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Abstract 

Hookworm infection caused by Ancylostoma duodenale or Necator americanus is 

a significant global health threat, causing chronic anemia, malnutrition, developmental 

delay, enteritis, and increased susceptibility to non-parasitic diseases.  One of the most 

prevalent of the “neglected” tropical diseases, hookworm infection affects almost 1 

billion people worldwide, particularly in developing countries.   Current methods for 

diagnosis and treatment of hookworm infection are largely the same as they have been for 

the past century.  However, several recent advances in the molecular characterization of 

hookworm virulence factors now provide researchers with an improved understanding of 

disease pathogenesis, potential targets for treatment and novel antigens for vaccine 

development.  In order to better understand hookworm pathophysiology and immunology 

in human populations, a comprehensive, cross-sectional immunoepidemiologic survey of 

approximately 200 villagers in a remote area of the Peruvian Amazon was conducted.  

Hookworm prevalence rates were found to approach 40% by microscopic diagnosis.  

Additionally, molecular speciation techniques showed that both A. duodenale and N. 

americanus are endemic to this region.  Reagents from a laboratory model of hookworm 

disease were then utilized to characterize human immune responses to hookworm 

specific antigens.  By studying the immunoepidemiology of an endemic community we 

have found that a laboratory strain of hookworm, Anyclostoma ceylanicum, is a useful 

tool for describing species specific immune responses to disease.  This work lays the 

foundation for future development of improved hookworm diagnostic techniques by 

molecular and immunologic methods.  
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 Background 

The majority of human hookworm disease is caused by two major bloodfeeding 

parasites, Ancylostoma duodenale and Necator americanus, which along with Ascaris 

lumbricoides and Trichuris trichiura make up the main soil transmitted nematodes.  

Upon infection of an individual, hookworms reside in the small intestine of the host, 

attach to the gastrointestinal mucosa and feed on blood from lacerated superficial 

capillary beds in the gut.  Hookworm disease is a leading cause of iron deficiency 

anemia, malnutrition, and inflammatory enteritis.  Often overlooked, human hookworm 

infection is one of the most prevalent chronic infections in the world, affecting 

approximately 740 million people in developing countries (de Silva 2003).  

 

Biology 

 Ancylostoma duodenale and Necator americanus are both members of the family 

Ancylostomaditae, as are several other species of hookworm.  Ancylostoma ceylanicum 

infects cats, dogs and to a lesser extent, humans, causing minimal clinical pathology and 

blood loss in human hosts. Ancylostoma brazilinese is a major hookworm in cats and 

dogs and causes cutaneous larva migrans in humans.  Ancylostoma caninum, the dog 

hookworm, is endemic worldwide but human cases of eosinophilic enteritis after 

infection with this species are limited to Australia.  Historically, distinguishing between 

Old World hookworm, A. duodenale, and New World hookworm, N. americanus, relied 

on examining adult morphology by microscopy.  Ancylostoma species have teeth along 

the buccal capsule while Necator has a cutting plate.   
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Figure 1.  Buccal capsule of N. americanus with cutting plate.  From 
http://www.cvm.okstate.edu/~users/jcfox/htdocs/Disk1/Images/Img0070a.jpg accessed 01.29.2007. 

Clinically, the most important distinguishing characteristics between the two species 

relates to blood loss and tendency to predispose to anemia in the host.  A. duodenale 

causes 5 times as much blood loss as Necator (Hotez, 2001).  Other distinguishing 

characteristics are summarized below. 
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Characteristic Necator americanus Ancylostoma duodenale 
Male adult size (mm) 7 – 9  8 – 11  
Female adult size (mm) 9 – 11  10 – 13  
Rate of egg production 
(eggs per worm per day) 

3000 – 6000    10000 – 20000    

Life expectancy of 
infective larvae (days0 

3 – 5 1 

Life expectancy of adult 
worm (days) 

3 – 10 1 – 10  

Blood loss (mL/day per 
worm) 

.03 .15 

Lactogenic transmission No Yes 
Oral transmission No Yes 
Arrested development 
(larval hypobiosis) 

No Yes 

Table 1.  Comparative characteristics of human hookworm species. Adapted from Brooker 2004). 

 Critical to understanding the biology of hookworm is an appreciation of its unique 

life cycle (Figure 2).  Infection typically occurs through contact with contaminated soil 

and penetration of L3 stage larvae through the skin.  Once in the host, larvae continue 

development and migrate through the venous system and eventually arrive in the 

pulmonary vasculature.  Once in the pulmonary capillary bed larvae rupture, enter the 

lung parenchyma and migrate up the respiratory tree until they reach the upper airway.  

The irritation caused by the hookworm larvae elicits a cough and thus the larvae are 

coughed up and swallowed by the host.  Once larvae enter the gastrointestinal system 

they molt twice into their adult forms and develop into sexually mature male and female 

worms within 8 weeks of initial infection.  Mating occurs in the gastrointestinal tract and 

adult females will typically release thousands of eggs per day.  These eggs are then 

expelled in the feces of the host, where they hatch within 24-48 hours and develop into 

first stage larvae.  These larvae molt twice to become infective third stage larvae, which 

may either infect a new host or ‘hibernate’ in order to conserve energy. 
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Although the life cycle of both N. americanus and A. duodenale are virtually the 

same, two important differences exist.  First, A. duodenale can infect both cutaneously 

and orally, while N. americanus can only infect a host cutaneously.  Also, while N. 

americanus larvae must infect a host within a short time after developing, A. duodenale 

larvae are more likely to enter a prolonged state of hypobiosis allowing infection to occur 

at various intervals and making the elimination of the disease and control of reinfection 

more difficult.   

 

Figure 2.   Life Cycle of hookworm.  (Centers for Disease Control, Diagnostic Guide for Parasitic 
Diseases – DPDx accessed 11.15.2006). 
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Geographic Distribution 

The geographic distribution of the two species of hookworm is distinct.  Necator 

americanus is thought to be the most prevalent species of hookworm, with greatest 

geographic distribution.  Endemic areas for Necator traditionally include South and 

Southwest China, South India, Southeast Asia, sub-Saharan Africa, and Central and 

South America.   In contrast, Ancylostoma duodenale is thought to have a more limited 

geographic distribution, which includes South and West China, India, Egypt and Africa. 

Hibernation of L3 of A. duodenale is hypothesized to make the species extremely 

adaptive to temperate climates thus explaining the relatively greater prevalence of this 

species in Southern Europe, North India, China and other regions with long, dry winters 

(Brooker 2004). Geographic distribution is likely influenced by the close relationship 

between hookworm egg and larval viability and climate.  In particular, humidity, 

temperature, ultraviolet light, rainfall, soil type and altitude all affect the viability of 

hookworm larvae (Chandler 1929).   

 

Epidemiology 

 Based on estimates from 2001, over 740 million people worldwide are infected 

with hookworm (de Silva 2003).  Although there has been a decline in hookworm 

prevalence over the past decade, the increase in overall global population has offset this 

improvement and the absolute number of hookworm infections has been increasing 

(Bungiro 2004).   
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Figure 3. Worldwide hookworm prevalence.  (Accessed from  

http://medicine.plosjournals.org/archive/1549-1676/2/3/figure/10.1371_journal.pmed.0020067.g001-

M.jpg) 

As with many other infectious diseases, prevalence patterns in hookworm 

infection can vary widely even within regions and countries, and even within 

microenvironments as specific as villages and households in endemic communities.  One 

study of village schoolchildren living in Cote d’Ivoire showed that hookworm infection is 

extremely focal, occurring with higher prevalence and intensity in specific geographic 

areas (Utzinger 2003). The epidemiology of hookworm disease in regards to clinical 

manifestations reveals interesting patterns as well.  First, several investigators have 

observed very high intensity and very low intensity infections occurring within the same 

endemic communities.  Ten percent of infected individuals in a community excrete 70% 

of the eggs (Bundy 1995). Furthermore, the disease burden as measured by anemia seems 

to be associated with highest intensity infections.  Investigation is ongoing for finding 

causes of extremely high worm burden in relatively few individuals and it is thought that 
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genetic susceptibility may be involved.  Despite large geographic variation, the extent of 

the disease remains high despite modern advances in sanitation and health care.     

A useful measure of the impact of hookworm disease, as with other more chronic 

diseases, is in terms of disability adjusted life years (DALYs) which uses both morbidity 

and mortality to calculate the impact of disease on a community.  According to the World 

Health Organization (WHO 2002), hookworm disease is more burdensome than most all 

tropical diseases except for  HIV, malaria, and tuberculosis, causing 22.1 million DALYs 

annually.  Because of the distribution of the disease and its biologic mode of 

transmission, hookworm is known as one of the neglected tropical diseases that 

negatively affect the health and welfare of millions of impoverished people in the 

developing world.   

 

Epidemiology of Hookworm Infection in South America and Latin America 

 Hookworm prevalence in Latin America and the Caribbean is strikingly high, 

with approximately 50 million individuals infected and another 340 million are at risk for 

infection (de Silva 2003, Brooker 2004).  The 1996 Demographic Family Health Survey 

of Peru reported that 25% of deaths due to communicable diseases in children 1-4 years 

of age are due to intestinal infections, including intestinal parasitosis.  Although not many 

studies on hookworm have been conducted South America, several studies exist that 

confirm the high prevalence of the disease.  A 1984 study of four indigenous tribes of the 

Peruvian Amazon showed that of 165 villagers sampled, 92% had evidence of helminthic 

disease of which 72% were with hookworm (Bouree 1984).  Egido and colleagues 

studying Strongyloides infection in the Southern Amazonian port city of Puerto 
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Maldonado report a 27% prevalence of hookworm infection in their cohort.  However, no 

data on speciation is presently available (Egido 2001).   

Brazilian studies indicate approximately a 30% prevalence of hookworm disease, 

primarily Necator species, in several recent studies (Miranda 1998).  A study of 

hookworm prevalence in Paraguay describes overall hookworm prevalence at 59% of a 

population of 112 sampled.  Speciation by L3 morphology identified a 73% prevalence of 

Necator, 15% of Anyclostoma duodenale and 12% with mixed infection among those 

infected.  The majority of those infected with A. duodenale were under the age of 15 

years (Labiano-Abello et al 1999).     

 In Peru, the only hookworm related studies to date have been examinations of risk 

factors for maternal-child morbidity and schoolage stunting among an extremely 

impoverished urban community Amazonian community of Belen, a neighborhood within 

Iquitos, Peru.  These studies have examined the clinical outcomes and risk factors at 

baseline and after antiparasitic treatment, and have show the high burden of disease in 

this part of the Peruvian Amazon (Larocque 2005).  Most experts believe that Necator 

americanus is the primary, if not sole, species responsible for hookworm infection in this 

part of the world.  As of yet, however, no published evidence has demonstrated which 

species of hookworm exists in the Peruvian Amazon and no immunoepidemiological 

studies of hookworm infection have been done in this specific endemic region.   
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Clinical manifestations 

 Hookworm disease is typically a chronic illness that may lead to iron deficiency 

anemia, likely due to gastrointestinal blood loss caused by adult worm feeding.  

Excessive blood loss can also cause a moderate to severe hypoalbuminemia.  

Malnutrition due to impaired appetite and inflammatory enteritis, as well as 

malabsorption due to the effect of specific hookworm enzymes have been well 

documented (Chu 2004, Hotez 2004).   

 

 

Figure 4. Left: Photomicrograph (2X) showing area of hemorrhage surrounding the site of adult 
hookworm attachment to the intestine. Right: H&E stained section (40X) of an adult Ancylostoma 
ceylanicum hookworm attached to the intestinal mucosa. Note plug of tissue within the worm’s 
buccal capsule. (Images courtesy of R. Bungiro, Yale School of Medicine) 
 

Additionally, hookworm has been implicated in a wide variety of non-intestinal 

syndromes.  For example, repeated exposure to hookworm larvae can result in “ground 

itch,” a local pruritic, erythematous popular rash most commonly found on the hands and 

feet where individuals are commonly exposed to soil and sand.  Cutaneous larva migrans 
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is a syndrome associated with exposure to A. braziliense which includes the “creeping 

eruption” of a self-limited dermatologic condition caused by the migration of L3 larvae in 

the epidermis.   

 

Figure 5.  Cutaneous larva migrans.  (from 
http://www.mjA.com.au/public/issues/177_04_190802/loo10413_fm-6.jpg Accessed 11.01.2006) 

Clinical manifestations of hookworm disease progress in parallel with the life 

cycle of the worm.  Once they have migrated to the lung, larvae can cause cough and sore 

throat.  Pulmonary hookworm disease is similar to Loeffler’s syndrome and is 

characterized by cough, sore throat, and eosinophilia. Individuals with cutaneous larva 

migrans may also develop a pneumonitis.  A. duodenale, when orally ingested can cause 

Wakina disease, characterized by nasopharyngeal irritation, cough, dyspnea on exertion, 

hoarseness and elevated IgE (Hotez 2004).   

 As several studies have consistently indicated, the severity of morbidity depends 

in large part on the intensity of hookworm burden, typically measured by the number of 

adult worms expelled after treatment with an anti-helminthic or by quantitative egg 

counts from the feces of infected individuals.  Additionally, the baseline health of the 

host also affects the actual morbidity associated with hookworm disease.  Those 

individuals harboring other infections, such as HIV, malaria and other parasites may 
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suffer additional morbidity with concomitant hookworm infection than with either 

infection alone.  In the developing world the combination of poverty and tropical diseases 

endemic to those areas make hookworm an even more important public health problem. 

 

Diagnosis 

Diagnostic determination of hookworm infection has remained the same over the 

past several decades, relying on direct microscopy and sedimentation for initial diagnosis.  

Direct microscopy relies on the timely processing of fecal samples by a trained technician 

adept at distinguishing intestinal parasites based on egg morphologies. For example, 

hookworm eggs are transparent, thin and ovoid, measuring approximately 60 microns 

(μm) by 40 μm.  Of note, eggs of Strongyloides stercoralis are morphologically 

indistinguishable from hookworm eggs and require identification based on adult mouth 

morphology. 

 

Figure 6.  Hookworm egg under light microscopy.  Accessed from Diagnostic Parasitology DPDx 
11.16.2006).   
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For quantification of parasite burden, the Kato-Katz method, Stoll method and 

McMaster method are all used.  The Kato-Katz technique is considered the gold standard 

for quantitative hookworm diagnosis.   However, this method requires rapid processing of 

delicate samples, making its use in field situations cumbersome.  Recently, several 

molecular methods have been developed in order to expedite the diagnostic process and 

improve specificity and sensitivity of detection methods.   

 Because the two main species of human hookworm have different but overlapping 

geographical distribution, advances in understanding epidemiology could be improved by 

accurate identification of the species of hookworm endemic in a given area.  Speciation 

of hookworm can be done by examining the buccal capsule of adult worms. Although the 

gold standard, this method of corporal examination has many limitations.  Culturing 

larvae from hookworm eggs is a time-consuming, inefficient, and delicate procedure and 

examination of the larvae requires well-trained personnel.   

Recently, DNA-based techniques for molecular diagnosis of hookworm have been 

reported by several groups using primers designed to amplify species specific sequences 

within the cytochrome oxidase (COX) gene and the internal transcribed spacer (ITS) 

rDNA (Hawdon 1996, Zhan 2001, Monti 1998).  The Cappello laboratory has begun the 

use of ELISA based assays for specific antigen detection of the hookworm infection 

(Bungiro 2005).  Although these studies have been effective in controlled laboratory 

studies, no comparison has been made yet to the Kato-Katz method in the field.   
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Pathogenesis  

 Hookworm pathogenesis incorporates several key features that have recently been 

elaborated using animal models.  Hookworms secrete a variety of molecules that 

contribute to disease pathogenesis at every level.  For example, proteins involved in the 

initial stages of intestinal pathogenesis such as attachment, penetration, mucosal 

inflammation, and bloodfeeding, have been defined. These molecules are now being 

considered for potential roles in pathogenesis.  Some of these proteins have been 

identified as critical hookworm virulence factors, namely anticoagulants, platelet 

inhibitors, secreted proteases and protease inhibitors (Bungiro 2004, Jones 2004).  

Characterization and identification of these virulence factors have provided researchers 

with potential targets for treatment and potential antigens for vaccine development with 

the goal of preventing disease caused by the intestinal stages of hookworm disease.  

Other secretory proteins to contribute to an immunomodulatory effect of the 

hookworm on the host immune response.  We theorize that these proteins will be useful 

in elucidating the immunology of hookworm infection in endemic communities.  One 

aspect of hookworm pathogenesis that sets it apart from other intestinal parasites is the 

complex host-parasite interaction.  The multiple stages of hookworm within the host as 

well as the ensuing exposure of the host to a variety of antigens make the immune 

response to hookworm a complex phenomenon.  Using hookworm antigens developed 

from either whole worm soluble extracts (adult and larval stage), as well as recombinant 

proteins developed in the hamster model, we have selected several A. ceylanicum and N. 

americanus antigens to use in investigating human hookworm immunoepidemiology.   
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Risk Factors 

 Based on our knowledge of hookworm pathogenesis and mode of transmission, 

several risk factors for infection have been identified.  Lack of sanitation, including poor 

personal hygiene, absence of a latrine, lack of shoe wearing, and manual/field labor are 

considered major risk factors for hookworm infection (Brooker 2004).  Common to all of 

these risk factors is low socioeconomic status; although, in comparison to other 

indicators, the relationship between socioeconomic status and helminth infection is 

equivocal.  In one review of the literature, Hotez and colleagues reported that while some 

studies have shown no correlation between income level and latrine access with 

hookworm infection, all such studies have corroborated a strong relationship between 

agricultural lifestyle and disease (Brooker 2004).   

 

Socioeconomics of Hookworm Disease  

In addition to the high prevalence of disease and its effect on the health of the 

individual, helminthic disease has serious socioeconomic effects.  Identified as one of 

thirteen “neglected tropical diseases,” hookworm disease joins the ranks of diseases such 

as schistosomiasis, lymphatic filariasis, onchocerciasis and trachoma.  These diseases 

have been shown via mathematical modeling to be “poverty-promoting” which is to say 

that they in fact contribute to maintaing the conditions that perpetuate poverty in disease 

endemic communities.  As one of the “poverty promoting” diseases, hookworm disease 

affects child health and development, maternal health and worker productivity and 

represents a significant public health concern (Hotez 2006).  
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Figure 7.  Relationship between hookworm infection and poverty.  Measures of economic prosperity 
and development such as purchasing power parity and the human development index are highest in 
areas of low hookworm prevalence.  Second quartile pucharsing power parity may have higher 
hookworm prevalence due to the type of work that such individuals partake in as opposed to those 
who are unemployed or have extremely low purchasing power parity.  Of note, the large overlap 
between groups shows that such measures are trends only and thus socioeconomic status cannot be 
the only relevant contributor to hookworm infection rates.  From de Silva 2003. 

   

Treatment and Prevention 

 As a disease stemming from poverty and its associated characteristics, particularly 

in developing communities, it has long been recognized that planned urbanization, 

improved social infrastructures and poverty reduction are the most long lasting 

mechanisms for preventing hookworm disease.  However, these systemic changes are 

extremely difficult to achieve and mechanisms for addressing component issues such as 
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shoe wearing and improved sanitation are often equivocal in their effect on disease 

burden (Hotez 2006).   

Since the 1960s, when thiabendazole became the first benzimidazole licensed for 

human use, the treatment of hookworm disease by chemotherapeutics has been largely 

unchanged.  The current drug regimen for hookworm infection as recommended by the 

World Health Organization is a single dose of a benzimidazole agent, e.g. 400mg of 

albendazole.  Benzimidazoles remove adult worms from the gastrointestinal tract of the 

host and are relatively inexpensive for widespread use in developing countries.  The 

World Health Organization has recommended de-worming of school-age children, 

aiming for 75% de-worming by 2010.  Although this initiative represents a significant 

public health endeavor with many potential benefits, the fact that hookworm disease 

typically is concentrated in a very few individuals and the high burden of disease in 

adults as opposed to children may make school-based de-worming campaigns less 

efficacious in reducing hookworm infection rates than expected.   

 As with many of drugs of our era, the reliance on one class of drugs, e.g. 

benzimidazoles, for treatment of hookworm infection is wrought with potential hazards.   

Benzimidazoles act by interrupting microtubulin function in the parasite, usually as a 

result of glucose pathway interference.  The high rates of re-infection with hookworm, 

even immediately after de-worming, suggest that benzimidazole therapies are not 

effective long term solutions.  Some studies indicate that these drugs become less 

effective after repetitive use, perhaps suggesting the emergence of drug resistance (Hotez 

2006). 
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 New agents under development for the treatment of hookworm infection include 

tribendimidine (400mg single use) (Xiao 2005) and Cry5B, a nematicidal crystal toxin 

isolated from the soil bacterium Bacillus thuringiensis (Cappello 2006).  Although the 

use of new agents in combination with or as an alternative to benzimidazole therapies 

may delay the emergence of drug resistance in the short term, any chemotherapeutic 

agent is unlikely to change the high rates of re-infection that typically occur soon after 

anti-hookworm therapy.  In response to this, more appropriate prevention technologies, 

such as vaccine development have been recommended.  (Hotez 2006) 

 Vaccination, though an extremely powerful preventative tool for control of 

infectious diseases, has not been very successful against hookworm thus far for a variety 

of reasons.  First, eukaryotic pathogens such as hookworm are more difficult to create 

vaccines for because investigators are often unable to use standard vaccine technology.  

In particular, worms and other parasites require special eukaryotic expression vectors and 

animal models that make high throughput reverse vaccine technology impossible.  

Secondly, and perhaps more distressing, is that the lack of fruitful commercial markets 

for these vaccines in the developed world make their development by drug companies 

less likely.  Fortunately, organizations such as the Bill and Melinda Gates Foundation and 

the Clinton Foundation are now showing an interest in “neglected tropical diseases” and 

are beginning to use their resources to leverage drug and vaccine development.  (Hotez 

2006)  Despite these obstacles, one anti-hookworm vaccine specific to N. americanus is 

in human clinical trials.  This experimental vaccine uses Ancylostoma secreted protein 2 

(ASP-2), which is an antigen secreted by all species of hookworm larvae.  In vitro studies 
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of anti ASP-2 antibodies show that they seem to prevent larval stage invasion.  The effect 

of this vaccine on humans is still under investigation.  
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Specific Aims 

This study is based on the known body of work regarding hookworm 

immunoepidemiology in the developing world and our expertise in animal models of 

hookworm infection.  The aims of this project were as follows: 

• To conduct an immunoepidemiologic survey of hookworm infection in an 

endemic community by first characterizing prevalence of hookworm infection 

and incidence of co-infections.   

• To identify the species distribution of hookworm in this endemic community 

using molecular methods.   

• To use laboratory reagents developed in an animal model to characterize anti-

hookworm immune responses in an endemic community.   

•  To utilize immunoepidemiologic data to begin developing novel diagnostic 

assays for hookworm infection. 
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Materials and Methods 

Study Design.  We conducted a cross-sectional, two part immunoepidemiologic 

study focusing first on descriptive field-based assessment of community health status and 

hookworm disease burden at a macro-level and secondly on laboratory based assays for 

characterizing immune responses to infection.  Field work was conducted between July-

October 2005. This study was approved by the Ministry of Health of the Department of 

Loreto, Peru, the Internal Review Board of Asociacion Benéfica Prisma laboratory 

(Lima, Peru) and Johns Hopkins University, and the Human Investigations Committee of 

Yale University School of Medicine (HIC# 0507000390).   

 

Study site.  Tarapoto, a village located in the rural Amazon approximately 20km 

from the urban center of Iquitos, Peru was initially chosen as a study site due to its 

centrally located population and remote geographic location.    
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Figure 8.  Map of the Iquitos, Peru and the surrounding area.  From 
(http://encarta.msn.com/map_701513362/Iquitos.htmlaccessed on 11.26.2006 

 

Study participants and recruitment. Initially, a small community meeting in the 

village of Tarapoto was conducted to discuss the study objectives, importance of the 

study, and to address any questions and concerns members of the community may have 

with participation. An initial comprehensive epidemiologic survey and census of the 

village population was conducted.  Information including basic demographics, past 

medical history, history of parasitic disease, and socioeconomic indicators as related to 

parasitic infection were collected.  All study materials were translated into Spanish, the 

predominant language of the area and all information was verbally read/explained to 
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study participants if they were illiterate.  Informed consent was obtained from each study 

participant, and risks and benefits of all study components and interventions were 

described.   

Of approximately 235 inhabitants who were considered residents of the village if 

they resided within a 4 mile radius of the village center and spent greater than 5 

days/week in the village, 190 were surveyed.  The second component of the study 

involved collection of stool and blood samples from each subject.  Of the 190 village 

residents interviewed, 176 agreed to participate and supplied a stool sample, while 164 

also provided a 3-5mL blood sample.  All residents of the village were included in the 

study.  There were no exclusion criteria except residence outside of the village.  Common 

reasons for abstention from participation in the study included being away from home 

and embarrassment over providing stool samples.   

 

Stool Collection. Stool sample collection cups were distributed to all participants 

at the time of the initial interview with subject code, name, and a pictorial representation 

for those who were illiterate to assist in careful stool collection.  Instructions were given 

to the domestic head of the household, generally the mother/wife and particular emphasis 

was placed on early morning collection of stool and taking care not to mix soil with stool 

since the majority of participants used the jungle/fields for defecation.  A follow-up visit 

was conducted the subsequent morning to collect stool samples from participants enrolled 

the day before. Stool was stored in an insulated cooler in the shade (30 °C) awaiting 

transport back to the laboratory in Iquitos for diagnosis of intestinal parasites.  To prevent 

exposure to heat as much as possible due to the fragility of hookworm eggs, stool 
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samples were processed immediately upon arrival back to Iquitos, typically within 3 

hours of initial collection and presumably within 8 hours of defecation.  With the aid of 

an experienced laboratory technician (CB) two initial tests for diagnosis of intestinal 

parasitosis were employed:  direct microscopy and sedimentation method (Melvin 1982).  

These tests provided rapid, same day diagnosis of intestinal parasitosis.  In particular, 

specimens were assessed for infection by hookworm, Strongyloides stercoralis, Trichuris 

trichiura, Ascaris lumbricoides, Giardia lamblia, Enterobius vermicularis, and 

Entamoeba species.  Additional diagnostic tests, the Agar plate method and a modified 

Baermann method, were employed and Stoll counts were performed on all samples 

regardless of initial diagnostic results according to the protocols outlined below (Melvin 

1982). Any stool sample deemed to be positive for hookworm disease based on direct 

microscopy and sedimentation was cultured using a modified Petri Dish method and 

larvae were collected at day 2 and day 4. 

 

Stool Diagnostic Laboratory Methods.  Direct microscopy.  One drop of fresh 

feces is smeared on microscope slide and examined at high power for parasite eggs.   

Sedimentation.  Sedimentation is a diagnostic method designed to concentrate the 

protozoa, larva and eggs of helminthes for detection by direct microscopy. 

1. To a sedimentation cup (any container with a large orifice that can hold up 
to 300-500cc fluid) water is added at room temperature (30ºC).   
2. A piece of gauze is placed in a small colander that sits on the orifice of the 
sedimentation cup.  The bottom of the colander should be slightly immersed in 
water.  Approximately 5g of fresh stool is placed on the gauze and spread evenly 
with a toothpick or other disposable device. 
3. The stool is allowed to sit for 20 minutes in the apparatus after which the 
gauze and colander are removed. 
4. Supernatant is decanted leaving approximately 5 mL of sediment in the 
bottom of the cup.   
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5. 300 mL of water at room temperature is added to the cup and allowed to 
sit for 30 minutes, cleaning the sample and allowing it to sediment again.  
Supernatant is decanted the entire process repeated. 
6. After 2nd wash supernatant is decanted and 5 drops of sediment is placed 
on a microscope slide and examined for eggs, larvae or protozoa. 
 

Modified Baermann method (Melvin 1982).   

1. 45cc of warm water (40ºC) is placed in a 50cc conical tube covered by 
two pieces of gauze (the gauze should be in contact with the water). 
2. 5g of stool is placed on the gauze and allowed to sit for 6 hours.  The larva 
should sediment in the bottom of the tube.  5 drops of sediment is removed and 
examine under microscope for eggs/larvae. 
3. The Baermann apparatus remains intact for 24 hours total and sediment 
examined again in 24 hours. 

 
Figure 9.  Schematic of a Baermann apparatus 

Agar Plate Method.  Yet another assay useful in the diagnosis of both hookworm 

and Strongyloides species is the Agar Plate Method, which relies on the motility of both 

species.  One can observe the migration of the adult larvae since they create paths along 

the agar plate and more easily collect larvae for high power examination and corporal 

diagnosis.  Agar plates are prepared using sterile water and agar (Fluconazole, a potent 
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anti-fungal, can be added to the agar plate in order to prevent fungal overgrowth that may 

inhibit the migration of the hookworm larvae) (Yori 2006).  

1. One gram of stool is dropped in the center of the agar plate.  One drop of 
water or normal saline is pipetted over the stool.  This creates a humid, moist 
environment to encourage migration of the worms.  
2. Specimens are thus cultured for 48 hours at 28ºC. 
3. After two days plates are observed for tracks and checked under the 
microscope for larval diagnosis. 

 

Stoll Method (Modified) for Hookworm Egg Quantification. 

1. 40mL of purified, distilled water is placed in a 50mL conical tube. 
2. A piece of gauze is placed over the opening of the tube and 1g of stool is 
smoothed onto the gauze to sit for one hour. 
3. After 1hour the fluid in the top of the conical is poured off saving only 5 
mL of the sedimentation found at the bottom of the conical. 
4. The sedimentation is placed in a 5mL tube. 
5. Two aliquots of the sediment, each aliquot of 50uL, is taken and placed on 
a glass slide for microscopic examination.  All eggs seen in each aliquot are 
counted. 
6. To calculate the amount of eggs in the sample as eggs per gram (epg) the 
number eggs detected in the each of the 2 aliquots were added and divided by 2.  
Then the average per 50uL is extrapolated to EPG by multiplying the eggs/50uL  
x 100 = the eggs per 5 mL = eggs per gram 
 
After stool for all tests was removed from the initial sample, approximately 1.5 

mL of stool from each participant was removed and stored in 1.5 mL Eppendorf tubes 

and frozen at -28°C for later transport to Yale.  The remainder of the stool from 

hookworm positive subjects was cultured for larvae. 

 

Culture.  Culturing hookworm larvae was accomplished using a Modified Petri 

Dish Method (a technique developed by our collaborators Kosek and Yori in Iquitos for 

initial use as a culturing technique for Strongyloides larvae).  Briefly, a small Petri dish 

placed inside a larger Petri dish.  One part feces and one part bone charcoal are mixed 
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well using a wooden stick and placed in the smaller, internal Petri dish.  Clean distilled 

water is placed in the larger Petri dish until the level of the water reaches the same depth 

as that of the internal Petri dish.  The entire apparatus is placed in a refrigerator (as 

ambient temperature was warmer than this) with bottles of ice to regulate temperature to 

28ºC for 4 days.  As hookworms hatch from their eggs, the larvae, which are hydrophilic, 

effectively jump into the water ring surrounding the culture mixture.  Water from the 

outer ring was collected at day 2, replaced with fresh distilled water and re-incubated for 

another two days at which time the final culture was collected and the stool mixture 

disposed.  Water containing larvae was centrifuged, supernatant discarded and the pellet 

resuspended in clean distilled water and stored at room temperature awaiting shipment to 

Yale.    

 

Treatment.  Any study participant diagnosed with any form of intestinal parasite 

was offered standard treatment according to World Health Organization 

recommendations.  Of note, treatment was provided after blood samples were obtained.   

Parasite Treatment 

Hookworm (A. duodenale or N. 

canus) 

Albendazole 400mg x 1 dose 

Strongyloides stercoralis Albendazole 400mg once daily x 3 days 

Giardia lamblia Albendazole 400mg once daily x 5 days 

Ascaris lumbricoides Albendazole 400mg twice daily x 3 days 

Trichuris trichiura Albendazole 400mg once daily x 5 days 

Table 2.  World Health Organization treatment recommendations for common intestinal parasitic 
diseases.  Adapted from www.who.org.  Accessed 07.07.2005. 
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As part of the agreement with the community to conduct this study, basic medical 

care was provided using a house-call system.  Any villager requesting medical care was 

evaluated and treated (free of charge) regardless of their participation in the study.  

Appropriate referrals were made to the nearest health post in Santa Clara district 

(approximately 1 hour away by boat).  Anyone complaining of fever was immediately 

tested for malaria using peripheral blood smear analysis (see below).  Other routine 

laboratory tests were also provided for free based upon the patient’s complaints.  All 

medical care provided by the primary caregiver (PS) was discussed with a qualified 

medical professional (MK).    

 

Serum Collection.  Blood samples were obtained from study participants using a 

small gauge needle (23 ¼ or 25 ¼ gauge) and 5 cc syringe (Becton Dickinson, Franklin 

Lakes, NJ).  Approximately 3-5 cc of blood was obtained from each participant and 

immediately placed in a vaccutainer tube.  Tubes were immediately placed in a styrofoam 

cooler to prevent heat associated hemolysis and transported back to the laboratory in 

Iquitos for further processing (within 3-5 hours of phlebotomy).  In the laboratory, 

hematocrits were obtained using a capillary tube method and centrifugation.  In addition, 

a thick and thin peripheral blood smear from each study participant was evaluated for 

malaria using the methods outlined below (CDC 2006).  According to recommendations 

made by the CDC, thick and thin smears were prepared on the same slide due to limited 

resources.  

Thick smears.   
1. Place a small drop of blood in the center of the pre-cleaned, labeled slide. 
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2.  Using the corner of another slide or an applicator stick, spread the drop in a 
circular pattern until it is the size of a dime (1.5 cm2).  
3. A thick smear of proper density is one which, if placed (wet) over newsprint, 
allows you to barely read the words.  
4. Lay the slides flat and allow the smears to dry thoroughly.   
5. Examine slides by microscopy. 
 
Thin smears 
1. Place a small drop of blood on the pre-cleaned, labeled slide, near its frosted end. 
2. Bring another slide at a 30-45° angle up to the drop, allowing the drop to spread 
along the contact line of the 2 slides.  
3. Quickly push the upper (spreader) slide toward the unfrosted end of the lower 
slide.  
4. Allow the thin smears to dry then fix the smears by dipping them in absolute 
methanol.  
5. Examine by microscopy for species identification. 
 

Any individual diagnosed with malaria was treated using World Health 

Organization recommended guidelines (WHO 2006). Finally, all blood samples were 

centrifuged at high speed for 5 minutes and serum phase removed and stored in 1.5mL 

Eppendorf tubes and frozen at -80 °C.     

Frozen aliquots of stool and serum samples, as well as live larvae at room 

temperature, were transported from Iquitos to Lima, Peru via airplane and immediately 

taken to AB Prisma collaborating laboratories at Universidad Cayetano Herrida for 

refrigeration and processing for shipment back to the United States.  It was assumed that 

the frozen human samples would be able to withstand a freeze-thaw cycle in this regard.  

Each individual sample tube was quickly wrapped in Parafilm® (SPI West Chester, PA) 

and, with the proper permission from the Government of Peru and the USDA, 

Department of Health and Human Services and State of Connecticut, all samples were 

shipped to the United States over 3 days.  Frozen stool and serum were stored in dry ice 

for the duration of the journey.  Upon arrival at Yale, all samples were appropriately 

stored in either freezers or at room temperature.   
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Serologic Studies.  Serum aliquots were initially pooled into several groups 

depending on active infection status and pools were utilized in Western blot analysis.  

Naïve human serum from a donor never previously exposed to hookworm served as a 

negative control for all studies.  To determine the value of Western blot in distinguishing 

species specific responses among a variety of endemic communities, an immunoblot of 

pooled sera from Peru was compared with that from Ecuador, where sera donations came 

from Necator infected individuals for total IgG responses to a small panel of our A. 

ceylanicum antigens.   

In order to compare serum antibody levels with fecal antigen and egg count 

results, we utilized a recently developed indirect ELISA assay to measure 

immunoglobulin levels directed against pooled and specific hookworm proteins. The 

assay is both cost effective and requires only a small amount of patient sera. The pooled 

and specific recombinant antigens were derived from adult Ancylostoma ceylanicum 

hookworms that are maintained in Dr. Cappello’s laboratory in the Yale Child Health 

Research Center  (YCHRC). We have previously demonstrated that serum from subjects 

infected with hookworm will react with these antigens in an ELISA format (unpublished 

results).  Each individual participant’s sera was screened using this ELISA for total IgG, 

IgG4 and IgG1 immunoreactivity against hookworm antigens.  Additionally, to further 

quantify and compare immune responses across the geographic regions described above, 

pooled banked serum from those locations was analyzed by ELISA methods.   

Comparative serologic studies were performed on pooled, banked sera in the 

YCHRC from a variety of geographic locations, including Ecuador, Venezuela, and 

Guatemala as well as New Haven, CT.  All serum banked from individuals in these 
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communities were obtained according to HIC approved protocols and with informed 

consent.  Ecuadorian samples were collected from schoolchildren in the Pichincha 

Province.  Guatemalan serum was obtained from a mass deworming project in the Lake 

Izabal region of Eastern Guatemala.  Venezuelan serum came from an epidemiologic 

survey conducted in the Valle del Rio region of rural Venezuela.  Naïve human serum 

was obtained from an unexposed individual in New Haven, CT.    

 

Parasite Antigen Preparation.  Ancylostoma ceylanicum adult worms and larvae 

were obtained from the ongoing hamster model for hookworm infection in the Cappello 

laboratory.  Whole hookworm homogenates and larval homogenates (HEX, NEX and 

LEX) are routinely prepared using hookworms and larvae from this life cycle.  Briefly, 

adult hookworms and/or larvae were harvested from a hamster, concentrated, and 

homogenized using sonication.  Homogenates were stored in Tris-HCl.  Necator soluble 

extract (NEX) was obtained from adult worms harvested from infected hamsters.  

Excretory-secretory product (ES) was prepared by incubating live freshly harvested adult 

worms in filter sterilized PBS.  After 6-8 hours worms were removed and ES products 

removed after centrifugation (Bungiro 2002).  

 

Western Blot.  Western blot was used in order to test the reactivity of serum from 

endemic communities against a variety of A. ceylanicum antigens.  Antigens taken from 

A. ceylanicum and N. americanus were run in a polyacrylamide gel at appropriate 

concentrations (LEX, HEX, ES, NEX were run at 2 mcg/well each, and rAceES-2 at 

500ng/well as less of a recombinant protein is necessary for detecting signal).  Gels were 
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run in replicate at 80V for 2-3 hours.  Gels were immediately transferred at 4ºC for 1 

hour at 100V.  In order to minimize background interference that can become 

problematic when working with human samples, blots were blocked overnight in 5% 

Non-fat milk in phosphate buffered saline (PBS) with Tween (MPBS-Tween) at 4ºC.  

The next day blots were placed in a 1:1000 dilution of appropriate serum in 1%  MPBS-

Tween and incubated for 2-3 hours at room temperature while gently stirring.  Blots were 

then washed vigorously 3 times for 10 minutes in PBS-Tween and then placed in 

secondary antibody for 1 hour at 37 ºC.  In this case, the secondary antibody was a 

1:5000 dilution of either goat α human IgG conjugated to or goat α hamster IgG 

conjugated to horseradish peroxidase (ICN Biomedicals, Aurora OH, Cappel #55402 lot# 

03636 or # 55220 lot #03916, respectively).  After vigorous washing 3 times for 10 

minutes in PBS-Tween, blots were mounted onto glass plates, developed using 

SuperSignal chemiluminescent substance and exposed in the dark.  

 

Enzyme Linked Immunosorbent Assay (ELISA).  This assay has been optimized 

for human serum, using a chequerboard plate method to determine dilutions of primary 

and secondary antibodies.   Antigens were uniformly coated at concentration of 2 μg/mL 

in sterile PBS and 100 μL per well was added to Immulon 2 HB 96-well plates (Dynex 

Techonologies, Chantilly, VA). To allow adequate time for antigens to adhere to the 

wells, plates were covered in saran wrap and incubated in 4ºC overnight.  300 μL of 1% 

MPBS was added to each well in a 96 well plate which was then incubated overnight in 

4ºC.  This blocking step is designed to prevent any non-specific epitopes from interfering 

with the primary antibody during the dilution steps.   
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To ensure precision, all samples were run in duplicate and mean values for each 

sample were used in analysis.  Consistency within plates was ensured by calibrating OD 

values against blanks before means were taken.  Consistency between plates was ensured 

by using two controls, a positive control made up of a pool serum from actively 

hookworm infected individuals from the study population and a negative “gringo” control 

comprised of serum from non-endemic, never before exposed serum from New Haven, 

CT.   

Total IgG ELISA.  On day 2, antigen coated plates were washed using an 

automated plate washer (ELx405 Bio-Tek) and blocked with 1% MPBS for 1 hour at 

37ºC.  During this time dilutions of serum were made using the dummy plate. After 

washing, 220 μL of MPBS-Tween were pipetted to into each well of every other row.  To 

every other row, 220 μL of diluted serum at two times the appropriate concentration was 

added.  For total IgG assays serum dilution of 1:200 was used.  100 μL of serum was 

pipetted into each well of test plate using multichannel pipetter, covered and incubated 

for 3 hours at room temperature.  A 1:1000 solution of goat anti-human IgGt in MPBST 

was made.  Plates were washed 4x using the automated plate washer as above. 100 μL of 

the secondary solution was pipetted into each well and plates were covered and incubated 

at 37ºC for 2 hours.  100 μL of streptavidin-HRP solution was pipetted into each well 

using the multichannel pipette.  In the meantime, a citrate buffer (ph 5.0) based substrate 

solution was prepared (per plate:  500 μL ABTS, 10mL citrate buffer at room 

temperature, and 10 μL 30% H2O2).  After secondary incubation plates were washed 

again 5 times and 100 μL of substrate added to each well.  The absorbance (405nm) was 
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measured at 60 minutes (SpectraMax 190, Molecular Devices), and optical densities 

(OD) were recorded. 

IgG subtypes and IgE ELISA. Methods for IgG1,IgG4 and IgE ELISA were more 

vigorous. Blocking with 1% MPBS occurred over 4 hours at 37ºC on Day 2.  Serum 

concentrations were optimized using the chequerboard technique for IgG1 and IgG4 and 

serum dilution of 1:50 was chosen.  100 μL of serum was pipetted into each well of test 

plate using multichannel pipetter, covered and incubated overnight at 4ºC.  The next day 

a 1:1000 solution of BD Pharmingen biotin-conjugated mouse anti-human IgG4 or IgG1 

in MPBST was made.  Plates were removed from the 4ºC fridge and washed 4x using 

automated plate washer as above. 100 μL of the secondary solution was pipetted into 

each well and plates were covered and incubated at 37ºC for 1 hour.  A 1:1000 solution 

of streptavidin-HRP (ImmunoPure Streptavidin, HRP conjugated, Pierce 21126) was 

prepared.  Plates incubating with secondary were washed 4x using plate washer and 100 

μL of streptavidin-HRP solution was pipetted into each well using the multichannel 

pipette.  Plates were then covered and incubated for 1 hour at 37ºC.  After secondary 

incubation, plates were washed again 5 times and 100 uL of substrate added to each well.  

Spectrophotometry was performed at 60 minutes using (Spectra Max 190 M) and optical 

densities (405nm) were recorded. 

 

Speciation.  Because of the time consuming nature of morphologic examination 

to speciate between the different human hookworm species many molecular methods 

have been developed to facilitate hookworm diagnosis.  Initially, DNA extractions from 

larvae of hookworm positive individuals were used in a PCR-based assay based on 
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sequence differences between the cytochrome oxidase (COX) genes of N. americanus 

and A. duodenale.   

 

DNA Extraction and Amplification.  Genomic DNA was isolated from L3 stage 

larvae that were cultured from the stool of hookworm positive individuals by modified 

Petri dish method.  DNA was isolated using a modified proteinase K method. 

1.  10-30 larvae were added to 40 μL of DNA extraction buffer (50mM KCL, 1.5mM 
MgCl2, 10mM Tris, pH 8.5, 0.01% gelatin, 0.45% NP-40, 0.45% Tween-20) with 20 
μg/mL proteinase K. 
2.  Samples were incubated at 55°C for 18 hours. 
3.  Samples were incubated at 100°C for 10 minutes to inactivate proteinase K. 
4.  Genomic extracts were centrifuged at top speed for 5 minutes and then stored at -
20°C. 
 

Primers and conditions for amplification were based on those reported by Zhan 

and colleagues (Zhan 2001).  To distinguish between Ancylostoma duodenale and 

Necator americanus two sets of species specific primers were used. (NaForward 5’-TTC 

GTT TGG AGT TGG CT and NaReverse 5’-TAG CTC CAG CCA AAA CT; 

AdForward 5’-TTC GTT TGG AGT TGG CA and AdReverse 5’-TGG CAC CAG CCA 

ATA CA).  PCR reactions were carried out with 2μL of genomic extract as template 

DNA in a total reaction volume of 50 μL using Amplitaq® (Applied Biosystems, Roche). 

The following cycling conditions were used: 

Preheat 94°C  
94°C for 30” followed by 40 cycles of 
94°C for 15” 
55°C for 20” 
72°C for 1’ then  
72°C for 10’ followed by storage at 4°C.   
 
Although this method has been useful in the past for speciating human hookworm 

(Zhan 2001, Difidele unpublished results), many difficulties in achieving reproducibility 
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were encountered with this technique.  We hypothesize that the long period of time 

between larval harvesting and DNA extraction made this system sub-optimal.  

Additionally, with larvae from only 40 of 66 hookworm positive individuals an additional 

technique needed to be employed to create a more complete dataset.  

  

Fecal PCR.  To maximize our ability to speciate hookworm we used a fecal 

extraction method to obtain genomic DNA (gDNA) directly from the stool of each 

individual in the study population.  A protocol based on the species specific differences 

in the ITS region of the hookworm genome was used.  Feces were extracted using 

QIAamp® DNA Stool Mini Kit (Qiagen, Valencia CA) and approximately 200uL gDNA 

elution product stored at -20 C.  PCR amplification of rDNA from products were 

accomplished a two-step procedure.  PCR Reaction I:  4 μL template, 45 μL Supermix 

(Invitrogen Life Technologies, Carlsbad, CA), 3.3 μL MgCl2, 1 μL species specific 

forward primer, 1μL species specific reverse primer.  PCR I employs NC2 (5’-TTA GTT 

TCT TTT CCT CCG CT) and NC5 (5’-GTA GGT GAA CCT GCG GAA GGA TCA 

TT) Cycling conditions were as follows: 

Preheat 94°C  
94°C for 5’ followed by 40 cycles of 
94°C for 15” 
55°C for 20” 
72°C for 30” then  
72°C for 5’ followed by storage at 4°C.  
 
PCR Reaction II used all of the same reaction parameters except only 2 μL of the 

amplicon derived from PCR I were used as the template.  Specificity for hookworm is 

achieved using species specific primers (NA 5’-CGT TAA CAT TGT ATA CCT GTA 

CAT AC and 5’-TGC GAA GTT CGC GTT TCG CTG AGC).     The amplicon from 
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PCR II was then run on a 1% agarose gel and visualized with Necator americanus 

appearing at approximately 870 base pairs and Ancylostoma duodenale 690 base pairs.  

 

DNA Sequencing.  For quality assurance, several PCR products were sequenced 

and alignments compared with those of known A. duodenale and N. americanus 

sequences.  Sequencing was done by the KECK facility at Yale University.  Sequences 

were analyzed using NCBI’s BLAST database and alignments done using DNAstar. 

 

Statistical Analysis.  All data were initially recorded on field forms and subjects 

were coded by number and letter.  Numbers identified household and letters were specific 

to the individual.  All data, including survey information and laboratory information were 

coded using this identification system.  From field forms data were transferred to a 

Microsoft Access database (Microsoft, Redmond WA). Spectrophotometric data (OD 

values) were initially recorded in a Microsoft Excel database (Microsoft, Redmond WA).  

Basic statistical analysis including bivariate analysis was performed by SAS Software.  

Comparisons of antibody responses (anti- hookworm antigen total IgG and IgG4, IgG1 

and IgE) were initially evaluated for normal distribution and IgG4 titers which were not 

normally distributed were then analyzed using non-parametric methods. P values of < 

0.05 were considered statistically significant. 
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Results 
 
Prevalence of intestinal parasites by fecal examination 

The initial aim of this study was to characterize basic prevalence rates of 

hookworm infection in an endemic community.  Based on the data from fecal 

examinations, we found that 98% of participants in this region of the Peruvian Amazon 

were infected with at least one intestinal parasite.   

Parasite Prevalence % (n) 
Hookworm 38.82 (66) 
Strongyloides stercoralis 14.12  (24) 
Trichuris trichiura 41.18 (70) 
Ascaris lumbricoides 75.88 (129) 
Giardia lamblia 2.35 (4) 
Enterobius vermicularis 0 (0) 
Entamoeba coli 8.24 (14) 
Entamoeba nana 0.59 (1) 
Table 3.  Prevalence of Intestinal Parasites in Study Cohort 

In addition, co-infection with multiple intestinal parasites was also a common 

phenomenon among this group.   

  

Table 4.  Prevalence of Co-infection with Hookworm in Study Cohort.  HW positive and negative 
status is determined by anyone of the six diagnostic methods described below unless otherwise stated.   

  Hookworm 
Positive (n=66) 

Hookworm 
Negative 
(n=104) 

Other parasitic 
infections 

   

Ascaris 
lumbricoides 

Infected 82 %    (54) 72%  (75) 

 Non-infected 18%     (12) 28%  (29) 
Strongyloides 
stercoralis 

Infected 23%     (15) 9%  (9) 

 Non-infected 77%    (51) 91%  (95) 
Trichura trichuris Infected 47%    (31) 38%  (39) 
 Non-infected 53%     (35) 62%   (65) 
Giardia lamblia Infected 3%       (2) 2%  (2) 
 Non-infected 97%     (64) 98%  (102) 
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Diagnostic Method Number of HW 
positives detected 

Number of HW 
negatives detected 

Any Method 52 68 
Direct Microscopy 12 108 
Sedimentation 34 86 
Agar Plate 25 95 
Agar Plate with 
fluconazole 

21 99 

Modified Baermann 
6 hours 

4 116 

Modified Baermann 
24 hours 

6 114 

Table 5.  Diagnostic Tests for Hookworm Detection. Not all samples were tested using all methods 
due to limitations in the amount of stool available and variability in testing. This table represents 
results form only 120 of 176 possible stool specimens. 
 

Demographic Characteristics of Study Cohort 

 Basic demographic information from study participants was analyzed in 

relationship to hookworm infection status.  The average age of study participants was 

24.3 years.  Males represented 56.32% (107) of the study population and females 

represented 43.68% (83). The mean ages of hookworm positive and negative subjects 

27.28 and 23.02 years, respectively (p <0.05).  Although not statistically significant, a 

trend was noticed in the difference in distribution of hookworm disease and education 

level. A higher percentage of hookworm negative individuals were in the “under school 

age” category.  Other results are summarized in the table below. 
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 HW positive 

(n=66) 
HW negative 
(n=104) 

Characteristic   
Age (years) 27.28 23.03 
Education level   
      Primary (n=71) 44% (29) 40.38% (42) 
      Secondary (8) 6% (4) 4.8% (4) 
     Higher 
education (1) 

0 (0) 1.47% (1) 

     Under 
schoolage (21) 

9% (6) 14.42% (15) 

     No schooling 
(17) 

17% (11) 8.82% (6) 

Table 6.  Demographic characteristics of study population based on hookworm infection status. 

 
 Additional demographic data, including established risk factors for hookworm 

infection, were obtained from the study cohort.  In particular, differences between 

hookworm positive and negative groups were noted for indicators such as where villagers 

typically defecated, profession, and shoe wearing practices.   Hookworm positive 

individuals were less likely to have access to a latrine, and were thus more likely to 

defecate in an open field (92.5% versus 84.31% p=0.05 ), although open field defecation 

was high in both groups. Additionally, farming was found to be a more common 

occupation for hookworm positive individuals than uninfected individuals (32% versus 

20.59%, p=0.02).  Shoe wearing, long considered a fundamental risk factor for infection 

with hookworm was less common in the hookworm positive group (88% never wear 

shoes) than the negative group (76% never wear shoes) (p<0.05). 
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 HW Fecal Positive HW Fecal Negative 
Risk Factor % (n) % (n) 
Excrement 
Elimination 

  

     Latrine 5.97 (4) 9.80 (10) 
     Open field 92.54 (62) 84.31 (86)  
     River 1.49 (1) 5.88 (6) 
Profession   
     Fisherman 4 (2) 5.88 (4) 
     Farmer   32 (16) 20.59 (14) 
     Woodsmen 2 (1) 1.47 (1) 
     Housewife 20 (10) 23.53 (16) 
     Manual laborer 0 (0) 1.47 (1) 
     Student 24.00 (12) 17.65 (12) 
     Minor 12.00 (6) 25 (17) 
     Unemployed 4 (2) 3 (2) 
Water source   
     River 100 (50) 100 (68) 
     Well 0 0 
Distance to water 
source (m) 

93.58 
(10-400) 

95.15 
(10-400) 

Water treatment   
      Boil 1.5 (1) 1 (1) 
     Chemical tx 9 (6) 4.9 (5) 
     None 90 (60) 94.12 (96) 
Shoe Wearing   
     Always 0 (0) 0 (0) 
     Almost always 4 7.35 
     Sometimes 8  14.71 
     Almost never 88 76.47 
     Never 0 (0) 1.47 
Garbage disposal   
     Open field 71.64 (48) 74.51 (76) 
     Burn 24.51 (25) 22.39 (15) 
     Bury 5.91 (4) 0.98 (1) 
     River 0 (0) 0 (0) 

Table 7.  Epidemiologic indicators for hookworm disease in the study cohort. 

  

Although often asymptomatic, chronic hookworm infection may be associated 

with several non-specific gastrointestinal symptoms and general symptoms of anemia.  In 

our study cohort, hookworm positive individuals tended to have more abdominal pain 
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then hookworm negative individuals (30% versus 19%, p=0.05).  In addition, past 

medical histories pertaining to hookworm disease was taken from each individual.  

Hookworm positive individuals tended more towards the use of medicinal plants for 

treatment of common ailments including intestinal parasitosis.  Use of non-steroidal anti-

inflammatory agents including acetaminophen, was more common among hookworm 

negative individuals than hookworm positive individuals (22% versus 5%, p=0.02 ).   

 HW Fecal 
Positive 

HW Fecal 
Negative 

Medical History   
Previous anti-parasitic treatment    
 Albendazole/Mebendazole 76.47 (52) 72.00 (36) 
     Medicinal plant* 5 (3) 1.47 (1) 
     None 22 (11) 22 (15) 
Last health care visit   
     Never 2 (1) 0 (0) 
     > 1 year 86 (43) 82.35 (56) 
     1 month – 1 year 8 (4) 8.82 (6) 
     1 month 0 (0) 1.47 (1) 
      1 week 0 (0) 1.47 (1) 
Current medication    
     Anti-parasitic 0 (0) 0 (0) 
     Anti-malarial 8 (4) 11.76 (8) 
     Anti-inflammatory 5.08 (6) 22.06 (15) 
     Antibiotic 0 (0) 2.94 (2) 
     Medicinal plants 16.00 (8) 5.88 (4) 
Symptoms of HW disease   
     Weakness 8.00 (4) 10.29 (7) 
     Abdominal Pain 30.00 (15) 19.12 (13) 
    Both 2 (1) 0 (0) 
    None 60 (30) 70.59 (48) 

Table 8.  Past medical history and relationship to hookworm infection. Medicinal plants used for 
antiparasitic treatment include oje, salmarga, and retama. 

 
 
Prevalence of Anemia in Study Population  
 
 Based on the pathophysiology of hookworm disease and in particular the blood-

feeding component of infection, I hypothesized that infected individuals would have 
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lower blood hematocrits than uninfected individuals.  Anemia in this population was 

defined as a hematocrit < 35 in males and < 33 in females based on parameters 

established by the Ministry of Health of the Department of Loreto, Peru.   Gender did not 

affect hematocrit significantly.  

 HW fecal positive SEM P value 
Characteristic    
Sex    
     Male 35.13 0.59 .450 
     Female 34.44 0.70  
Table 9.  Hematocrits among men and women in hookworm infection groups. 

Interestingly,  there were no statistical differences between parasite infected and 

uninfected individuals in terms of hematocrit, not only in hookworm infection but even 

infection with any other intestinal parasites.  However, when we compared hematocrits in 

individuals based on infection status for other intestinal parasites, we found that only 

trichuriasis correlated with a lower hematocrit (p=0.04). 

  Hematocrit SEM (+/-) p value 
Parasite     
Hookworm Infected 34.76 0.54 .978 
 Non-infected 34.74 0.58  
Ascaris 
lumbricoides 

Infected 34.41 0.44 .114 

 Non-infected 35.93 0.94  
Strongyloides 
stercoralis 

Infected 34.10 0.93 .500 

 Non-infected 34.86 0.44  
Trichura trichuris Infected 33.80 0.52 .04 
 Non-infected 35.46 0.61  
Giardia lamblia Infected 32.33 1.45 .348 
 Non-infected 34.80 0.41  

Table 10.  Hematocrits among participants infected and uninfected for a variety of intestinal 
parasites. 
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Subjects with Malaria and Hookworm Co-infection 
 
 More than 12 % of study subjects (21/170) were found to be co-infected with 

hookworm and malaria.  Among those individuals with malaria, the species distribution 

tended towards P. falciparum in hookworm uninfected individuals and P. vivax in 

hookworm infected individuals, although the sample size is too small to reach statistical 

significance.   

 HW fecal positive HW fecal negative 
 (n=66) (n=104) 
Malaria Positive 7 (10.6%) 14 (13.46%) 
Malaria strain Percent of Malaria 

Infected Individuals 
 

P. falciparum 29% (2) 78.57% (11) 
P. vivax 57% (4) 21.42 (3) 
Both 14.29%(1) 0 (0) 

Table 11.  Malaria prevalence and speciation in study cohort. 
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Speciation 

 PCR for speciation using COX-1 amplifying primers sets were initially used to 

distinguish between A. duodenale and N. americanus larvae cultured from stool of 

infected individuals.  However, of 66 hookworm positive individuals, only 40 samples of 

cultured larvae were obtained due to technical reasons.  After culture, the presence of 

larvae were confirmed by microscopy.  In some cases, however, larvae were not detected.  

This could possibly have been due to a sampling problem when culturing larvae from 

lightly infected individuals who had not expelled many eggs.  Additionally, temperature 

fluctuation in the field may have contributed to impaired culturing conditions.   

 
Figure 10.  Representative gel after PCR from fecal extraction gDNA 
amplification.  Upper panel shows Anyclostoma duodenale amplicons 
and lower panel shows Necator americanus amplicons.  Lane 1:  1 KB 
Ladder  Lane 2:  Necator americanus (NA) positive and Anyclostoma 
duodenale (AD) negative sample.  Lane 3:  AD positive, NA negative.  
Lane 4:  Negative for both species.  Lane 5:  Negative for both species.  
Lane 6:  Mixed Infection.  Lane 7 and 8:  Negative for both species.   

 
 
 
 

 
 
 
 
                                                                                   \

   1    2   3   4   5   6   7  8 
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 The results of speciation PCR by any of three methods is described below. 

Subjects were considered positive by PCR if amplicons wre detected using either larval 

gDNA or fecal gDNA as template.  Results from PCR speciation show that both species 

of human hookworm are endemic to this part of the Peruvian Amazon in roughly equal 

amounts with 25% of individuals harboring mixed infections.  

Species

A.duodenale N. americanus Mixed infection Negative 
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Figure 11.  PCR results for speciation of hookworm fecal-microscopy positive individuals (n=62 
total).  Of note larvae were only cultured from stool of subjects found to be hookworm positive by 
microscopy.  Fecal gDNA, however, was extracted from the stool of all study participants who 
provided samples. 

Although we are still in the process of speciating all fecal gDNA samples for 

signs of A. duodenale infection, this data suggests that molecular methods may have a 

higher sensitivity for detecting and speciating infection in an endemic community.  We 

have begun to analyze fecal gDNA from the microscopy negative samples and have 

found that of a pilot group of 26 subjects 7 were infected with A. duodenale only, none 

with N. americanus alone, 4 with mixed infection and 4 who were negative by PCR.  

22% 

33% 

25% 

18% 
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Nine individuals in this group had no fecal gDNA available for PCR and thus could not 

be assessed.  These results indicate that microscopy may under-diagnose individuals, 

likely due to lack of adequate sample or misrepresentation of the total stool sample.    

To confirm speciation results, several bands were taken from amplicons identified 

as either A. duodenale or N. americanus and sent for sequencing.  The resulting 

alignments were compared against an NCBI database and compared to known sequences 

for a variety of nematodes. 

 

Sequence Alignments 

Results from these alignments show that PCR products amplified from fecal 

gDNA did in fact correspond to the correct species based on the sequence similarity to 

the ITS-1 and -2 regions of the genome.  Several of our aligned sequences, however, 

exhibited interesting findings with a small, non-homologous region within the primer 

sequence likely indicative of a polymorphism. 

Query  30   TTGCAAATAACAGAAACATCGTTGTTATACTAGCCACTGCCGAAACGTTCTAAAGTCGGT  89 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  221  TTGCAAATAACAGAAACATCGTTGTTATACTAGCCACTGCCGAAACGTTCTAAAGTCGGT  162 
 
Query  90   AAACGATTCAGCAGCAACAACGAGTTTGCTGTCATTCAGCGCACGTTAGCAAACTAGCCA  149 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  161  AAACGATTCAGCAGCAACAACGAGTTTGCTGTCATTCAGCGCACGTTAGCAAACTAGCCA  102 
 
Query  150  GCCAACGTACATGTTGCAATATATTCTGATCTAGAACGGGAATCGCTAAAAGCAAGTGCC  209 
            || ||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  101  GCTAACGTACATGTTGCAATATATTCTGATCTAGAACGGGAATCGCTAAAAGCAAGTGCC  42 
 
Query  210  GTTCGACAAACAGTGCCACAAGCTACACTGTAGTAGATATA  250 
            ||||||||||||||||||||||||||||||||||||||||| 
Sbjct  41   GTTCGACAAACAGTGCCACAAGCTACACTGTAGTAGATATA  1 
 
Figure 12. Alignment of presumed A. duodenale PCR product with A. duodenale DNA for ITS-2.  
Showing 99% homology. 
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Query  1     CACGCCTGAGCTCAGGTTGCATTGCAAATGACACATCCACATGGCGAACATCGTTGTCCT  60 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  1055  CACGCCTGAGCTCAGGTTGCATTGCAAATGACACATCCACATGGCGAACATCGTTGTCCT  996 
 
Query  61    TCACATTGTCTCCGTTCAACCACGCTCATAAGTCGCGAGAGCGATTAAACAGTGAACAAC  120 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  995   TCACATTGTCTCCGTTCAACCACGCTCATAAGTCGCGAGAGCGATTAAACAGTGAACAAC  936 
 
Query  121   GATATGTTCATGTCATACAGTATGCACCGCTATCATACGTTAGTAAACTAGCTAACTAAC  180 
             |||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||| 
Sbjct  935   GATATGTTCATGTCATACAGTATGCACCGCTATCATACGTTAGTAAACTAGCCAACTAAC  876 
 
Query  181   GTAGTGAATAACAGCGTGCACATGTTGCACATGTGTTCTTCACTTAAACGGGAATTGCTG  240 
             |||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||| 
Sbjct  875   GTAGTGAATAACAGCGTGCACATGTTGCACGTGTGTTCTTCACTTAAACGGGAATTGCTG  816 
 
Query  241   AACACAACACATACAATGCGTAGTACAGAGCAAGTACCGTTCGACAAACAGTGTTCAACA  300 
             |||||     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  815   AACACGT---ATACAATGCGTAGTACAGAGCAAGTACCGTTCGACAAACAGTGTTCAACA  759 
 
Query  301   ATACTCGGTGAGAGTACTGTCCACAAGCTACACTGTAGTATTATCGTTAACAACCCTGAA  360 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  758   ATACTCGGTGAGAGTACTGTCCACAAGCTACACTGTAGTATTATCGTTAACAACCCTGAA  699 
 
Query  361   CCAGACGTGCCGAAGGGAAAACCCAACGGCGCTATGCGTTCAAAATTTCACCACTCTAAG  420 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  698   CCAGACGTGCCGAAGGGAAAACCCAACGGCGCTATGCGTTCAAAATTTCACCACTCTAAG  639 
 
Query  421   CGTCTGCAATTCGTGGTAAATAACGCAGCTAGCTGCGTTTTTCATCGATACGCGAATCGA  480 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  638   CGTCTGCAATTCGTGGTAAATAACGCAGCTAGCTGCGTTTTTCATCGATACGCGAATCGA  579 
 
Query  481   CCGATCCATCGCTGAAGCTAGTCGAGTCTAATGTGACGACTAAGATGAAGTCACGATCAT  540 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  578   CCGATCCATCGCTGAAGCTAGTCGAGTCTAATGTGACGACTAAGATGAAGTCACGATCAT  519 
 
Query  541   CTGCAAACATCAAATGTAAAAAGTTAATATTTTGTGTTGGCGTCCACACATATTGTCCCA  600 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  518   CTGCAAACATCAAATGTAAAAAGTTAATATTTTGTGTTGGCGTCCACACATATTGTCCCA  459 
 
Query  601   TCCACCATAACACGTAGCGCGCATTATTGGTTAACATGTGAAGGATCATTAAGGTTTCCT  660 
             |||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||| 
Sbjct  458   TCCACCATAACACGTAGCGCGCATTATTGGTTAACATGTGAAGGATCATTAACGTTTCCT  399 
 
Query  661   GATCACAAGAACAGGTACCACACCACACAAGTTATGTGTGTGTGTCTAACCACCAATACA  720 
             |||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||| 
Sbjct  398   GATCACAAGAACAGGTACCACACCACACAAGTTATGTGTGTGTGTCCAACCACCAATACA  339 
 
Query  721   AAAATTGAGGCGGCATTCAAGCAATGCTCATCAAGTCATAAGCTCAGCTGTATTCATGCG  780 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  338   AAAATTGAGGCGGCATTCAAGCAATGCTCATCAAGTCATAAGCTCAGCTGTATTCATGCG  279 
 
Query  781   TATGTACAGGTAT  793 
             ||||||||||||| 
Sbjct  278   TATGTACAGGTAT  266 
 
Figure 13. Alignment of ITS-2 Region for N. americanus with an amplified PCR product from our 
speciation showing 98% homology. 
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Query  1     CACGCCTGAGCTCAGGTTGCATTGCAAATGACACATCCACATGGCGAACATCGTTGTCCT  60 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  1055  CACGCCTGAGCTCAGGTTGCATTGCAAATGACACATCCACATGGCGAACATCGTTGTCCT  996 
 
Query  61    TCACATTGTCTCCGTTCAACCACGCTCATAAGTCGCGAGAGCGATTAAACAGTGAACAAC  120 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  995   TCACATTGTCTCCGTTCAACCACGCTCATAAGTCGCGAGAGCGATTAAACAGTGAACAAC  936 
 
Query  121   GATATGTTCATGTCATACAGTATGCACCGCTATCATACGTTAGTAAACTAGCTAACTAAC  180 
             |||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||| 
Sbjct  935   GATATGTTCATGTCATACAGTATGCACCGCTATCATACGTTAGTAAACTAGCCAACTAAC  876 
 
Query  181   GTAGTGAATAACAGCGTGCACATGTTGCACATGTGTTCTTCACTTAAACGGGAATTGCTG  240 
             |||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||| 
Sbjct  875   GTAGTGAATAACAGCGTGCACATGTTGCACGTGTGTTCTTCACTTAAACGGGAATTGCTG  816 
 
Query  241   AACACAACACATACAATGCGTAGTACAGAGCAAGTACCGTTCGACAAACAGTGTTCAACA  300 
             |||||     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  815   AACACGT---ATACAATGCGTAGTACAGAGCAAGTACCGTTCGACAAACAGTGTTCAACA  759 
 
Query  301   ATACTCGGTGAGAGTACTGTCCACAAGCTACACTGTAGTATTATCGTTAACAACCCTGAA  360 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  758   ATACTCGGTGAGAGTACTGTCCACAAGCTACACTGTAGTATTATCGTTAACAACCCTGAA  699 
 
Query  361   CCAGACGTGCCGAAGGGAAAACCCAACGGCGCTATGCGTTCAAAATTTCACCACTCTAAG  420 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  698   CCAGACGTGCCGAAGGGAAAACCCAACGGCGCTATGCGTTCAAAATTTCACCACTCTAAG  639 
 
Query  421   CGTCTGCAATTCGTGGTAAATAACGCAGCTAGCTGCGTTTTTCATCGATACGCGAATCGA  480 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  638   CGTCTGCAATTCGTGGTAAATAACGCAGCTAGCTGCGTTTTTCATCGATACGCGAATCGA  579 
 
Query  481   CCGATCCATCGCTGAAGCTAGTCGAGTCTAATGTGACGACTAAGATGAAGTCACGATCAT  540 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  578   CCGATCCATCGCTGAAGCTAGTCGAGTCTAATGTGACGACTAAGATGAAGTCACGATCAT  519 
 
Query  541   CTGCAAACATCAAATGTAAAAAGTTAATATTTTGTGTTGGCGTCCACACATATTGTCCCA  600 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  518   CTGCAAACATCAAATGTAAAAAGTTAATATTTTGTGTTGGCGTCCACACATATTGTCCCA  459 
 
Query  601   TCCACCATAACACGTAGCGCGCATTATTGGTTAACATGTGAAGGATCATTAAGGTTTCCT  660 
             |||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||| 
Sbjct  458   TCCACCATAACACGTAGCGCGCATTATTGGTTAACATGTGAAGGATCATTAACGTTTCCT  399 
 
Query  661   GATCACAAGAACAGGTACCACACCACACAAGTTATGTGTGTGTGTCTAACCACCAATACA  720 
             |||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||| 
Sbjct  398   GATCACAAGAACAGGTACCACACCACACAAGTTATGTGTGTGTGTCCAACCACCAATACA  339 
 
Query  721   AAAATTGAGGCGGCATTCAAGCAATGCTCATCAAGTCATAAGCTCAGCTGTATTCATGCG  780 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  338   AAAATTGAGGCGGCATTCAAGCAATGCTCATCAAGTCATAAGCTCAGCTGTATTCATGCG  279 
 
Query  781   TATGTACAGGTAT  793 
             ||||||||||||| 
Figure 14. Alignment of ITS-2 Region for N. americanus with an amplified PCR product from our 
speciation showing 98% homology.  Highlighted in red is the insert corresponding to a possible 
polymorphism found in several of the sequences analyzed from our amplicons.   
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Immunoblot 
 
 We used standard immunoblot assays to characterize the antibody responses of 

pooled study subject sera from this endemic area of Peru against various hookworm 

antigen protein preparations, including whole worm extracts from A. ceylanicum adults 

(HEX) or larvae (LEX).  N. americanus adults (NEX), and excretory/secretory proteins 

from adult A. ceylanicum (ES), as well as a recombinant A. ceylanicum ES protein, 

rAcES-2.  We also subjected these proteins to SDS-PAGE and Coomassie staining in 

order to define the protein composition of each blot. 

 
 

 
 
Figure 15.  Coomassie Staining of Antigens used in immunoblot studies.  Note the molecular weight 
of rAceEs-2 is approximately 29kDa.   

Based on Coomassie results, all proteins of interest were present in appropriate quantity 

for signal detection.  Following transfer to nitrocellulose, blots were probed with either 

Peruvian pooled serum or naïve human serum, with detection by chemiluminescence. 

 
 

HEX NEX ES rAcES2 LEX Ladder

~ 29 kDa
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Figure 16.  Western blot comparing immunoreactivity of naive human serum versus pooled Peruvian 
endemic serum against a variety of A. ceylanicum antigens.  LEX (A. ceylanicum larval extract) HEX 
(A. ceylanicum adult whole worm extract), ES (A. ceylanicum excretory-secretory protein), rAcES-2 
(recombinant A. ceylanicum excretory-secretory protein 2), NEX (N. americanus adult whole worm 
extract).    

 This immunoblot shows that pooled endemic sera recognizes components of each 

of the antigens tested, while sera from naïve (i.e. non-exposed) individuals does not.  A 

limitation of these data is of course, that immune responses in the pooled sera may be a 

reflection of a few positive outliers as opposed to a common response had by all 

individuals in the community.  Of note, the pooled sera represents a sample of serum 

from each individual in the community regardless of hookworm infection status.  To 

explore whether this level of reactivity is reproducible with serum from other endemic 

areas we repeated the immunoblot and compared naïve human serum and Peruvian serum 

to pooled serum from Necator infected schoolchildren in Ecuador.  We chose these 

samples because the major hookworm species identified to date in Ecuador is N. 

americanus, with no evidence of Ancylostoma available in the literature.  The Ecuadorian 

blot is shown below. 
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Figure 17.  Western blot of A. ceylanicum antigens probed against Ecuadorian (Necator infected) 
endemic serum.  Immunoreactivity is detected to HEX, LEX and NEX but not to ES or rAcES2. 

 
These results show that while pooled sera from Necator endemic area recognizes 

(IgG) whole worm homogenates from both species (HEX, NEX, and LEX), there was no 

reactivity of Ecuadorian serum against Ancylostoma ceylanicum excretory-secretory 

products, in particular pure ES and rAceES-2. We further explored this result as a 

potential mode of distinguishing between endemic areas by hookworm species endemic 

to the area (see below).    
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ELISA Screening 

 One hundred and sixty four serum samples were screened individually using 

ELISA to quantify immunoreactivity against our panel of A. ceylanicum antigens.  Below 

are schematic bar graphs representing each of the screening studies completed. 
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Figure 18.  Screening ELISA to evaluate each individual subject’s total IgG response to HEX 
antigen.  Subjects are grouped by hookworm infection status based on fecal microscopy .  X-axis 
corresponds to subject identification number and Y-axis to antibody response as measured by optical 
density (OD) at 405nm. 



 60

anti NEX IgGtotal in Peruvian Community
Hookworm Negative

Subject

01A01B01C01D02D02E02I03A03B03C04B04C04E04F04G05B05C05D05G06B06E06F06G07B07C07F08A08B08F08G09A12A12B13C14B16B16D18B19B20A20B20C20D20E21D21E21F21G21H22A22B22D23A23B23C25B25C26C26D26E26K28A28B28C29A29B29C31A31B31C34E34F35A35B35E35F36A36C36E37B37C37D39A39B40A

A
bs

or
ba

nc
e 

(O
D

 4
05

nm
)

0.0

0.5

1.0

1.5

2.0

2.5

anti NEX IgGtotal in Peruvian Community
Hookworm Positives

Subject

01E01F02A02B02F02G02H04D05A05E05F07A07D07E08C08D08E09B13B16A16C17B17C18A19A21A21B21C22C22E24A24B24C24D25D26A26G26I28D31D33A34B34D36B36D37A39D39E39F39G39H40B40C41A

A
bs

or
ba

nc
e 

(O
D

 4
05

nm
)

0.0

0.5

1.0

1.5

2.0

2.5

 

Figure 19. Screening ELISA to evaluate each individual subject’s total IgG response to NEX antigen.  
Subjects are grouped by hookworm infection status based on fecal microscopy.  X-axis corresponds 
to subject identification and Y-axis to antibody response as measured by optical density (OD) at 405 
nm. 
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Figure 20. Screening ELISA to evaluate each individual subject’s total IgG response to A. ceylanicum 
ES antigen.  Subjects are grouped by hookworm infection status based on fecal microscopy.  X-axis 
corresponds to subject identification and Y-axis to antibody response as measured by optical density 
(OD) at 405nm. 
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Figure 21. Screening ELISA to evaluate each individual subject’s total IgG4 response to A. 
ceylanicum ES antigen.  Subjects are grouped by hookworm infection status .  X-axis corresponds to 
subject identification and Y-axis to antibody response as measured by optical density (OD) at 405nm. 
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Figure 22. Screening ELISA to evaluate each individual subject’s total IgG response to rAce-ES-2 
antigen.  Subjects are grouped by hookworm infection status .  X-axis corresponds to subject 
identification and Y-axis to antibody response as measured by optical density (OD) at 405nm. 
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Figure 23. Screening ELISA to evaluate each individual subject’s IgG4 response to rAce-ES-2 
antigen.  Subjects are grouped by hookworm infection status .  X-axis corresponds to subject 
identification and Y-axis to antibody response as measured by optical density (OD) at 405nm. 

 

These data demonstrate, as expected, a large range of antibody responses against 

hookworm antigens.  We analyzed this ELISA data using bivariate analysis in order to 

identify study subject characteristics that correlated with antibody responses.  
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Bivariate Analysis of Antibody Responses (mean OD)  

In terms of demographic data, a positive correlation between age and antibody 

responses to most antigens was found, meaning that immunoreactivity as measured by 

OD increased.  However, no positive correlation was found between age and anti- 

rAceES-2 IgG4 or anti-ES IgGtotal responses.   

Antibody Spearmann’s Correlation 
Coefficient by Age 

P value 

α HEX IgGt 0.34 0.0005 
α NEX IgGt 0.204 0.0577 
α ES IgGt 0.09 0.3313 
α ES IgG4 0.344 0.0005 
α rAcES-2 IgGt 0.3546 0.0003 
α rAcES-2 IgG4 0.0944 0.3501 
Table 12.  Antibody response correlated to age using Spearmann's Correlation test. 

 We also used bivariate analysis to assess antibody response to our panel of 

antigens and hookworm infection status with the following results.  

 HW fecal positive HW fecal negative P value 
Antibody (+/- SEM) (+/- SEM)  
α HEX IgGt 0.62 0.57 0.65  
    
α NEX IgGt 1.05 (.07) 1.02(.06) 0.089 
    
α ES IgGt 0.52 0.48 0.45 
α ES IgG4   0.25 
    
α rAceES-2 IgGt 0.41 0.34 0.65 
α rAceES-2 IgG4 0.66 1.00 0.80 
Table 13.  Antibody response analyzed as a function of hookworm infection status. 

In addition, because IgG4 responses were not necessarily normally distributed, a 

logarithmic transformation was performed on these data, in particular α rAceES-2 IgG4 

responses, and analyzed using parametric methodology.  Hookworm negative individuals 

as determined solely by fecal sedimentation trended towards lower α rAceES-2 IgG4 

responses than hookworm positive individuals (p= 0.1). 
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In order to find potentially synergistic relationships between immune responses to 

combinations of our antigens, we examined correlations between various immune 

responses.   

Antibody 1 Antibody 2 Spearmann’s Correlation Coefficient P value 
α HEX IgGt α NEX IgGt .4382 <0.0001 

 α ES IgGt .7775 <0.0001 
 α ES IgG4 .3225 0.001 
    

α NEX IgGt α ES IgGt .3488 0.0009 
 α ES IgG4 .1680 0.1178 
    

α ES IgGt α ES IgG4 .3923 <0.0001 
    

α rAcES-2 IgGt α HEX IgGt .2407 0.0153 
 α NEX IgGt .0976 0.3655 
 α ES IgGt .2082 0.0367 
 α ES IgG4 .4640 <0.0001 
 α rAcES-2 IgG4 .3551 .0003 
    

α rAcES-2 IgG4 α HEX IgGt .0335 .7397 
 α NEX IgGt .0089 .9345 
 α ES IgGt .0384 .7028 
 α ES IgG4 .4220 <0.0001 

Table 14.  Spearmann correlation between two different antibodies. 

This analysis revealed that antibody responses to whole worm or larval 

homogenates (HEX, NEX, and LEX) were positively correlated.  Additionally, even total 

IgG responses to excretory-secretory (ES) protein was positively correlated to responses 

to HEX, LEX, and NEX.  However, anti-ES IgG4 did not correlate to anti-NEX total IgG 

responses.  Interestingly, analysis of responses to our recombinant protein shows that 

total IgG responses to this antigen did not correlate with response to Necator derived 

NEX, but did correlate to responses Anyclostoma derived HEX and ES (although the 

correlation to anti ES IgG4 was much more significant than to anti ES total IgG).  

Finally, anti-rAce-ES-2 IgG4 responses were only positively correlated to anti ES IgG4 

responses.  
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Immunologic Crossreactivity 

 To assess potential immunologic cross-reactivity between serum from individuals 

infected with other parasites and their immune responses to hookworm antigens, we 

conducted simple bivariate analysis.  We found that  Strongyloides infected individuals 

exhibited a significantly higher anti ES IgGtotal response than negatives (p= 0.04).   

 AL fecal positive AL fecal negative P value 
Antibody (+/- SEM) (+/- SEM)  
α HEX IgGt 0.58 (.05) 0.61 (.03) .688 
α NEX IgGt 1.03 (.055) 1.05 (.091) .902 
α ES IgGt 0.49 (.03) 0.51 (.04) .716 
Table 15.  Antibody responses by Ascaris lumbricoides infection status 
 
 SS fecal positive SS fecal negative P value 
Antibody (+/- SEM) (+/- SEM)  
α HEX IgGt 0.58 (.05) 0.61 (.03) .688 
α NEX IgGt 1.03 (.11) 1.03 (.05) .976 
α ES IgGt 0.61 (.09) 0.47 (.02) .04 
Table 16.  Antibody responses by Strongyloides stercoralis infection status 
 
 TT fecal positive TT fecal negative P value 
Antibody (+/- SEM) (+/- SEM)  
α HEX IgGt 0.65 (.07) 0.58 (.03) .381 
α NEX IgGt 1.07 (.07) 0.99 (.06) .400 
α ES IgGt 0.47 (.04) 0.50 (.03) .489 
Table 17. Antibody responses by Trichuris trichiura  infection status 
 
 GL fecal positive GL fecal negative P value 
Antibody (+/- SEM) (+/- SEM)  
α HEX IgGt 0.62 (.23) 0.59 (.03) .858 
α NEX IgGt 0.52 (.31) 1.05 (.05) .07 
α ES IgGt 0.50 (.15) 0.49 (.02) .956 

Table 18. Antibody responses by Giardia lamblia  infection status 
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Species Specific Immune Responses 
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Figure 24.  IgGtotal responses to various antigens in pooled sera from endemic communities.  
Prevalence rates for infection were ascertained by micrsocopy of stool samples at the time of stool 
collection.  Estimated hookworm prevalence in each community is described in the legend. 

  

In addition, to elucidate the relative immune responsiveness of pooled serum from 

other endemic areas, we carried out ELISAs against our panel of antigens.  Immune 

responses to HEX, LEX, and NEX were no different among geographic groups with the 

exception of Venezuelan sera, which showed globally decreased antibody levels by 
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ELISA.  The results show that the IgG4 immune responses to r-AceES-2 was higher in 

Peruvian serum than in other endemic areas.  Among the communities from which pooled 

sera was tested, Peru is the only one in which Ancylostoma duodenale has been 

identified, with the other all being endemic for Necator americanus.  These data suggest 

that the IgG4 responses to rAce-ES-2 are specific for Anyclostoma exposure.   

Geographic Comparisons of anti rAce-ES-2 IgG4 responses by ELISA
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Table 25.  Geographic comparisons of IgG4 responses to rAceES-2 between South American regions 
endemic for hookworm.   
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Discussion 

The major findings of this project include: 

1. This is the first report of Ancylostoma duodenale infection in the Peruvian 

Amazon. 

2. Sera from hookworm infected subjects react strongly with protein antigens from 

the laboratory strain A. ceylanicum. 

3. Serum IgG4 antibodies to the hookworm secretory protein AceES-2 are specific 

for A. duodenale infection. 

4. Fecal PCR is more sensitive for detecting hookworm infection than standard 

microscopy (preliminary). 

 

Epidemiology 

 One of the aims of this study was to characterize the prevalence of hookworm and 

other soil transmitted nematode (STN) infections in an isolated Peruvian community.  

Our survey and fecal microscopy data showed that 98% of the study subjects were 

infected with at least one intestinal parasite.  As we hypothesized, infection with Ascaris 

lumbricoides was the most common, followed by Trichuris trichiura infection.  Previous 

pilot studies in this particular region of the Peruvian Amazon have assumed hookworm 

prevalence rates of less than 10% (MSK, RG, personal communication).  However, our 

data suggest that in this rural endemic area hookworm burden is higher than expected, 

with a prevalence rate approaching 40%.  There are several possible reasons for the 

discrepancies in original thoughts about hookworm prevalence.  First, many of these pilot 

studies were conducted in semi-rural or urban centers where periodic de-worming is 
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common and public health posts are more accessible.  Risk factors such as socioeconomic 

status and profession in more central, urban areas do not favor infection.  Finally, based 

on what is known about environmental conditions necessary for hookworm infection, the 

soil and water conditions surrounding the village of Tarapoto may be more conducive to 

hookworm development, creating a suitable microenvironment for infection.  To better 

address the question of microenvironments, a larger scale study would need to be 

conducted, perhaps incorporating the use of Geographic Information System (GIS) 

technology. 

 Multiple parasitic infections were also found to be quite common in this 

population, as has been described for other STN endemic areas (Hotez 2001).  In this 

study cohort approximately 80% of subjects were infected with at least two parasites.  

Additionally, virtually all hookworm positive individuals were co-infected with another 

parasite, the most common of which was Ascaris. 

 

Risk Factors 

The mean age of hookworm infected individuals, based on fecal microscopy, in 

this study cohort is 27.28 years as opposed to 23.03 years in hookworm negative 

individuals (p <0.05).  This significant difference corroborates previous epidemiologic 

work suggesting that hookworm prevalence increases with age (Bethony 2002).  Many 

helminth infections show a straightforward relationship between infection status and age.  

For example, diseases such as ascariasis, trichuriasis, and schistosomiasis show peaks in 

intensity of infection during childhood.  This may represent the development of 

protective immunity in childhood after early exposure to the parasite.  In contrast, 
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hookworm intensity increases with age in many studies with a plateau in adulthood 

(Quinnell 2004).  This finding has led to the hypotheses that hookworm may somehow 

modulate the immune response to prevent the development of protective immunity or 

may in fact may suppress the immune response completely (Maizels 2003).  Our results 

corroborate this hypothesis, and work in Dr. Cappello’s laboratory has demonstrated a 

significant suppression of cellular immune responses in animals infected with the 

hookworm A. ceylanicium.  

 Several measures of socioeconomic status have been used in epidemiologic 

studies which address soil transmitted nematode infection (Hotez 2001).  As mentioned 

earlier, this category of risk factors include income, education, and occupation.  In our 

study cohort, those who self-identified as farmers were more likely to be hookworm 

positive than hookworm negative (p= 0.02).  There were no statistically significant 

differences between hookworm positive and negative groups in terms of educational 

background.  However, there was a tendency for more hookworm negative individuals to 

be under school age (less than 5 years) than hookworm positive individuals.  Although 

education may have a role in preventing hookworm infection by teaching proper 

sanitation and improving quality of life, it is more likely that this finding is simply 

another way of correlating age with hookworm infection.  

Sanitation is an equivocal risk factor for hookworm infection when controlled for 

other factors such as socioeconomic status.  However, our study shows that hookworm 

positive individuals had less access to a latrine and were more likely to use a neighboring 

field for excrement elimination compared to those in the hookworm negative group (p = 

0.05).  Although these results are similar to data from other endemic communities, there 
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are limitations in correlating demographic data at such as basic level with hookworm 

infection.  First, it has been suggested that other measures of socioeconomic status are 

more useful indicators because they take into account the intermingling of a number of 

factors. Although other more descriptive factors, such as number of rooms in a home and 

purchasing power parity (PPP) are often good indicators of socioeconomic status, we did 

not collect these data but for this study.   

 

Medical History and Clinical Correlates 

 As part of the epidemiologic and health survey administered to each study 

participant medical histories pertaining to intestinal parasite infection were taken.  The 

most surprising result from analysis was the degree to which this group’s access to health 

care is limited.  The majority of the population (greater than 80%) had not been to see a 

health professional (doctor, nurse, public health worker  or health post advocate) in over 

one year.  The majority common chronic diseases went undiagnosed, although people 

were able to find nonspecific therapies such as anti-inflammatory agents and antibiotics 

for acute infections.  Despite this lack of access to care, the majority of the population 

(approximately 70%) had previously received antihelminthic therapy in the form of 

albendazole or mebendazole.  Although deworming campaigns as recommended by the 

World Health Organization do not reach this part of the Peruvian Amazon, I soon learned 

that several non-profit groups and missionary groups will typically bring treatment to this 

particular village and others like it once every 2 years.   

In terms of hookworm associated clinical syndromes, although symptoms were 

often non-specific, a greater number of hookworm positive individuals complained of 
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abdominal pain and discomfort than those who were hookworm negative.   In addition, 

hookworm positive individuals were more likely to use medicinal plants for treating 

common ailments such as presume parasitic infections. One possible explanation would 

be a higher association between those who do not have access to care (and take medicinal 

plants) could be those who have other risk factors for hookworm infection.  However, 

multivariate analysis to assess the relationship between these variables did not show a 

significant association. 

 Anti-inflammatory medications, particularly ibuprofen and acetaminophen, are 

commonly used in this population for almost any condition.  Twenty-two percent of 

hookworm fecal microscopy negative individuals were taking some form of a non-

steroidal anti-inflammatory during the study, while only 5% of hookworm positive 

individuals were doing the same (p 0.02).   While one explanation for this finding could 

be that those who are actively taking medication may have greater access to care and 

antihelminthic agents, the role of anti-inflammatory compounds and the immune 

response deserves some consideration.   

 The prevalence of anemia, as measured by blood hematocrit, was also evaluated 

in this study.  We hypothesized that hookworm positive individuals would be more likely 

to be anemic than hookworm negative individuals based on the pathophysiology of the 

infection and the blood-feeding nature of the worms.  However, there was no correlation 

between hookworm infection status and hematocrit.  Infection with Trichuris trichiura, 

however, predisposed to a lower hematocrit in infected individuals.  This finding is 

interesting as whipworm is known to cause colonic bleeding and inflammation/colitis, 

two potential mechanisms through which trichuriasis may cause anemia.   



 75

Hookworms and Co-infection 

 Because of the variety of effects of hookworm infection on the immune system, 

one natural sequelae of hookworm infection may be to effect the immune response other 

infections, notably HIV/AIDS, malaria, asthma, tuberculosis, bacterial infections and 

other helminthes.  Positive associations between hookworm infection and other 

helminthes such as Ascaris lumbricoides and Trichuris trichiura have been widely 

described (Quinnell 2004).  Our results support a positive association between Ascaris 

lumbricoides and hookworm infection, with 82% of those infected by hookworm also 

having Ascaris infection.  Most immunoepidemiologists in the field believe that these 

effects are somewhat due to similar risk factors for co-infection, and some evidence 

exists to indicate that the immunosuppressive effects of hookworm infection may 

predispose to infection with other soil-transmitted nematodes (STNs).   

Because of the high burden of disease and overlapping epidemiologic 

considerations especially in resource-poor settings, malaria and STN co-infection has 

become a major field of research interest.  It is estimated that over 30% of the world’s 

population is infected with malaria and/or parasitic helminthes (Mwangi 2006).  Our 

results indicate that co-infection with malaria is extremely prevalent in this cohort.  With 

more than 12% of the study population infected with malaria, co-infection with 

Plasmodium species may play a role in pathophysiology of disease.  In particular, we 

noticed an interesting trend in the distribution of malaria species among our hookworm 

positive and negative groups.  Hookworm negative individuals co-infected with malaria 

tended to be infected by P. falciparum while hookworm positive individuals co-infected 

with malaria tend to harbor P. vivax infection.  In particular, the effects on infection by 
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one on immune responsiveness and infectivity of the other pathogen requires further 

study.   

The literature in this field suggests that co-infection may be common because of 

similar risk factors and pathogen/vector geography.  Immunoepidemiologic data on co-

infection is equivocal (Mwangi 2006). Interestingly, co-infection with malaria and filarial 

nematodes appears to down-regulate the immune response to hookworm (Quinnell 2004).   

Based on competing upregulation of either Th1 or Th2 cell-mediated immune responses, 

it is hypothesized that most helminth infections suppress anti-malaria immune and that 

antihelminthic treatment may even increase the risk of contracting malaria (Mwangi 

2006).  However, the majority of these studies evaluate all soil transmitted nematodes 

without respect to species.  As hookworm immunology advances to further explore the 

Th1 versus Th2 immunomodulatory patterns of hookworm infection, a better 

understanding of the mutual effect that malaria and hookworm have on each other will be 

possible. 

 

Hookworm Speciation 

 As described earlier, accurate diagnosis of hookworm infection remains a critical 

component of effective epidemiologic surveillance.  Current field based diagnostics rely 

on detection of nematode eggs in the feces but cannot differentiate between N. 

americanus and A. duodenale in this manner alone.  Further copro-culture techniques are 

required to hatch L3 larvae from eggs in a controlled environment and then to further 

microscopically examine the larvae to distinguish between species.  This method requires 

a skilled practitioner for identification of eggs in feces and is quite labor intensive.  Given 
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that speciation is extremely important in conducting epidemiologic surveillance of 

hookworm distribution, the emergence of antihelminthic resistant organisms and clinical 

pathophysiologic correlates, the need for accurate and efficient means of distinguishing 

hookworm species within endemic communities is great.  

 Several groups have successfully developed polymerase chain reaction (PCR) 

based assays which use specific genetic markers to distinguish between species of 

hookworm.  Cytochrome oxidase genes (Zhan 2001) and internal-transcribed spacer 

sequences (ITS-1 and ITS-2) from ribosomal DNA (rDNA) have proven useful markers 

for species specific identification of a variety of parasitic nematodes including hookworm 

(de Gruijter 2005).  Even more useful than conducting PCR assays of larval DNA is to 

bypass corporo-culture and amplify genomic DNA from fecal extracts.  Since all 

participants in this study and in other epidemiological cohorts provide stool samples for 

diagnosis this assay represents the most complete data set we have for speciation.  

 Using the ITS-1 and ITS-2 primers for gDNA amplification from fecal extracts, 

we were able to distinguish between A. duodenale and/or N. americanus in infected 

individuals within our study cohort.  We confirm results of our previous pilot studies 

from this endemic environment to show that A. duodenale is present in the Peruvian 

Amazon in addition to the previously assumed presence of N. americanus.  This result 

carries much importance in terms of assessing how we evaluate immunological responses 

to disease, design possible vaccines, and evaluate control mechanisms.   

After gel electrophoresis, several amplicons corresponding in size to either A. 

duodenale or N. americanus were sequenced by the Keck facility at Yale University.  

Results from representative samples revealed that those amplicons thought to be A. 
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duodenale were 99-100% homologous to known ITS sequences and amplicons identified 

as Necator americanus were 98-100% homologous to known ITS sequences for that 

species.  A few amplicons sent from hookworm positive samples were slightly less 

homologous within the ITS region and likely represent polymorphisms in the sequence 

among isolates from Peru.  These polymorphisms suggest that sequence deviation may 

occur in even the smallest of endemic communities.  Additionally, these sequence 

differences may be suggestive of inter- and intra-species variations that may have 

relevance to not only immunogenicity, but bendimidazole resistance.  This finding 

provides a basis for future studies in population genetics within endemic communities 

and possible functions that such polymorphisms may have on species specific modes of 

disease pathogenesis and resistance to treatment. 

Preliminary data, which is not included in this thesis, confirm that hookworm 

genomic DNA can be amplified from fecal samples from individuals who are negative 

for disease by conventional methods, i.e., microscopy. This result suggests that perhaps 

current detection methods not as sensitive as the molecular techniques.  We are currently 

re-analyzing the demographic/epidemiologic data comparing infected versus non-infected 

individuals based on fecal PCR results.  In addition, we are also comparing fecal PCR 

results with a novel hookworm antigen detection assay developed by Dr. Cappello’s 

laboratory (Bungiro 2005).  
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Immunology of Hookworm Infection  

This study shows that a laboratory hamster model for A. ceylanicum may be 

successfully used to study the immunoepidemiology of human hookworm infection.  

Data from western blot and ELISA analysis show that human serum from an endemic 

community recognize A. ceylanicum antigens.  This finding is particularly significant 

because it is represents the first evidence that antigens from a repeatedly passaged 

laboratory parasite strain, A. ceylanicum, can be exploited to study the 

immunoepidemiology of human hookworm infection.  The use of A. ceylanicum antigen 

based immunoassays thus provides great potential for carrying out larger scale studies in 

endemic communities.  Moreover, the immunoepidemiologic data we present further 

validates the hamster model of A. ceylanicum as an effective means of characterizing 

human hookworm pathogenesis.  

 

Review of Hookworm Immunology 

Due to its life cycle and interactions with multiple organ systems including skin, 

lungs, and GI mucosa, hookworm infection elicits complex immune responses.  A long 

history of hookworm immunology exists, with the earliest studies being observations of 

immunoprecipitates around the oral orifice of the hookworm (Sarles 1938, Otto 1942).  

Before beginning a discussion of the immunology of hookworm disease in particular, it 

will be useful to build our understanding of the immunology of parasitic diseases in 

general.  A typical response to helminth parasites, and in particular those parasites that 

are too large to be phagocytosed includes a strong Th2 immune response with 

concomitant IgE and eosinophilia.  This response is rooted in both traditional arms of the 
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immune system, namely the humoral system and the cell-mediated system.  Experimental 

human hookworm studies, though limited, have shown similar findings.  One study 

involving an adult human volunteer infected with 50 Necator L3 showed eosinophilia, 

and elevated hookworm specific IgE and IgG responses that gradually rose during 

primary infection and peaked after secondary re-infection (Wright 2005). Interestingly, as 

Behnke notes, despite its cultivation of a robust immune response upon initial infection, 

this response does not develop into protective immunity in humans (Behnke 1991).   

  

Cell mediated immune responses 

 Recently cell-mediated immune responses in natural hookworm infection have 

been reviewed.  This is a relatively new field of hookworm immunology and several 

surprising discoveries have been made.  Proliferative lymphocyte responses to hookworm 

antigens have been shown in several experimental models and in naturally infected 

individuals.  The intensity of the proliferative response in all studies is variable, although 

analysis of cytokine responses clearly show a mixed Th1/Th2 response as determined by 

upregulation of both Th1 and Th2 related cytokines (IFN-γ and IL-12 and IL-4, IL-5, and 

IL-13 respectively) (Quinnell 2004).  This occurs in Trichuris trichiura infection as well, 

although most other intestinal nematodes exhibit a strongly Th2-biased response.  

Although our study did not address questions of cell-mediated immunity, the acquisition 

of human sera from Peru as well as banked sera from other parts of the world may be 

used in the future to examine cytokine profiles in our study cohort. 

 

 



 81

Humoral responses 

 Initial cutaneous infection with hookworm larvae provides the first contact 

between parasite and host and represents the first opportunity for the immune system to 

react.  The larval sheath antigens present in larval sheath fluid have previously been 

shown to be highly immunogenic and stage specific.  This fluid and its antigens are 

present in the cast off sheath the larvae leaves behind.  Its immunogenicity is thought to 

be protective of the larvae itself as the immune system is drawn to the antigens in the old 

sheath while leaving the larvae itself alone.  Immunoblot data from our study indicates 

that both actively hookworm infected and uninfected (but presumably previously 

exposed) individuals have total IgG immunoreactivity against larval protein extracts 

(LEX).  We hypothesized the immune responsiveness to LEX is probably a non-specific 

marker of exposure but not a marker of disease and thus we did not pursue further 

quantitative analysis by ELISA.   

Humoral responses to adult hookworm antigens are similarly robust.  One study 

of individuals in Papua New Guinea showed an elevated IgG1, IgG4 and IgE response 

against Necator americanus adult ES (excretory-secretory extract) (Pritchard 1990). 

These results indicate that like immune responses to other parasites, anti-hookworm 

immune responses are dominated by Th2 mediated immunoglobulins affected by IL-4.  

This study further proposes that total IgG and IgE against adult Necator ES may be a 

good indicator of current infection and efficacy of chemotherapy (Pritchard 1995).  

 Several studies of hookworm infection in endemic communities show globally 

elevated responses from all immunoglobulin subclasses against adult hookworm antigens 

(Quinnell 2004).  There is also established cross-reactivity between anti hookworm 
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antibodies and other helminthes (Loukas 1996).  IgG4 and IgE responses have been 

shown to be more species specific although total polyclonal IgE is also globally elevated 

in helminth infection (Quinnell 2004).  These studies guided our decision to screen sera 

from each individual for total IgG and IgG4 immune response to a panel of A. ceylanicum 

antigens.  Work is currently underway to optimize the conditions for an IgE ELISA using 

these serum samples.   

 

Immunomodulation 

 In order to survive for long periods of time in the host as is common for 

hookworm, they have developed several defense mechanisms including 

immunosuppression, immunomodulation, and immune inactivation.  Several candidates 

for immunomodulatory function have been identified in hookworm, although the function 

of these molecules is still being determined.  Much study has been done to evaluate the 

immunomodulatory and immunosuppressive effects of helminth infections on the host 

immune response.  In particular, several findings have led to a rethinking of the hygiene 

hypothesis which has been used to describe the relationship between TH2 and TH1 

responses.  The hygiene hypothesis suggests that TH2 cell mediated allergic responses 

could be mitigated by exposure to TH1 inducing microorganisms.  As stated this theory 

suggests that TH1 and TH2 responses are in competition with each other.  In the case of 

helminth infections, it has been suggested that the strong TH2 responses they elicit may 

suppress pathological TH2 mediated inflammatory diseases (Maizels 2003).   
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Immunoepidemiology of Peruvian Subjects 

Individual screening ELISA showed several interesting findings.  First, as we 

hypothesized, total IgG responses to adult hookworm antigens were globally strong.  

Because total IgG is a non-specific marker of previous exposure to disease related 

antigens, we had hypothesized total IgG may not be different among hookworm positive 

and negative groups within endemic areas, but that IgG subtype analysis may show 

correlation between infection status and antibody levels.  Our results show that total IgG 

responses to Necator americanus extracts (NEX) tended to be higher among hookworm 

positive individuals than negative individuals, although this result only trended towards 

significance (p = 0.089) (Table 14).  After testing antibody levels for normal distribution 

among our cohort, we found that IgG4 levels tended to be non-parametric and thus 

evaluated them by Kruskal-Wallis analysis.  Logarithmic transformation showed that 

hookworm negative individuals as determined by fecal microscopy trended towards 

lower anti rAceES-2 IgG4 levels than hookworm positive individuals.  This suggests that 

IgG4 may be a useful marker for current infection. 

 By evaluating correlation between antibody levels and age, we found that age and 

antibody levels were typically positively correlated, which confirms previous studies 

showing that hookworm prevalence and intensity, as determined by fecal microscopy, 

increase with age.  However, anti-rAceES-2 IgG4 and anti-ES total IgG levels were not 

correlated with age.  Immune responses to helminth infections generally increase with 

age but plateau in early adulthood.  This trend signifies the development of humoral 

immune responses in the face of repeated re-infection (Woolhouse 1992). In experimental 

infections eosinophilia increases initially after infection but decreases upon reinfection as 
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do lymphoproliferative/cell-mediated responses.  In studies of endemic communities with 

Necator infection most IgG subtypes as well as IgE and eosinophilia increased with host 

age.  However, in other studies IgG1, IgM, IgA, IgE and IgD decreased with host age 

suggesting some level of immunosuppression (Quinnell 2004).   

One of the few immunoepidemiological studies of hookworm studied stage-

specific antigens and the immune response to these antigens as a function of host age 

(Quinnell 1995).  This study found a negative correlation between Necator anti-ES 

(Excretory Secretory protein) IgG levels and pretreatment worm burden.   To indicate the 

presence of protective immunity antibody responses should increase with age 

corresponding to increasing levels of exposure to the parasite.  In contrast, once a certain 

critical threshold of exposure and antibody production has been reached, a decline in 

worm burden with an increase in antibody levels may occur in adults, indicating 

protective immunity.  Another possibility, however, given our understanding of 

potentially immunomodulatory effects of hookworm on the host, is that higher worm 

burdens with low antibody responses may be a reflection of an immunosuppressive 

effect.  As Quinnell and colleagues speculate in their 1995 article, protective antibody 

titers may not necessarily increase over time if immunological memory is short.  Our age 

related data suggests that antibody responses to A. ceylanicum ES and the recombinant 

AceES-2 may be indicative of immunosuppressive effects of these antigens on the host 

immune response in light of the lack of correlation with age.  It is interesting to speculate 

that a function of AceES-2 may be to modulate the host immune response, which is 

consistent with data from the animal model (Bungiro 2004). 
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 We tested correlations between antibody responses to our panel of A. ceylanicum 

antigens to assess synergistic relationships.  Antibody responses to LEX, HEX, and NEX 

were positively correlated with each other.  Total IgG responses to ES were also 

positively correlated to anti-LEX, HEX, and NEX IgG.  However, anti-ES IgG4 levels 

did not correlate with anti-NEX IgG levels nor did immune responses to the recombinant 

AceES-2 antigen.  Given that rAceES-2 is Ancylostoma derived and NEX is Necator 

derived, this lack of correlation may indicate that rAceES-2 is a species specific marker 

of infection.  We are currently using molecular techniques to speciate all of our samples 

(including hookworm fecal microscopy negative) in order to assess whether or not 

individuals with current infection with either A. duodenale or N. americanus have 

different levels of anti-rAceES-2 total IgG, IgG4 or anti-NEX IgG.  I hypothesize that 

given the high rates of reinfection known to exist in endemic communities only anti-

rAceES-2 IgG4 may predict species specific infection. 

 

Molecular Immuno-Diagnosis 

 Given our results suggesting that antibody responses to rAceES-2 may be useful 

as a marker to diagnose current infection and perhaps to distinguish between hookworm 

species in endemic communities, we evaluated this antigen in between endemic 

communities.  Immunoblot analysis comparing pooled sera from Peru, where we have 

confirmed that both Ancylostoma and Necator species are endemic, with sera from 

Ecuador, where only Necator infection has been reported, show difference in immune 

response to rAceES-2.  To more specifically gauge the species specificity of differential 

immune responses to rAceES-2, we undertook ELISAs comparing total IgG and IgG4 
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immune responses to a panel of A. ceylanicum antigens from a variety of South American 

regions endemic for hookworm.  Total IgG levels against whole hookworm homogenates 

(LEX, HEX, NEX) and excretory-secretory protein (ES) were not significantly different 

in between endemic communities tested.  IgG4 levels were virtually identical against the 

same panel of antigens.  However, IgG4 responses to rAceES-2 were significantly higher 

in the Peruvian sera than in sera from Ecuador, Guatemala, or Venezuela.  Based on field 

studies we know that hookworm prevalence in of these geographic regions is 

approximately the same, between 30-40%.  However, speciation data from these sites 

indicate that only Necator americanus   making the high IgG4 signal in Peruvian pooled 

serum indicative of a species-specific response (p=0.02).   

The role of IgG4 in hookworm infection is potentially critical to developing new 

immunodiagnostic assays.  IgG4 is not involved in complement fixation but does take an 

active role in mast cell sensitization and immediate hypersensitivity reactions.  In 

hookworm infections, as described above, where mast cell degranulation and eosinophilia 

play a large role in fighting the parasite, IgG4 may be very important.  IgG4 is also 

thought to be reflective of chronic infection, with alternatively activated macrophages 

activating a Th2 cellular pathway that allows for isotype switching from IgE formation to 

IgG4.  In endemic communities thus, IgG4 may be a reflection of chronic hookworm 

exposure and infection.   

A study of 120 individuals in rural Zimbabwae first assessed the role of antigen 

specific isotype responses as a marker for active hookworm infection (Palmer, DR et al 

1996).  This study used enzyme linked immunosorbant assays (ELISA) to characterize 

immune responses specific to whole hookworm (Necator species) homogenates (NOG) 
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and correlate these responses with age, sex and infection intensity of the study 

population.  Results indicated a modest positive correlation between total IgG, IgG2, 

IgG3, IgG4 and IgE and egg counts.  IgG4, in addition, was significantly associated with 

high intensity hookworm infection, making it a potential candidate for developing 

diagnostic techniques relevant to large scale epidemiological studies (Palmer 1996).  
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Conclusion 

Several experts in the field of hookworm immunology agree (Loukas 2001) that 

novel developments in this field will likely occur with a better understanding of 

responses in endemic communities, considered the field of immunoepidemiology.  

Immunoepidemiology is a branch of immunology concerned with the distribution of 

immune responses, infections, and epidemiologic characteristics in populations and the 

relationship that each of these factors has on the others. In hookworm disease, the goals 

of immunoepidemiologic studies are to better understand the epidemiologic factors 

affecting the immune response and in particular the formation or lack of formation of 

protective immunity, immunosuppression, and impact on co-infections. 

The ultimate goal of this work is to utilize reagents developed in a laboratory 

model of hookworm infection to characterize immunoepidemiologic aspects of human 

disease pathogenesis.  Data from human immunoepidemiologic studies are often difficult 

to interpret due to confounding factors such as previous infection, co-infections, cross 

reaction with similar antigens or epitopes from other species of parasites, previous 

treatment history, and environmental factors.  By demonstrating substantial overlapping 

immune responses that characterize human and animal hookworm infections, these data 

further validate the use of the hamster model as a valuable tool for investigating 

fundamental aspects of the host-parasite relationship.   

Finally, our observation that anti-rAceES-2 IgG4 levels in hookworm positive 

individuals trended higher as compared to hookworm negative subjects, along with the 

significantly higher IgG4 immune response to rAceES-2 in areas endemic for 

Ancylostoma suggests rAceES-2 may have potential as a useful diagnostic reagent to 
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define species distribution in endemic communities.  Future work will be directed at more 

fully characterizing the epidemiology of hookworm infection and disease using these 

novel molecular and immunologic methods.   
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