmenopausal women during working memory tasks. JAMA, 1999. 281(13): 
p. 1197-202. 

45. Ni, X. and R. Nicholson, Steroid hormone mediated regulation of 
corticotropin-releasing hormone gene expression. Front Biosci, 2006. 11: p. 
2909-17. 

46. Maguire, J. and I. Mody, Neurosteroid synthesis-mediated regulation of 
GABA(A) receptors: relevance to the ovarian cycle and stress. J Neurosci, 
2007. 27(9): p. 2155-62. 

47. Osterlund, M., et al., Estrogen receptor beta (ERbeta) messenger ribonucleic 
acid (mRNA) expression within the human forebrain: distinct distribution 
pattern to ERalpha mRNA. J Clin Endocrinol Metab, 2000. 85(10): p. 3840-6. 

48. Osterlund, M., et al., The human brain has distinct regional expression 
patterns of estrogen receptor alpha mRNA isoforms derived from alternative 
promoters. J Neurochem, 2000. 75(4): p. 1390-7. 

49. Osterlund, M., E. Keller, and Y. Hurd, The human forebrain has discrete 
estrogen receptor alpha messenger RNA expression: high levels in the 
amygdaloid complex. Neuroscience, 2000. 95(2): p. 333-42. 

50. Perlman, W., et al., Alteration in estrogen receptor alpha mRNA levels in 
frontal cortex and hippocampus of patients with major mental illness. Biol 
Psychiatry, 2005. 58(10): p. 812-24. 

51. Perlman, W., et al., Expression of estrogen receptor alpha exon-deleted 
mRNA variants in the human and non-human primate frontal cortex. 
Neuroscience, 2005. 134(1): p. 81-95. 



 45

52. Perlman, W., et al., Reduced glucocorticoid and estrogen receptor alpha 
messenger ribonucleic acid levels in the amygdala of patients with major 
mental illness. Biol Psychiatry, 2004. 56(11): p. 844-52. 

53. Price, J., Prefrontal cortical networks related to visceral function and mood. 
Ann N Y Acad Sci, 1999. 877: p. 383-96. 

54. Mayberg, H., et al., Reciprocal limbic-cortical function and negative mood: 
converging PET findings in depression and normal sadness. Am J Psychiatry, 
1999. 156(5): p. 675-82. 

55. Keverne, E., Central mechanisms underlying the neural and neuroendocrine 
determinants of maternal behaviour. Psychoneuroendocrinology, 1988. 13(1-
2): p. 127-41. 

56. Ostlund, H., E. Keller, and Y. Hurd, Estrogen receptor gene expression in 
relation to neuropsychiatric disorders. Ann N Y Acad Sci, 2003. 1007: p. 54-
63. 

57. Teyler, T., et al., Gonadal steroids: effects on excitability of hippocampal 
pyramidal cells. Science, 1980. 209(4460): p. 1017-8. 

58. Romeo, R., et al., Sex differences in hippocampal estradiol-induced N-methyl-
D-aspartic acid binding and ultrastructural localization of estrogen receptor-
alpha. Neuroendocrinology, 2005. 81(6): p. 391-9. 

59. Amin, Z., et al., Effects of estrogen variation on neural correlates of 
emotional response inhibition. Neuroimage, 2006. 32(1): p. 457-64. 

60. Beauregard, M., J. Lévesque, and P. Bourgouin, Neural correlates of 
conscious self-regulation of emotion. J Neurosci, 2001. 21(18): p. RC165. 

61. Herwig, U., et al., Expecting unpleasant stimuli--an fMRI study. Psychiatry 
Res, 2007. 154(1): p. 1-12. 

62. Butler, T., et al., Fear-related activity in subgenual anterior cingulate differs 
between men and women. Neuroreport, 2005. 16(11): p. 1233-6. 

63. Elliott, R., et al., The neural basis of mood-congruent processing biases in 
depression. Arch Gen Psychiatry, 2002. 59(7): p. 597-604. 

64. van Reekum, C., et al., Individual differences in amygdala and ventromedial 
prefrontal cortex activity are associated with evaluation speed and 
psychological well-being. J Cogn Neurosci, 2007. 19(2): p. 237-48. 

65. Simmons, A., et al., Anticipation of emotionally aversive visual stimuli 
activates right insula. Neuroreport, 2004. 15(14): p. 2261-5. 

66. Wright, P., et al., Disgust and the insula: fMRI responses to pictures of 
mutilation and contamination. Neuroreport, 2004. 15(15): p. 2347-51. 

67. Lane, R., et al., Neuroanatomical correlates of happiness, sadness, and 
disgust. Am J Psychiatry, 1997. 154(7): p. 926-33. 

68. Stein, M., et al., Increased amygdala and insula activation during emotion 
processing in anxiety-prone subjects. Am J Psychiatry, 2007. 164(2): p. 318-
27. 

69. Rauch, S., et al., A positron emission tomographic study of simple phobic 
symptom provocation. Arch Gen Psychiatry, 1995. 52(1): p. 20-8. 

70. Rauch, S., et al., A symptom provocation study of posttraumatic stress 
disorder using positron emission tomography and script-driven imagery. Arch 
Gen Psychiatry, 1996. 53(5): p. 380-7. 



 46

71. Paulus, M. and M. Stein, An insular view of anxiety. Biol Psychiatry, 2006. 
60(4): p. 383-7. 

72. Critchley, H., Emotion and its disorders. Br Med Bull, 2003. 65: p. 35-47. 
73. Craig, A., How do you feel? Interoception: the sense of the physiological 

condition of the body. Nat Rev Neurosci, 2002. 3(8): p. 655-66. 
74. Ongür, D. and J. Price, The organization of networks within the orbital and 

medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex, 2000. 
10(3): p. 206-19. 

75. Botvinick, M., J. Cohen, and C. Carter, Conflict monitoring and anterior 
cingulate cortex: an update. Trends Cogn Sci, 2004. 8(12): p. 539-46. 

76. Lorberbaum, J., et al., Neural correlates of speech anticipatory anxiety in 
generalized social phobia. Neuroreport, 2004. 15(18): p. 2701-5. 

77. Hoehn-Saric, R., M. Schlund, and S. Wong, Effects of citalopram on worry 
and brain activation in patients with generalized anxiety disorder. Psychiatry 
Res, 2004. 131(1): p. 11-21. 

78. Paulus, M., et al., Dose-dependent decrease of activation in bilateral 
amygdala and insula by lorazepam during emotion processing. Arch Gen 
Psychiatry, 2005. 62(3): p. 282-8. 

79. Wise, R., et al., The anxiolytic effects of midazolam during anticipation to 
pain revealed using fMRI. Magn Reson Imaging, 2007. 25(6): p. 801-10. 

80. McEwen, B., Allostasis and allostatic load: implications for 
neuropsychopharmacology. Neuropsychopharmacology, 2000. 22(2): p. 108-
24. 

81. Sapolsky, R., Stress and plasticity in the limbic system. Neurochem Res, 2003. 
28(11): p. 1735-42. 

82. Taylor, S., et al., Biobehavioral responses to stress in females: tend-and-
befriend, not fight-or-flight. Psychol Rev, 2000. 107(3): p. 411-29. 

83. Yang, H., et al., Gender difference in hemodynamic responses of prefrontal 
area to emotional stress by near-infrared spectroscopy. Behav Brain Res, 
2007. 178(1): p. 172-6. 

84. Davidson, R., et al., Regional brain function, emotion and disorders of 
emotion. Curr Opin Neurobiol, 1999. 9(2): p. 228-34. 

85. Davidson, R. and W. Irwin, The functional neuroanatomy of emotion and 
affective style. Trends Cogn Sci, 1999. 3(1): p. 11-21. 

86. Davidson, R., K. Putnam, and C. Larson, Dysfunction in the neural circuitry 
of emotion regulation--a possible prelude to violence. Science, 2000. 
289(5479): p. 591-4. 

87. Davidson, R., et al., While a phobic waits: regional brain electrical and 
autonomic activity in social phobics during anticipation of public speaking. 
Biol Psychiatry, 2000. 47(2): p. 85-95. 

88. Vlajković, S., et al., Asymmetrical modulation of immune reactivity in left- 
and right-biased rats after ipsilateral ablation of the prefrontal, parietal and 
occipital brain neocortex. Int J Neurosci, 1994. 78(1-2): p. 123-34. 

89. McGaugh, J., The amygdala modulates the consolidation of memories of 
emotionally arousing experiences. Annu Rev Neurosci, 2004. 27: p. 1-28. 



 47

90. Zald, D., The human amygdala and the emotional evaluation of sensory 
stimuli. Brain Res Brain Res Rev, 2003. 41(1): p. 88-123. 

 
 


	Yale University
	EliScholar – A Digital Platform for Scholarly Publishing at Yale
	4-12-2009

	Differences in the Central Neural Activation under Emotional Stress across the Menstrual Cycle
	Nayalya Lopushnyan
	Recommended Citation


	Microsoft Word - thesis with everything.doc

