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ABSTRACT 

 

The distribution of cell types and synapses is well characterized in the rodent 

olfactory bulb (OB), and from that plausible models of odor processing have been 

constructed.  Individual olfactory sensory neurons (OSNs) express only 1 of ~1000 

odorant receptors (ORs) and send their axons to specific synaptic targets in the OB 

glomerular neuropil.  Each glomerulus is innervated exclusively by OSN axons 

expressing the same OR.  The distribution of these glomeruli is conserved across animals, 

as is the numerical relationship between number of expressed ORs and number of 

glomeruli in the OB.  Our objective is to extend such results to the level of the human OB 

to determine how its cellular and synaptic organization, and more specifically how the 

number and distribution of its glomeruli, compare to what has been elucidated in mice.  

As there are ~2,000 glomeruli for ~1,000 ORs in mice, we predicted ~700 glomeruli in 

humans based on the ~350 intact OR genes identified in the human through genomic 

studies.  Using immunohistochemistry, the organization of cells and synapses in human 

OBs was evaluated and quantified.  While the laminar structure of the OB is broadly 

conserved between species, in the human OB the laminar organization as well as 

additional structural features suggest a less rigorously organized OB than in rodents, 

perhaps suggesting that odor processing in the human OB may be less efficient than in 

mice.  Of particular note, the total number of glomeruli in the human OB differs 

significantly from predicted and demonstrates a high degree of variability amongst 

specimens, thus far ranging from approximately 3000 - 9000/OB.  These results indicate 

that the principles of OR-homotypic axon convergence developed from mouse studies 

may not be readily applicable to the human, and that central processing of odor signals in 

the human may differ from those characterized in the mouse. 
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INTRODUCTION 

 

Odors are detected by a complicated chemical sensing system that is conserved 

across many organisms. 

 Organisms use their sense of smell to detect their chemical environment, which is 

a crucial function for survival.  At the most fundamental level, even single-celled 

organisms are able to detect and respond to chemicals in their surroundings.  The ability 

to smell plays a key role in higher organisms that rely on olfaction for processes such as 

detecting food, staying away from poisonous substances, finding mates, and avoiding 

predators.  While olfaction is the primary modality in many organisms for these survival 

behaviors, other organisms, such as humans, have grown to rely more heavily on their 

other senses for these same behaviors.  

  Despite the large variation in the degree to which different organisms depend on 

olfaction, the organization of this system appears to be broadly conserved across species.  

Comparisons have been done between species to evaluate for similarities in several 

aspects of the olfactory pathway including: receptor genes and receptor gene expression, 

odorant-binding-induced signal transduction, and even certain components of central 

organization and neural processing (1-3).  The species examined ranged from Drosophila 

melanogaster (fruit fly) in the arthropod phylum to Rana spp. (frog), Carassius aruatus 

(goldfish), Mus musculus clomesticus (mouse), and Homo sapiens (human) in the 

vertebrate phylum.  These studies broadly demonstrated striking similarities at these 

different levels of odor processing across both species and phyla.  This concordance 
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likely stems from a combination of homology, or inheritance from common ancestors, as 

well as convergence, or adaptation to the most efficient and functional solution to 

common environmental demands.  There are several species in which there have been 

extensive studies of the olfactory system in order to gain an understanding of odor 

processing, including Drosophila, rats, and mice.  Because they are mammals, most of 

the assumptions about the organization of the human olfactory system are based on 

rodent studies. 

 The unique complexity of the olfactory system is demonstrated superficially by 

the relatively large number of different receptors that are used to detect odor input as 

compared to the other senses that organisms use to perceive their environment.  Sound is 

detected by hair cells in the cochlea, which allow for pitch discrimination based on the 

topography of cells activated by different frequencies of sound waves.  The receptor cells 

for vision are composed of rods and cones which detect light.  The topography of the 

cells on the retina when receptors are activated by light allow organisms to perceive 

distinct images.  Somatosensory detection also occurs through only a few types of 

receptors; mechanoreceptors detect light pressure, nociceptors detect strong pressure, and 

thermoreceptors detect heat, all providing the body with information about its physical 

surroundings.  Taste, the other chemical sense, is the only other sense that relies on more 

than just a few different types of receptors to detect input stimuli, in this case tastants.  

However, even taste receptors cannot compare in sheer number to odorant receptors; for 

example mice are thought to have ~36 taste receptors (4), while they have ~1000 odorant 

receptors (5-7).  Because of the large numbers of inputs, mapping and understanding the 

anatomic structures that integrate molecularly defined inputs at the different levels of 
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odor processing is of utmost importance for learning how the olfactory system works.  

Perhaps because of this organizational complexity, gaining an understanding of the 

olfactory system has lagged behind other sensory systems.   Major gains in this area have 

occurred primarily in the last 10-15 years after the identification of the family of 

receptors responsible for detecting odorants. 

  

Odor processing begins at the level of the odorant receptors, which are represented 

genetically by a large and diverse group of genes. 

 Mammalian odorant receptor (OR) genes comprise the largest identified family of 

genes.  They were first described in rats by Dr. Linda Buck and Dr. Richard Axel in 1991 

(8).  Buck and Axel’s original investigations were based on several novel and innovative 

initial assumptions regarding the genetic, biochemical, and cellular characteristics of the 

olfactory system.  First, that the ORs were likely G-protein-coupled receptors, for which 

there was preliminary biochemical evidence, and would therefore likely be seven-

transmembrane proteins.  Second, they predicted that ORs would comprise a large family 

of genes due to the large number and complexity of chemicals that organisms must be 

able to detect and discriminate.  Finally, they believed that ORs would likely be 

expressed selectively in OSNs.  Their assumptions proved to be correct, and their 

successful discovery of OR genes earned them the Nobel Prize in Medicine and 

Physiology in 2004.  It also pioneered future studies that have led to an understanding of 

odor processing and the organization of the olfactory system in mice and rats.     

 As described by Buck and Axel, ORs are G-protein-coupled receptors with a 

seven-transmembrane domain.  Their coding region is about 1 kb, and contains no 
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introns.  There are several conserved motifs that identify genes as ORs, while the 

transmembrane domains 3, 4, and 5 are hypervariable, and could likely represent areas 

that come together to form the odorant binding pocket (9).  Signaling occurs via a G-

protein/cAMP pathway after binding of an odorant, resulting in depolarization and an 

increase in spiking frequency.  Interestingly, this cAMP pathway has also been shown to 

play a role in axonal targeting by OSN during the wiring of the olfactory system (10). 

After the discovery of the family of OR receptors in rats, work went underway to 

identify these genes in other vertebrates.  Most of this work used the technique of PCR 

amplification with degenerate oligonucleotide primers for conserved motifs (11), work 

which was facilitated by the ability to use genomic DNA instead of cDNA, as the coding 

region of OR genes is intronless.  Over a dozen species were selected for study (12, 13), 

and confirmation of the presence of OR genes was successful in all.  However, it was 

unknown exactly how big this family of genes was, as these studies by no means were 

exhaustive in identifying OR genes in any given species.  Estimates of the complexity of 

the OR family in rats ranged from 200 (8) to 500-1000 (14). 

Comprehensive genomic mining studies to identify the large family of OR genes 

in mice was first undertaken in 2002 after the release of the Celera mouse genome in 

2000 (5, 15).  These groups identified ~1300 OR genes, with only ~80% of these, or 

~1000 genes, containing intact open reading frames.   The remaining ~20% are 

pseudogenes, containing disruptions in the coding region including insertions, deletion, 

frame shifts, and premature stop codons.  OR genes were found on all 20 pairs of 

chromosomes in the mouse except for 12 and Y.  Most OR genes occur in clusters, 

defined as groups of five or more genes separated by less than 1 Mb.  There are 27 
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clusters in mice containing 87% of the ORs, with the remaining 13% occurring singly or 

in smaller groups throughout the genome.   

Due to the high degree of similarity amongst genes that are clustered together, 

Zhang and Firestein (5) hypothesized that local sequence duplication was a likely 

mechanism contributing to OR family expansion.  They also noted that many of the OR 

gene clusters contain non-OR genes.  In 15 out of 27 clusters, these genes encoded 

retrovirus related Gag proteins, and the density of these genes is twice as high in OR 

clusters as in the rest of the genome.  This data, combined with the fact that OR genes are 

intronless, has led to the theory that duplication of the OR family may be retrovirus-

mediated (16, 17). 

This sequencing of genomes from many different organisms within the last 

several years has allowed for efficient mining of OR genes across multiple species.  The 

first draft of the human genome sequence became available in 2001 by Celera Genomics 

(18) and the International Human Genome Project Consortium (19). Several groups have 

used this data to fully identify the large family of human ORs.  A first analysis was done 

by the Weizmann Institute (20, 21), where they found 322 OR genes with intact open 

reading frames.  A second study was performed by the Senomyx group (22) who found 

347 candidate human OR genes with intact open reading frames.  While, by first analysis, 

the human genome appears to have ~1000 OR genes, about 60% of these are 

pseudogenes with fatal errors in their coding region.  This is a much higher percentage of 

pseudogenes than the 20% that has been identified both in mice (5) and rats (23), likely 

representing humans’ decreased dependence on olfaction for survival over evolution 

compared to other mammals.  
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The average human OR is 315 amino acids long, with about a dozen conserved 

sequence motifs defining these sequences as OR genes.  These ~350 genes represent 1% 

if the putative 30,000 genes in the human genome, as well as 1% of the 30 Mb length of 

genomic DNA.  They are found on all chromosomes except for chromosome 22 and the 

Y chromosome.  As in mice, while some genes are located singly throughout the genome, 

80% are embedded within 24 larger clusters spread throughout the different 

chromosomes, and 42% are found in clusters on chromosome 11.   

Sequence similarities between OR clusters in humans and mice has allowed for 

the identification of potentially orthologous OR gene clusters.  The cluster at human 

chromosome 17p13.3 and mouse chromosome 11B3-11B5 (24) shares a high degree of 

homology and likely represents a common evolutionary derivative.  Additional studies 

have further proven the high degree of homology between human and mouse ORs (25-

28), representing further justification for the utilization of rodent olfaction as a model for 

human olfaction.  However, due to genomic changes in both humans and mice since the 

rodent-primate divergence, it is impossible to identify one-to-one orthologous 

relationships for most OR genes.  In mice, local duplications have dominated the 

differences seen between species, while in humans, deletions and interchromosomal 

duplications dominate, resulting in larger OR gene clusters in mice and smaller, more 

distributed clusters or single genes in humans.  Young et al. (29) argues that this 

represents different evolutionary forces shaping OR gene families in humans and mice, 

which complicates the often accepted assumptions of common OR-ligand relationships 

between these two species. 
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OR proteins are expressed highly in the cilia of OSN dendrites.  These cilia 

project from dendrites into the mucus layer of the olfactory epithelium, located in the 

posterior nasal cavity of mammals.  This mucus layer is where the signal-receptor 

interaction takes place between odorants dissolved in the mucus and ORs that are found 

on the surface of cilia.  The transcription of OR genes in these OSNs is a highly regulated 

process, with any single OR gene only being expressed in a subset of OSNs.  

Furthermore, single-cell RT-PCR data has shown that any given OSN only expresses a 

single OR (30-32).  This idea is the basis for the one receptor-one neuron hypothesis, in 

which only one out of ~1000 genes in the OR family repertoire is selected for expression 

in an OSN.  In addition, RT-PCR looking at pools of OSNs with polymorphic OR alleles 

has demonstrated that expression of ORs is monoallelic (33), a conclusion that has been 

confirmed by several subsequent studies (34, 35).  Both maternal and paternal alleles are 

expressed in separate OSNs in approximately equal numbers.   

The genetic regulation of this OR gene selection process is not well understood, 

though in mouse and rats it has been shown that expression of any single OR only occurs 

in one of four parallel zones in the olfactory epithelium (36-38).  Within each zone, 

expression of ORs appears to be completely random.  While the presence of zones has 

been described for over a decade, the functional role it plays in odor processing is still 

unclear. 

 

The olfactory bulb coordinates sensory input on its way to the olfactory cortex. 

 The OSN receives sensory input from odorants via the olfactory receptors, which 

initiates a G-protein linked signaling cascade.  The thin unmyelinated axons of the OSN 
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then travel through foramen in the cribiform plate and carry the signal to the CNS (Figure 

1A).  One unique property of OSNs is that they are regenerated throughout the adult life 

of all studied organisms.  Therefore, even beyond the developmental stage, new OSN 

axons are constantly targeting and integrating into existing central synaptic networks.  

The rodent olfactory bulb (OB) is the highly organized laminar structure that receives 

these OSN axonal inputs, making it the first step of odor processing in the central nervous 

system.  The organization of the OB is important to understanding how this level of 

processing works.  Interestingly, the cellular histology has been described long before the 

understanding of principles of odor coding, starting with the work of Ramon y Cajal in 

1911 (39).  Both the cellular and synaptic structures in rodent OBs are now well 

elucidated, and are reviewed in detail by Shepherd and Greer (40).   

There are several categories of neurons that play a role in odor processing at the 

level of the OB.  These include input neurons that carry information to the OB, output 

neurons that carry information out of the OB, and finally short axon intrinsic neurons that 

participate in the coordination of signals within the OB.  Input is received both from 

OSNs that carry the actual sensory information into the OB from the nose, as well as 

from regulatory centrifugal fibers consisting of axons from higher centers such as the 

olfactory cortex, the anterior olfactory nucleus, the basal forebrain, and several parts of 

the brainstem.  Output from the OB is sent through mitral cells and tufted cells, also 

known as the projection neurons.  Axons from these cells leave the OB at the 

posterolateral surface to form the lateral olfactory tract (LOT), which carries encoded 

olfactory information to the olfactory cortex.  Finally, additional regulation and 

processing of olfactory signals occurs within the OB through synaptic circuits involving 
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Figure 1: Overview the Olfactory System and Olfactory Bulb 

The OSNs are schematically shown in A.  Their cell bodies are located in the olfactory 

epithelium, where they extend dendrites covered with the OR-expressing cilia into the 

mucus layer.  The OSN axons then travel through foramen in the cribiform plate into the 

OB, where they reorganize and regroup before finding their specific synaptic targets.  

The organization within the OB is based on clear laminar layers as shown through DAPI 

nuclear staining in a coronal section of an adult mouse OB (B).  The ONL contains the 

OSN axons surrounding the OB before entering the GL to find their synaptic targets.  

Next is the EPL, a cell-sparse area of dendrodendritic synapses, followed by the thin, 

cell-dense MCL, which contains the cell bodies of the projection neurons, the mitral cells.  

Deep to this is the IPL, and finally the GCL in the center, which contains the cell bodies 

of the granule cells, a type of interneuron in the OB.  Within the GCL newly generated 

neurons travel through the RMS to add to and replace existing interneurons in both the 

GCL and the GL.  Image in A adapted from http://www.colorado.edu/epob/ 

epob3730rlynch/image/figure8-18.jpg.  OB, olfactory bulb; OSN, olfactory sensory 

neuron; OE, olfactory epithelium; RMS, rostral migratory stream; GCL, granule cell 

layer; IPL, internal plexiform layer; MCL, mitral cell layer; EPL, external plexiform 

layer; GL, glomerular layer; ONL, olfactory nerve layer.   
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Figure 1: 
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 intrinsic neurons, made up of periglomerular (PG) cells and granule cells. 

The layers of the OB are shown in an adult mouse OB in Figure 1B.  The most 

superficial layer is called the outer nerve layer (ONL), and consists of axons reorganizing 

into functionally related subsets before penetrating into the OB (34, 41).  Beneath the 

ONL lies the glomerular layer (GL).  This layer contains glomeruli, described in further 

detail below, which include the distinct synaptic units between the OSNs and the 

projection neurons.  Below the glomerular layer is the external plexiform layer (EPL) 

which contains the cell bodies of the tufted cells, as well as the dendrodendritic synapses 

between projection neurons and granule cells.  Next is the mitral cell layer (MCL), 

containing the cell bodies of mitral cells.  The internal plexiform layer (IPL) is a thin 

layer between the innermost granule cell layer (GCL) and the MCL, containing output 

axons from the projection neurons on their way to forming the LOT.  In the middle of the 

GCL, which contains the cell bodies of granule cells, is the rostral migratory stream 

(RMS), through which newly generated neurons travel from the subventricular zone 

(SVZ) where they are born, to their target destinations in the OB where they differentiate 

into new PG cells and granule cells.  

The complex synaptic circuits formed by these cells hold the key to understanding 

how odor signals are processed at this level within the OB.  A basic scheme of the main 

synapses is depicted in Figure 2, adapted from Mori et al. (42).  Within each glomerulus, 

the OSN axons synapse with the primary dendrites of mitral and tufted cells.  Any given 

projection neuron only innervates a single glomerulus.  However, these projection 

neurons do send secondary dendrites laterally throughout the EPL where they form 
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reciprocal dendrodendritic synapses with granule cells; the granule-to-mitral/tufted 

synapse is inhibitory while the mitral/tufted-to-granule is excitatory.   

In addition to the main axodendritic synapses between OSNs and projection 

neurons within the glomeruli, OSNs also form excitatory axodendritic synapses with PG 

cells.  Also within the glomeruli are reciprocal dendrodendritic synapses between PG 

cells and the mitral and tufted cells; the mitral/tufted-to-PG synapse is excitatory and the 

reciprocal is inhibitory. 

Within the GL but outside of the glomeruli, PG cell axons form inhibitory 

synapses both with other PG cell bodies and dendrites, as well as on the primary 

dendrites of projection neurons as they exit the glomeruli.  It can therefore be seen that 

PG cells are largely inhibitory in nature and are likely involved in negative feedback 

circuits. 

Collaterals from outgoing projection neuron axons on their way to the olfactory 

cortex form excitatory synapses with the cell bodies of granule cells within the GCL.  

The axon terminals from incoming centrifugal fibers are found in the GCL, the EPL, and 

in the extra-glomerular space of the GL, therefore providing regulation of olfactory 

signals from higher centers at multiple levels within the OB.  

 

Glomeruli are anatomical structures in the olfactory bulb with topographic 

specificity that play a functional role in odor processing.  

Glomeruli are the spherical regions within the OB neuropil that represent the 

primary synapse between OSN axons and projection neuron dendrites.  In mammals, 

input into each glomerulus consists of axons from thousands of OSNs (43, 44).  Any one 
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Figure 2: Synaptic Organization of the Olfactory Bulb 

After OSNs enter the OB, they synapse with projection neurons, the mitral cells and 

tufted cells, within discrete synaptic units called glomeruli.  Also participating in the 

regulation of sensory input at this level are the PG cells, which form feedback circuits 

within the gomeruli with both the OSNs axons and the projection neuron dendrites.  The 

mitral/tufted cells send only a single primary dendrite into a glomerulus, however they 

send multiple secondary processes laterally that form synapses with granule cell 

dendrites.  The axons from the mitral and tufted cells then travel to the olfactory cortex 

where the final level of odor processing takes place.  White arrows represent excitatory 

synapses, black arrows represent inhibitory synapses. OSN, olfactory sensory neuron; 

GL, glomerular layer; PG, periglomerular cell; M, mitral cell; T, tufted cell; Gr, granule 

cell.  Adapted from Mori et al. (42). 



 

 

14

Figure 2 
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OSN projects to only a single glomerulus (45).  When examining the subset of OSNs 

expressing the same OR in rodents, it can be seen that their axons all project to one, two, 

or several distinct glomeruli (34, 46-48).  The most commonly seen scenario is axons 

projecting to exactly two glomeruli, one in the medial half of the OB and the other in the 

lateral half of the OB.  This specific targeting of glomeruli by OSN axons is made even 

more complicated by the fact that the three-dimensional positions of glomeruli are 

stereotyped from animal to animal within a species.  Spatial mapping has been 

undertaken through a variety of techniques, including 2-deoxyglucose uptake (49-51), 

optical imaging with voltage sensitive dyes (52, 53), and electrophysiological recordings 

from projection neurons (54).  All studies in all animals have shown that identical odors 

elicit characteristic spatial patterns of glomerular activity within the OB. 

Very little is known about the mechanism of specific glomerular targeting by 

OSN axons. In situ hybridization in rodents has demonstrated that OR proteins are 

present within the OSN axons and axon terminals (46, 47).  Later genetic studies were 

done in mice in which deleted OR coding sequences were substituted with different 

receptor sequences resulting in axon convergence to new glomerular targets (55, 56), 

showing that the OR itself plays a necessary role during axonal targeting.  OR guided 

targeting is presently believed to occur through G protein-coupled signaling via cAMP 

rather than by the direct action of OR molecules (10).  However, the new glomerular 

targets of these OSN axons were not exactly at the location of the substituted OR 

glomeruli.  This imperfect localization suggests that the ORs are necessary but not 
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sufficient for exact targeting, and that the process is therefore more complex and likely 

involves multiple other determinants.    

 In addition to the targeting specificity of OSNs to glomeruli, there is also 

evidence of reciprocal specificity, in that all of the axonal inputs to a single glomerulus 

are specific to OSNs expressing a single OR.  Treloar et al. (57) demonstrated this in the 

mouse by using electron microscopy to show that all axons synapsing within a M72 

glomeruli express the M72 OR.   

These results further characterize the degree of molecular specificity encoded by 

the glomeruli, and additionally set up a numerical relationship between ORs and 

glomeruli.  If all OSNs expressing a given OR target a specific number of glomeruli in 

stereotypical positions in the OB, and all glomeruli are only receiving axonal input from 

one type of OR, the number of glomeruli should be directly related to the number of 

expressed ORs in any given species.  In mice, there are ~1000 expressed ORs, and the 

number of glomeruli has been estimated at ~1800 (58).  In rats, there are ~1200 expressed 

ORs (23) and the number of glomeruli in the rat OB has been estimated at ~2400 (59).  

There is therefore an approximate 2:1 relationship between the number of ORs and the 

number of glomeruli.  This confirms the previously noted observations that OSN axons 

for any given OR usually project to two glomeruli - one glomerulus medially placed in 

the OB and one that is laterally placed in the OB (34, 46-48); only rarely do they project 

to only one or more than two (35). 

      This specific organization of glomeruli in the rodent OB therefore creates a 

stereotyped map of ORs at this first level of central processing.  It is unclear what role the 

locations of each OR’s glomeruli play in the course of odor processing.  However, due to 
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the ability of PG cells to regulate multiple proximally located glomeruli, as well as the 

ability of mitral and tufted cells that innervate separate yet adjacent glomeruli to form 

dendrodentritic synapses with each other via their secondary dendrites, it is indeed likely 

that the location and organization of the glomerular map has a functional role in 

regulating and integrating sensory information on its way to the olfactory cortex.  

Structurally similar odorants have been demonstrated to activate glomeruli in similar OB 

regions, creating chemotopic maps around the surface of the OB (60-63).  This, along 

with the growing understanding of the synaptic circuits involving closely proximated 

glomeruli, has popularized the idea that a key function of the glomerulus is to act as a 

signal-to-noise enhancing device (64).  Whatever the function(s) of glomeruli may be, the 

preservation of their anatomic localization and molecular specificity across all studied 

species is certainly striking.  
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STATEMENT OF PURPOSE AND HYPOTHESIS 

 

Qualitative evaluation of the primary organization of the human olfactory bulb. 

Much work has been done to characterize the synaptic and molecular specificity 

of the OB glomeruli and their development.  Missing from these studies, however, is an 

analysis of the human olfactory system; a determination of whether the principles of axon 

convergence and molecular specificity that have been developed in rodent models extend 

to the human olfactory system.  Only a limited number of studies have been reported on 

the organization of the human OB and these were largely carried out prior to the 

development of our current molecular reagents or insights into the molecular organization 

of the OB.  Anecdotally, one can argue that the sense of smell in humans has degraded 

over evolution, but that hypothesis has not been pursued at the level of synapse formation 

or molecular specificity.  Consequently, we are interested in characterizing the primary 

organization of the human OB to begin to probe the widely held but untested hypothesis 

that the cellular, synaptic, and molecular organization in the human OB is less precise 

than that seen in other species. 

 

Assessing the rodent-based principles of molecular specificity in glomerular maps in 

the human olfactory bulb. 

Rodent studies have shown that the total number of glomeruli in the OB is a direct 

reflection of the number of intact ORs expressed in the olfactory epithelium; in rodents, 

there are twice the number of glomeruli as there are OR genes.  This leads us to the 

simple though elegant method of evaluating the human olfactory system to determine just 
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how similar odor processing is in these two species by counting the number of glomeruli 

present in human OBs.   Genomic mining in the human suggests a total of approximately 

350 OR genes with intact reading frames.  If the principles of axon convergence occur in 

the human as they do in the rodent, we predict the human OB will have 700 glomeruli.    
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METHODS 

 

Tissue Procurement and Fixation 

 Human OBs were obtained through several sources including both during autopsy 

from post-mortem donors as well as during neurosurgical procedures from live donors.  

OBs from autopsy were kindly made available by Dr. Jung Kim from the Department of 

Pathology, Yale University School of Medicine, New Haven, CT, as well as through the 

National Disease Research Institute, Philadelphia, Pennsylvania.  Information regarding 

age, gender, and relevant medical history was obtained for all donors (Table 1).  

Exclusions for this part of the study were the presence of symptomatic olfactory 

dysfunction, neurodegenerative disorders such as Alzheimer’s Disease and Parkinson’s 

Disease, and intranasal drug use.  Procurement of this tissue and relevant donor 

information passed HIC approval (#12081), and is exempt from IRB review under federal 

regulation 45 CFR 46.101(b)(4).  The post-mortem interval in these cases was less than 

16 hours, and after procurement the OBs were fixed in 10% formalin for 7 to 28 days.  

After fixation, these tissues were stripped of their meninges and washed two to three 

times overnight in fresh phosphate buffered saline (PBS).   

The live donor OBs were kindly obtained by Dr. Dennis Spencer of the 

Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, 

during frontal lobe neurosurgical cases requiring disruption of the lateral olfactory tract 

(HIC# 12081).  OBs were obtained only in those cases in which they would otherwise be 

sacrificed or discarded during the course of the surgery.  These OBs were fixed in 4% 
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paraformaldehyde for 24 to 48 hours.  After fixation, these OBs were stripped of their 

meninges and washed in PBS overnight. 

For qualitative comparisons, mouse OB tissue was also obtained.  Adult CD1 

mice (Charles River Laboratories) were anesthetized with sodium pentobarbital (80 

mg/kg i.p.; Nembutal; Abbott Laboratories, North Chicago, IL), then decapitated.  

Perfusions were avoided in order to more closely replicate the conditions under which the 

human OBs were obtained.  The mouse brains were removed from their skulls, and their 

OBs were removed and placed in 4% paraformaldehyde overnight, followed by PBS 

overnight.  All procedures undertaken in this study were approved by Yale University’s 

Animal Use and Care Committee and follow NIH guidelines. 

 After fixation, all human and mouse OBs were then cryo-preserved in 30% 

sucrose in PBS for 12 to 24 hours, then sectioned coronally throughout the length of the 

entire OB on a sliding-freezing microtome (50µm), and stored at -20°C until use.  To 

maintain rostral-caudal order in the human OBs, slices were maintained individually in 

48-well plates. 

   

Immunohistochemistry 

 Tissue was removed from -20°C storage and washed in PBS with 0.03% Triton 

100-X (PBS-T).  For antigen retrieval, OB slices were steamed for 10 minutes in a 

solution of 0.01M Sodium Citrate, then immediately washed with room-temperature 

PBS-T.  Tissue was blocked with 2% BSA in PBS-T for 45 minutes, then incubated for 

48 to 72 hours in primary antibody (see Table 2 for antibodies, concentrations, and 

sources) diluted in BSA-PBS-T at 4°C.  Tissue was then washed in PBS-T, and incubated 
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in secondary antibody (Table 2) diluted in BSA-PBS-T for 2 hours along with a nuclear 

marker, DAPI (Sigma) and/or DRAQ5 (Alexis Biochemicals).  The sections were then 

washed in PBS-T, then PBS.  In order to eliminate autofluorescence from lipofuscin 

granules, sections were stained with 1% Sudan Black in 70% Methanol for 5 minutes, 

then cleared in 70% Ethanol and rinsed in PBS (65).  Sections were mounted with 

GelMount (Bioveda). 

 

Qualitative Characterization of the Olfactory Bulb 

 Antibodies as listed in Table 2 were used to characterize the organization of the 

OB.  MAP2 stains for dendrites, while GAP43 and NCAM are axonal markers.  VGlut2 

is a synaptic marker specific to OB glomeruli.  To look at different classes of neurons, an 

antibody against calretinin was used to identify neurons with this calcium binding 

protein, GAD65/67 to identify GABAergic neurons, and TH to identify dopaminergic 

neurons.  Antibodies against specific mouse odorant receptors, mOR50, mOR28, 

mOR256-17, and mOR267 were used to attempt to look at how axons expressing these 

individual odorant receptors were organized in the human OB.  All staining was done in 

at least four different human OBs, and presented images are typical unless stated 

otherwise.   

 Images were taken with the Leica confocal microscope at different magnifications 

to assess the immunofluorescent results at different levels of detail.  Images were also 

taken of mouse OB sections stained with the same antibodies for comparison of the 

distribution of cell bodies, axons, and dendrites. 
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Quantifying Glomeruli 

 Every sixth section throughout the length of the human OBs was stained with 

anti-NCAM and anti-VGlut2 primary antibodies.  NCAM identifies the OSN axons, 

while VGlut2 is a synaptic-associated protein that in the OB is only found at the primary 

synapse between the OSN and the projection neurons, therefore defining the glomerular 

unit.  Glomeruli were identified by co-localization of VGlut2 and NCAM staining. 

Overlapping images were taken circumferentially around each section with an 

Olympus BX51 epifluorescent microscope using the 20X objective.  These digitized 

images were then analyzed using Metamorph software (Molecular Devices, Sunnyvale, 

CA).  Glomeruli were manually circled, while the software calculated total numbers of 

glomeruli as well as area and length/width diameters of each glomerulus.   

In this study, the length of the OB was defined by the distance encompassed by 

the most rostral and most caudal OB sections that exhibited glomerular staining.  The 

volume was calculated by estimating the shape of the OB to be a cylinder, and the cross 

sectional area was estimated by averaging the area of 4 slices distributed through the 

length of the OB.  The total counted glomeruli per OB was calculated by first multiplying 

the total number of counted glomeruli from the sections looked at by the inverse of the 

fraction of slices counted, usually around 6 as about every 6th slice was selected for 

counting.  Finally, to correct for the glomerular overlap between sections, the 

Abercrombie extrapolation was used: N = n * (t / ( t + H )), where in this case N is the 

number of glomeruli in the OB, n is the total number of counted glomeruli, t is the width 

of each section (50µm) and H is the average glomerular diameter.   
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Statistical analysis was performed using the Prism package (GraphPad Software 

Inc., San Diego, CA).  To look for relationships between the number of glomeruli and the 

age of the donors, the size of their glomeruli, or the volume of their OB, a linear 

regression test was performed.  To look for significance between the mean number of 

glomeruli in male donors versus female donors, as well as between “young” donors (<50 

years old) and “elderly” donors (>50 years old), an unpaired t-test was performed.  There 

were no significant differences in the viariances in either of these comparisons. 

 All of the above mentioned procedures, calculations, and analyses were 

performed by myself.  Dr. Diego Rodriguez Gil, a post-doctoral associate in the Greer 

lab, assisted with the statistical analyses.  Instruction and guidance was provided by all 

members of the Greer lab throughout my work.
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Table 1: Olfactory Bulb Donor Information  
     

OB 
Identification Source Type Age of 

Donor Gender Relevant Clinical Information 

HOB 1 Surgery 39 F frontal lobe epilepsy 
HOB 2 Post Mortem 89 M lung adenocardinoma 
HOB 6 Post Mortem 67 M leukemia treated with chemotherapy 
HOB 7 Surgery 66 M pituitary tumor 

HOB 15 Post Mortem 70 M emphysema  
HOB 16 Post Mortem 85 F microscopic polyangiitis  
HOB 20 Surgery 49 F frontal lobe glioma 
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Table 2: Antibodies Used for Immunohistochemistry 
    

Antibody Animal Dilution Source  
MAP2 chicken 1:1000 Sigma 
GAP43 rabbit 1:1000 Sigma 
NCAM mouse 1:500 Sigma 
VGlut2 rabbit 1:4000 Synaptic Systems 

calretinin mouse 1:400 Chemicon 
GAD65/67 mouse 1:1000 Stressgen 

TH rabbit 1:1000 Chemicon 
mOR50 guinea pig 1:3000 Dr. Richard Axel, Columbia University, New York, NY 
mOR28 rabbit 1:5000 Dr. Hitoshi Sakano, University of Tokyo, Japan 
mOR28 rabbit 1:5000 Dr. Richard Axel, Columbia University, New York, NY 

mOR256-17 rabbit 1:800 Dr. Heinz Breer, University of Hohenheim, Germany 
mOR262 rabbit 1:1500 Dr. Heinz Breer, University of Hohenheim, Germany 

    
chicken-Alexa 555 goat 1:1000 Molecular Probes 
rabbit-Alexa 555 donkey 1:1000 Molecular Probes 
mouse-Alexa 488 donkey 1:1000 Molecular Probes 
guinea pig-Cy3 donkey 1:1000 Jackson Immunoresearch 
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RESULTS 

 

The laminar organization of the OB is broadly preserved in humans. 

The rodent OB is characterized by distinct laminar structures that can be 

identified using nuclear staining to evaluate the cellular distribution.  As can be seen in 

Figure 3A which depicts the layers of a mouse OB, the glomerular layer is clearly 

recognizable by the unique distribution of PG cells outlining individual glomeruli.  The 

EPL is an area of sparse nuclear staining as it is the area of dendrodendritic synapses 

between granule cells and projection neurons.  The thin band of dense nuclei represents 

the concentrated layer of mitral cell nuclei in the MCL.  Finally there is another cell-

sparse region, the IPL, followed by the cell rich GCL.  This is an extremely organized 

and distinctive pattern, seen consistently in all rodents throughout the rostral-caudal 

length of the OB. 

Figure 3A’ demonstrates the same DRAQ5 nuclear staining of a human OB.  

Clearly the layers are still present, though not as sharply demarcated as in the mouse OB.  

The GL is separated by the more superficial ONL by the presence of cell-absent spots, 

the glomeruli.  However, unlike in the mouse OB, the PG cells do not form clearly 

identifiable densities around the glomeruli, making individual glomeruli difficult to 

visualize in the human GL using nuclear staining alone.  Deep to the GL is the EPL, 

which is seen in this image to be relatively thin compared to the mouse, while the IPL is 

relatively thick compared to the mouse.  However, even within human OBs, there is 

actually a high degree of variability in the width of the layers. 



 

 

28

 

Figure 3: Laminar Organization of the Human Olfactory Bulb 

Nuclear staining with DRAQ5 demonstrates the laminar layers of the mouse olfactory 

bulb (A) and the human olfactory bulb (A’).  While there is preservation of the laminar 

structure between the two species, the layers are more clearly demarcated in the mouse.  

In addition, the human OB demonstrates more variability in the width and organization of 

these layers, which are even sometimes completely absent.  Representative coronal OB 

slices show the structural variations both within single slices as well as between different 

OBs from different human donors (B-D).  In B, there are areas of very clear laminations 

(red arrow), as well as areas where the layers cannot be distinguished from each other 

(green arrow).  In C, the GL is completely absent around the left side, but in other areas 

the laminations are very clear (red arrows).  D also shows a partially circumferential GL, 

and in this OB the rest of the layers seem to be completely absent as the GL ends (yellow 

arrow).  GCL, granule cell layer; IPL, internal plexiform layer; MCL, mitral cell layer; 

EPL, external plexiform layer; GL, glomerular layer; ONL, olfactory nerve layer.  Scale 

bar in A is 50 µm for A, A’, scale bar in D is 500 µm for B-D. 
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Figure 3: 
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This variability can be seen circumferentially within one OB slice, as well as 

between slices from OBs from different donors.  Figure 3B-D shows examples of slices 

stained with DRAQ5 from three different donors.  In Figure 3B, the GL can be seen 

around the entire circumference of the OB.  The different layers, including the frequently 

elusive MCL, are clearly demarcated through the entire depth in some areas (red arrow), 

however seem to blend together deep to the GL in others (green arrow).  In Figure 3C, 

the GL is absent around the left side of the bulb.  Despite the absence of glomeruli, there 

is evidence of lamination suggesting that some level of organization persists.  Again, as 

in the previous image, there are points throughout the rest of the OB’s circumference 

with very clear laminations (red arrow) while in other areas the laminations are less clear.   

The final image (Figure 3D) shows another example of an OB with a glomerular 

layer that is only partly circumferential.  However, as opposed to in the previous image, 

the laminations are completely absent along the top of the slice where there are no 

glomeruli, and even the density usually seen around the periphery of the central GCL 

disappears when the glomerular layer ends (yellow arrow).  In this OB, the ONL and GL 

are extremely thick compared to the other OBs pictured.  

 

Distribution of OSN axons in glomeruli depends on axonal maturity. 

 The OB is a dynamic region of the central nervous system; as seen in other 

species, OSNs are constantly regenerated/replaced and send their newly forming axons 

through the cribiform plate into the OB, where they seek out their target glomeruli and 

integrate into the dense synaptic network.  To look for evidence of these newly generated 
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OSN axons in the human OB, sections were co-stained with GAP43, which recognizes 

immature axons in the process of finding and integrating into their target synaptic 

networks, as well as NCAM, which stains all axons.   

The GAP43 pattern of staining in a mouse OB demonstrates GAP43+ axons 

clearly co-localizing with the NCAM+ axons in the ONL as well as glomeruli (Figure 

4A).  This staining pattern is also represented in the human (Figure 4B).  While the 

overall architecture of the OB laminations are not as precise, the distribution of GAP43+ 

stained axons is similar, with co-localizations seen in the ONL and glomeruli.  This 

image is from HOB 1, taken from a 39 year-old donor, demonstrating clearly that OSNs 

are generated and replaced in adult humans.  The oldest OB examined was HOB 2, taken 

from an 89 year old donor (Figure 4C).  In this OB as well, which qualitatively has even 

poorer laminations than in the previous OB from a younger donor, GAP43+ axons are 

still visualized in glomeruli, demonstrating the persistence of OSN proliferation in 

humans through the entire adult life into old age.   

A closer look at a glomerulus as defined by the NCAM stained OSN axons, 

demonstrates the GAP43 staining around the periphery (Figure 4D).  This is consistent 

with observations in rodents, in which new OSN axons are integrated on the outside of an 

existing glomerulus, while the more mature axons are more centrally located (66).  As 

additional new axons expressing the same OR arrive at their target, they in turn surround 

the outside of the glomerulus, and the previous axons that are now maturing and 

integrating into their synaptic networks become relatively more central. 
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Figure 4: Presence and Distribution of Newly Generated Olfactory Sensory Neurons 

Axons from newly generated OSNs are identified by co-localization between GAP43 

(red) and NCAM (green).  These axons can be seen in abundance in the ONL and 

glomeruli of the mouse OB (A), showing that newly generated axons are able to integrate 

into the OB synaptic network.  Evidence of OSN regeneration in humans is presented in 

B-D, where these axons are seen in the ONL and glomeruli similarly as in mice.  The OB 

slice stained in image B is from a 39 year old donor, while the OB in C is from an 89 year 

old donor, indicating that OSN regeneration continues well into old-age.  D is a higher 

magnification showing that new OSN axons first integrate into the periphery of existing 

glomeruli, a process that has been previously described in rodents.  EPL, external 

plexiform layer; GL, glomerular layer.  Scale bar is 100 µm in A-C, and 25 µm in D. 
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Figure 4 
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Glomeruli in the human OB show evidence of compartmentalization. 

Previous work in rodents has demonstrated compartmentalization of glomeruli 

into axonal and dendritic compartments (67-69); the axonal compartments are where the 

axodendritic synapses between OSNs and projection neurons take place, while the 

dendritic compartments are where the dendrodendritic synapses between the PG cells and 

the mitral and tufted cells take place.   

To examine whether there was evidence of compartmentalization in human 

glomeruli, OB slices were co-stained with NCAM, an axonal marker, and MAP2, a 

dendritic marker.  Figure 5A and B show the distribution of these two markers in the 

mouse and human OBs respectively.  In both species, the MAP2+ dendrites are especially 

prominent in the EPL, the area of dendrodendritic synapses.  Dendrites are also 

demonstrated extending into glomeruli in the GL, with some degree of co-localization 

visible even at this low magnification between these MAP2+ dendrites and NCAM+ 

axons.  

By examining higher magnifications of glomeruli (Figure 5C, D), the axonal and 

dendritic compartmentalizations previously described only in the rodent are demonstrated 

here in the human OB.  The axonal areas are demarcated by the green NCAM+ staining 

with some evidence of co-localization with the red MAP2+ staining, representing the 

OSN-projection neuron axodendritic synapses.  The dendritic areas are NCAM-, but 

MAP2+, representing areas of dendrodendritic synapses as previously described.  This 

suggests that at the intraglomerular level, axodendritic primary afferent synapses and 

local circuit dendrodendritic synapses remain segregated in the human OB and therefore 

that at this level, processing of odor in the human may be similar to that described in  
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Figure 5: Evidence of Glomerular Compartmentalization  

In rodents, separate axonal and dendritic compartments have been defined in glomeruli, 

segregating the axodendritic synapses from the local circuit dendrodendritic synapses.  

The broad distribution of dendrites and OSN axons is demonstrated in a mouse OB (A) 

using MAP2 (red) and NCAM (green).  Nuclear staining with DRAQ5 (blue) is also seen 

in A, B.  As expected, the EPL is rich in MAP2+ dendritic staining, with both MAP2 and 

NCAM staining seen in the glomeruli.  A similar organization is seen the human OB (B) 

as in the mouse.  Higher magnification of glomeruli from the human OB (C,D) shows 

areas specific to NCAM staining and areas specific to MAP2 staining.  These represent 

axonal and dendritic compartments respectively, suggesting that there is preservation of 

the synaptic organization within glomeruli between rodents and humans.  EPL, external 

plexiform layer; GL, glomerular layer.  Scale bar is 100 µm in A, B, and 10 µm in C, D. 
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Figure 5: 
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other species. 

 

Periglomerular cells in the human OB do not form uniform densities around 

glomeruli, however they represent a similar heterogeneous population of cells as in 

rodents. 

 As described earlier, glomeruli in the mouse OB can be identified with nuclear 

stains by their surrounding PG cells, while in the human OB, this method of identifying 

glomeruli is not as clear.  To further evaluate the distribution of PG cells in the human 

OB, nuclear staining was combined with staining for NCAM, an axonal marker, and 

VGlut2, a synaptic marker specific to glomeruli; co-localization of these two probes is a 

more rigorous way of defining glomeruli, and therefore provides a way of visualizing the 

relationship between PG cells and glomeruli.   

The DRAQ5 staining of a mouse OB shows PG cell densities clearly demarcating 

the borders of glomeruli (Figure 6A).  Confirmation of these glomeruli is demonstrated 

with the added NCAM and VGlut2 staining to this image, clearly showing glomeruli 

within the PG cell circumferential densities (Figure 6B).  However, DRAQ5 nuclear 

staining from sections of a human OB are far less convincing in their ability to delineate 

glomeruli through examination of PG cells (Figure 6C,E). There are areas of more 

sparsely distributed cells, some of which hint at the potential locations of glomeruli, 

however only rarely do the PG cells identify clear glomerular borders.  When NCAM and 

VGlut2 staining is added to the images (Figure 6D,F), easily identifiable glomeruli are 

now able to be seen within the PG cells.  This PG cell organization appears to be unique 

in humans compared to mice; while in mice and other rodents the entire GL is defined by 
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closely approximated glomeruli with evenly distributed PG cells consistently surrounding 

every individual glomeruli, the human OB GL appears more chaotic in nature.  As 

described in more detail below, glomeruli in the human GL appear to be distributed 

randomly, often appearing in clusters or as a lone individuals.  When in a cluster, there is 

a relative paucity of directly approximated PG cells relative to the central glomerular 

bodies.  When spaced farther apart, there are large areas of intervening PG cells that have 

no physical approximation to any glomerulus; it is rare due to the compact nature of the 

rodent GL to see PG cells that are not directly abutting or within close approximation to a 

glomerulus.  Therefore, while the GL does qualitatively appear to be rich in PG cells in 

humans, there does not appear to be homogeneity in the distribution of PG cells relative 

to glomeruli as there does in rodents. 

 PG cell populations and their chemical heterogeneity have been well described in 

rodents (70).  Their heterogeneity is usually defined by several substances; glutamic acid 

decarboxylase (GAD), a key enzyme in the synthesis of GABA (71-74), tyrosine 

hydroxylase (TH), a key enzyme in synthesizing dopamine (75, 76), and several calcium 

binding proteins, including calretinin (77, 78).  As PG cells are primarily inhibitory, it is 

no surprise that many if not all of them contain GABA and/or dopamine, two of the 

primary inhibitory neurotransmitters.   

By immunohistochemical staining with antibodies for each of these distinct PG 

cell markers, the relative qualitative distributions of PG cell types can be compared 

between humans and mice.  Figure 7A demonstrates the population of dopaminergic cells 

in a mouse OB using antibodies for TH, along with NCAM to define the glomeruli.  TH+ 

cells have large cell bodies, and are seen surrounding the glomeruli.  More faintly 
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Figure 6: Defining Glomeruli With NCAM and VGlut2 Co-Localization 

Due to the well organized compact nature of glomeruli within the GL in the mouse OB, it 

is easy to define glomerular borders based on the presence of surrounding PG cell 

densities using DRAQ5 nuclear staining (A).  The locations of these glomeruli are 

confirmed by the addition of NCAM (green) and VGlut 2 (red) to the DRAQ5 staining 

(blue) (B) of the same image.   However, in the human OB, the glomeruli are not 

regularly and compactly organized, and the PG cells do not form clear circumferential 

densities around their borders, making identification with DRAQ5 staining alone difficult 

(C,E).  However, the addition of NCAM and VGlut2 in these same images is able to 

define the locations of these glomeruli clearly (D,F).  In addition to highlighting the 

degree of variability in the size, shape, and distribution of the glomeruli, this also allows 

for the better characterization of the relationship between glomeruli and surrounding PG 

cells, which is also demonstrated to be more variable than compared to mice.  EPL, 

external plexiform layer; GL, glomerular layer.  Scale bar in F is 50 µm for A-F. 
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Figure 6 
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staining processes can be visualized extending into the glomeruli, representing the PG 

cell axons that synapse with the dendrites of projection neurons as well as occasionally 

with the axons of the OSNs.  Though not pictured, rare TH+ cells can also be seen in the 

deeper layers in the mouse OB.   

Figure 7B shows TH staining in the human at low magnification.  Again, cell 

bodies are seen in the GL.  While many are closely approximating glomeruli, some are 

more isolated within the GL.  This image also depicts several TH+ cell bodies within the 

GCL.   By observation, the percentage of cells in the GL that are TH+ appears to be 

lower than in the mouse.  At higher magnification (Figure 7C) the large-bodied TH+ cells 

are seen surrounding the glomerulus, with processes extending into the glomerulus; areas 

of co-localization are present between these TH+ processes and NCAM+ OSN axons.  

Calretinin+ PG cells can be seen in the mouse OB surrounding glomeruli defined 

by VGlut2 staining (Figure 7D).  These cells are more abundant than the dopaminergic 

cells, and have smaller cell bodies.  Calretinin+ cells are also found with relatively high 

frequency in the deeper layers of the OB.  Calretinin stains processes very strongly, and 

even at this low magnification, calretinin+ staining can be seen within the glomeruli.   

In the human, the calretinin+ PG cells are also more frequent than dopaminergic 

PG cells (Figure 7E).  These cells seem to be more closely approximated with glomeruli 

than TH+ cells, only rare calretinin+ cells are seen in the GL that are not directly 

approximated with a glomerulus.  Again, the strongly staining processes are seen in the 

glomeruli, even at the low magnification the co-localization between VGlut2 and 

calretinin can be seen.  This is better pictured in the higher magnification image (Figure 

7F).  As in the mouse, these calretinin+ cells have smaller cell bodies and are seen in 
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Figure 7: Molecular Phenotypes and Distributions of Periglomerular Cells 

Large-bodied TH+ (red) cells are seen surrounding glomeruli, as defined by NCAM 

(green), in the mouse OB (A).  A similar distribution is seen in the human OB (B).  A 

closer look at a single glomerulus in the human OB (C) demonstrates the large-bodied 

TH+ cells surrounding and sending processes into the glomerulus.  Calretinin+ (green) 

cells have smaller cell bodies, and are seen in a mouse OB even more abundantly staining 

PG cells around glomeruli, in this case identified with VGlut2 (red) (D).  A similar 

distribution is seen in the human OB, with many calretinin+ PG cells surrounding the 

unevenly distributed glomeruli, into which they are extending many darkly stained 

processes.  This is seen in greater detail in F, which also demonstrates more clearly the 

smaller cell bodies of calretinin+ cells.  The GAD65/67 antibody stains processes very 

darkly, and the EPL is dense with these GAD65/67+ (green) processes in the mouse OB 

(G), however abundant GAD65/67 cell bodies can be seen surrounding the VGlut2+ (red) 

glomeruli.  The EPL is similarly dense with processes in the human OB (H), and 

processes can also be seen around the glomeruli in the GL.  At a higher magnification in 

the GL of a human OB (I), fewer cell bodies are obviously GAD65/67+ as compared to 

in the mouse, some of the more clearly stained cells are identified with arrows.  However, 

this is likely due to the poor staining quality of the antibody, in fact most PG cells have 

some degree of co-localization with GAD65/67.  The quantities and distributions of these 

classes of cells are therefore seen to be similar in mice and humans, suggesting 

similarities between local processing of olfactory signals at this level.  DRAQ5 staining 

of nuclei is blue in all images.  EPL, external plexiform layer; GL, glomerular layer.  

Scale bars are 50 µm in A, D, G, 100 µm in B, E, H, and 25 µm in C, F, I. 
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Figure 7 
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fairly high density. 

GABAergic cells are characterized by staining with an antibody against 

GAD65/GAD67.  Glomeruli were defined with VGlut2.  This antibody has relatively 

poor staining of cell bodies while staining of the processes is very strong.  A large 

amount of staining of these processes is seen in the EPL of the mouse OB, with cell 

bodies pictured very densely packed around glomeruli in the GL (Figure 7G).  These 

cells have medium-sized cell bodies, and are the most abundant of the PG cells, which is 

consistent with the finding is this image. 

In the human OB, GAD65/67+ staining is particularly prominent in the EPL as 

well (Figure 7H).  Less densely stained processes can be seen around the glomeruli, 

however no distinct cell bodies can be identified at this low magnification.  At higher 

magnification, several VGlut2+ glomeruli can be seen surrounded by GAD65/67+ cells 

(Figure 7I).  Due to the poor cell body staining, GABAergic cells are difficult to clearly 

identify; several of the more prominently stained cells are labeled with an arrow.  

However, upon close examination, many of the DRAQ5 stained nuclei surrounding these 

glomeruli demonstrate small but visible co-localization with GAD65/67.  This, combined 

with the clearly identified GAD65/67+ processes surrounding and innervating the 

glomeruli confirms the localization of GABAergic PG cells in the GL.  Unfortunately the 

staining quality prohibits further speculation about the relative quantities of these cells as 

compared to rodents. 

In summary, all three types of PG cells, including dopaminergic cells, 

GABAergic cells, and cells expressing calcium binding proteins, are present in the GL of 

humans.  They appear to be present in the same relative quantifications as in mice, with 
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the exception of the GABAergic cells in which no conclusions could be made due to 

limitations in the immunohistochemical staining in the human OB.  Finally, all three 

types of cells appear to be distributed in the OB similarly as in mice, and most notably in 

the GL they are all closely surrounding the glomeruli.  While not conclusive, these 

histological descriptions are consistent with the idea that the same types of synaptic 

circuits between OSNs, mitral/tufted cells, and PG cells are also present in the human and 

may play a role in the initial processing of sensory input into the OB.   One important 

observation, however, is that in the GL in the human OB there does not appear to be 

homogeneity in the distribution of PG cells relative to glomeruli as there does in rodents, 

and there are large areas within the GL without glomeruli that are still dense with PG 

cells.  Interestingly, while the PG cells directly surrounding glomeruli in the human were 

stained consistently with the TH, GAD65/67, and calretinin antibodies, only rare PG cells 

in these intervening areas were stained.  It is unclear what the nature of the cells in these 

areas are or how they may contribute to the synaptic organization in this layer.  

 

The distribution of glomeruli in the OB is not preserved between specimens. 

 Rodents have very specific odor maps, with stereotyped locations of glomeruli for 

each specific OR that are conserved from animal to animal.  For each OR, there are 

usually two, though sometimes one or a few, glomerular targets, one located on the 

medial wall of the OB and the second located on the lateral wall.   These precise odor 

maps in mice are composed of regularly-spaced glomeruli evenly distributed almost two-

dimensionally in a sheet around the surface of the OB.  
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 To broadly look at the general distribution of glomeruli in the human OB, slices 

were co-stained with NCAM and VGlut2.  By looking at representative low 

magnification slices arranged rostrally to caudally throughout the length of one of the 

OB’s, HOB1 (Figure 8), it can be seen that the distribution of glomeruli around the OB is 

very different in humans than in mice.  While in mice they are regularly spaced in a thin, 

circumferential layer, in the human OB glomeruli are often clustered in groups.  In the 

images presented, these clusters are represented by thick NCAM+ axon densities that 

branch out into large groups of VGlut2+ glomeruli that are often overlapping and that 

extend the width of the GL deeper into the OB.  There are several of these clusters that 

can be seen throughout the representative slices.  They are in different areas of the 

circumference, though the overall distribution of glomeruli in this OB is lateralized to 

about half of the overall circumference.  This localization remains consistent throughout 

the entire length of the OB until it tapers off at the most caudal end.  Outside of the 

clusters, the other areas along the circumference seem to have a more uniform thickness, 

however even here the distribution of glomeruli is not evenly spaced as they are often 

clumped together or completely absent.     

 This non-circumferential distribution was seen in all OBs examined, however the 

extent to which the glomeruli were limited to one area was variable from specimen to 

specimen, as was the particular area to which they were localized.  Representative low 

magnification slices from several different human OBs, taken from mid-OB except where 

noted, demonstrate the variety in the distribution around the OB (Figure 9).  HOB 20 

(Figure 9A) and HOB 6 (Figure 9B) have a similar type of lateralization as was seen in 

HOB 1 (Figure 8).  However HOB 20 has a thick NCAM+ ONL and glomerular layer as 
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Figure 8: Limited Circumferential Localization of Glomeruli  

The localization of glomeruli around the circumference of a single OB, HOB 1, through 

its rostral-caudal length is shown starting rostrally in A and ending caudally in H.  

Glomeruli are identified by co-localization of NCAM (green) and VGlut2 (red).  Nuclear 

staining is with DAPI (blue).  Clusters of glomeruli can be seen in the GL with 

intervening areas that are more sparse in glomerular density, unlike the mouse OB in 

which the glomeruli are regularly spaced, and usually only 1-2 glomeruli thick.  The 

thickness of the GL shown here is variable amongst slices, but the non-circumferential 

lateralization of glomeruli remains consistent throughout the entire length.  Scale bar in H 

is 500 µm for A-H. 
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Figure 8: 
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in HOB 1, while HOB 6 has a very thin ONL and sparse glomeruli.   In several of the 

OBs including HOB 20, the glomeruli could be seen completely circumferentially in the 

most rostral slices (Figure 9C) until becoming more localized in their distribution.  HOB 

15 had a particularly large distribution, almost completely circumferential (Figure 9D).  

HOB 7 and HOB 2 had distributions that each covered about half of the circumference, 

however, each was distinctive in their localization; in HOB 7 glomeruli were lateralized 

side-to-side, while in HOB 2 they were lateralized up-to-down (Figure 9E,F).  These 

images highlight the broad spectrum of variations in the glomerular pattern, both in the 

amount or the circumference surrounded by glomeruli as well as in the localization 

within the circumference.  This variability demonstrates that, as opposed to in rodents, it 

is unlikely that humans have a stereotypical spatial targeting within the OB for axons 

expressing specific ORs that is identical amongst all members of the species.  

To try to explore this further and examine the localization of specific OR 

glomeruli, slices throughout the OB were stained immunohistochemically with probes for 

several ORs (see Table 2).  These included antibodies targeting mOR50 (Mori), mOR28 

(Sakano), mOR28 (Axel), mOR256-17 (Breer), and mOR262 (Breer).  ORs are expressed 

in the axons of OSNs, so successful staining should demonstrate OR+ axons surrounding 

the OB in the ONL, as well as OR+ glomeruli representing the glomerular targets for the 

specific OR.  Although these antibodies were developed against mouse ORs, it was 

hoped that they might recognize human ORs as well, since as previously discussed, there 

is a high though variable degree of sequence homology between OR genes from the two 

species.  By seeing OR+ glomeruli, this study might be able to confirm molecular 

specificity of glomerular inputs in the human.  In addition, it would describe the 
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Figure 9: Variability in Glomerular Localizations  

The broad range in glomerular distributions is shown in OBs from several different 

donors.  Glomeruli are identified by co-localization between NCAM (green) and VGlut2 

(red), nuclear staining is with DAPI (blue).  The most rostral tip of several of the OBs, 

such as HOB 20, exhibited glomeruli around the entire circumference of the OB (C), after 

which they usually became far more localized.  Other than C, all images in this figure are 

taken from slices that are mid-OB.  The most common localization is shown in HOB 20 

and HOB 6 (A,B), however the laminar organization is very different between these two 

OBs, with HOB 20 having a very thick GL and dense glomeruli, and HOB 6 having a 

very thin GL and sparse glomeruli.  In HOB 15 (D), glomeruli are seen surrounding 

almost the entire OB, with some glomeruli extending out of the GL deeper into the bulb.  

In HOB 7 and HOB 2 (E,F) glomeruli are seen surrounding about half of the 

circumference, however in HOB 7 the lateralization is side-to side while in HOB 2 the 

lateralization is top-to-bottom.  While rodents have a very stereotypical odor map that is 

preserved from animal to animal, because of the broad ranges in the distributions of 

glomeruli around the OB, it is unlikely that this is the case in humans.  Scale bar in H is 

500 µm for A-F. 
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Figure 9: 
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Figure 10: Single Odorant Receptor Expression in the Olfactory Nerve Layer  

In order to examine the distribution of single-OR axons and glomeruli, human OB slices 

were stained with a mix of antibodies developed against individual mouse ORs, which 

included mOR50 (Mori), mOR28 (Sakano), mOR28 (Axel), mOR257-17 (Breer), and 

mOR262 (Breer).  Due to the high degree of homology between human and mouse OR 

sequences, it was hoped that these antibodies would recognize human ORs as well. 

Evidence of positively stained axons with characteristic knobby densities are present in 

ONL (A,B), however no glomeruli were visualized.  ONL, olfactory nerve layer.  Scale 

bars are 10 µm. 
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Figure 10: 



 

 

54

distribution of specific OR glomeruli in the bulb, and might be able to provide further 

insight into the numbers of glomeruli targeted by OSN axons for each OR. 

 Unfortunately, while there was no conclusive evidence of OR+ glomerular 

staining, there was suggestive OR+ staining in the ONL (Figure 10A,B), which implies 

that the OR antibodies developed against mouse sequences are able to cross-react with 

humans.  However, due to the lack of identified glomerular staining, no further insight 

was provided regarding homotypic axon convergence or molecular specificity of the 

glomeruli. 

 

Humans have many more glomeruli than models of olfactory processing established 

in rodent models would predict. 

 In rodent models, the total number of glomeruli in the olfactory bulb is a direct 

reflection of the number of intact ORs expressed in the olfactory epithelium.  In both rats 

and mice, there are twice as many glomeruli as there are OR genes.  By evaluating the 

number of glomeruli in humans, it can be determined whether principles of axon 

convergence occur in the human as they do in the rodent.  We used co-localization of 

NCAM and VGlut2 to define glomeruli.  In addition to counting the glomeruli from 

representative slices throughout each OB, each glomerulus was circled to measure its 

two-way diameter and area.   

Table 3 shows the final results of this study for the seven OBs that were 

examined.  The average number of glomeruli was 5568 ± 830 (mean ± S.E.M.), many 

times more than the 700 predicted based on the estimated 350 intact OR genes in humans.  

In addition, as demonstrated by the large standard error, there was a huge range; the 
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smallest number counted was 2975 from HOB 6, and the highest 9325 from HOB 20.  

While based on a small n, these huge counts are many times higher that predicted, and 

seem to clearly disprove the hypothesis that there would be about 700 glomeruli.  This 

implies that through evolution, in the time since primate-rodent divergence, humans have 

developed different principles of axon convergence and glomerular targeting, which in 

turn may reflect a variation in the way odor is processed at this level. 

The glomerular diameters were calculated based on two-way measurements 

across the circled glomeruli, with an average diameter of 59.6 ± 1.4 µm.  However, this 

standard error represents the range of glomerular diameters averaged from each of the 

OBs.  In fact the actual range of diameters was much larger than this, with the smallest 

measured glomerulus having a diameter of 15.8 µm and the largest measured glomerulus 

having a diameter of 185 µm.  In addition to this huge variation in size, these human OB 

glomeruli exhibited extreme variations in shape, with often the two axis measurements 

being extremely disparate for a given glomerulus.  However, the two diameters defining 

the individual glomerular shapes averaged out to within only a few microns for each of 

the OBs.  This indicates that the average two-dimensional shape of glomeruli in the 

human is circular despite the huge variability between individual glomeruli, and therefore 

the average structural shape is spherical.   

The average length of the OBs, defined by the rostral-caudal distance between the 

first and last coronal slices that contained glomeruli, was 9.52 ± 0.49 mm.  The mean area 

of the coronal cross-section of the OBs was 5.52 ± 0.32 mm2, and was seen within an 

individual OB to remain fairly consistent throughout the length except at the most rostral 

tip, suggesting that the three-dimensional shape of the human OB is more like a cylinder  
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Table 3: Olfactory Bulb Analysis Data    
      

ID OB Length 
(mm) 

Average Area 
of Slice (mm2) 

Total OB 
Volume 
(mm3) 

Average 
Glomerular 

Diameter (µm) 

Total 
Glomeruli 
(corrected) 

HOB 1 7.05 4.30 30.32 65.13 4595 
HOB 2 9.60 5.99 57.50 55.15 4184 
HOB 6 9.50 5.73 54.44 56.17 2975 
HOB 7 11.35 4.39 49.83 59.29 6530 

HOB 15 9.40 6.28 59.03 57.44 7150 
HOB 16 9.35 5.64 52.73 62.68 4221 
HOB 20 10.40 6.28 65.31 61.37 9325 

Mean ± S.E.M. 9.52 ± 0.49 5.52 ± 0.32 52.74 ± 4.19 59.60 ± 1.41 5568 ± 830  
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than like an elliptoid.  Using this assumption of a cylindrical shape, the mean volume of 

the OB was calculated to be 52.74 ± 4.19 mm3.  Previous MRI imaging has measured the 

volume of OBs from patients with normal olfaction to be from 59 mm3 to 119 mm3 (79).  

While this is a bit higher than the volumes seen in our study, this likely reflects the fact 

that we used a functional definition of volume based on the presence of glomeruli, which 

is a clear way of identifying the transition between OB and LOT, and which was seen to 

occur before the anatomic narrowing of OB to LOT was clearly visible.  

  

There is no relationship between number of glomeruli in human OBs and either age, 

gender, or OB size. 

There was a huge range in the number of glomeruli counted from these seven 

human OBs.  To look for possible associated factors, the relationship between the number 

of glomeruli and the age of the donor, the gender of the donor, the average diameter of 

the glomeruli, and the size of his/her OB was examined.  A previous study described an 

inverse relationship between age and number of glomeruli (80); however, we did not find 

a correlation between the two variables as measured with a linear regression test (p=0.39) 

(Figure 11A).  When placed in two age categories of “young” (age less than 50 years old) 

and “elderly” (age greater than 50 years old), the average number of glomeruli in OBs 

from the the “young” group was 6960 ± 2365 (n=2), while in the “elderly” group it was 

5012 ± 785 (n=5) (Figure 11B).  While there are fewer glomeruli in OBs from the 

“elderly” group, using an unpaired t-test this difference was not found to be significant 

(p=0.33).  These findings are different from those of Meisami’s group, and possible 

explanations for these discordant conclusions are described in more detail below.   
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In addition, the data was grouped by gender, with the average number of 

glomeruli in OBs from female donors calculated as 6047 ± 1643 (n=3), and from male 

donors, 5210 ± 981 (n=4) (Figure 11C).  There is no statistical significance between these 

groups either (p=0.66).  Finally, there was no correlation between glomerular number and 

average glomerular size (p=0.71) (Figure 11D), or between glomerular number and OB 

volume (p=0.31) (Figure 11E).  

Based on the small n of 7, there is not a large amount of data to support the power 

of these comparisons.  Nevertheless, the only relationships that begin to even support a 

trend are between number of glomeruli and OB volume, as well as number of glomeruli 

and age.  Only by increasing the number of human OB samples can it be seen whether 

true relationships develop in these cases.   However, it is most likely that the main 

sources of variation in the number of glomeruli between different individuals lie outside 

the parameters measured here.  
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Figure 11: Relationships Between Total Glomeruli and Age, Gender, Glomerular 

Diameter, and Olfactory Bulb Volume 

No significant relationship were found between total glomeruli and donor age (p=0.39) 

(A).  There was a trend towards decreasing numbers of glomeruli with increasing age, 

however even when split into two groups of “young” (age less than 50 years old) and 

“elderly” (age greater than 50 years old), the difference was not significant (p=0.33).  The 

average number of glomeruli in OBs from the “young” group was 6960 ± 2365 (n=2), 

while in the “elderly” group it was 5012 ± 785 (n=5) (B).  When grouped by gender, the 

mean number of glomeruli in OBs from female donors was 6047 ± 1643 (n=3), and from 

male donors, 5210 ± 981 (n=4), which was also not significant (p=0.66) (C).  Finally, 

there was no correlation between glomerular number and average glomerular size 

(p=0.71) (D), or between glomerular number and OB volume (p=0.31) (E).  Linear 

regression tests were performed to look for significance in A, D, E.  Unpaired t-tests were 

performed for the two-group comparisons in B, C.  There were no significant differences 

in variance for either of these comparisons. 
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Figure 11: 
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DISCUSSION 

 

The organization of the human OB is preserved, but is less precise than in rodents. 

 Previous work to describe the human OB histologically was largely undertaken 

before the availability of our current molecular reagents or insights into the molecular 

organization of the olfactory bulb.  Early immunohistochemical analyses were able to 

define the presence of synapses and several classes of PG cells, such as those examined 

here, within the human OB (81-86), but at the time there was very little understanding of 

the intricate neuronal circuits involved in the OB.  In fact, most of these studies were 

performed before the odorant receptor had even been identified by Buck and Axel in 

1991 (8), the discovery that pioneered the understanding of molecular specificity and 

glomerular odor maps.   

Much of the recent work done with the human OB tissue is related to clinical 

interests in how different diseases, especially neurodegenerative diseases, manifest in the 

OB.  These studies, summarized below, provide little insight into the actual organization 

of the human OB that is relevant for understanding how it compares to that of the rodent 

models in which the principles of odor processing were first discovered.  Therefore, this 

current work, while by no means comprehensive, is novel in providing an initial look at 

the organization of the human OB with regard to these important principles. 

The qualitative evaluation of the human OB presented here evaluates several 

components of OB organization, including the preservation of laminar layers, the 

presence and distribution of new OSN axons, the compartmentalization of glomeruli, the 

organization and molecular identity of PG cells in the GL, and finally the distribution of 
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glomeruli around the OB.  Because so much that is now understood about odor 

processing in rodents has a defined anatomical basis, such anatomical studies of the 

human OB can provide insight into similarities and differences between odor processing 

in these two species.  Based on these analyses, there are several lines of evidence that 

support the preservation of OB organization in humans, while several others highlight 

potential differences between the two. 

Definitive evidence is presented here that, as in rodents, OSNs are regenerated 

throughout the entire adult life of humans, and that these new axons integrate into 

established glomeruli in a manner typical to what is seen in rodents.  This dynamic nature 

of the sensory input requires the coordination of factors related to axon growth, guidance, 

and integration within synaptic networks in order to maintain the complex organization 

within the OB.  Any failures in these processes that detract from OB organization may 

have functional consequences in the efficiency and accuracy of odor processing.  While 

not evaluated here, there is preliminary evidence that in humans, as in rodents, new PG 

cells and granule cells are also regenerated (87).  If true, this would add additional 

complexity to the dynamic nature of the organization of the human OB. 

Olfactory function is known to decline steadily after the age of 40 (88), with a 

prevalence of olfactory dysfunction in elderly people as high as 70% (89).  This occurs 

despite the ability to regenerate OSNs.  Therefore, a potential explanation for this age 

related decline in olfactory function is in fact an accumulation of organizational errors 

due to inaccuracies in axon targeting and synaptic integration of these newly generated 

neurons over time.  Due to the complicated integration of sensory information between 

cells from all layers including PG cells in the GL, mitral and tufted cells, and granule 
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cells from the GCL, such errors might have organizational consequences throughout the 

entire OB.  In possible support of this hypothesis, there appeared to be qualitative 

differences between the OBs from younger donors compared to older donors, with older 

donors demonstrating strikingly less clear laminations in the OB structures.  Contributing 

to this apparent decline in the clear demarcations between cell types and synapses is the 

presence of glomerular structures that extend beyond the GL into the EPL, observations 

that were also noted indirectly by several groups of clinician investigators (90, 91).   

Therefore, while laminar organization is a concept that is preserved in the human OB, 

because it is such a dynamic structure, perhaps over the long duration of the lifetime of a 

human inaccuracies accumulate that have anatomic and functional consequences. 

At the level of the glomerulus, there were several observations in this study that 

suggest that the local synaptic regulation of incoming sensory signals is preserved in 

humans.  The PG cells have molecularly defined identities that are similar to that 

described in rodents with similar distributions surrounding the glomeruli.  Additionally, 

glomeruli have segregated axonal and dendritic compartments that represent, 

respectively, the axodendritic synapses between OSNs and mitral/tufted cells, and 

dendrodendritic synapses involved in local PG cell circuits.  Despite these important and 

revealing similarities, there are general organizational differences in the GL between the 

two species that bear discussion.  While the GL in mice is composed entirely of glomeruli 

with surrounding PG cell densities, as seen in this study, the GL in human OBs contains 

clusters of glomeruli without the surrounding PG cell densities that are seen in mice, as 

well as areas of PG cells that have no glomeruli.   
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The clusters of glomeruli with a relative paucity of surrounding PG cells may be 

another example of changes in the structural organization of the human OB that may have 

functional consequences and contribute to the evidence that humans have a weaker sense 

of smell.  PG cells play an important role in local feedback circuits in the GL that may 

serve to increase the sensory signal as well as potentially inhibit signals from areas of 

input represent similar but different odors.  Therefore, efficiency at this level may be 

reflected in low odor detection thresholds as well as the ability to discriminate between 

different odors.  Accordingly, having low as well as variable ratios of PG cells to 

glomeruli, it can be seen that there may be functional consequences in these measures of 

olfaction. 

However, perhaps glomeruli do not necessarily need to be abutting the PG cells 

with which they form synapses.  There are many areas dense in PG cells without 

proximal glomeruli.  PG cells are able to extend long processes, as seen in the TH, 

calretinin, and GAD65/67 staining presented in this study.  Therefore, even without the 

physical proximity it is possible that these PG cells are involved in local circuits from a 

greater distance, and the density of PG cells seen surrounding glomeruli in mice is simply 

to maximize the efficiency of a limited GL space, rather than because it has any 

functional necessity.  However, an argument against this hypothesis is that very few of 

the many PG cells that were not directly surrounding glomeruli in the human OB were 

actually labeled with any of the PG marker probes, which are also indications of 

functionality.  In mice, over 80% of PG cells are labeled with any one or more of these 

probes (70).  Perhaps PG cells in the human are participatory but preferentially belong to 

a category of cells not identified by these markers.  Or contrary, these are non-functional 
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cells that are either remnants of earlier synaptic circuits that no longer exist, or else they 

could be newer generated PG cells that never found a target synaptic circuit in which to 

integrate.  While the role of these cells is unclear, they are potentially another source of 

evidence of deviation from the organization of the OB as defined in rodents.   

  

Large numbers of glomeruli in the human OB suggest a difference in the way that 

OSN axons find their glomerular targets as compared to rodents. 

One of the most important principles of odor processing in the OB that has been 

well established in rodents is the idea of molecular specificity; that OSN axons entering 

the OB form homotypic axon bundles within the ONL with other axons from OSNs 

expressing identical ORs before penetrating into the OB into their target glomerulus.  

This is a fundamental principal that identifies glomeruli as functional units and allows for 

efficient modulation of sensory input at this very first level of odor processing.  However, 

this molecular specificity has not yet been confirmed in the human OB.  One simple way 

to begin to address this is to see whether the numerical relationship between ORs and 

glomeruli that the principle of molecular specificity establishes is maintained in humans.   

 Based on rodent models, it was predicted that the human OB would contain ~700 

glomeruli, twice the ~350 OR genes that have been predicted based on genomic mining 

studies.  However, counting the glomeruli from seven OBs demonstrated the actual 

number of glomeruli to range from 2975 to 9325, with an average of 5569.  By defining 

glomeruli by co-localization with NCAM and VGlut2, a synaptic marker that is specific 

to glomeruli, this study was able to more rigorously delineate glomeruli for counting and 

measuring than a previous study done by Meisami et al. that attempted to look at numbers 
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of glomeruli in the human OB (80).  This group looked at Nissl staining, and therefore 

relied on the PG cells to outline glomeruli.  As demonstrated here, PG cells are rarely 

arranged in circumferential densities around regularly sized and shaped glomeruli, which 

are often clustered together.  While the Meisami group found about 8000 glomeruli in 

young people, which falls within the range identified in this study, they also found a 

linear decline in glomeruli with age, with only about 2000 glomeruli in the oldest group.  

While we did not see any clear indication that there was a correlation between age and 

number of glomeruli, we did see qualitative differences between the OBs from older 

donors compared to younger donors, with more poorly defined laminar layers and larger 

variability in the shapes and distributions of glomeruli.  Therefore, the fewer number of 

glomeruli counted by Meisami et al. in this older group is likely a consequence of the 

decreased organization in the GL, making identification of glomeruli based on PG cells 

even more difficult. 

 Using a synaptic marker that is specific to glomeruli, VGlut2, is an unequivocal 

method of identification.  However, there were still many difficulties encountered during 

the counting process.  As can be seen from the images of the human (Figure 8), glomeruli 

are clustered together, often overlapping within one 50 µm slice.  This difficulty was 

made particularly complicated by the fact that glomeruli in human often have atypical 

shapes, unlike the almost universal spherical shape seen in rodents.  Therefore, with 

overlapping glomeruli with unusual shapes, it was often hard to define exact borders or to 

distinguish closely approximated glomeruli from one another.  In addition, the 

compartmentalization within glomeruli established earlier (Figure 5) is also seen with 

VGlut2 staining, and was sometimes very prominent.  This made distinguishing 
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prominent compartmentalizations within a single glomerulus from multiple smaller 

clustered glomeruli more difficult.  Finally, using the Abercrombie extrapolation might 

have also introduced some small error into the final calculation.  This formula corrects 

for the idea that three-dimensional objects are often split between slices and would 

therefore be double-counted.  The calculation makes the assumption that the objects 

counted are spherical, which is demonstrated here to not be the case.  However, despite 

the variability amongst individual glomeruli that was encountered, the two dimensional 

diameter measurements did average out to very close to a circle in every OB.  Lastly, 

glomeruli were only counted in a total of seven human olfactory bulbs.  This is a very 

small n, and it is likely that the final numbers of glomeruli are not perfectly representative 

of the population; despite this, the entire range varies significantly from the predicted 

value, making it extremely unlikely for the principles of axon convergence and OB 

organization that have been defined in rodents to be identical in humans. 

Despite these minor difficulties, this was an extremely rigorous evaluation of the 

number of glomeruli with truly unexpected results.  Why are there so many glomeruli in 

the human?  Does this deviation in organization also imply that there has been a loss of 

molecular specificity within the human OB?  Not necessarily.  Perhaps in humans the 

anatomically based definition of a glomerulus is different, and there has been a 

fragmentation of the prototypical spherical glomeruli into smaller units.  The average 

glomerular size in humans is ~60 µm, smaller than the 85-100 µm in mice, despite having 

a larger OB.  Perhaps as the size of the glomerulus becomes larger with accumulating 

axonal inputs, there is a decrease in efficiency of regulation with the surrounding 

periglomerular cells, resulting in a fragmentation of the glomerulus into smaller units.  
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The occurrence of sometimes discrete clusters of glomeruli in humans is something that 

is not seen in rodents, where the glomeruli are almost linearly arranged around the OB.  

So perhaps what is a discrete sphere in a mouse, is, in humans, a cluster of glomerular 

units representing a single OR.  In this way, not only would there be preservation of 

homotypic convergence, but there could still be the numerically retained relationship 

between ORs and glomerular target areas, if there were about 700 of these clusters in the 

OB.  However, even if this were the case, the high variability in circumferential 

glomerular localization (Figure 9) makes the idea of odor maps that are conserved 

between individuals extremely unlikely. 

Another hypothesis addressing these high glomerular counts in which molecular 

specificity and organization is maintained is related to the potential emergence of 

frequent polymorphisms within human olfactory receptor genes.  Linardopoulou et al. 

(92) identified up to 5 amino acid differences in copies of the same OR gene from 

different individuals.  Therefore, because of the unique property of OR gene expression 

in which only one allele is expressed in any given OSN, polymorphisms in one allele of a 

certain OR would lead to two distinct cell populations within the group of OSNs that 

express that OR.  It has been additionally discovered that even small changes to the 

amino acid sequence of an OR can affect the targeting of axons to their glomerulus (93).  

Taken together, this evidence indicates that there may be distinct glomeruli representing 

two different versions of a single OR gene.  While the presence of polymorphisms alone 

is unlikely to account for the large numbers of glomeruli seen in human OBs if all other 

principles of axon targeting are upheld, this presents an interesting point that certainly 
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adds complexity to the human olfactory system and would indeed account for larger 

numbers of glomeruli than predicted.     

 Another potential explanation for the large number of glomeruli is that instead of 

each OSN axon that expresses any given OR targeting one of two possible glomeruli in 

the OB, there are many more potential glomerular targets.  In this hypothesis, while there 

is maintenance of molecular specificity in which all axons converging on a single 

glomerulus express the same OR, there is a loss in the organizational efficiency seen in 

rodent OBs.  For 350 human ORs, with about 5500 glomeruli, that would mean that there 

would be an average of 16 potential glomerular targets per OR.  Part of the elegance of 

the rodent model is that having only two glomeruli per OR efficiently organizes olfactory 

input in the central nervous system immediately at the first stage of processing.  

Therefore, by having so many glomeruli per OB, it can be perceived as a loss in 

efficiency at this level.  As glomeruli are considered functional units in the process of 

integrating sensory input, such a dispersion of input units would require compensation 

through more complex local organization in the PG cells and granule cells, or at higher 

levels in the cortex.  If this compensation does not occur in this model, it is possible that 

such a loss in OB odor map organization may play a role in the human’s relatively poor 

olfactory sense.   

 The final potential explanation for such a large number of glomeruli in the human 

OB is that odor processing through evolution has diverged so much from rodents that 

there is no longer molecular specificity to glomerular targets; axons entering any given 

glomerulus are no longer from OSNs that express the same OR.  With mixed input, all 

hypotheses about glomeruli acting as functional units, while still likely in rodents, would 
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no longer be possible in humans.  For example it would be impossible for a glomerulus to 

enhance the signal-to-noise ratio if the input it was receiving was not homogeneous.  In 

this case it would certainly be necessary for sensory integration and odor processing to 

take place at higher centers, and it certainly implies a loss in efficiency, which would also 

explain humans’ decreased capacity for odor detection and discrimination. 

So which of these explanations is correct?  Immunohistochemical staining with 

antibodies to specific ORs would in fact discriminate between many of these hypotheses.  

As part of this study individual mOR antibodies were used to attempt to answer this 

question, however the staining was not successful in that it did not identify any glomeruli 

in the OB.  It is likely that the antibodies, which are specific to mouse OBs, were not 

specific enough to recognize the human OR proteins, or else the staining was localized in 

glomeruli that weren’t represented on any of the slices examined.  If a specific OR 

antibody was developed that successfully stained glomeruli, the results would be 

extremely informative.   Large clusters of fluorescent glomeruli would indicate the 

fragmentation of glomerular spheres into smaller units.  Many glomeruli stained 

throughout the bulb would indicate that there are more than two potential glomerular 

targets per OR.  Finally, staining of only a part of a glomerulus would indicate a loss of 

molecularly specific glomerular input. 

 

High variability in the number of glomeruli indicates that there are many factors 

that can affect the organization of the OB. 

 In addition to the high number of glomeruli counted in each OB, another mystery 

is the extreme variability in the number of glomeruli between different specimens, 



 

 

71

ranging from 2975 to 9325.  This is not seen in rodents, in which there is a stereotypical 

odor map including consistent numbers of glomeruli with specific localizations within the 

OB. What potential factors could be influencing the number of glomeruli?  Glomeruli are 

composed of synaptic units between OSNs and PG cells, both of which are regenerated 

throughout life, as well as projection neurons, the mitral and tufted cells, which are stable 

and not regenerated.  The sensory input comes in through the OSNs, without which the 

glomeruli would not exist.  Therefore, any significant loss of OSNs might disrupt the 

synapses and result in a loss of glomeruli.    

OSNs have their cell bodies in the olfactory epithelium (OE) in the back of the 

nose.  This location in the nose is efficient for detecting odors, however for the same 

reason it is a sensitive area of tissue that is environmentally exposed to many pathogens 

and toxins that are inhaled with the odorants.  While most people experience temporary 

olfactory dysfunction with minor upper respiratory infections, this is mostly due to the 

congestion in the nasal passages that is obstructive to sniffing, and normal olfactory 

function returns as soon as nasal congestion clears.  However, people with more 

significant sinus infections do experience post-infectious parosmia (94), likely related to 

a disruption OSN integrity and normal OSN replication.  In addition, patients who 

undergo chemotherapy or radiation therapy to the head or neck region also commonly 

experience parosmia, also likely due to the disruption of OSN replication.  It is even 

possible in these cases that replication of PG cell precursors is affected as well, which 

might affect central processing of smell, adding another source of disturbance to 

olfactory processing in these patients.   
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Based on these lines of clinical evidence, it is appears that disruption of OSNs 

leads to symptomatic variation in olfaction, however there is limited anatomical evidence 

of how these changes are manifest in the human OB.  There is MRI imaging evidence 

that patients with post-traumatic and post-infectious olfactory dysfunction have smaller 

OB volumes (79, 94) than controls.  While there was no significant relationship between 

OB size and number of glomeruli our study, this was one of the relationships in which 

there was a positive trend, suggesting that with larger power to the study this relationship 

may become significant.  At the molecular and cellular level, a single previous study 

attempted to look at the affect of cancer treatment, including chemotherapy and radiation 

therapy of the head and neck, on OSN regeneration and number of glomeruli in the 

human OB (95) in post-mortem donors.   They noticed qualitatively less regeneration 

based on GAP43 staining compared with controls, but did not note differences in 

glomerular numbers.   However, this evaluation of glomeruli was also qualitative, based 

on a rating scale, using cellular staining to identify the gloerular structures.  As 

demonstrated earlier, qualitative evaluations of glomeruli, especially when based on PG 

cell distribution, are unreliable predictors of actual glomerular quantifications.    

Interestingly, the donor with the fewest number of glomeruli in our study was a 

patient who had acute myelogenous leukemia who had undergone chemotherapy.  From 

the limited medical history that was available, it is unclear at what time point relative to 

death he underwent this regimen.  It is also unclear whether he had symptomatic 

olfactory dysfunction.  None of the donors had reported olfactory dysfunction, however 

several studies documented that olfactory function is rarely addressed in medical practice, 
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and in fact most patients with olfactory dysfunction are unaware of their condition (89, 

96).    

So what potential variations could be playing a role in the differences between 

glomerular numbers for the other OBs evaluated in this study?  Based on the small 

number of OB specimens counted, there was no statistical significance between the 

numbers of glomeruli and gender of the donor, nor was there a correlation between 

number of glomeruli and age; however age was one of the comparisons that demonstrated 

a trend that could potentially be significant with greater power to the study.  It does make 

logical sense that the olfactory system of an elderly person would be more likely to have 

accumulated a lifetime of infectious and toxic exposures.  Age, therefore, can be seen as 

an indirect measure of these variables, which have been described earlier to likely play a 

role in OSN integrity and regeneration, and possibly affect the number of glomeruli in the 

OB.  None of the available medical history for the OB donors provided meaningful 

information regarding potential sources of OSN dysfunction that could lead to changes in 

the numbers of glomeruli through this predicted mechanism.  However, it is likely that 

potentially relevant aspects of these patients’ clinical histories were either unrecognized 

or unreported, so their absence certainly does not oppose this explanation.  The best way 

to explore this idea further would be to select OBs for evaluation from post-mortem 

donors who had documented olfactory dysfunction due to trauma, infection, or chemical 

exposures, as well as the OBs from normal controls with actual documentation of normal 

olfactory function, and to compare these groups with relation to glomerular number and 

overall OB organization. 
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Finally, as an attempt to study “normal” human OB architecture, only OBs that 

were from donors without neurodegenerative disorders were evaluated to prevent 

obscuring of the normal and cellular and synaptic organization.  There are documented 

changes in OB architecture from patients with neurodegenerative disease, and in fact 

most of the current studies of OB organization are currently focused around clinical 

interests in these diseases, including most prominently Alzheimer’s disease (AD) and 

Parkinson’s disease (PD).   In both AD and more prominently in PD, olfactory 

dysfunction is one of the earliest symptoms (97-100), and some have even proposed to 

use olfactory testing to screen for these diseases in susceptible patient groups before 

symptomatic onset (101).  In AD, neurofibrillary tangles and senile plaques are found in 

100% of the OBs of patients during post-mortem analysis (91), while in PD Lewy bodies 

are also found in 100% of patients OBs (102).  An interesting correlation would be to 

evaluate the OBs from donors with known AD and PD to see how the architectural 

changes affiliated with these diseases processes affect measures of olfactory processing 

evaluated in this study.        

  

So is there histologic evidence to explain a relatively inferior olfactory system? 

There are several measures used to describe the acuity of the olfactory system.  

One is odor threshold, or detection, another is odor identification, and the third is odor 

discrimination.  Based on genomic mining studies, it is already known that humans have 

only about one-third the number of OR genes as compared to mice.  With fewer ORs, it is 

likely that humans are not able to recognize as many molecular odorants as mice and 
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other mammalian species, decreasing our ability to identify odors.  In addition, weaker 

odorant binding to the ORs that are expressed, as well as binding of individual odorants 

to fewer numbers of ORs, could result both in higher odor thresholds as well as poorer 

odor discrimination.  Therefore, simply looking at the genetics, humans already have a 

basis for olfactory inferiority in all measures. 

Within the central nervous system, odor identification occurs in the olfactory 

cortex; however in order to correctly identify an odor, the sensory information must be 

properly integrated within the OB before entering the LOT.  In addition, both odor 

threshold and odor discrimination are dependent upon local circuits within the OB.  All 

of these processes require coordination of input from the central nervous system, sensory 

input from OSNs, as well as local circuit feedback and regulation through the PG cells 

and granule cells.  Therefore, disruption of the cellular and synaptic organization in the 

OB would also detract from the human’s ability to detect, discriminate, and identify 

odors.  While this study was able to confirm many principles of local odor processing in 

the OB, it identified several differences between humans and rodents at this level that 

may in fact support the idea that central processing is in fact less efficient, differences 

therefore that might begin to explain our poor sense of olfaction.  Most importantly, 

through simple quantification of glomeruli, this study raises interesting and essential 

questions related to one of these most fundamental concepts of organization in the OB, 

the idea of homotypic axon convergence and molecular specificity in glomeruli.  In 

conclusion, this study is only a brief and initial step in analyzing the organization of the 

human OB, however several simple further experiments are proposed that may be able to 
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answer some of these important questions. 
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