
Yale University
EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Medicine Thesis Digital Library School of Medicine

11-15-2006

Cellular Oxidative Efficiency: A New Approach to
Calculating Theoretical P/O Ratios
Douglas Walled

Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl

This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital
Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

Recommended Citation
Walled, Douglas, "Cellular Oxidative Efficiency: A New Approach to Calculating Theoretical P/O Ratios" (2006). Yale Medicine Thesis
Digital Library. 302.
http://elischolar.library.yale.edu/ymtdl/302

http://elischolar.library.yale.edu?utm_source=elischolar.library.yale.edu%2Fymtdl%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/yale_med?utm_source=elischolar.library.yale.edu%2Fymtdl%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl/302?utm_source=elischolar.library.yale.edu%2Fymtdl%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

Cellular Oxidative Efficiency:
A New Approach to Calculating Theoretical P/O Ratios

Douglas Walled

Yale University School of Medicine

2006

Cellular Oxidative Efficiency: A New Approach to Calculating Theoretical P/O Ratios

A Thesis Submitted to the
Yale University School of Medicine

in Partial Fulfillment of the Requirements for the
Degree of Doctor of Medicine

by

Douglas Walled

2006

 2

CELLULAR OXIDATIVE EFFICIENCY: A NEW APPROACH TO CALCULATING

THEORETICAL P/O RATIOS. Douglas G. Walled (Sponsored by Paul K. Maciejewski)

Magnetic Resonance Research Center, Department of Psychiatry, Yale University, School of

Medicine, New Haven, CT.

 For decades the oxidative efficiency of cellular metabolism has been under

investigation. After numerous reports of varied stoichiometric measurements, consensus in

the literature has begun moving toward two currently accepted theoretical P/O ratios (the

number of adenosine triphosphate (ATP) molecules formed for every oxygen atom

consumed): 2.5 for NADH-linked substrates and 1.5 for FADH2-linked substrates. It is

shown here, however, that the currently accepted theoretical values are inappropriately

calculated underestimates, and that P/O ratios of real biochemical systems are variable.

 The complete oxidative metabolism of glucose, beta-hydroxybutyrate, malate, pyruvate,

and succinate, utilizing three different electron shuttles (or exclusive mitochondrial

metabolism) and two different values of the H+/ATP ratio (4 and 13/3) is examined using a

new method of analysis. Calculations are made within the rigid mathematical framework of

linear algebra, relying on the Law of Conservation of Matter as a first principle.

 Calculated P/O values from systems modeled after cell-free mitochondrial extracts

ranged from 2.711 to 3.183, or 3.000 to 3.500 depending on H+/ATP ratios of 13/3 or 4/1,

respectively. These estimates are within the range of measured values (1.07 - 3.73) but are

higher than the commonly accepted theoretical values of ~2.5 and ~1.5 for NADH and

FADH2-linked substrates, respectively. A new view of the P/O ratio as variable, based on

 3

specific details of molecular physiology, is offered as a potentially useful means for

understanding variation in measured values of the P/O ratio reported in the literature.

Acknowledgements

Thanks to the Department of Student Research at Yale University School of Medicine for

providing financial support.

Thanks to Paul K. Maciejewski of the Department of Psychiatry at Yale School of Medicine

for the guidance and education that made this research possible.

 4

TABLE OF CONTENTS

Abstract ………………………………. 2

Acknowledgements ……………………. 3

Introduction ………………………………. 5

Purpose ………………………………17

Methods ………………………………18

Results ………………………………26

Discussion ………………………………30

References ………………………………43

Tables ………………………………47

Figures ………………………………50

Appendix 1 ………………………………59

Appendix 2 ………………………………63

 5

Introduction

 For decades the stoichiometry of cellular oxidative phosphorylation has been under

investigation as a means of measuring metabolic efficiency. Since the realization that

phosphorylation reactions were coupled with the oxidation of organic compounds in the

earlier part of last century (1, 2) biochemists have made countless attempts to quantify the

stoichiometric ratio for this process. The characteristic measure originally implemented and

now entrenched by tradition is the P/O ratio: the number of adenosine triphosphate (ATP)

molecules formed for every oxygen atom consumed. Recent literature and textbooks suggest

that there are two set mechanistic values of the P/O ratio (to be described shortly), and that

the process of theoretically deriving these ratios is well understood and supported by

experimental measurements. It will be shown, however, that the currently accepted

theoretical values are inappropriately calculated underestimates. In addition, the P/O ratio of

real biochemical systems should be considered variable, instead of being forced into one of

two mechanistic values. The potential ratios span an essentially continuous range depending

on a number of factors, and the true calculation of theoretical P/O ratios is more complex

than has been considered to date. After describing the historical issues of measuring and

calculating the P/O ratio, a new methodology will be outlined and applied. This method will

supply more reliable estimates of theoretical P/O ratios for several substrates, and offer

insight into conflicting measurements seen in the literature.

 6

Measuring P/O, An Historic Problem

 The P/O ratio (using pyruvate as a substrate) was initially measured by Kalckar and

Belitzer to have a value of 2 (1,3), and shortly re-determined with confidence to be 3 in the

oft cited work by Ochoa in 1943 (4). It was thought that this single value represented the

efficiency of aerobic respiration. By extension, considering the chemical equation for the

complete oxidation of glucose should give the theoretical ATP yield for metabolizing that

substrate.

1 C6H12O6 + 6 O2 6 CO2 + 6 H2O

If 12 atoms of oxygen (from 6 molecules of O2) are consumed by machinery that produces

three high energy phosphate bonds per oxygen atom consumed (P/O = 3), then 36 molecules

of ATP must be produced when glucose is fully oxidized. This first suggestion still survives

as dogma in some biochemistry textbooks today (5). Predicting ATP yields will be

considered later in the discussion section, however the rest of the Introduction will focus

specifically on the problem of the P/O ratio.

 Conflict over the value of the P/O ratio has existed since its inception. Dissenters such

as Lehninger and Bartley sided with Kalckar and Belitzer, reporting values closer to 2, and

criticizing Ochoa’s value of 3 (which was reported as a corrected value in his original

 7

publication) as having been “arrived at by making corrections of questionable validity for

dephosphorylation." (6, 7) Still others backed Ochoa, tauting values of 3 (8). Although no set

P/O ratio was officially settled upon in the 40s and 50s, people did agree that the mechanistic

ratio must be an integer (most reported measurements were not integers, but were rounded as

a result of error correction in the discussion).

The Chemiosmotic Hypothesis, a paradigm shift

 The introduction of the chemiosmotic hypothesis (9) removed the restriction that the

P/O ratio must be an integer. Chemiosmotic Theory describes oxidative metabolism as two

independent but linked processes. The first process is the translocation of protons from the

mitochondrial matrix to the cytosol, coupled to the oxioreductive reactions of the electron

transport chain (ETC). The second process is the opposite—translocation of protons from the

cytosol to the matrix, coupled to the phosphorylation reaction that makes ATP (10). Reduced

electron carriers produced in earlier steps of energy metabolism (such as NADH and FADH2)

funnel their electrons into molecular Oxygen (O2) through the massive protein complexes of

the ETC. As these electrons flow in a steady state system, protons moving into the matrix,

driving the ATPase to phosphorylate ATP, balance the protons moving out through the ETC

complexes. These complimentary processes result in the maintenance of a constant

chemiosmotic gradient. Since these processes are linked through the common medium of

protons, it is not necessary that there be a whole number ratio between ATP produced, and

oxygen consumed. Instead, exactly balancing proton translocations to maintain a steady state

determines the ratio.

 8

P/O Measures Continue to No Avail

 After the introduction of the chemiosmotic hypothesis, numerous P/O ratios were

experimentally determined using many different methodologies and several different

substrates. Though the system studied was almost always a cell-free mitochondrial extract,

the organ and species from which the native tissues were harvested varied. Experiments were

carried out in a wide variety of prepared media containing (most commonly) one of the

following five substrates: glucose, β-hydroxybutyrate, malate, pyruvate, and succinate.

 Reported P/O ratios from the literature have appeared in various forms: as ranges,

means with standard deviations, or even single values with no mention of error (especially in

earlier reports). Since these inconsistent measures cannot be meaningfully compared with

statistics, they are reviewed here as ranges from the lowest to the highest possible measure

reported within a publication (see Table 1). Over the last sixty years, biochemists have

reported P/O ratios for five substrates spanning from 1.07 to 2.2 for succinate and 1.86 to

3.73 for the other four common substrates (see Figure 1). Since the succinate to fumarate

oxidation step produces an FADH2 and bypasses the first part of the ETC, many have tried to

consider P/O ratios associated with it to be distinct from other substrates that produce mostly

NADH in their oxidation. In order to force this result, studies measuring the P/O ratio of

succinate oxidation generally include an inhibitor that blocks complex I of the ETC, often

lowering the measured P/O ratio (first demonstrated experimentally by Greengard et al,

1959). The ETC, FADH2-linked, and NADH-linked substrates will be discussed in detail

shortly.

 9

 The variability of measured P/O ratios, reflecting disagreement in the literature, led to

many analyses and reviews accounting for how others had miscalculated, over or under

corrected, or simply mismeasured the P/O ratio. Researchers began striving to simplify the

wealth of findings. Currently, many biochemists believe that the issue is practically settled,

and that definitive P/O values exist. The trend is to correct the numerous measurements

toward a P/O ratio of 1.5 for succinate- or FADH2-linked substrates, and 2.5 for NADH-

linked substrates (11, 12, 13), values that appear in current textbooks (14, 15). Some

contemporary studies have continued to question these values however, claiming that 1.5 and

2.5 are underestimates (16, 17, 18), an opinion shared by the author to be justified herein.

Calculating the P/O Ratio, A New Hope

 By 1980 the state of disagreement between P/O measurements drove biochemists to

begin investigating a means to calculate the P/O ratio. Some groups attempted sophisticated

methods of calculating P/O ratios utilizing non-equilibrium thermodynamics (19, 20, 21, 22).

However, these calculations rely on measured values of concentrations of metabolic

intermediates. Due to the reliance upon measured values, they are not purely theoretical, and

are subject to the same experimental errors measured P/O ratios have suffered in the past.

 The more commonly accepted way to calculate a theoretic P/O ratio is a simple

arithmetic combination of two other ratios given by the chemiosmotic theory. These are the

H+/2e- ratio (also called H+/O ratio because one atom of oxygen accepts two electrons as the

final reaction of the ETC) and the H+/ATP ratio. These ratios, their values, and how they are

combined to calculate currently accepted P/O ratios are described below.

 10

The H+/2e- Ratio

 The H+/2e- ratio is the number of protons translocated by an ETC complex per two

electrons passing through its oxioreductive center. The ETC contains four complexes (I-

NADH/Q reductase, II-Succinate/Q reductase, III-cytochrome reductase, and IV-cytochrome

oxidase). Since only complexes I, III, and IV translocate protons (thus having an H+/2e-

ratio), they are often referred to as site 1, site 2, and site 3 of the ETC, respectively. Earlier

studies demonstrated an H+/2e- ratio of four for at all three sites (23, 24, 25, 26). These

studies did not take into consideration the important distinction between scalar protons and

vector protons, however. A scalar proton is one that is produced or consumed in the cytosol

or matrix without being consumed or produced, respectively, in the opposite compartment. A

vector proton (i.e. one that is transported) is consumed in one compartment and produced in

the other with a 1:1 ratio.

 Other studies used the notion of scalar and vector protons to give a more precise

indication of H+/2e- ratios at individual ETC complexes. For example, even though Villalobo

demonstrated that four protons appear in the cytosol as two electrons flow through site 2

(25), this does not mean that site 2 pumps four protons. In fact, it is now widely accepted that

site 2 pumps two protons vectorily, and 2 scalar protons appear in the cytosol when two

electrons flow through it (27). Similarly, Antonini et. al. have clearly shown that when two

electrons flow through site 3, two scalar protons disappear from the matrix and two protons

are vectorily pumped to the cytosol (28), which agreed with previous work by Thelen et al.

(29). Site 1 is believed to truly pump four protons (30), though a scalar proton does still

 11

disappear from the matrix (30). The exact mechanisms of all reactions within the ETC

complexes (especially proton pumping) are still not completely known, thus currently

accepted H+/2e- ratios are not absolutely certain. However, it is generally accepted as

accurate that site 1 translocates four protons with an additional proton disappearing from the

matrix, site 2 translocates two protons with two additional protons appearing in the cytosol,

and site 3 translocates two protons with additional protons disappearing from the matrix. See

Figure 2a & 2b for a complete summary of the ETC as described.

H+/ATP Ratio

 The maintenance of the electrochemical gradient generated by the electron transport

chain drives ATP formation via the inner mitochondrial membrane-associated ATPase.

Traditionally, the H+/ATP ratio (the number of protons translocated from cytosol to matrix

per ATP produced) is said to have two components: transport and ATP formation. The

transport component is generally accepted as a single proton cotransported into the matrix

with an orthophosphate (HPi
-1, or Pi) in an electroneutral exchange (31). The ATP translocase

swaps a matrix ATP-4 into the cytosol while bringing a cytosolic ADP-3 into the matrix in an

electrogenic exchange (32) that does not contribute to the H+/ATP ratio. The second

component (how many protons must be transported across the ATPase to drive the

production of an ATP) is the subject of some controversy. Mitchell proposed the first value:

two protons translocated into the matrix per ATP produced, including transport (33). Shortly

thereafter, other groups found the ratio to be two not including transport, giving an overall

H+/ATP ratio of three (34, 35). The two vs. three debate waged for some time (reviewed in

 12

36). In 1983, a convincing study demonstrated that the overall H+/ATP ratio should be four

including transport (37), the value used most often in P/O ratio calculations. This implies the

ATPase requires the translocation of three protons to generate one ATP, a value accepted by

many people today. At the time however, some dissenters still insisted on an overall ratio of

three (38), and Vink et. al. argued that the H+/ATP ratio was variable, ranging from 2.15-3.6

(39).

 The discrepancy between measurements, as well as advances in technology and

methodologies of determining the physical structure of the ATPase, have driven biochemists

to a new approach. Many now believe that the H+/ATP does not have to be measured, but

instead is determined by an intrinsic ratio of ATPase subunits. Since the nanomotors

comprising the moving core of the ATPase (namely subunits F0 and F1) are mechanically

coupled, the ratio of their subunits represents the non-transport portion of the H+/ATP ratio

(40, 41). Since the F1 subunit has three binding sites for ADP, one full revolution of the

ATPase core will result in the production of three molecules of ATP. If every F0 subunit c

takes up a cytosolic proton for transport as it rotates, after a full revolution the total number

of protons transported to make three molecules of ATP is equal to the number of c subunits

in F0. Thus, the H+/ATP ratio should be the number of F0 c subunits divided by three ATPs

formed, plus one (for Pi transport). Unfortunately, the number of F0 subunits in mammalian

mitochondria has not been definitively measured to the author’s knowledge. It is well

characterized in several other examples, however (see Table 2). These values lead some to

believe the human F0/F1 ratio should be 10/3 (13), resulting in a total H+/ATP ratio of 13/3

or 4.33 (10/3 H+ plus 1 H+ for Pi transport) instead of 4 (3 H+ plus 1 H+ for Pi) as cited above.

 13

Current P/O Ratio Calculations: an Oversimplification?

 As outlined above, the values for the H+/2e- ratio and the H+/ATP ratio are reasonably

agreed upon. Given these ratios, one can argue that the ATP/O ratio (i.e. the P/O ratio) is the

sum of the H+/2e- ratios of ETC complexes involved in a substrate’s complete oxidation,

divided by the H+/ATP ratio. For example, a landmark review calculated the theoretical P/O

ratio for the oxidation of NADH and FADH2. By extending the calculation, the theoretical

ATP yield for the full oxidation of a single molecule of glucose (reflecting back to Ochoa’s

original work) is then reported (12). This calculation gives a yield of ~30 ATP per glucose,

another value commonly published in textbooks (14, 15). The derivation of the P/O ratio is

presented here in depth, but a closer analysis of the ATP yield is reserved for the discussion

section.

 As mentioned above, a simplification of reviewed H+/2e- ratio literature leads the

authors of (12) to the conclusion that the H+/O ratios for sites 1, 2, and 3 are 4:1, 2:1, and 4:1,

respectively. Also mentioned earlier, the H+/ATP ratio is assumed to be 4. Thus, a

mechanistic P/O ratio can be derived for each site of the ETC by dividing the two values,

thus giving sites 1, 2, and 3 P/O ratios of 1:1, 0.5:1, and 1:1, respectively. Since NADH

donates its electrons first at complex I (which subsequently pass through sites 2 and 3), the

P/O ratio for a substrate that is oxidized to NADH would be 2.5 (1 + 0.5 + 1). On the other

hand, FADH2 donates its electrons at complex II (which then only pass through sites 2 and 3)

giving a P/O ratio of 1.5 (0.5 + 1).

 Though it may sound complicated, the above calculation is merely an arithmetic

combination of several values, and it is grossly oversimplified. A true calculation of a

substrate-specific theoretic P/O ratio should be dependent upon several variables and

 14

considerably more involved. First, it should be noted that most substrates will not yield

strictly one of two P/O ratios (i.e. one for NADH-linked substrates, and another for FADH2-

linked substrates). It should be immediately obvious that substrates are oxidized into a

mixture of both NADH- and FADH2- linked intermediates, thus a substrate-specific P/O

should never be exactly 2.5 or 1.5. Second, there is an issue of electron shuttling. When a

process such as glycolysis produces reduced equivalents (e.g. NADH) in the cytosol, instead

of directly transporting NADH (a huge, charged molecule) into the matrix, various shuttles

(e.g. the glycerophosphate shuttle or the malate/aspartate shuttle) functionally transport the

electrons (each with different costs of transport, and the potential to switch from NADH-

linked to FADH2-linked). These shuttles are reviewed below. Third, the existence of a

chemiosmotic gradient requires compartmentalization and necessitates accounting for energy

consuming transport processes between the cytosol and matrix (which may be different

depending on the substrate and/or its intermediates). Fourth, substrate-level phosphorylation

can alter the P/O ratio in metabolically similar systems. For example, the two molecules of

ATP produced anaerobically in glycolysis mean that glucose will always have a slightly

higher P/O ratio than pyruvate when all other conditions are the same. Fifth, allowing the

constraint of a steady-state system greatly simplifies the calculation and makes the result

more physiologically meaningful (as a respiring mitochondrion in vivo is overall at a steady

state). Finally, at steady state, all catabolic reactions associated with the given substrate must

be known, and all reaction byproducts must be accounted for simultaneously. Molecular

intermediates across all reactions must remain zero. For example, in complete oxidative

glucose metabolism, more than 70 molecules participating in over 50 reactions must exactly

balance to yield the overall equation:

 15

C6H12O6 + 6 O2 6 CO2 + 6 H2O

Devising and assuring such a balance is a cumbersome and complex task, particularly one

that does not lend itself to mental manipulation.

Electron Shuttles, Altering Metabolic Efficiency

 A number of different electron shuttles transport electron equivalents from the cytosol to

the matrix. These shuttles utilize different transports and can ultimately change the ETC

point of entry of a metabolic intermediate. For example, the glycerophosphate (G3P) shuttle

is less efficient because it converts cytosolic NADH equivalents (which enter the ETC at

Complex I) to matrix FADH2 equivalents (which enter the ETC at Complex II, and

ultimately translocate less protons to be used by the ATPase) (42, 43). The malate-aspartate

shuttle (MAS) effectively shuttles NADH equivalents from cytosol to matrix in an

irreversible mechanism (44, 45, 46). An NADH equivalent begotten via the MAS, however,

is worth slightly less energetically because it requires the transport of one proton with the

glutamate/aspartate exchanger See Figure 2a and 2b for mechanistic details.

 As another alternative, there is an NADH dehydrogenase (NADH-DH) situated in the

mitochondrial membrane facing the cytosol that is linked to Complex I of the ETC. This

NADH-DH can directly utilize cytosolic NADH equivalents, but is limited in its distribution.

Specifically, the NADH-DH has only been demonstrated to exist in the heart, and has been

proven to be absent from the liver (47, 48). See figure 2c for mechanistic details. The

utilization of different electron shuttles (of which there may be more than the three

 16

mentioned and examined here), and the proportion in which they are used directly affects the

efficiency of oxidative metabolism, thereby altering the P/O ratio.

Summary of Introduction

 Many have struggled to define a set stoichiometric relationship between the oxygen

consumption and ATP production of energy metabolism for over half of a century, leaving

behind a vastly diverse collection of data, theories, and measured ratios in the literature.

Discrepant measurements have led to the use of widely accepted H+/O and H+/ATP ratios in

order to calculate theoretical P/O ratios. These theoretical values are meant to guide a

selection process of which measured P/O ratios are the most valid. Unfortunately, these

theoretical values have only led to selective criticism of experiments that measured

significantly different values. The calculation of the theoretical values themselves have not

been scrutinized. Given the potential errors and oversimplification of the calculations

outlined above, a more rigorous calculation is required. Such a calculation should be strictly

grounded in an indisputable physical law (here, the Law of Conservation of Matter), fully

account for all reactions and transport processes, and be purely mathematical. The

introduction of (one of several) substrates into a cell-free, respiring mitochondrial system

must result in the complete use of ATP (to maintain steady state) generated by the complete

oxidative metabolism of those substrates. The result of the calculation should describe all

molecular species consumed and produced in the process. Ideally, this will be the balanced

oxidation reaction of the substrate only.

 17

Purpose

 The purpose of this study is to provide accurately computed theoretical P/O ratios for

glucose, beta-hydroxybutyrate, malate, pyruvate, and succinate. Results will be based on the

fundamental values (e.g. H+/2 e- and H+/ATP ratios), and reaction mechanisms of oxidative

metabolism reviewed from the literature above. They will be calculated within the rigid

mathematical framework of linear algebra, relying on the Law of Conservation of Matter as a

first principle. Consideration will be given to costs of transport and utilization of various

electron shuttles in oxidizing the aforementioned substrates within a steady-state system. It is

expected that the P/O ratio will be variable depending on the conditions listed above, and that

predictions made in the literature (e.g. theoretical ATP yield from the complete oxidation of

 18

glucose) may be incorrect or misleading because they are based on an oversimplified means

of calculation.

Methods

 Complex biochemical processes (such as oxidative metabolism) can be represented as a

system of linear equations (individual chemical reactions) in terms of matrices and vectors.

Though the specific analysis outlined here has not been done before, linear algebraic

manipulation of matrices and vectors representing biochemical systems have been described

in the past (49, 50). Observe:

 R · v = b where:
 R is an m X n reaction matrix (rows = molecules, columns = reactions)
 v is a vector of elements {vn | vn is the reaction rate of column n of R}
 b is a vector of elements {bm | bm is the net production of row m of R}

 19

This matrix equation is justified by the Law of Conservation of Matter. Simply put, elemental

pieces of reacting molecules (counts of atomic species and charge) must remain constant

across a reaction or, by extension, an arbitrarily large system of reactions. Thus, when set

equal to a vector of net consumption/production of participating molecules b, the system of

equations represented by R ּ v = b may be solved to determine the relative rates of reactions

given by v (reaction stoichiometry).

 To do this, individual biochemical reactions are first encoded into vectors using

textbooks and primary literature. These vectors are then combined as the columns of a matrix

R to represent the desired system or biochemical process. Using the lower-upper (LU)

decomposition algorithm to assist in matrix factorization, the system of equations

(represented by the equation R ּ v = b) is solved for some given b of overall

production/consumption of molecules in the system. The solution vector v represents the

relative rates of reaction within a steady-state system. Comparing any two elements of v

gives a reaction stoichiometry. When scaled by the coefficients of molecules within balanced

chemical equations, the reaction stoichiometries become molecular stoichiometries (e.g.

converting the ATPase to Complex IV reaction stoichiometry to an ATP production to

Oxygen consumption molecular stoichiometry). A sample calculation is presented here.

Example of Linear Algebraic Calculation

 Individual reactions are encoded as vectors whose elements represent the coefficients of

the balanced reaction. For example, the first step of glycolysis:

 ATP + Glucose Glucose-6-Phosphate + ADP + H+

 20

Would translate as the reaction vector:

 r1 = {-1, -1, 1, 1, 1}, representing the linear equation:

 -ATP4- - Glucose + Glucose-6-Phosphate 2- + ADP3- + H+ = 0

Central to the interpretation of this equation is the mass and charge balance required by the

Law of Conservation of Matter. A negative coefficient represents consumption in a reaction,

and a positive represents production. Close inspection will reveal that the tally of all

individual atoms and charges are all perfectly balanced (hence “= 0”).

 Once these reaction vectors are obtained for an entire system (in this example, the first

five reactions of Glycolysis), they are used to construct a matrix. Arbitrarily many

‘molecules’ (elements) may be added to any reaction vector (as long as the coefficient is 0),

and the reaction will still be balanced. Arranging reaction vectors as columns, the rows of the

matrix correspond to molecules participating in the system of reactions. For example, the

first five reactions of glycolysis:

RG5 = {r1, r2, r3, r4, r5}

RG5 r1 r2 r3 r4 r5
H+ 1 0 1 0 0
ATP -1 0 -1 0 0
ADP 1 0 1 0 0
Glucose -1 0 0 0 0
Glucose-6-Phosphate 1 -1 0 0 0
Fructose-6-Phosphate 0 1 -1 0 0
Fructose-1,6-BisPhosphate 0 0 1 -1 0
Glyceraldehyde-3-Phosphate 0 0 0 1 1
Glycerone-3-Phosphate 0 0 0 1 -1

 21

 The reaction matrix, RG5, when right multiplied by a vector of relative reaction rates (v),

gives an overall production/consumption vector (b) of individual molecules in the system.

Observe:

 v = { vr1, vr2, vr3, vr4, vr5 } And: RG5 · v = b Where:
 b = {b1, b2, b3, b4, b5, b6, b7, b8, b9 } And:
 bi is the net production/consumption of the ith molecule (row) in the matrix above

For example:

 if v = { 1, 1, 1, 1, 1 }, then RG5 · v = b Where:
 b = { 2, -2, 2, -1, 0, 0, 0, 2, 0 }

 This example shows that if (according to v) all reactions in the RG5 system occur in

perfect one-to-one correspondence (1:1 reaction stoichiometry, for all rj : rk), for each glucose

consumed (b4 = -1) with 2 ATP (b2 = -2), there will be 2 protons, 2 ADP, and 2 molecules of

Glyceraldehyde-3-Phosphate produced (b1, b3, and b8, respectively). It also tells us Glucose-

6-Phosphate, Fructose-6-Phosphate, Fructose-1,6-Bisphosphate, and Glycerone-3-Phosphate

are never produced or consumed, regardless of how many cycles of the process occur. In

addition, there is a 2:1 molecular stoichiometry of ATPs produced per glucose molecule

consumed (b2 : b4).

 Often, the relative rates of reaction (v) are unknown, or at least not obvious (as they are

in the limited example above). In this case b may be specified, and using an LU-

decomposition to factor the matrix allows the system (represented by RG5) to be solved for v.

The specifics of LU-decomposition can be obtained from any Linear Algebra text (e.g. 51,

pp. 142-146).

 22

 Real biochemical systems (such as oxidative energy metabolism) are almost always

“over determined.” That is, the matrices that represent them have more rows (molecules)

than columns (reactions). In order to facilitate solution, the system of reactions may be

represented by splitting the original full matrix R into a square matrix and a rectangular

remnant. This introduces some limitations. First, the rows (molecules) included in the square

matrix must represent linearly independent equations (see 51, pp. 65-73 for discussion of

linearity in this context). Second, the expected overall production/consumption for the

molecules included in the square matrix must be known. Third, in order to solve the system,

the square matrix must be non-singular (i.e. invertible: see 51, pp. 118-125 for discussion). If

an appropriate (that is, non-singular) square matrix Rg5sqr and corresponding partial bsqr

vector can be constructed, then v can be determined after using the LU decomposition

algorithm to factor the square reaction sub-matrix. Once v is determined, it can be left-

multiplied by the rectangular remnant to give brmt: the production/consumption of the

remaining molecules. Together, bsqr and brmt represent the entire production/consumption (b)

vector for the original system. Consider the following example:

 Assume it is known that consuming glucose in the first five reactions of Glycolysis

produces Glyceraldehyde-3-Phosphate, but the stoichiometric ratio of production is not

known. Now suppose the relative production and consumption of intermediates are also not

known, except the other phosphate bearing intermediates, which are neither produced nor

consumed overall. Construct the square matrix:

The Square Matrix, Rg5sqr:

Rg5sqr r1 r2 r3 r4 r5
Glucose-6-Phosphate 1 -1 0 0 0

 23

Fructose-6-Phosphate 0 1 -1 0 0
Fructose-1,6-BisPhosphate 0 0 1 -1 0
Glycerone-3-Phosphate 0 0 0 1 -1
Glucose -1 0 0 0 0

And set bsqr = { 0, 0, 0, 0, -2 } to see what is produced/consumed when 2 molecules of

glucose is consumed by the system. The 0’s in bsqr represent no net production of phosphate

bearing intermediates, and the -2 represents the two molecules of glucose consumed.

Now:

 Rg5sqr · v = bsqr = { 0, 0, 0, 0, -2 }

LU decomposition of Rg5sqr subsequently allows for the solution:

 v = { v1, v2, v3, v4, v5 } = { 2, 2, 2, 2, 2 }

Back substituting v into

 Rg5rmt · v = brmt

Where the rectangular “remnant” matrix Rg5rmt is:

Rg5Rmt r1 r2 r3 r4 r5
H+ 1 0 1 0 0
ATP -1 0 -1 0 0
ADP 1 0 1 0 0
Glyceraldehyde-3-Phosphate 0 0 0 1 1

Gives (by simple matrix multiplication): brmt = { 4, -4, 4, 4 } This means 4 ATP are

consumed, and 4 H+, 4 ADP, and 4 molecules of Glyceraldehyde-3-Phosphate are produced.

 In this example, merely knowing which molecules are neither produced nor consumed

at steady state and specifying how much glucose to consume gives all non-trivial reaction

stoichiometries as the solution of the system of reactions represented by the square matrix

Rg5sqr. Molecular stoichiometries can then be derived by left-multiplying v by the rectangular

 24

matrix remnant Rg5rmt. This operation shows how many Glyceraldehyde-3-Phosphate

molecules are produced, how many ATP it costs, and how much ADP and H+ byproduct are

expected. This is a very simple example, and it should be noted that the true power of this

method emerges with large systems (e.g. the complete oxidative metabolism of glucose).

Calculating Molecular Stoichiometries of Oxidative Metabolism

 In order to calculate P/O ratios for oxidative metabolism, glycolysis, pyruvate

dehydration, the citric acid cycle, the ETC, ATPase, several other reactions, and all necessary

transport processes must be encoded as described above. Solution of the system is achieved

with the aid of an interactive computer program developed by the author. The core linear

algebraic manipulations utilize an LU decomposition algorithm freely available from the

National Institute of Standards and Technology (TNT: linear algebra module, NIST). The

complete commented source code is included in Appendix I1.

 The systems studied were designed around several variables: substrate oxidized,

electron shuttle utilized, and the H/ATP ratio. Substrates analyzed include glucose, beta-

hydroxybutyrate, malate, pyruvate, and succinate. The electron shuttles considered are the

glycerophosphate shuttle, the malate-aspartate shuttle, and the NADH-DH complex. The

value of the H+/ATP ratio as a potentially unknown variable is also a consideration.

Calculations were executed using both H+/ATP ratios of 4 (a convincing measured result),

and 13/3 (the suggested subunit ratio of 10/3 plus one H+ for transport). See the Introduction

for the discussion and justification of these values.

 25

 The formulation of the mathematical structures representing the systems examined is as

follows. First, the system is modeled as a fraction of suspended, cell-free mitochondria. This

design is implemented to provide better comparison to values reported in the literature (since

measurements are usually done on cell-free systems). If instead the systems were designed as

whole cells respirating at steady state, another set of channels and carriers allowing for

transport between the cytosol and extracellular space would have to be taken into account.

This would be another degree of freedom affecting the P/O ratio (as most transporters require

energy) that is not represented in the experimentally obtained P/O measurements reviewed in

the Introduction. In addition, all individual reaction stoichiometries and atomic compositions

of all molecules must be explicitly known. For well-established reactions (e.g. the steps of

glycolysis), two textbooks (15, 52) and two websites (www.biocyc.com,

www.reactome.com) were checked for consensus to confirm coefficients of reactions. For

more controversial reactions (e.g. those occurring at the ETC complexes), primary literature

was extensively reviewed to summarize reaction mechanisms. Even after encoding reactions

according to published values of coefficients, every one was checked for conservation of

atomic species. This was achieved by a matrix multiplication

 A · R = N where:

A is an m X n atomic matrix (rows = atomic species, columns = molecules)
R is an m X n reaction matrix (rows = molecules, columns = reactions)
N is an m X n net production matrix (rows = atomic species, columns = reactions)

Assuming all reactions are balanced, the matrix N should be comprised entirely of zeros.

Otherwise implies that one of the encoded reactions is creating or destroying atoms (or

charge). In the event of a non-zero value, the source of the error must be traced back to either

 26

an incorrect atomic encoding of a molecule, or an unbalanced reaction equation. See

Appendix I for a complete list of reactions and/or reaction summaries used in this analysis.

 In solving a system of equations, the square matrix fed to the LU decomposition

contains only rows corresponding to molecules whose relative rates of production and

consumption can be unambiguously specified. Specifically, this is most often the rate at

which the substrate is consumed, which is set to a value of -1, and the rates at which

intermediates that are neither produced nor consumed in a steady state system (e.g. 1,3-

bisphosphoglycerate, cis-aconitate, or cytochromes that are a fixed part of the ETC), which

are set to a value of 0. In the event that a square matrix is still singular, other rows with

specified net molecular production/consumption may be swapped into the square matrix (e.g.

CO2 production in a complete oxidation reaction).

 The output of the program is the vector v containing the relative rates of reaction within

the system. From this vector the number of moles of ATP produced in the complete oxidation

of 1 mol of substrate, and the moles of O2 consumed is readily attained. The P/O ratio is

equivalent to the reaction rate of hydrolysis of cytosolic ATP (representing the total usable

energy produced) divided by twice the rate of the O2 consuming reaction (since the P/O ratio

is traditionally molecules of ATP produced to atoms of Oxygen consumed) at Complex IV of

the ETC.

Results

 27

 Solutions for the complete oxidative metabolism of five substrates, utilizing three

different electron shuttles (or exclusive mitochondrial metabolism in the cases of pyruvate

and succinate which have no cytosolic component) and two different values of the H+/ATP (4

and 13/3) were obtained. A summary of the P/O ratios are listed in Table 3, and depicted

graphically (assuming an H+/ATP ratio of 13/3) in Figure 4.

 The generic mechanisms for the catabolism of all of the examined substrates are shown

in Figures 5a-e. These pathways are derived from the reaction stoichiometries calculated by

solving individual systems of equations for each substrate. There are compartmental

constraints that must be placed on each step in the overall oxidation pathway. Glucose, for

example, always has a cytosolic component of oxidation (see Figure 5a) because glycolytic

machinery does not exist in the matrix. Thus, every time glucose is the substrate being

oxidized, the P/O ratio will be partially dependent on the mechanism of electron shuttling,

and it is impossible to have a value reflecting purely mitochondrial metabolism (note there is

no value under “no shuttle:” for glucose in Table 3). Conversely, some substrates have no

cytosolic component to their metabolism, making their P/O ratios independent of any

electron shuttling mechanism. For example, the pyruvate dehydration complex (the first step

in pyruvate oxidation) only exists in the matrix (see Figure 5b). As a result, pyruvate may

only be metabolized within the mitochondrial matrix. Also, the machinery responsible for the

citric acid cycle only exists inside the mitochondria, forcing succinate to be exclusively

oxidized within the matrix as well (see Figure 5c). Notice that only one P/O ratio can be

calculated (at a given H+/ATP ratio) for pyruvate and succinate, so there are no shuttle-

dependent values listed in Table 3. Finally, some substrates have early steps in their

 28

metabolism that can occur either in the cytosol or in the mitochondrion. Both β-OHbutyrate

and Malate have NADH-producing reactions (catalyzed by β-OHbutyrate dehydrogenase,

and malic enzyme, respectively) that may occur in either compartment. Thus, these two

substrates can give rise to either shuttle-dependent or shuttle–independent values as listed in

Table 3.

 Calculated P/O values range from 2.711 to 3.183 (for an H+/ATP ratio of 13/3), or 3.000

to 3.500 (for an H+/ATP ratio of 4/1) depending on substrate oxidized and shuttle utilized.

Thus, the P/O ratios calculated for the specific combinations of substrate and electron shuttle

shown in Tables 3a & 3b can vary by more than 17%. These estimates are fully contained

within the range of all possible measured values cited in the introduction (1.07 - 3.73) but are

higher than the commonly accepted theoretical values of ~2.5 and ~1.5 for NADH and

FADH2 linked substrates, respectively.

 When separated by substrate, calculated P/O ratios are in the range of, but on average

higher than, measured P/O ratios in the literature with one exception. The mid-range of

measured values of malate was higher than the mid-range for calculated outputs presented

here (but only for an H+/ATP of 13/3, not when calculated with an H+/ATP of 4/1; see Figure

6). The measured P/O ratios for malate generally exceeded the calculated values here because

of additions to the experimental media. In these experiments, malate is often added with

glutamate, a tradition started by Cross et. al. in 1949 (8) that is often continued today (16, 20,

53). Glutamate, though not studied in this analysis (and never metabolized by any of the

systems analyzed), tends to inflate measured P/O ratios as a result of being simultaneously

 29

consumed with a component of substrate level phosphorylation (13). This is similar to the

way that glucose might inflate the P/O ratio of pyruvate if the two were mixed in a media,

compared with pyruvate alone.

 Also, the calculated P/O ratios for oxidation of succinate were much higher than

literature values. The reason for this is the addition of inhibitors to the experimental media in

succinate preparations. As briefly mentioned in the introduction, it was established early on

that measuring the P/O ratio of succinate oxidation “required” the use of a site I inhibitor to

prevent getting values that were “too high” (54). Modern preparations always include

equimolar concentrations of rotenone (a complete Complex I inhibitor) in succinate-rich

media (12, 16, 17, 18, 55).

 When different H+/ATP ratios are used to calculate the P/O ratios of a single substrate

across all electron shuttles, or the P/O ratios of a given electron shuttle across all substrates

studied, the shift is linear. [R2=1 for 9 analyses, including lactate and acetoacetate as

substrates, though they have been excluded from this work as they are not used in

experimental P/O measurement designs in the literature (analyses not shown)] This result is

expected (even trivial) as the underlying mathematical structure is a linear system of

equations, and only changing one variable should yield a linear shift in the P/O ratio. This

has an important implication, however. Relative variations of P/O ratios dependent upon

which substrate is being oxidized, or which electron shuttle is being utilized, is not dependent

on the value of the H+/ATP ratio (for which a definite value is not available in the literature).

That is, even if the absolute values attained with the calculations made here are incorrect

 30

because the H+/ATP ratio is not correct, the conclusion that the P/O ratio is variable by as

much as 17% given the conditions analyzed still stands.

 There is a clear trend dependent upon the electron shuttle implemented. In the complete

oxidative metabolism of any of the substrates examined, P/O values are increasingly higher

when the glycerophosphate, the malate-aspartate, and then the NADH-DH shuttles are used,

respectively. The glycerophosphate shuttle is the least efficient because of its functional

conversion of a cytosolic NADH to a matrix FADH2. Although the other two shuttles convert

cytosolic NADH to matrix NADH, there are efficiency differences because of differences in

transport requirements (2 protons for MAS and 0 for the NADH-DH).

 There is also a clear trend dependent upon the substrate metabolized. P/O values are

increasingly higher when beta-hydroxybutyrate, succinate, pyruvate, malate, or glucose is

metabolized, respectively within each shuttle. In general, the substrate-dependent differences

in P/O ratios result from producing and consuming more electron equivalents (i.e. FADH2

and NADH) as intermediates per oxygen atom consumed by the system. In the case of

glucose, however, the P/O ratio is also bolstered by substrate-level phosphorylation.

 31

Discussion

 Over time, numerous studies in the literature have moved toward embracing two

currently accepted theoretical P/O ratios: 2.5 for NADH-linked substrates and 1.5 for

FADH2-linked substrates (12). This assumes an H+/ATP ratio of 4:1. However, if the

H+/ATP ratio is 13/3, the mechanistic P/O ratios should be 2.3 and 1.4 (13). Calculating a

theoretical P/O ratio serves as a target or check to verify which of the disparate measured P/O

values (often attributed to measurement error) should be recognized as correct. However, it

seems no one has critically examined whether or not the theoretical calculations themselves

are appropriate and correct. Besides, even though it may be possible to calculate a P/O ratio

for a molecule of NADH or a molecule of FADH2 as a substrate, the exact bearing of these

numbers on P/O ratios of oxidizing organic substrates (e.g. succinate as an FADH2–linked

substrate) in a real system is unclear. Nor is it clear whether or not there is one, two, or any

finite number of theoretical P/O values that empirical measurements should reflect. In fact,

Kingsley-Hickman et. al. have suggested that experimentally measured P/O ratios and

theoretically calculated P/O ratios should be considered entirely separately (56).

The Relationship Between Measured and Theoretical P/O Values

 First, it is important to recognize that real measurements of P/O values may never match

theoretical values. Aside from human errors in measurement, several phenomena may

prevent respiratory machinery from functioning at theoretic values in vitro/vivo. Anything

that effectively sinks the electrochemical gradient across the inner mitochondrial membrane

 32

(thus undermining the ability of the ATPase to generate high-energy phosphate bonds) will

reduce the P/O ratio. This process, generally referred to as slip (failure of an ETC complex to

translocate protons despite successfully transferring a pair of electrons through the chain) or

leak (proton movement with the gradient, not associated with an ETC complex) is reviewed

in (57) and more recently in (58). Also, any process unrelated to energy metabolism

occurring simultaneously at the time of measurement may alter the P/O ratio. If such a

reaction requires ATP, NADH, FADH2, or the proton gradient (as many processes required

to maintain steady state and execute cellular functions do) in order to proceed, the observed

P/O ratio will be decreased. If a net amount of protons are either consumed in the cytosol or

produced in the matrix from ongoing reactions (whether related to metabolism or not), a

measured P/O ratio of this system will again be less than the calculated theoretical maximum.

Contrary to these conditions, if a real system is utilizing any anaerobic means of energy

metabolism, the measured P/O ratio will be higher than the theoretical value.

Is the Current Calculation Correct?

 In the well-oxygenated systems studied for P/O measurements, extensive anaerobic

energy production is unlikely. However, the potential inefficiencies mentioned above are

likely to be present. Thus, it follows that calculated P/O ratios should be greater than or equal

to (accurately) measured values. Instead, the opposite is reported in the literature. Modern

measurements of P/O ratios are often higher than the accepted theoretical values of 2.5 (or

2.3) and 1.5 (or 1.4) such as 2.9 and 1.8 (17), 3.1-3.7 (NADH-linked only: 16), 2.7-2.9 and

1.6-1.8 (22). Though the possibility certainly remains that some of these may be over-

measurements (in fact, the range of the Toth study extends past the calculated values of this

analysis), to the author’s knowledge, no modern measurements are significantly lower than

 33

2.5 and 1.5 (and thus 2.3 and 1.4). This direct contradiction calls current methods of

calculation into question, while the method outlined herein is reinforced by producing P/O

ratios that are almost uniformly greater than or equal to currently measured values.

 In fact, on close examination the currently accepted theoretical P/O ratios are not

computed correctly. The existing method of calculation (detailed in the Introduction) is

oversimplified. It ignores transport phenomena, other contributors/sinks to the proton

gradient, and the fact that a naturally respiring system maintains an overall steady state.

 Active transport processes between the cytosol and matrix are important energy

consumers, requiring the use of the electrochemical gradient. This reduces the cell’s potential

to generate ATPs. Some examples include (but are not limited to) the transport of pyruvate

into the matrix, the transport of Pi into the matrix for GTP formation during TCA, and

glutamate/aspartate exchange as part of the malate-aspartate shuttle.

 Furthermore, careful attention must be paid to protons that are consumed or produced by

all reactions, and the compartment in which those reactions occur. If a proton is consumed in

the cytosol, there is one less proton available to power the ATPase, sinking the gradient.

Similarly, if a proton is produced in the matrix, it will also lessen the driving force of the

gradient. For example, when two acetyl-CoA’s complete the citric acid cycle (as would occur

in the metabolism of a single molecule of glucose), 4 protons are produced as a byproduct in

the matrix. The net effect would be to nullify the driving force of up to 4 protons otherwise

translocated into the cytosol by the ETC.

 34

 Finally, determining how many ATPs accumulate when NADH and FADH2 are totally

consumed by the ETC (as is done in the accepted calculation) does not reflect a steady state

system. Ideally, a cell maintains constant levels of ADP, ATP, NADH, FADH2, H+, etc. and

only consumes or produces substrate, water, oxygen, and carbon dioxide (fuels and waste

products that are easily, and often freely, transported throughout the system). This means that

energy equivalents are being consumed as they are produced and vice versa in a continuous

cycle. While examining the steady state case adds the complication of necessarily

considering the entire system simultaneously, it also lends itself to the mathematical tools

used in this analysis. The benefit is instead of viewing energy metabolism as a cumbersome

causal chain of events that lead to a massive accumulation of ATPs, this method facilitates a

cyclic explanation. The cycle is such that every product of every reaction is simultaneously

consumed as a reagent in the succeeding reaction. The result is a clean, circumscribed

biochemical system that more closely approximates reality.

 The hydrolysis of ATP (standard reaction linked to energy consuming processes) is

represented by the following equation:

 (cytosol) H2O + ATP4- ADP3- + Pi

2- + H+

From this, if ATP is being used at the same rate it is being produced, it is seen that there is an

extra proton appearing in the cytosol every time an ATP is consumed/produced. This same

proton disappeared from the matrix in the reverse reaction (ADP ATP phosphorylation)

that created the energy molecule at the inner membrane associated ATPase. Not considered

 35

in contemporary literature calculations, this de facto translocated proton can potentially drive

the production of more ATP. In fact, one way to envision ATP production and consumption

is as a partially self-sustaining cycle (see Figure 7).

 It is apparent from Figure 7 that at steady state, the overall H+/ATP ratio can be seen as

simply the F0/F1 ratio, and does not need to include a proton for transport. Instead, the

proton consumed when ATP is produced in the matrix that is subsequently produced in the

cytosol with ATP hydrolysis cancels the Pi transport proton (see Figure 7). Thus, the

traditional notion of the H+/ATP ratio outlined in the introduction should be reconsidered. In

fact, this misconception may have been a source of confusion in the attempts (also reviewed

in the Introduction) to measure H+/ATP ratios, leading to differences qualified as ‘including’

or ‘not including transport.’ Some experimental designs may create systems that are closer to

a natural steady state than others, altering the extent to which the self-sustaining portion of

the cycle occurs. For example, many different buffering solutions have been used in

experimental media, including varying concentrations of (to name just a few) Mg2+, EDTA,

and hexokinase (for “ATP trapping”). Even if ATP production were perfectly isolated,

altered turnover and stability of produced ATP could cause H+/ATP (and thus P/O) measures

to be variable. Furthermore, if the H+/ATP ratio does not need to include transport, this

reinforces the implication that currently accepted theoretical P/O ratios are likely to be

underestimates. Again, this is supported by the fact that modern measurements tend to be

higher than currently accepted calculated P/O ratios. It is important to recognize that

“including transport” and “not including transport” is an arbitrary naming convention. That

is, the H+/ATP ratio can still be reported as 13/3 including transport, but as long as the

 36

method outlined herein is being utilized, the “transport proton” is handled separately and is

guaranteed to always be accounted for and appropriately balanced. Problems arise when

carelessness in accounting leads to the loss or gain of a proton with each ATP

production/consumption cycle.

 Perfect examples of non-steady state systems are exactly the calculations touted in the

literature: mechanistic P/O ratios for NADH and FADH2 of 2.3 and 1.4 or 2.5 and 1.5

depending on whether the H+/ATP ratio is 13/3 or 4/1, respectively. These systems can be

represented by the following equations:

 x NADH + y ADP + z/2 O2 x NAD+ + y ATP + z H2O (P/O = 2.5 or 2.3)
 x FADH2 + y ADP + z/2 O2 x FAD + y ATP + z H2O (P/O = 1.5 or 1.4)

Although there may be an academic reason to describe what might be called mechanistic P/O

ratios for NADH and FADH2, there are two reasons why these equations do not reflect real

physiological situations. First, it behaves as if the bulky nucleotide electron carriers NADH

and FADH2 are being transported around a cell, tissue, organ system, or entire body as a

primary energy-supplying medium. The overall reactions imply that NADH and FADH2 are

delivered to the respiratory apparatus and metabolized to produce NAD+ or FAD,

respectively. Such a view would require elaborate transporters and molecular systems to

handle these large molecules. This is clearly not the case. Instead, physiologic systems use

organic substrates like those examined here (glucose, etc.) which are much easier to transport

and have far cleaner, freely diffusible breakdown products (CO2 and H2O). If oxidation of an

organic substrate is occurring in parallel (which it always is), all of the reactions associated

with it must be considered in the P/O calculation (as outlined above), and by linking the two

 37

oxidative processes, the NAD+ and FAD byproducts become necessary inputs to feed the

production of NADH and FADH2.. This eliminates the need to worry about systems that

handle and transport the bulky redox pairs, as they may remain in the same compartment,

constantly cycling back and forth.

 Another non-steady assumption is that it is acceptable to accumulate ATPs while

massive amounts of ADP vanish. Using the methods described herein, the ATP steady state

problem can easily be handled, allowing the ATPs to be consumed as they are produced.

Thus, it is possible to calculate pure mechanistic values corresponding to the complete

oxidative metabolism of NADH and FADH2 using this method also. It is noted that this

reaction is not physiologically meaningful, and does not represent a steady-state reaction.

However these values (for NADH and FADH2, respectively) should be either 3.3 and 1.8 or

3.67 and 2 depending on whether the H+/ATP ratio is 13/3 or 4/1, respectively. The balanced,

many-reaction mechanistic systems reduce to the following overall equations:

 1.0 NADH + 1.0 cH + 0.5 O2 --> 1.0 NAD+ + 1.0 H2O (P/O = 3.67 or 3.3)
 1.0 FADH2 + 0.5 O2 --> 1.0 FAD+ + 1.0 H2O (P/O = 2.00 or 1.8)

Again, the calculations made here for mechanistic NADH and FADH2 P/O ratios contribute

to the consistent demonstration that currently accepted theoretical values are underestimates.

Flawed Calculations Lead to Failed Predictions

 Even if mechanistic P/O ratios for NADH and FADH2 (by themselves) exist and can be

determined, it is not immediately obvious how these values justify the terms NADH-linked

and FADH2-linked substrate. Clearly, in a real system executing the complete oxidative

 38

metabolism of an organic substrate (such as glucose), both NADH and FADH2 will be

produced and consumed as intermediates. Thus, the assumption that a P/O ratio associated

with glucose will have one of the two accepted values instead of some intermediate value

should be incorrect. That is, even disregarding every subtle complexity of calculating a P/O

ratio cited above (e.g. substrate-level phosphorylation, side reactions, proton slip, etc.), the

P/O ratio of a substrate should still be in some range between the two currently accepted

values, and not simply one or the other.

 Succinate is a perfect example. Because of the widely accepted dual P/O ratio system,

the oxidation of succinate is expected to proceed with a P/O ratio of 1.5. With near

uniformity, measured values reported in the literature significantly exceed this value. In

addition to the fact that 1.5 has been shown to most likely be an underestimate, literature

values are also low because ETC inhibitors are often added with succinate (12, 16, 17, 18,

55). Moreover, the system is sometimes controlled such that it only proceeds one step to

fumarate (e.g. 59, 11). This might be acceptable as a strategy for determination of the P/O of

FADH2, however it is blatantly unrelated to a natural system that is freely metabolizing an

excess of succinate as a fuel source. Despite all attempts to force control over this system, the

reported values are often still high. This is because either the value of P/O for FADH2 is

higher than believed (as above), there is further downstream metabolism of fumarate and/or

other unaccounted sources of phosphorylation, or both.

 Putting the above aside, assuming P/O ratios for NADH and FADH2 exist and are

known, it is still not clear how these should be used to inform the calculation of a P/O ratio

 39

for whole substrate metabolism. Without a rigorous mathematical infrastructure to bolster

confidence that consideration is given to every intricate detail, it seems making such a

calculation would be difficult. For example, in a landmark review Hinkle (12) used P/O

ratios of 2.5 and 1.5 for NADH and FADH2, respectively, to calculate the theoretical ATP

yield given by the complete oxidation of glucose. He concludes the value is either 29.5 ATP

or 31 ATP (depending on whether the G3P or MAS is utilized), challenging and displacing

the previously accepted measured value, 36. Indeed, the ~30 ATP result is the most

commonly cited value in textbooks. (14, 15) Presented here is the extended reasoning and

calculation (relying upon an H+/ATP ratio of 4), unaltered, from Hinkle et al. (12):

Finally, the traditional calculation of the number of moles of ATP synthesized during the
oxidation of 1 mol of glucose should be reconsidered. The complete oxidation of 1 mol of
glucose yields 8 mol of matrix NADH which on oxidation would yield 20 mol of ATP, 2 mol of
succinate yielding 3 mol of ATP, 2 mol of cytoplasmic NADH yielding 3 mol of ATP via the
glycerol phosphate shuttle, 2 mol of cytoplasmic ATP from substrate level phosphorylation, and
2 mol of matrix GTP from succinyl-CoA synthetase. The matrix GTP forms ATP by nucleoside
diphosphokinase. However, since the ATP must still be transported to the cytoplasm transporting
1 proton for each ATP, the amount of ATP that can be synthesized by oxidative phosphorylation
is decreased by 2 protons or 0.5 ATP. Thus, the overall yield of ATP from glucose oxidation is
29.5 ATP per glucose, rather than the traditional value of 36 ATP per glucose based on integer
values of the P/O ratios. If cytoplasmic NADH is oxidized via the malate-aspartate shuttle, then
4.5 ATP would be synthesized during oxidation of the 2 mol of cytoplasmic NADH, because
glutamate/aspartate exchange is coupled to the influx of 1 proton per glutamate (LaNoue &
Schoolworth, 1979), and the overall yield would be 31 ATP per glucose.

 While more attention to detail is granted than most would give (i.e. considering the

electron shuttling mechanism, some transport phenomena, and substrate phosphorylation), it

is still an oversimplification, relying on inspection. Once again the ATP yield of a single

molecule of glucose should be called into question and its calculation challenged by a more

mathematically rigorous technique.

 The currently accepted algorithm for this calculation (heretofore referred to as Hinkle

Inspection) is also carried out for P/O ratios of 2.3 and 1.4, corresponding to the mechanistic

 40

NADH and FADH2 values of a system with an H+/ATP ratio of 13/3 (as suggested by Hinkle

in (13)). These values are compared with the calculated ATP yields from this study, and the

Hinkle Inspection algorithm is explicitly reported (see Table 4). The ATP yields calculated in

this analysis are consistently ~30% greater than those derived by Hinkle Inspection. While

there are no guarantees about maintaining a balanced steady state or total energy accounting

with Hinkle Inspection, assurance of those conditions is automatic in using the linear

algebraic method on a deterministically modeled system.

 The methodology presented here can also be used to delineate biochemical mechanisms

and reaction pathways and circuits (as shown briefly with the schematic metabolism

summaries of substrates listed in Results). A diagram representing this circuit can easily be

translated from the model’s output. One such diagram of a single analysis (complete

oxidative metabolism of glucose, exclusively utilizing the MAS, with an H+/ATP ratio of

13/3) is included as a demonstration (see Figure 8). Though it is a very complicated diagram,

close inspection will reveal that the only molecular species either consumed or produced

reduce to the following equation:

 1 C6H12O6 + 6 O2 6 CO2 + 6 H2O + ΔH

A single molecule of glucose consumes six molecules of oxygen to produce six molecules of

both carbon dioxide and water as byproducts, and in the process, a certain quantity of energy

is stored and released via the production and consumption of ATP (the ΔH term, note: no net

ATP is produced or consumed).

Striving for THE P/O Ratio—a Vain Pursuit?

 41

 In the past, two P/O ratios have been argued as standards against which measurements

should be compared. In addition to demonstrating that these currently accepted theoretic P/O

values are most likely wrong (underestimates), this analysis also shows that regardless of the

absolute quantitative accuracy of this method, variability of the P/O ratio is inevitable. In a

controlled experiment, the measured result should depend upon several factors: substrate,

electron shuttle utilization, proton slip and leak, and any side reactions that may be occurring

in the system. This is not a surprising conclusion. In a quick thought experiment, one can

imagine an in vivo system in an anaerobic state. If this system was producing ATP

exclusively through glycolysis or lactic acid fermentation, for example, no oxygen would be

consumed and an infinite P/O ratio would be expected. Conversely, if one were studying the

energetic metabolism of brown fat, the excess of UDP-1 (an uncoupling protein causing

dose-dependent slip of the proton gradient) should make the measured P/O ratio arbitrarily

lower than the theoretical value. Thus, it seems the conceivable natural range of the P/O ratio

is from zero to infinity. This is the reason multiple groups using different methodologies

cannot agree on a single pair of P/O ratios for energy metabolism: because no single value

can possibly describe the infinite permutations of varying conditions.

 In this analysis, P/O ratios were demonstrated to differ by as much as 17% (regardless

of the H+/ATP ratio), simply by altering which of five substrates was consumed and which of

four electron shuttles was utilized (including ‘no shuttle’ as an option). Table 5 is included as

a summary of variable conditions that may alter a P/O ratio. There are 15 that have been

explicitly stated in this text, however others certainly exist that have not been mentioned.

Note that the calculations in this work are idealized (excluding all inefficiencies) within a

 42

purely theoretical framework in which all but two conditions are identical. This would

suggest that in an experimental setting, where inefficiency does exist and more than two of

these conditions are varied by the sheer design of the system preparation, one should expect

measured P/O ratios to vary much more widely than seen here. As such, it is no surprise that

an overall range of 1.07 to 3.73 (from all studies reviewed) is observed.

 Perhaps the notion of a variable P/O ratio should be embraced, and future

experimentation focused on exploring the basis of this variability. Instead of striving to find a

single number to describe oxidative cellular machinery, a variable P/O can be used (in a

standardized experimental system) as an indicator of oxidative efficiency for a given set of

variables and conditions. After all, a variable P/O ratio has useful physiological implications.

Different tissues have different metabolic goals, and thus employ slight variations of energy

production, giving rise to different P/O ratios (60). For example, enzymatic

compartmentalization may be tissue specific out of mechanistic need. Very early on it was

shown that the P/O ratios for rat heart muscle vs. liver differ in the face of otherwise identical

experimental conditions and supporting media (54). The same study showed that guinea pig

myocyte P/O ratios were significantly greater than those of rat myocytes, again in the setting

of identical conditions. More recently it was shown that the heart may prefer ketones and

fatty acids to glucose as its primary substrate (61).

 This analysis demonstrates that different electron shuttles are unquestionably associated

with different P/O ratios. This may be an important point of in vivo metabolic control. For

example, Scholz et. al. demonstrated that thyroxin (T3) can alter the balance of G3P to MAS

 43

utilization in cardiomyocyte and hepatocyte mitochondria in a tissue-specific fashion (62).

This example of hormonal regulation of energetic efficiency operates by changing the P/O

ratio via altering the extent and balance of shuttle utilization. Also, Cairns et. al. (60) have

suggested, though a thermodynamic argument, that temporal efficiency may also be a factor.

While the liver attempts to maximize chemical efficiency in terms of ATPs per Oxygen

consumed, the brain may be trying to turnover ATP at a maximum efficiency per unit of

time, and the heart is simply maximizing the number of ATPs it can produce. This suggests

that measures of oxidative efficiency other than P/O ratio be considered and tested

experimentally.

Summary of Discussion

 In recent years, consensus in the literature surrounding the P/O ratio has moved toward

two calculated theoretical values (2.5 for NADH-linked substrates, and 1.5 for FADH2-linked

substrates) in an attempt to discover which of many varied measurements are the closest

approximations to true values. The analysis outlined here demonstrates the following:

1) Theoretical P/O ratios have been inappropriately calculated to date, and are likely

underestimates. This is further demonstrated by failed predictions of ATP production.

2) Assuming the ATPase subunit ratio hypothesis of the H+/ATP ratio is correct (and

that ratio is 10:3) a steady state, respiring mitochondrion that is exclusively using

oxidative metabolism will have a theoretical maximum efficiency (assuming no slip,

leak, proton uncoupling, or side reactions), in terms of a P/O ratio, in the range of

 44

2.767 – 3.238 for any combination of the five substrates and four electron shuttles

studied.

3) Mechanistic P/O ratios are not very useful tools in approaching real physiological

conditions. Despite this fact, the mechanistic P/O ratio for NADH oxidation should be

either 3.3 or 3.67 instead of the currently accepted 2.3 or 2.5 (depending whether the

H+/ATP ratio is 13/3 or 4/1, respectively), and the mechanistic P/O ratio for FADH2

should be 1.80 or 2.00 instead of the accepted values 1.4 and 1.5 (with similar H+/ATP

dependence).

4) The P/O ratio should be variable, its value based on many conditions.

References
1. Kalckar, H. 1937. Phosphorylation in kidney tissue. Enzymologia 2: 47-52.

2. Ochoa S. 1941. "Coupling" of phosphorylation with oxidation of pyruvic acid in brain. J. Biol.
Chem. 138: 751-773.

3. Belitser VA., Tsibakowa ET. 1939. The mechanism of phosphorylation associated with
respiration. Biokhimiya 4: 516-534.

4. Ochoa S. 1943. Efficiency of aerobic phosphorylation in cell-free heart extracts. J. Biol. Chem.
151: 493-505.

5. Devlin, Thomas M. (ed) 2001. Textbook of Biochemistry with Clinical Correlations (5th ed.).
John Wiley + Sons, Inc.; Hoboken, NJ : 1248 pp.

6. Lehninger A., Smith S. 1949. Efficiency of oxidative phosphorylation coupled to electron
transport between dihydrodiphosphopyridine nucleotide and oxygen. J. Biol. Chem. 181: 415-429.

7. Bartley W. 1953. Efficiency of oxidative phosphorylation during the oxidation of pyruvate.
Biochem. J. 54(4): 677-682.

8. Cross R., Taggart J., Covo G., Green D. 1949. Studies on the cyclophorase system: VI. The
Coupling of Oxidation and Phosphorylation. J. Biol. Chem. 177: 655-678.

9. Mitchell P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-
osmotic type of mechanism. Nature 191: 144-148.

 45

10. Mitchell P. 1970. Aspects of Chemiosmotic Hypothesis. Biochem. J. 116(4): 5P-6P.

11. Stoner C. 1987. Determination of the P/2e- Stoichiometries at the Individual Coupling Sites in
Mitochondrial Oxidative Phosphorylation. J. Biol. Chem. 262: 10445-10453.

12. Hinkle P., Kumar M., Resetar A., Harris D. 1991. Mechanistic Stoichiometry of Mitochondrial
Oxidative Phosphorylation. Biochemistry 30: 3576-3582.

13. Hinkle P. 2005. P/O ratios of mitochondrial oxidative phosphorylation. Biochim. Biophys. Acta
1706: 1-11.

14. Nelson, David L., Cox, Michael M. 2004. Lehninger Principles of Biochemistry. W.H.
Freeman; New York, NY : 1100 pp.

15. Stryer, Lubert 1995. Biochemistry (4th ed.). W.H. Freeman; New York, NY : 1064 pp.

16. Toth P., Sumerix K., Ferguson-Miller S., Suelter C. 1990. Respiratory Control and ADP:O
Coupling Ratios of Isolated Chick Heart Mitochondria. Arch. Biochem. Biophys. 276(1): 199-211.

17. Lee C., Gu Q., Xiong Y., Mitchell R., Ernster L. 1996. P/O Ratios Reassessed: Mitochondrial
P/O Ratios Consistently Exceed 1.5 with Succinate and 2.5 with NAD-linked Substrates. FASEB
J. 10: 345-350.

18. Gnaiger E., Mendez G., Hand S. 2000. High Phosphorylation Efficiency and Depression of
uncoupled respiration in mitochondria under Hypoxia. Proc. Natl. Acad. Sci. U.S.A. 97: 11080-
11085.

19. Lemasters JJ., Grunwald R., Emaus RK. 1984. Thermodynamic Limits to the ATP/Site
Stoichiometries of Oxidative Phosphorylation by Rat Liver Mitochondria. J. Biol. Chem. 259(5):
3058-3063.

20. Lemasters JJ. 1984. The ATP-to-oxygen stoichiometries of oxidative phosphorylation by rat
liver mitochondria. An analysis of ADP-induced oxygen jumps by linear nonequilibrium
thermodynamics. J. Biol. Chem. 259(21): 13123-13130.

21. Beavis A., Leninger A. 1986. The upper and lower limits of the mechanistic stoichiometry of
mitochondrial oxidative phosphorylation. Eur. J. Biochem. 158: 315-322.

22. Beavis A., Leninger A. 1986. Determination of the upper and lower limits of the mechanistic
stoichiometry of imcompletely coupled fluxes.. Eur. J. Biochem. 158: 307-314.

23. Villalobo A., Lehninger A. 1979. The proton stoichiometry of electron transport in Ehrlich
ascites tumor mitochondria. J Biological Chem 254(11): 4352-4358.

24. Pozzan, T., Di Vigilio F., Bragadin, M., Miconi V., Azzone GF. 1979. H+/site, charge/site, and
ATP/site ratios in mitochondrial electron transport. Proc. Natl. Acad. Sci. U.S.A. 76(5): 2123-2127.

25. Villalobo A., Lehninger A. 1980. Stoichiometry of H+ Ejection Coupled to Electron Transport
through Site 2 in Ascites Tumor Mitochondria. Arch. Biochem. Biophys. 205(1): 210-216.

26. Villalobo A., Alexandre A., Lehninger A. 1984. H+ Stoichiometry of Sites 1 + 2 of the
Respiratory Chain of Normal and Tumor Mitochondria. Arch. Biochem. Biophys. 233(2): 417-427.

27. Trumpower, B. 1990. The Protonmotive Q Cycle. J. Biol. Chem. 266(20): 11409-11412.

 46

28. Antonini G., Maltasta F, Sarti P., Brunori M. 1993. Proton Pumping by cytochrome oxidase as
studied by time-resolved stopped-flow spectrophotometry. Proc. Natl. Acad. Sci. U.S.A. 90: 5949-
5953.

29. Thelen M., O'Shea P., Petrone G., Azzi A. 1985. Proton Translocation by a Native and Subunit
III-depleted Cytochrome c Oxidase Reconstituted into Phospholipid Vesicles. J Biological Chem
260(6): 3626-3631.

30. Galkin, AS., Grivennikova, VG., Vinogradov, AD. 1999. .->H+/2e- stoichiometry in NADH-
quinone reductase reactions catalyzed by bovine heart submitochondrial particles. FEBS Lett.
451: 167-161.

31. LaNoue, K., Schoolwerth, A. 1979. Metabolite transport in mitochondria. Ann. Rev. Biochem.
48: 871-922.

32. Klingenberg M., Rottenberg, H. 1977. Relation between the Gradient of the ATP/ADP Ratio
and the Membrane Potential across the Mitochondrial Membrane. Eur. J. Biochem. 73: 125-130.

33. Mitchell P., Moyle J. 1968. Proton translocation coupled to ATP hydrolysis in rat liver
mitochondria. Eur. J. Biochem. 4(4): 530-539.

34. Thayer WS., Hinkle PC. 1973. Stoichiometry of adenosine triphosphate-driven
protontranslocation in bovine heart submitochondrial particles. J. Biol. Chem. 248(15): 5395-5402.

35. Brand MD., Lehninger AL. 1977. H+?ATP ratio during ATP hydrolysis by mitochondria:
modification of the chemiosmotic theory. Proc. Natl. Acad. Sci. U.S.A. 74(5): 1955-1959.

36. Ferguson SJ., Sorgato MC. 1982. Proton Electrochemical Gradients and Energy-Transduction
Processes. Annual Reviews in Biochemistry 51: 185-217.

37. Berry EA., Hinkle PC. 1983. Measurement of the Electrochemical Proton Gradient in
Submitochondrial Particles. J. Biol. Chem. 258(3): 1474-1486.

38. Woelders H., Zande WJ., Colen AM., Wanders R., Dam K. 1985. The phosphate potential
maintained by mitochondria in State 4 is proportional to the proton-motive force. FEBS Lett.
179(2): 278-282.

39. Vink R., Bendall M., Simpson S., Rogers P. 1984. Estimation of H+ to Adenosine 5'-
Triphosphate Stoichiometry of Escherichia coli ATP Synthase Using 31P NMR. Biochemistry 23:
3667-3675.

40. Cross RL., Duncan TM. 1996. Subunit rotation in F0F1-ATP synthases as a means of
coupling proton transport through F0 to the binding changes in F1. J. Bioenerg. Biomembr. 28(5):
403-408.

41. Junge W. 1999. ATP synthase and other motor proteins. Proc. Natl. Acad. Sci. U.S.A. 96:
4735-4737.

42. Klingenberg M. 1979. The Ferricyanide Method for Elucidating the Sidedness of Membrane-
Bound Dehydrogenases. Meth. Enzymol. 56: 229-233.

43. Klingenberg M., Buchholz M. 1970. Localization of the Glycerol-Phosphate Dehydrogenase in
t heOuter Phase of the Mitochondrial Inner Membrane. Eur. J. Biochem. 13: 247-252.

 47

44. LaNoue K., Tischler M. 1974. Electrogenic Characteristics of the Mitochondrial Glutamate-
Aspartate Antiporter. J. Biol. Chem. 249(23): 7522-7528.

45. Meijer AJ 2003. Amino acids as regulators and components of nonproteinogenic pathways. J.
Nutr. 133(6Sup1): 2057S-2062S.

46. Palmieri, F. 2004. The mitochondrial transporter family (SLC25): physiological and
pathological implications. Eur. J. Phys. 447: 689-709.

47. Nohl H. 1987. Demonstration of the existence of an organo-specific NADH dehydrogenase in
heart mitochondria. Eur. J. Biochem. 169: 585-591.

48. Schonheit K., Nohl H. 1996. Oxidation of Cytosolic NADH via Complex I of Heart
Mitochondria. Arch. Biochem. Biophys. 327(2): 319-323.

49. Bonarius H., Schmid G., Tramper J. 1997. Flux analysis of underdetermined metabolic
networks: The quest for the missing constraints. Trends in Biotechnology 15(8): 308-314.

50. Ramakrishna R., Edwards J., McCulloch A., Palsson B. 2001. Flux-balance analysis of
mitochondrial energy metabolism: consequences of systemic stoichiometric constraints. Am. J.
Phys. Reg. 280: 695-704.

51. Lay, David 2003. Linear Algebra and its Applications (3rd ed.). Addison Wesley; Boston, MA :
492 pp.

52. Champe, P., Harvey, R., Ferrier 2004. Biochemistry (3rd ed.). Lippincott Wilkin & Williams;
Philadelphia, PA : 534 pp.

53. Devin A., Buerin B., Rioulet M. 1997. Control of Oxidative Phosphorylation in rat Liver
Mitochondria: Effect of Ionic Media. Biochim. Biophys. Acta 1319: 293-300.

54. Greengard P., Minnaert K., Slater E., Betel I. 1959. Yield of Oxidative Phosphorylation
associated with the oxidation of Succinate to Fumarate. Biochem. J. 73: 637-646.

55. Hinkle PC., Yu ML. 1979. The phosphorus/Oxygen Ratio of Mitochondrial Oxidative
Phosphorylation. J. Biol. Chem. 254(7): 2450-2456.

56. Kingsley-Hickman PB., Sako EY., Mohanakrishnan P., Robitaille PM., From AH., Foker JE.,
Ugurbil K. 1987. 31P NMR studies of ATP synthesis and hydrolysis kinetics in the intact
myocardium. Biochemistry 26(23): 7501-7510.

57. Brand M., Chien L., Ainscow E., Rolfe D., Proter R. 1994. The causes and functions of
mitochondrial proton leak. Biochim. Biophys. Acta 1187: 132-139.

58. Kadenbach, B. 2003. Intrinsic and Extrinsic uncoupling of oxidative phosphorylation. Biochim.
Biophys. Acta 1604: 77-94.

59. Copenhaver J., Lardy J. 1952. Oxidative phosphorylations: pathways and yield in
mitochondrial preparations. J. Biol. Chem. 195: 225-238.

60. Cairns C., Walther J., Harken A., Banerjee A. 1998. Mitochondrial Oxidative Phosphorylation
thermodynamic efficiencies reflect physiological organ roles. Am. J. Phys. Reg. 274: 1376-1383.

61. Ziegler A., Zaugg C., Buser P., Seelig J., Kunnecke B. 2002. Non-invasive measurements of
myocardial carbon metabolism using in vivo 13C NMR spectroscopy. NMR Biomed 15: 222-234.

 48

62. Scholz T., TenEych C., Schutte B. 2000. Thyroid Hormone Regulation of the NADH Shuttles
in Liver and Cardiac Mitochondria. J. Mol. Cell. Cardiol. 32: 1-10.

Tables

Subs Author Year P/O Error
Glucose Kalckar 1937 2 NR
Pyruvate Belitzer 1939 2 NR
Pyruvate Ochoa 1943 3.2 0.4

B-OHButyrate Lehninger 1949 2.02 0.26
Succinate Cross 1949 1.25 0.179

Malate + Glu Cross 1949 2.25 0.1
Pyruvate Cross 1949 2.47 0.12
Pyruvate Bartley 1953 2.35 0.25

B-OHButyrate Chance 1955 2.6 NR
Succinate Chance 1955 1.8 NR
Succinate Greenard 1959 1.91 0.29

B-OHButyrate Hinkle 1979 2.11 0.13
Succinate Hinkle 1979 1.39 0.1
Succinate Lemasters 1984 1.85 0.23

Malate Lemasters 1984 2.89 0.31
B-OHButyrate Lemasters 1984 2.93 0.42

Succinate Beavis 1986 1.71 0.12
B-OHButyrate Beavis 1986 2.78 0.12

Glucose Stoner 1987 2.62 0.05

 49

Glucose + Pyruvate Kingsley-Hickman 1987 2.34 0.38
Pyruvate + Malate Toth 1990 3.43 0.3

B-OHButyrate Toth 1990 3.21 0.24
Succinate Toth 1990 1.9 0.01

B-OHButyrate Hinkle 1991 2.27 0.08
B-OHButyrate Hinkle 1991 2.85 0.15

Pyruvate + Malate Lee 1996 2.73 0.22
Succinate Lee 1996 1.81 0.07

Malate + Glu Devin 1997 2.49 0.22
Succinate Gnaiger 2000 1.77 0.04

Table 1. 29 studies reporting P/O measurements between 1937 and 2000 are summarized as
ranges reported within the text of the reference. NR signifies no range reported, i.e. the work
reports a single value.

Table 2. 8 studies reporting F0/F1 subunit ratios of the mitochondrial ATPase in various

species.

Muller, 2004{6,8,12,13}:3*Archaea
Murata, 20037:3Enterococcus
Stahlberg, 200111:3Ilyobacter
Junge, 199912:3Cyanobacteria
Seelert, 200014:3Leaf Chloroplast
Turina, 200312:3Leaf Chloroplast
Jian, 200110:3E. Coli

Stock, 199910:3Yeast Mitochondria
SourceSubunit ratioOrganism

* Archaea is a class of ancient bacteria. Here Muller et al. studied species for A1/A0 subunit ratios which varied according to
alternately spliced transcripts

 50

3a. No
Shuttle:

 Shuttle:

 H+/ATP = 4.33 Matrix G3P MAS NADH

 Glucose * 2.933 3.083 3.183
 β-OH Butyrate 2.844 2.711 2.811 2.878
 Substrate: Malate 3.017 2.767 2.917 3.017
 Pyruvate 2.960 * * *

 Succinate 2.843 * * *

3b. No
Shuttle:

 Shuttle:

 H+/ATP = 4.00 Matrix G3P MAS NADH

 Glucose * 3.222 3.389 3.500
 β-OH Butyrate 3.148 3.000 3.111 3.185
 Substrate: Malate 3.333 3.056 3.222 3.333
 Pyruvate 3.267 * * *

 Succinate 3.143 * * *
Table 3. Calculated P/O ratios organized by substrate consumed and electron shuttle utilized.
3a reports calculated values in a system where the H+/ATP ratio was 13/3, and 3b contains
values from a system where the H+/ATP ratio was 4.

 Hinkle Inspection* Linear Algebraic

H/ATP G3P 29.50 38.67

=4.000 MAS 31.00 40.67

H/ATP G3P 27.54 35.20

=4.333 MAS 28.88 37.00

Table 4. Calculated theoretical ATP yield for glucose: Hinkle inspection vs. Linear Algebraic
Method

 51

1 Substrate
2 Electron Shuttle

3 H+/ATP Ratio (F0/F1 Subunit
 variability)

4 Substrate-level phosphorylation

5 Proton consuming/producing
 reactions of energy metabolism

6 Slip and/or leak of proton gradient

7 Energy consuming (ATP or proton
 gradient) side reactions

8 Side Redox reactions
9 Cell type

10 Media additions (inhibitors,
 Mg2+, EDTA, etc.)

11 Measurement techniques
12 pH
13 Temperature
14 Hormonal control
15 Organism

Table 5. Short List of Degrees of Freedom in Measuring a P/O Ratio.

Figures

*Hinkle Inspection = [#NADH * (P/ONADH)] + [#FADH2 * (P/OFADH2)] + SLphos - [#H+
trans/(H-ATPratio)]

Where:
 #NADH = number of NADH produced #FADH2 = number of FADH2 produced
 P/ONADH = P/Oratio of NADH (given H/ATP) P/OFADH2 = P/Oratio of FADH2 (given H/ATP)
 SLphos = #substrate-level phosphorylations #H+trans = number of protons used for xport
 H-ATPratio = the H+/ATP ratio of the system

E.G. for G3P shuttle and H+/ATP = 4.0 from the verbal argument in the block quote:
 ATP Yield = (8*2.5) + (4*1.5) + 4 – (2/4.0) = 20+6+4-0.5 = 29.50

 52

Literature P/O Ranges By Substrate

0

0.5

1

1.5

2

2.5

3

3.5

4

B-OHButyrate Glucose Malate Pyruvate Succinate

Substrate

P
/O

 R
at

io

Figure 1. Summary of Measured P/O Values from Literature (29 sources). Bar height
represents the middle of a reported range. Error bars represent the entire range reported
regardless whether the range represented statistical error of one consensus value, several
measurements, or otherwise (they do not reflect any statistical analysis).

 2a.

NAD+
NADH

H+
+

4X

4X
2X

QH2

X

C1Q
X

X

2X

2X

2X

CC3

X
Q

H2O

X2X

2X

2X

C4

O2

X/2

Mitochondrial
Redox

Process

Cytosol

M. Matrix

Site 1 Site 2 Site 3

 2b.

11 (m) H+ + 1 (m) NADH + 0.5 (x) O2 --> 10 (c) H+ + 1 (m) NAD+ + 1 (x)H2O

 53

2Y

QH2

Y

C2Q
Y

Y

FADH2 FAD+

2Y

2Y

2Y

CC3

Y
Q

H2O

Y2Y

2Y

2Y

C4

O2

Y/2

Cytosol

M. MatrixMitochondrial
Redox

Process

Site 2 Site 3

Figure 2. Summary of ETC mechanisms. 2a depicts NADH oxidation from Complex I to
Complex IV. 2b depicts FADH2 oxidation from Complex II to Complex IV. Summary
reactions are provided.

6 (m) H+ + 1 (m) FADH2 + 0.5 (x) O2 --> 6 (c) H+ + 1 (m) FAD+ + 1 (x)H2O

 54

Cytosol M. Matrix

Glycol,
Malic
Enz,
BDH,
LDH

G
P
D

G
P
D

E
T
C

a. Glycerophosphate Shuttle

Glycerone

-3P

Glycerol

-3P

FADH2

FAD+NAD+

NADH

H+
+

(c)H+ + (c)NADH + (m)FAD+ (c)NAD+ + (m)FADH2

AST

A
S
P

GLU GLU

OAA

AST

A
S
P

Glycol,
Malic
Enz,
BDH,
LDH

ETC

M. Matrix

NAD+
NADH

H+
+

NADH

H+
+

NAD+

G
/
A

X

malat malat

α-
KG

α-
KG

A
K
G

X

b. Malate / Aspartate Shuttle

2(c)H+ + (c)NADH + (m)NAD+ (c)NAD+ + (m)NADH + 2(m)H+

OAA

Cytosol
M. Matrix

Glycol,
Malic
Enz,
BDH,
LDH

E
T
CNAD+

NADH

H+
+

c. NADH-DH Shuttle

**See Complex I of ETC

Figure 3. Summary of mechanisms for various electron shuttles. 3a is the glycerophosphate
shuttle (G3P), 3b. is the malate/aspartate shuttle (MAS), and 3c is the NADH-DH complex.

 55

Figure 4. Summary of calculated P/O Outputs

5a. Glucose Metabolism

Cytosol

ADP

ATP
PDH

e-
shuttle

G
L
Y
C
O
L
Y
S
I
S PYR

AcCoA

ase

ATP

ADP

ETC

Glu

TCA

NRG
use

ATP

MatrixADP ATP

(c)Glucose + 6 O2 --> 6 CO2 + 6 H2O

P/O Ratios for Various Substrates

1.000

1.500

2.000

2.500

3.000

3.500

No Shuttle G3P MAS NADH

Shuttle for cytosolic reducing equivalents

P/
O

 R
at

io

Glucose

B-OH Butyrate

Malate

Pyruvate

Succinate

 56

5b. Pyruvate Metabolism

Cytosol

ADP

ATP
PDH

PYR

AcCoA

ase

ATP

ADP

ETC

TCA

NRG
use

ATP

Matrix

(c)Pyruvate + 2.5 O2 + (c)H+ --> 3 CO2 + 2 H2O

5c. Succinate Metabolism

ADP

ATP

PDH AcCoA ase

ATP

ADP

ETC

TCA

NRG
use

ATP

Matrix

Malic
Enz

MALATE

SUCC

Cytosol

(c)Succinate + 3.5 O2 + 2 (c)H+ --> 4 CO2 + 3 H2O

5d. β-OHButyrate Metabolism

Cytosol

ADP

ATP

e-
shuttle

BHB
Dehdro-
genase

(BDH) AcCoA

ase

ATP

ADP

ETC

TCA

NRG
use

ATP

Matrix
BDH

BHB

BHB

Acact Acact

(c)β-OHButyrate + 4 O2 + 1 (c)H+ --> 4 CO2 + 3 H2O

 57

5e. Malate Metabolism

Cytosol

ADP

ATP
PDH

e-
shuttle

Malic

Enzyme

PYR

AcCoA

ase

ATP

ADP

ETC

TCA

NRG
use

ATP

Matrix

MALATE

Malic
EnzMALATE

(c)Malate + 3 O2 + 2 (c)H+ --> 4 CO2 + 3 H2O

GluADP

ATP

-- ADP
-- ATP

-- Reduced
Equivalent

-- Glucose

-- Oxidized
Equivalent

-- Proton

PYR
AcCoA-- Pyruvate -- Acetyl CoA

-- Pi

MALATE

LACBHB
SUCC

Acact

-- β-Hydroxy
Butyrate

-- Acetoacetate

-- Lactate

-- Malate

-- Succinate

-- Reaction

-- Cycling Redox
Agents

** TCA: The Citric Acid Cycle; ETC: Electron Transport Chain; ATPase: Mitochondrial ATPase; NRG use: generic energy consuming process;

e- shuttle: generic electron shuttling mechanism; PDH: Pyruvate Dehydrogenase; LDH: Lactate Dehydrogenase; BDH: β-OHButyrate Dehydrogenase

KEY

Figure 5. Mechanisms for complete oxidative metabolism of: 5a. glucose; 5b. pyruvate; 5c.
succinate; 5d β-OHbutyrate; 5e malate.

Figure 6. Comparison of Measured Literature P/O Ratio Ranges and Calculated Output
Ranges by Substrate.

Comparison Of Literature Values and Calculated P/O Ratios

1

1.5

2

2.5

3

3.5

4

B-OHButyrate Glucose Malate Pyruvate Succinate

Substrate

R
an

ge
 o

f P
/O

 V
al

ue
s

Literature Values

Calculated (H/ATP=13.3)
Calculated (H/ATP=4/1)

 58

ETC

ADP

ATP

H+/ATP

H+/ATP

ADP

ATP

NRG
use

H2O +

Cytosol

M. Matrix

P
i

X

T/
D

X

3.33333 (c)H+ + 1 (m) ADP + 1 (m) Pi --> 1 (m) ATP + 2.33333 (m) H+ + 1. (x) H2O

ase

ATP

Figure 7. Summary of proposed ATP Production/Consumption Cycle.

 59

Cytosol

T5

Matrix

T6 T7

T8

T1T4

T2T3 2
IsoCitr

2

Citra
te

2

2 Acetyl-CoA

G
ly

ce
ra

ld
eh

yd
e

P
ho

sp
ha

te
 X

 2

Glyc-
olysis

1

Glucose

2

Suc
cin

at
2

Malate

2
Fumarate

2
O

A
A

2 aKG

2

S
uc

C
oA

2

2

2

2

2

2

2

2

2

2
2

pyr
2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

8

6

2

10

Q10 40

40

24

24

24

24

110

110

C2 C3 C4QH2

10

2

10

QH2

12

Q2

10 2

24

12 Q

24

24
6

12

A
T

Pase2

2
ATP

2 ADP

2

ADP
2

ATP
2

GDP
2

GTP
2

ND PK

2
GDP

33

33

33
ADP33

33
ATP

2

35

35

35
ADP

2 35

35
ATP

2

35

37
NRG
use

37

PDH

37

35

37

33

145

4

AST

malat malat

α-
KG

α-
KG

OAA

A
S
P

GLU

2

2
2

GLU

OAA

AST

A
S
P

2

22

C1

2
2

2

35

Glycolysis 2

TCA

ETC

MAS

 61

Figure 8. Schematic representation of the complete oxidative metabolism of glucose, utilizing the Malate-Aspartate electron shuttle,
with an H+/ATP ratio of 13/3. 37 molecules of ATP are generated and consumed by energy-dependent cytosolic processes.

Glu ADP

ATP

-- ADP
-- ATP

-- NADH

-- Glucose

-- NAD+

 -- Proton

PYR AcCoA
-- Pyruvate

-- Acetyl CoA

 -- Pi

LAC

-- Glutamate

 -- Cofactor A

 -- Lactate

-- Malate/OAA

 -- αKetoglutarate

-- Reaction

 -- Cycling Redox
Agents

** TCA: The Citric Acid Cycle; ETC: Electron Transport Chain; ATPase: Mitochondrial ATPase; NRG use: generic energy consuming process;
 MAS: Malate-Aspartate Electron Shuttle; PDH: Pyruvate Dehydrogenase; Glycolysis 1 & 2: Glycolysis

KEY -- NH3 reaction

-- FADH2 -- FAD

--
--

--e-

Q QH2 -- Ubiquinol -- Ubiquinone

α-
KG

GLU
A
S
P

 -- Aspartate
 AST -- Transaminase

 62

Appendix I
 The following is a compressed list of reactions and reaction summaries (wherever possible) used in the formulation of the modeled
biochemical systems. The written equations are the direct output of a computer program that extracts the coefficients directly from the vectors
internal to the program executing the linear algebraic manipulations that describe these systems.
 Where possible, enzyme commission numbers (EC#s) have been provided so the reaction being referenced is unambiguous.
 Many of the reactions listed are summaries (e.g. P99 – pyruvate dehydrogenase summary). In the case of P99, P11- P16 have also been
included (the constituent reactions that make up P99) as a demonstration. Summary reactions are only used when their constituent reactions never
produce intermediates that participate in side reactions. For example, all ETC complexes have complicated mechanisms involving many reactions,
cytochromes, and non-redox reactants. However, in the systems studied, the redox intermediates never participate in any reactions outside of
oxidative metabolism. This allows the series of reactions that always progress in a stoichiometrically identical way to be collapsed into a single,
summarized reaction. This makes the system less cumbersome, easier to understand, and allows the program to run more quickly and efficiently.
 System
ID Enzyme / Rxn Name Compartment EC # BALANCED REACTION

G10
Hexokinase /
Glucokinase cytosol 2.7.1.1

1. (c)Adenosine-triphosphate + 1. (c)Glucose --> 1. (c)Adenosine-
diphosphate + 1. (c)Glucose_6-phosphate + 1. (c)Proton

G11
Phosphoglucose
isomerase cytosol 5.3.1.9 1. (c)Glucose_6-phosphate --> 1. (c)Fructose_6-phosphate

G12 Phospho-fructokinase cytosol 2.7.1.11

1. (c)Adenosine-triphosphate + 1. (c)Fructose_6-phosphate --> 1.
(c)Fructose_1,6-bisphosphate + 1. (c)Adenosine-diphosphate + 1.
(c)Proton

G13 Aldolase cytosol 5.3.1.1
1. (c)Fructose_1,6-bisphosphate --> 1. (c)Glyceraldehyde_3-phosphate +
1. (c)Glycerone_phosphate

G14
Triosephospht
Isomerase cytosol 5.3.1.1 1. (c)Glycerone_phosphate --> 1. (c)Glyceraldehyde_3-phosphate

G15 G-3P dehydrogenase cytosol 1.2.1.12

1. (c)Glyceraldehyde_3-phosphate + 1.
(c)Nicotinamide_Adenine_dinucleotide_(ox) + 1. (c)Orthophosphate -->
1. (c)1,3-Bisphospho-glycerate + 1. (c)Proton + 1.
(c)Nicotinamide_Adenine_dinucleotide_(red)

G16
Phospho-glycerate
kinase cytosol 2.7.2.3

1. (c)1,3-Bisphospho-glycerate + 1. (c)Adenosine-diphosphate --> 1.
(c)Adenosine-triphosphate + 1. (c)3-Phospho-glycerate

G17
Phospho-glycerate
mutase cytosol 5.4.2.1 1. (c)3-Phospho-glycerate --> 1. (c)2-Phospho-glycerate

G18 Enolase cytosol 4.2.1.11
1. (c)2-Phospho-glycerate --> 1. (c)Phosphoenolpyruvate +
1. (x)Water

 63

G19 Pyruvate kinase cytosol 2.7.1.40
1. (c)Phosphoenolpyruvate + 1. (c)Adenosine-diphosphate +
1. (c)Proton --> 1. (c)Adenosine-triphosphate + 1. (c)Pyruvate

cP50
Lactate
dehydrogenase cytosol 1.1.1.28

1. (c)Proton + 1. (c)Nicotinamide_Adenine_dinucleotide_(red) +
1. (c)Pyruvate --> 1. (c)Lactate +
1. (c)Nicotinamide_Adenine_dinucleotide_(ox)

P11
Pryuvate dehydration
complex E1 matrix 1.1.1.28

1. (m)Carbanion_Thiamine_pyrophosphate + 1. (m)Proton +
1. (m)Pyruvate --> 1. (m)Addition_Compound

P12
Pryuvate dehydration
complex E1 matrix 1.1.1.28

1. (m)Addition_Compound -->
1. (m)Hydroxyethel_Thiamine_pyrophosphate + 1. (x)Carbon_Dioxide

P13
Pryuvate dehydration
complex E1 matrix 1.2.4.1

1. (m)Hydroxyethel_Thiamine_pyrophosphate + 1. (m)Lipoamide --> 1.
(m)Acetyllipoamide + 1. (m)Carbanion_Thiamine_pyrophosphate

P15
Dihydrolipoyl
transacetylase matrix 1.2.4.1

1. (m)Acetyllipoamide + 1. (m)CoA --> 1. (m)Acetyl_CoA +
1. (m)Dihydrolipoamide

P16
Dihydrolipoyl
dehydrogenase matrix 1.2.4.1

1. (m)Dihydrolipoamide + 1. (m)Nicotinamide_Adenine_dinucleotide_(ox) -
-> 1. (m)Proton +
1. (m)Lipoamide + 1. (m)Nicotinamide_Adenine_dinucleotide_(red)

P99
Pyruvate Dehydration
Complex--Summary matrix 2.3.1.12

1. (m)CoA + 1. (m)Nicotinamide_Adenine_dinucleotide_(ox) +
1. (m)Pyruvate --> 1. (m)Acetyl_CoA + 1.
(m)Nicotinamide_Adenine_dinucleotide_(red) + 1. (x)Carbon_Dioxide

T10 Citrate synthase matrix 1.8.1.4
1. (m)Acetyl_CoA + 1. (m)Oxaloacetate + 1. (x)Water -->
1. (m)Citrate + 1. (m)CoA + 1. (m)Proton

T11 Aconidate hydratase matrix N/A 1. (m)Citrate --> 1. (m)cis-Aconitate + 1. (x)Water
T12 Aconidate hydratase matrix 2.3.3.1 1. (m)cis-Aconitate + 1. (x)Water --> 1. (m)isocitrate

T13
Isocitrate
dehydrogenase matrix 4.2.1.3

1. (m)isocitrate + 1. (m)Nicotinamide_Adenine_dinucleotide_(ox) --> 1.
(m)a-ketoglutarate + 1. (m)Nicotinamide_Adenine_dinucleotide_(red) + 1.
(x)Carbon_Dioxide

T14
α-ketoglutarate
dehydration complex matrix 4.2.1.3

1. (m)CoA + 1. (m)a-ketoglutarate + 1.
(m)Nicotinamide_Adenine_dinucleotide_(ox) --> 1.
(m)Nicotinamide_Adenine_dinucleotide_(red) + 1. (m)Succinyl_CoA + 1.
(x)Carbon_Dioxide

T15
Succinyl CoA
synthetase matrix 1.1.1.42

1. (m)Guanosine-diphosphate + 1. (m)Orthophosphate + 1.
(m)Succinyl_CoA --> 1. (m)CoA + 1. (m)Guanosine-triphosphate +
1. (m)Succinate

T16
Succinate
dehydrogenase matrix N/A

1. (m)Flavin_Adenine_dinucleotide_(ox) + 1. (m)Succinate -->
1. (m)Flavin_Adenine_dinucleotide_(red) + 1. (m)Fumarate

T17 Fumarase matrix 6.2.1.4 1. (m)Fumarate + 1. (x)Water --> 1. (m)L-Malate

 64

T18
Malate
dehydrogenase matrix 1.1.1.37

1. (m)L-Malate + 1. (m)Nicotinamide_Adenine_dinucleotide_(ox) --> 1.
(m)Proton + 1. (m)Nicotinamide_Adenine_dinucleotide_(red) + 1.
(m)Oxaloacetate

mT20 Malic Enzyme matrix
1.1.1.38-
40

1. (m)L-Malate + 1. (m)Nicotinamide_Adenine_dinucleotide_(ox) --> 1.
(m)Nicotinamide_Adenine_dinucleotide_(red) + 1. (m)Pyruvate +
1. (x)Carbon_Dioxide

cT20 Malic Enzyme cytosol
1.1.1.38-
40

1. (c)L-Malate + 1. (c)Nicotinamide_Adenine_dinucleotide_(ox) -->
1. (c)Nicotinamide_Adenine_dinucleotide_(red) + 1. (c)Pyruvate +
1. (x)Carbon_Dioxide

O199
NADH-Q reductase
(complex I)--summary matrix N/A

5. (m)Proton + 1. (m)Nicotinamide_Adenine_dinucleotide_(red) +
1. (m)Ubiquinone --> 4. (c)Proton + 1.
(m)Nicotinamide_Adenine_dinucleotide_(ox) + 1. (m)Ubiquinol

O299

Succinate-Q
reductase (complex
II)--summary matrix N/A

1. (m)Flavin_Adenine_dinucleotide_(red) + 1. (m)Ubiquinone -->
1. (m)Flavin_Adenine_dinucleotide_(ox) + 1. (m)Ubiquinol

O399

Cytochrome
reductase (complex
III)--summary matrix N/A

2. (m)Cyt_c_(ox) + 1. (m)Ubiquinol --> 2. (c)Proton +
2. (m)Cyt_c_(red) + 1. (m)Ubiquinone

O499

Cytochrome oxidase
(complex IV)--
summary matrix N/A

4. (m)Cyt_c_(red) + 12. (m)Proton + 1. (x)Molecular_Oxygen -->
8. (c)Proton + 4. (m)Cyt_c_(ox) + 2. (x)Water

O50
ATP Synthase--
summary matrix N/A

3.33333 (c)Proton + 1. (m)Adenosine-diphosphate +
1. (m)Orthophosphate --> 1. (m)Adenosine-triphosphate +
2.33333 (m)Proton + 1. (x)Water

mH12
Nucleoside
Diphosphate Kinase matrix 2.7.4.6

1. (m)Adenosine-diphosphate + 1. (m)Guanosine-triphosphate -->
1. (m)Adenosine-triphosphate + 1. (m)Guanosine-diphosphate

cX01 pyruvate carrier Xport: c->m None 1. (c)Proton + 1. (c)Pyruvate --> 1. (m)Proton + 1. (m)Pyruvate

cX02

MCT-1
(monocarboxylate
transporter) Xport: c->m None 1. (c)Proton + 1. (c)Lactate --> 1. (m)Proton + 1. (m)Lactate

cX021

MCT-1
(monocarboxylate
transporter) Xport: c->m None

1. (c)ß-HydroxyButyrate + 1. (c)Proton --> 1. (m)ß-HydroxyButyrate + 1.
(m)Proton

cX022

MCT-1
(monocarboxylate
transporter) Xport: c->m None

1. (c)Acetoacetate + 1. (c)Proton --> 1. (m)Acetoacetate +
1. (m)Proton

cX03 Dicarboxylate Xport: c->m None 1. (c)L-Malate + 1. (m)Orthophosphate --> 1. (c)Orthophosphate +

 65

transporter 1. (m)L-Malate

cX031
Dicarboxylate
transporter Xport: c->m None

1. (c)Succinate + 1. (m)Orthophosphate --> 1. (c)Orthophosphate + 1.
(m)Succinate

cX50
Orthophosphate
carrier Xport: c->m None

1. (c)Proton + 1. (c)Orthophosphate --> 1. (m)Proton +
1. (m)Orthophosphate

mX51 ATP-ADP translocase Xport: m->c None
1. (c)Adenosine-diphosphate + 1. (m)Adenosine-triphosphate -->
1. (c)Adenosine-triphosphate + 1. (m)Adenosine-diphosphate

G3P99
Glycerophosphate
Shuttle--Summary Xport: c->m N/A

1. (c)Proton + 1. (c)Nicotinamide_Adenine_dinucleotide_(red) +
1. (m)Flavin_Adenine_dinucleotide_(ox) -->
1. (c)Nicotinamide_Adenine_dinucleotide_(ox) +
1. (m)Flavin_Adenine_dinucleotide_(red)

MAS99
Malate Aspartate
Shuttle--Summary Xport: c->m N/A

2. (c)Proton + 1. (c)Nicotinamide_Adenine_dinucleotide_(red) +
1. (m)Nicotinamide_Adenine_dinucleotide_(ox) -->
1. (c)Nicotinamide_Adenine_dinucleotide_(ox) + 2. (m)Proton +
1. (m)Nicotinamide_Adenine_dinucleotide_(red)

LAC99
Lactate Shuttle--
Summary Xport: c->m N/A

2. (c)Proton + 1. (c)Nicotinamide_Adenine_dinucleotide_(red) +
1. (c)Pyruvate + 1. (m)Nicotinamide_Adenine_dinucleotide_(ox) --> 1.
(c)Nicotinamide_Adenine_dinucleotide_(ox) + 2. (m)Proton +
1. (m)Nicotinamide_Adenine_dinucleotide_(red) + 1. (m)Pyruvate

NADHDH NADH-DH--Summary Xport: c->m N/A

1. (c)Nicotinamide_Adenine_dinucleotide_(red) + 5. (m)Proton +
1. (m)Nicotinamide_Adenine_dinucleotide_(ox) --> 4. (c)Proton +
1. (c)Nicotinamide_Adenine_dinucleotide_(ox) +
1. (m)Nicotinamide_Adenine_dinucleotide_(red)

HLK99
Proton Transport--
Generic Xport: c->m N/A 1. (c)Proton --> 1. (m)Proton

H50
Energy Usage
Function--Generic matrix N/A

1. (c)Adenosine-triphosphate + 1. (x)Water --> 1. (c)Adenosine-
diphosphate + 1. (c)Proton + 1. (c)Orthophosphate

cK10
Betahydroxybutyrate
dehydrogenase cytosol 1.1.1.30

1. (c)ß-HydroxyButyrate + 1. (c)Nicotinamide_Adenine_dinucleotide_(ox) -
-> 1. (c)Acetoacetate + 1. (c)Proton + 1.
(c)Nicotinamide_Adenine_dinucleotide_(red)

mK10
Betahydroxybutyrate
dehydrogenase matrix 1.1.1.30

1. (m)ß-HydroxyButyrate + 1. (m)Nicotinamide_Adenine_dinucleotide_(ox)
--> 1. (m)Acetoacetate + 1. (m)Proton + 1.
(m)Nicotinamide_Adenine_dinucleotide_(red)

mK20 Thiophorase matrix 2.8.3.5
1. (m)Acetoacetate + 1. (m)Succinyl_CoA --> 1. (m)Aceto-acetyl_CoA +
1. (m)Succinate

mK21
Acetyl-CoA C-
Acetyltransferase matrix 2.3.1.9 1. (m)Aceto-acetyl_CoA + 1. (m)CoA --> 2. (m)Acetyl_CoA

 66

Appendix II
This is the source code for the program that manipulates the mathematical representations of the biochemical systems studied here.

// Productions: RESEARCH
// Solving Matrices: Math utility to solve a 2D Matrix
// Author: Douglas Walled
// June 23rd, 2005

 /********************MATRIX SOLVER.cpp: *************************
 ** **
 ** This program will read a labelled 2D matrix in from a file. It will **
 ** ask the user to specify which equations to consider when solving **
 ** and to specify inhomogenous terms, if any. The template utilizes **
 ** a third party numerical toolkit developed at the National Institute **
 ** of Technology. The 2D Matrix represents a system of m molecules by **
 ** n biochemical reactions. A menu is provided to manipulate the **
 ** inputs, retrieve outputs, and access SpecVBuilder.cpp and **
 ** BalanceChecker.cpp **
 ** **
 ***/

//**************************
//** Header Files **
//**************************
#include "DGW_jama_lu.h" // Includes 3rd party TNT library
#include <fstream> // Required for file I/O
#include <string> // Need for use of 'string' class
#include <cstring> // Required for strcmp()
#include <stdlib.h>

using namespace JAMA; // TNT namespace
using namespace std; // standard namespace
//#include <cstdlib> // Required for strchr()

//**********************************
//** Global Variables (reference only) **
//**********************************
//const int nMolecules // Number of Molecules in the System
//const int nReactions // Number of Reactions in the System
//const double Produced // Standard of Production/Consumption
//extern const int nAtoms // Number of Atoms comprising system Molecules
//extern const int nSpecies // Number of Total species known to the model

extern int newsize; // # Molecules after exclusion

extern int pref[nMolecules]; // Preferred order of molecules
extern char *spcfile; // File containing molecular specifications
extern char *inspecies; //File containing all Molecule definitions

char *infile = "Balanced Reactions.txt"; //File containing original matrix
char *outfile = "Summary.txt"; // File containing solution summary
char sTable[8]; // Name of Reaction Matrix
char sMolecule[nMolecules][8]; // Array of Molecule Names
char sReactions[nReactions][8]; // Array of Reaction Names
extern char sAtoms[nAtoms][8]; // Array of Atom Names

extern Array2D<double> AllSpecies; // Init Matrix for all molecule definitions

extern Array2D<double> SystemSpecies; // Init Matrix for incld. molecule defs.
extern Array2D<double> NetAtoms; // Init Matrix for net produced atomic species

Array2D<double> // Init Reaction Matrix object for program
 Reaction(nMolecules,nReactions);
Array2D<double> // Init Reaction Matrix object as an 'ORIGINAL'
 orgReaction(nMolecules,nReactions);
Array2D<double> // Init specification vector to 0 for all
 SpcV(nMolecules, 2, 0.0);
Array1D<double> // Solution x to the adjusted matrix
 Soln(nReactions, 0.0);
Array2D<double> // Overall production/destruction of species
 ProdVector(nMolecules,1, 0.0);
Array2D<double> // Hold molecular specifications from file
 MolecKey(nMolecules,2,0.0);

//***************************
//** Function Prototypes **
//***************************
int get_Reactions(char *); // Reads Reaction Matrix from infile

char MainMenu(); // Basic user interface
int display_Reactions(); // Prints modified Reaction Matrix to screen
int display_FileReact(char *); // Prints Reaction Matrix from file to screen
int display_Pivots(); // Prints LU Objects' pivoting of Reaction Matrix
int check_Balance(); // Checks that equations being used are balanced
int display_ProdVect(); // Displays all species produced/destroyed
int reset_Matrix(char *); // Resets Matrix to match original infile
int solve_System(void); // Solves Matrix where possible and prints solution

 67

int quick_Solve(); // Automatically writes basic solution to file
int Summary(char *); // Writes a summary of findings to a txt file
string EquationWriter(); // Writes the Equation

//Functions from SpcVBuilder file
int build_SpcV(); // User specifies b, esp. which equations to include
int get_SpcV(); // Displays current specifications
int file_Specs(char *); // Writes molecule specs to SpcV from file
int perm_Matrix(); // Permutes the reaction matrix according to SpcV

//**************************
//** MAIN PROGRAM **
//**************************
int main(void)
{
 int i;
 char choice;

 get_Reactions(infile);
 newsize = nMolecules;

 cout << "\nWELCOME TO MATRIX SOLVER V.2.0!!!\n";

 //initialize indices of SpcV from 0 to nMolecules
 for (i=0; i < SpcV.dim1(); i++) SpcV[i][0] = i;

 for(;;)
 {
 choice = MainMenu();

 try
 {
 switch(choice)
 {
 case 'v': display_Reactions();
 break;
 case 'f': display_FileReact(infile);
 break;
 case 'p': display_Pivots();
 break;
 case 'c': check_Balance();
 break;
 case 's': build_SpcV();
 break;
 case 'o': solve_System();
 break;
 case 'u': display_ProdVect();
 break;
 case 't': reset_Matrix(infile);
 break;
 case 'x': quick_Solve();

 break;
 case 'm': Summary(outfile);
 break;
 case 'q':
 return 0; //Ends main()
 default:
 break;
 }
 }//END TRY
 catch(int i)
 {
 switch(i)
 {
 case 1: cout << "\nMOLECULE NOT FOUND!!!\n\n";
 break;
 case 2: cout << "\nSAME SPECIFICATION!!! No change made\n\n";
 break;
 case 3: cout << "\nTRIVIAL CASE--SOLUTION IS 0!!!\n\n";
 break;
 case 4: cout << "\nPERMUTED MATRIX CAN'T BE SOLVED--CHANGE
 SPECIFICATIONS!\n\n";
 break;
 case 5: cout << "\nFILE NOT FOUND!!!\n\n";
 break;
 case 6: cout << "\nCANNOT BE SOLVED, MATRIX IS SINGULAR!!!\n\n";
 break;
 case 7: cout << "\nLESS EQUATIONS THAN VARIABLES! INCLUDE MORE
 MOLECULES!!!\n\n";
 break;
 case 8: cout << "\nONE OR MORE MOLECULES DOESN'T APPEAR IN "
 <<inspecies <<"!\n\n";
 break;
 default: cout << "\nUNDEFINED ERROR!!!\n";
 break;
 }//END SWITCH
 }//END TRY
 }//END for(;;)
}//END main() -- Exits program

/*********** MainMenu(): Simple user interface prompts user to choose action***********
 *********** and returns choice to execute a function above ***********/
char MainMenu()
{
 char ch;
 do
 {
 cout << "\n\n******Matrix Solver Main Menu (enter a letter):******\n\n";
 cout << "(v) View current matrix to be solved.\n";
 cout << "(f) View matrix from infile.\n";
 cout << "(p) View pivoting of matrix.\n";
 cout << "(c) Check to ensure that all reactions are truly balanced.\n";

 68

 cout << "(s) Change specifications of system molecules.\n";
 cout << "(o) Solve current matrix.\n";
 cout << "(u) Displays all net consumption and production given current solution.\n";
 cout << "(t) Reset to current matrix to match file.\n";
 cout << "(x) QuickSolve it!\n";
 cout << "(m) Print current summary to file.\n";
 cout << "(q) Quit program.\n\n";

 cin >> ch; cout << endl;

 }while(!strchr("vfpcsoutxmq",tolower(ch)));

 return tolower(ch);
}

/*********** get_Reactions(): Function reads Reaction matrix from file ***********
 *********** and writes to respective global arrays ***********/
int get_Reactions(char *)
{
 int i,j;

 ifstream in(infile, ios::in | ios::binary);

 if(!in)throw 5;

// in >> nMolecules >> nReactions;
 in >> sTable;

 for (j=0;j<nReactions;j++) in >> sReactions[j];

 for (i=0;i<nMolecules;i++)
 {
 in >> sMolecule[i];
 for (j=0;j<nReactions;j++)
 {
 in >> Reaction[i][j];
 }
 }

 in.close();

//Makes "Backup copy" of Reaction matrix
 orgReaction = Reaction.copy();

 return 0;
}

/*********** display_Reactions(): Function prints Reaction matrix to ***********
 *********** the screen. ***********/

int display_Reactions()
{
 int i,j;

 cout << "The current system of reactions is:\n\n";

 cout << sTable << "\t";
 for (j=0;j<nReactions;j++) cout << sReactions[j] << "\t";
 cout << "\n";
 for (i=0; i < newsize ;i++)
 {
 cout << sMolecule[(int)SpcV[i][0]] << "\t";
 for (j=0;j<nReactions;j++)
 {
 cout << Reaction[i][j] << "\t";
 }
 cout << "\n";
 }

 cout << endl << endl;

 cout << "Solving for the following b:\n";

 for(i=0; i<newsize; i++)
 {
 cout << "b[" << sMolecule[(int)SpcV[i][0]] << "]: " << SpcV[i][1] << "\n";
 }

 return 0;
}

/*********** display_FileReact(): Function prints Reaction matrix from ***********
 *********** original file to the screen. ***********/
int display_FileReact(char *)
{
 int i,j;

 cout << "The system of reactions is:\n\n";

 cout << sTable << "\t";
 for (j=0;j<nReactions;j++) cout << sReactions[j] << "\t";
 cout << "\n";
 for (i=0; i < nMolecules ;i++)
 {
 cout << sMolecule[i] << "\t";
 for (j=0;j<nReactions;j++)
 {
 cout << orgReaction[i][j] << "\t";
 }
 cout << "\n";
 }

 69

 cout << endl << endl;

 return 0;
}

/*********** display_Pivots(): Function prints LU pivoting of original ***********
 *********** matrix to the screen. ***********/
int display_Pivots()
{
 int i;

 Array2D<double> A = Reaction.copy();
 Array1D<int> P(Reaction.dim1());
 LU<double> B(A);
 P=B.getPivot();

 cout << "\nPivot vector P: \n";

 for (i=0; i < nMolecules; i++)
 {
 cout << "[" << i << "]: " << P[i] << "\n";
 }
 cout << endl << endl;

 return 0;
}

/*********** display_ProdVect(): Displays the production and use of all ***********
 *********** species included in the system. ***********/
int display_ProdVect()
{
 int i;

 Array2D<double> tmpSoln(nReactions,1, 0.0);
 for (i=0; i<nReactions; i++) tmpSoln[i][0] = Soln[i];

 ProdVector = matmult(orgReaction , tmpSoln);

 cout << "\n\nThe overall Production/Consumption vector is:\n";

 for (i=0; i < nMolecules ;i++)
 {
 cout << sMolecule[i] << ": \t" << ProdVector[i][0];
 cout << "\n";
 }
 return 0;
}

/*********** reset_Matrix(): Function restorest all values to match ***********
 *********** those contained in the infile. ***********/
int reset_Matrix(char *)
{
 int i;
 get_Reactions(infile);

 for(i=0; i < Soln.dim(); i++) {Soln[i] =0;}

 newsize = nMolecules;

 //reset SpecV
 for (i=0; i < SpcV.dim1(); i++) SpcV[i][0] = i;
 for (i=0; i < SpcV.dim1(); i++) SpcV[i][1] = 0;

 cout << "MATRIX SOLVER HAS BEEN FULLY RESET!";
 return 0;
}

/*********** Solve_System(): Function solves system of equations and ***********
 *********** prints that solution ***********/
int solve_System(void)
{
 int i,j;
 int Rank = Reaction.dim2();
 Array2D<double> A(Rank,Rank); //Use only top 'RANK' equations
 Array2D<double> slvReaction(newsize,Rank); //Use first 'NEWSIZE' equations
 Array1D<double> x(Rank), b(Rank), InhomB(newsize);

 // Checks to see if enough molecules have been included
 if(newsize < Rank) throw 7;

 for (i=0;i<Rank;i++)
 {
 for (j=0;j<Rank;j++) A[i][j] = orgReaction[(int)SpcV[i][0]][j];
 }

 LU<double> B(A);

 //Solve and report solution if first 'RANK' equations can be solved without pivoting
 if (B.isNonsingular())
 {
 cout << "\nSystem of initial " << Rank << " preferred equations CAN be solved.\n";
 cout << "Using " << Rank << " out of " << newsize << " included molecules.\n";

 for(i=0; i < Rank; i++) {b[i] = SpcV[i][1];}

 x = B.solve(b);

 70

 for(i=0; i < Rank; i++) Soln[i] = x[i];

 cout << "\nThe solution is:\n";
 for(i=0; i < Soln.dim(); i++) {cout << "x[" << i << "]: " << Soln[i] << "\n";}

 return 1;
 }
 else cout << "\nSINGULAR system of first " << Rank << " equations CANNOT be solved.\n";

 //Allow for pivoting, but still do not allow excluded molecules.
 for(i=0; i < newsize; i++) {InhomB[i] = SpcV[i][1];}
 for (i=0; i < newsize; i++)

 {
 for (j=0;j<Rank;j++) slvReaction[i][j] = orgReaction[(int)SpcV[i][0]][j];
 }

 LU<double> C(slvReaction);

 if (C.isNonsingular())
 {
 cout << "\nThe solution, utilizing all " << newsize << " included molecules:\n";

 x = C.solve(InhomB);

 for(i=0; i < Rank; i++) Soln[i] = x[i];

 cout << "\nThe solution is:\n";
 for(i=0; i < Soln.dim(); i++) {cout << "x[" << i << "]: " << Soln[i] << "\n";}

 return 1;
 }
 else
 {
 ofstream out(outfile, ios::out | ios::trunc);
 if(!out)throw 5;

 out << "Most recent specifications led to no solution.";
 out.close();

 throw 6;
 }

 return 0;
}

/*********** Summary(char *): Function prints vital information ***********
 *********** from current session to outfile ***********/

int Summary(char *)

{
 int i,j;

 ofstream out(outfile, ios::out | ios::trunc);
 if(!out)throw 5;

 out << "SUMMARY FOR MATRIX SOLVER V 2.0:\n\n";

 // Print Overall Equation
 out << EquationWriter();
 out << "\n\n";

 // Print Critical Numbers for this run
 out << nMolecules << "\tnMolecules\n" << nReactions << "\tnReactions\n";
 out << nAtoms << "\tnAtoms\n" << nSpecies << "\tnSpecies\n";
 out << Produced << "\tProduced\n\n";

 // Print Molecules' names, specifications, and procuction/consumption
 //Better formatting if viewing summary in excel:
 out << "Molecule:\t\tSpecification:\t\tNet Produced:\n";
 //Better formatting if viewing summary as .txt file:
 //out << "Molecule:\tSpecification:\tNet Produced:\n";
 for(i=0; i < nMolecules; i++)
 {
 out << sMolecule[(int)SpcV[i][0]] << "\t\t";
 //Better formatting if viewing summary in excel:
 if(SpcV[i][1] == -286.314159265359) out << "Excluded!" << "\t";
 //Better formatting if viewing summary as .txt file:
 //if(SpcV[i][1] == -286.314159265359) out << "Excluded!";
 else out << SpcV[i][1] << "\t";

 out << "\t";

 out << ProdVector[(int)SpcV[i][0]][0] << "\n";
 }

 // Print Reaction Rates of Solution
 out << "\n\nReaction rates:\n";
 for(i=0; i < nReactions; i++)
 {
 out << sReactions[i] << " \t";
 out << Soln[i] << "\n";
 }

 // Print Original Matrix
 out << "\n\nOriginal Matrix read in from file:\n";
 // Labels
 out << sTable << "\t";
 for (j=0;j<nReactions;j++) {out << sReactions[j] << "\t";}
 out << "\n";
 // Molecules and coefficients in ORIGINAL order
 for (i=0;i<nMolecules;i++)
 {

 71

 out << sMolecule[i] << "\t";
 for (j=0;j<nReactions;j++)
 {
 out << orgReaction[i][j] << "\t";
 }
 out << "\n";
 }
 // Molecules and coefficients in PERMUTED order
/* for (i=0;i<nMolecules;i++)
 {
 out << sMolecule[(int)SpcV[i][0]] << "\t";
 for (j=0;j<nReactions;j++)
 {
 out << orgReaction[(int)SpcV[i][0]][j] << "\t";
 }
 out << "\n";
 }
*/

 // Print System Species definitions
 out << "\n\nIncluded Species are defined as follows:\n" << "Species" << "\t";
 for (j=0; j<nMolecules; j++) out << sMolecule[j] << "\t";
 out << "\n";
 for (i=0; i < nAtoms ; i++)
 {
 out << sAtoms[i] << "\t";
 for (j=0; j<nMolecules; j++)
 {
 out << SystemSpecies[i][j] << "\t";
 }
 out << "\n";
 }

 // Print NetAtoms production matrix to check balance
 out << "\n\nAtomic Balance Matrix is:\n" << "Atomic" << "\t";
 for (j=0; j<nReactions; j++) out << sReactions[j] << "\t";
 out << "\n";
 for (i=0; i < nAtoms ; i++)
 {
 out << sAtoms[i] << "\t";
 for (j=0; j<nReactions; j++)
 {
 out << NetAtoms[i][j] << "\t";
 }
 out << "\n";
 }

 out.close();

 cout << "\n\nSummary file successfully written!\n";

 return 0;

}

/*********** EquationWriter(): Function returns an equation that ***********
 *********** represents current solution of system ***********/
string EquationWriter()
{
 int i,j;
 double delta = .001;
 char number[10];
 string Equation;
 Equation = "";

 for (i=0; i < nMolecules ;i++)
 {
 //Put net consumed (b < -0.001) species on left side of eqn
 if(ProdVector[i][0] < -(delta))
 {
 _gcvt(ProdVector[i][0],9,number); //translates to char string

 //Get rid of negative signs
 for(j=0; number[j]; j++) {number[j] = number[j+1];}

 Equation.insert(Equation.size(), number); //writes coeff. to Equation

 Equation += " ";

 Equation += sMolecule[i]; //writes Species name to Equation

 Equation += " + ";
 //DEBUG cout << Equation << "\n";
 }
 }
 Equation.erase(Equation.size()-3,2); //Removes last "+" sign and one space

 Equation += " --> ";

 for (i=0; i < nMolecules ;i++)
 {
 //Put net produced (b > 0.001) species on right side of eqn
 if(ProdVector[i][0] > delta)
 {
 _gcvt(ProdVector[i][0],9,number); //translates to char string
 Equation.insert(Equation.size(), number); //writes coeff. to Equation

 Equation += " ";

 Equation += sMolecule[i]; //writes Species name to Equation

 72

 Equation += " + ";
 //DEBUG cout << Equation << "\n";
 }
 }
 Equation.erase(Equation.size()-3,3); //Removes last "+" sign and two spaces
 return Equation;
}
/*********** quick_Solve(): Function solves system of equations and ***********
 *********** given infile preferences, prints to file ***********/
int quick_Solve()
{
 int i; //Must initialize SpcV
 for (i=0; i < SpcV.dim1(); i++) SpcV[i][0] = i;

 file_Specs(spcfile); // Load in user specified inclusion/inhomogenous values
 perm_Matrix(); // Permute Matrix according to user specifications
 solve_System(); // Solve the current system
 display_ProdVect(); // Display net productions
 check_Balance(); // Checks to make sure original equations are balanced

 cout << "\nOverall System can be represented by the following equation:\n\n";
 cout << EquationWriter();

 Summary(outfile); // Writes this solution to file called "Summary.txt"

 return 0;
}

// Productions: RESEARCH
// Specifying Solutions: Permutes Reaction Matrix for 'desirable solution'
// Author: Douglas Walled
// June 23rd, 2005

 /********************SpcVBuilder: ***************************************
 ** **
 ** This file contains the code necessary to provide a fully interfaced **
 ** opportunity for the user to create a "specification vector" for a **
 ** system of reactions being solved. This vector will be used to swap **
 ** rows of the reaction matrix and present it to the LU decomposer so **
 ** that molecules whose production/destruction rates are unknown are **
 ** omitted from the square matrix being solved, and all other molecules **
 ** have a specified rate of production/destruction (inhomogenous term). **
 ** **
 ***/

//**************************
//** Header Files **
//**************************
#include "DGW_jama_lu.h" // Includes 3rd party TNT library
#include <fstream> // Required for file I/O
#include <string> // Need for use of 'string' class
using namespace JAMA; // TNT namespace
using namespace std; // standard namespace

//**************************
//** Global Variables **
//**************************
//extern const int nMolecules=10; // Number of Molecules in the System
//extern const int nReactions=5; // Number of Reactions in the System
//extern const double Produced=1; // Standard of Production/Consumption
int newsize; // # Molecules after exclusion
int pref[nMolecules]; // Preferred order of molecules
char *spcfile = "MolecKey.txt"; // File containing molecular specifications

extern char sTable[8]; // Name of Reaction Matrix
extern char sMolecule[nMolecules][8]; // Array of Molecule Names
extern char orgMolecule[nMolecules][8]; // Array of 'Original' Molecule Names
extern char sReaction[nReactions][8]; // Array of Reaction Names
extern char orgReactions[nReactions][8]; // Array of 'Original' Reaction Names

extern Array2D<double> Reaction; // Initialize Reaction Matrix object

 73

extern Array2D<double> orgReaction; // Initialize Reaction Matrix object 'ORIGINAL'
extern Array2D<double> SpcV; // Initialize specification vector to 0 for all
extern Array2D<double> MolecKey; // Hold molecular specifications from file

//***************************
//** Function Prototypes **
//***************************
int build_SpcV(); // User specifies b, esp. which equations to include

char SpecMenu(); // Basic user interface
int get_Molecules(); // Displays list of molecules in the system
int get_SpcV(); // Displays current specifications
int file_Specs(char *); // Writes molecule specs to SpcV from file
int change_SpcV(); // Alters SpcV through prompted user interface
int excclude_Mol(); // Excludes a molecule from being used in solution
int include_Mol(); // Reincludes a molecule for solution attempts
int move_Mol(); // Move a molecule to the top of the current matrix
int perm_Matrix(); // Permutes the reaction matrix according to SpcV

/***
 *********** build_SpcV(): Function is as explained above. Due to its ***********
 *********** size, it was put in a second file for clarity. ***********
 ***/
int build_SpcV()
{
 char choice;

 cout << "\nPLEASE SPECIFY MOLECULES FOR INCLUSION AND PRODUCTION RATES.\n";

 for(;;)
 {
 choice = SpecMenu();

 try
 {
 switch(choice)
 {
 case 'm': get_Molecules();
 break;
 case 's': get_SpcV();
 break;
 case 'f': file_Specs(spcfile);
 break;
 case 'c': change_SpcV();
 break;
 case 'e': excclude_Mol();
 break;

 case 'i': include_Mol();
 break;
 case 'v': move_Mol();
 break;
 case 'p': perm_Matrix();
 break;
 case 'q':
 return 0; //Ends build_SpcV() call
 default:
 break;
 }
 }//END TRY
 catch(int i)
 {
 switch(i)
 {
 case 1: cout << "\nMOLECULE NOT FOUND!!!\n\n";
 break;
 case 2: cout << "\nSAME SPECIFICATION!!! No change made.\n\n";
 break;
 case 3: cout << "\nTRIVIAL CASE--SOLUTION IS 0!!!.\n\n";
 break;
 case 4: cout << "\nPERMUTED MATRIX CAN NOT BE SOLVED -- CHANGE
 SPECIFICATIONS!!!\n\n";
 break;
 case 5: cout << "\nFILE NOT FOUND!!!\n\n";
 break;
 case 6: cout << "\nCANNOT MOVE AN EXCLUDED MOLECULE!!!\n\n";
 break;
 default: cout << "\nUNDEFINED ERROR!!!\n";
 break;
 }//END SWITCH
 }//END TRY
 }//END for(;;)
}//END build_SpcV() -- return to call in 'switch(choice)' above

/*********** SpecMenu(): Simple user interface prompts user to choose action***********
 *********** and returns choice to execute a function above ***********/
char SpecMenu()
{
 char ch;
 do
 {
 cout << "\n\n*******What would you like to do? (enter a letter)*******\n\n";
 cout << "(m) View list of molecules in the system\n";
 cout << "(s) View current specification values\n";
 cout << "(f) Set Molecule specifications from file.\n";
 cout << "(c) Change a molecule's specification\n";
 cout << "(e) Exclude a molecule from solution attempts\n";
 cout << "(i) Re-include a molecule for solution attempts\n";
 cout << "(v) Move a molecule to the top of the current matrix\n";

 74

 cout << "(p) Permute Matrix according to current sepecifications\n";
 cout << "(q) Accept specifications and return to main menu\n\n";

 cin >> ch; cout << endl;

 }while(!strchr("msfceivpq",tolower(ch)));

 return tolower(ch);
}

/*********** get_Molecules(): Displays numbered, ordered list of rows/ ***********
 *********** Molecules in Reaction Matrix. ***********/
int get_Molecules()
{
 int i;

 cout << "MOLECULES IN REACTION MATRIX(in order): \n";
 for(i=0; i < nMolecules; i++)
 {
 cout << i <<") " << sMolecule[i] << " \t";
 if(!((i+1)%5)) cout << endl;
 }

 cout << endl << endl;
 return 0;
}

/*********** get_SpcV(): Displays SpcV to the screen. ***********
 *********** ***********/
int get_SpcV()
{
 int i,j;

 cout << "CURRENT MOLECULE SPECIFICATIONS: \n";
 for(i=0; i < nMolecules; i++)
 for(j=0; j<2; j++)
 {
 if(!j) cout << "Molecule: " << sMolecule[(int)SpcV[i][0]] << " \t";
 if(j)
 {
 cout << "Spec: ";
 if(SpcV[i][j] == -286.314159265359) cout << "Excluded!" << endl;
 else cout << SpcV[i][j] << endl;
 }
 }

 cout << endl;
 return 0;
}

/*********** file_Specs(): Reads file "Molec Key" and adjusts SpcV ***********
 *********** accordingly. ***********/
int file_Specs(char *)
{
 char Key[8];
 int i,j;

 cout << "Loading in specifications from file.\n\n";
 ifstream in(spcfile, ios::in | ios::binary);

 if(!in)throw 5;

 for(i=0; i<3; i++) in >> Key;

 for (i=0;i<nMolecules;i++)
 {
 in >> Key;
 in >> MolecKey[i][0];
 in >> MolecKey[i][1];
 }

 in.close();

// Automatically make appropriate changes to SpcV
 for (i=0;i<nMolecules;i++)
 {
 if(MolecKey[i][0] == 1)
 {
 for(j=0; j<nMolecules; j++)
 {
 if(SpcV[j][0] == i)
 SpcV[j][1] = -286.314159265359;
 }
 }else for(j=0; j<nMolecules; j++)
 {
 if(SpcV[j][0] == i)
 SpcV[j][1] = MolecKey[i][1];
 }
 }
/*
//OUTPUTS FOR DEBUG
 cout << "MKey\tExcl\tSpc\n"; // Headers

 for (i=0; i < nMolecules; i++) // Matrix
 {
 cout << sMolecule[i] << "\t";
 cout << MolecKey[i][0] << "\t" << MolecKey[i][1] << "\n";
 }
 cout << "\n\n";
 get_SpcV(); // SpcV out

 75

*/
 return 0;
}
/*********** change_SpcV(): Prompts user through menu options to create ***********
 *********** a "specification vector" for the reaction matrix***********/
int change_SpcV()
{
 int i,j;
 int index = -1;
 double s;
 string mol("");
 char indMolecule[nMolecules][8]; //lowercase index to check names against

 cout << "\nEnter the name of the molecule you would like to specify: \n";
 cout << "(Or type 'reset' to reset all to 0)\t";

 cin >> mol; //User Inputs molecule name, converted to lowercase

 for(i=0; i < mol.length(); i++) mol[i] = tolower(mol[i]);

 if(mol == "reset") //Resets if 'reset' was input and returns
 {
 for (i=0; i < SpcV.dim1(); i++) SpcV[i][1] = 0;
 cout << "\nAll specifications have been reset to 0(steady state).\n\n";
 return 0;
 }

 //Finds Molecule to be changed
 for(i=0; i < nMolecules; i++)
 {
 for(j=0; sMolecule[i][j]; j++) indMolecule[i][j] = tolower(sMolecule[i][j]);
 indMolecule[i][j] = '\0';
 if(indMolecule[i] == mol) index = i;
 }
 if(index<0) throw 1; //Error handled if no match

 //Outputs current value, prompts for new value
 for(i=0; i < nMolecules; i++)
 {
 if(SpcV[i][0] == index)
 {
 cout << "\nCurrent specification of " << sMolecule[index] << " is " <<
SpcV[i][1];
 cout << "\n\nSet new production/consumption value: \n";
 cout << "(X=0 for steady state, X<0 for consumed, X>0 for produced) ";

 cin >> s;

 if(s == SpcV[i][1]) throw 2; //Error if entry is same as current specification
 else SpcV[i][1] = s;

 //Displays new value
 cout << "\nNew specification for " << mol << " is: ";

 if(SpcV[i][1] == -286.314159265359) cout << "Excluded!" << endl;
 else cout << SpcV[i][1] << endl;
 }
 }
 return 0;
}

/*********** exclude_Mol(): Prevents a molecdule from being considered ***********
 *********** in the LU decomposition object. ***********/
int excclude_Mol()
{
 int i,j;
 int index = -1;
 string mol("");
 char indMolecule[nMolecules][8]; //lowercase index to check names against

 cout << "\nEnter the name of the molecule you would like to exclude: \n";

 cin >> mol; //User Inputs molecule name, converted to lowercase
 for(i=0; i < mol.length(); i++) mol[i] = tolower(mol[i]);

 //Finds Molecule to be excluded, and does so.
 for(i=0; i < nMolecules; i++)
 {
 for(j=0; sMolecule[i][j]; j++) indMolecule[i][j] = tolower(sMolecule[i][j]);
 indMolecule[i][j] = '\0';
 if(mol == indMolecule[i]) index = i;
 }
 if(index<0) throw 1; //Error handled if no match

 for(i=0; i < nMolecules; i++)
 {
 if(SpcV[i][0] == index) SpcV[i][1] = -286.314159265359;

 }
 cout << sMolecule[index] << " has been excluded.";

 return 0;
}

/*********** include_Mol(): Allows user to "put back" a molecule that ***********
 *********** was once excluded from SpcV. ***********/
int include_Mol()
{
 int i,j;
 int index = -1;
 string mol("");

 76

 char indMolecule[nMolecules][8]; //lowercase index to check names against

 cout << "\nEnter the name of the molecule you would like to Re-include: \n";

 cin >> mol; //User Inputs molecule name, converted to lowercase
 for(i=0; i < mol.length(); i++) mol[i] = tolower(mol[i]);

 //Finds Molecule to be included, and does so.
 for(i=0; i < nMolecules; i++)
 {
 for(j=0; sMolecule[i][j]; j++) indMolecule[i][j] = tolower(sMolecule[i][j]);
 indMolecule[i][j] = '\0';
 if(mol == indMolecule[i]) index = i;
 }
 if(index<0) throw 1; //Error handled if no match

 for(i=0; i < nMolecules; i++)
 {
 if(SpcV[i][0] == index)SpcV[i][1] = 0;
 }
 cout << sMolecule[index] << " is included, and has been set to 0.";

 return 0;
}

/*********** move_Mol(): Allows user to move a molecule from anywhere ***********
 *********** in SpcV to the top of SpcV. Others shift down. ***********/
int move_Mol()
{
 int i,j,marker;
 int index = -1;
 string mol("");
 char indMolecule[nMolecules][8]; //lowercase index to check names against

 cout << "\nEnter the name of the molecule you would like to move to the top: \n";

 cin >> mol; //User Inputs molecule name, converted to lowercase
 for(i=0; i < mol.length(); i++) mol[i] = tolower(mol[i]);

 //Finds Molecule to be moved
 for(i=0; i < nMolecules; i++)
 {
 for(j=0; sMolecule[i][j]; j++) indMolecule[i][j] = tolower(sMolecule[i][j]);
 indMolecule[i][j] = '\0';
 if(mol == indMolecule[i])
 {
 index = i; //Set index, then error if try to move excluded mol
 for(j=0; j<nMolecules; j++)
 {if(SpcV[j][0] == index && SpcV[j][1] == -286.314159265359)throw 6;}

 }
 }
 if(index<0) throw 1; //Error handled if no match

 //Outputs for debug
// cout << "\nPrevious order was: ";
// for (j=0; j < newsize; j++) cout << sMolecule[pref[j]] << " ";

 //Swap and permute
 for(j=1; j<newsize; j++)
 {
 if(pref[j] == index) marker = j;
 }

 for(j=marker; j >0; j--) {pref[j] = pref[j-1];}
 pref[0] = index;

//Outputs for debug
// cout << "\n\nNew order is: ";
// for (j=0; j < newsize; j++) cout << sMolecule[pref[j]] << " ";

 //Copy SpcV into spv_tmp for storage
 Array2D<double> spv_tmp = SpcV.copy();

 //Permute SpcV
 // cout << "\nSpcV: \n";
 for (i=0; i < newsize; i++)
 {
 SpcV[i][0] = pref[i];
 for(j=0; j < newsize; j++)
 {
 if(spv_tmp[j][0] == pref[i]) SpcV[i][1] = spv_tmp[j][1];
 }

//Outputs for Debug:
// cout << SpcV[i][0] << " " << SpcV[i][1] << "\n";

 //Permute Reaction
 for (j=0; j<nReactions; j++)
 {
 Reaction[i][j] = orgReaction[pref[i]][j];
 }
 }
 return 0;
}

/*********** perm_Matrix(): Permutes reaction matrix based on SpcV and ***********
 *********** checks solvability. Permutes until solvable. ***********
 *********** Prefers 1 net produced, and rest steady state. ***********/
int perm_Matrix()
{

 77

 int h, i, j, k, l, m;
 static int prod[nMolecules];
 static int std_st[nMolecules];
 static int excld[nMolecules];
 static int othr[nMolecules];

 //Finds and displays indices of molecules that are to be
 //excluded at steady state, or produced/consumed at known amount
 h=0; j=0; k=0; l=0; m=0;
 for(i=0; i < (nMolecules); i++)
 {
 if(abs(SpcV[i][1]) == Produced) prod[h++] = SpcV[i][0];
 else if(SpcV[i][1] == -286.314159265359) excld[j++] = SpcV[i][0];
 else if(SpcV[i][1] == 0) std_st[k++] = SpcV[i][0];
 else othr[m++] = SpcV[i][0];
 }
 excld[j] = '\0'; std_st[k] = '\0'; prod[h] = '\0'; othr[m] = '\0';
/* Outputs for debug
 cout << "\nstd_st: "; for(l=0; l<k; l++) cout << std_st[l] << " ";
 cout << "\nexcld: "; for(l=0; l<j; l++) cout << excld[l] << " ";
 cout << "\nprod: "; for(l=0; l<h; l++) cout << prod[l] << " ";
 cout << "\nother: "; for(l=0; l<m; l++) cout << othr[l] << " ";
*/
 //Permutes Reaction Matrix (and sMolecule) to suggest inclusion and exclusion
 //in solution. Will try to put things produced by 'Produced' near top,
 //then 'std_st', and 'excld' at bottom
 for(i=0; i<h; i++) pref[i] = prod[i]; //prod[el] first
 for(i=0; i<k; i++) pref[i+h] = std_st[i]; //std_st[el] next
 for(i=0; i<m; i++) pref[i+h+k] = othr[i]; //prod/cons next
 for(i=0; i<j; i++) pref[i+h+k+m] = excld[i]; //excld[el] at end
 newsize = nMolecules - j; //#Molecules after exclusion

/* Outputs for debug
 cout << "\n\nA preferred order is: ";
 for (i=0; i < nMolecules; i++) cout << pref[i] << " ";
*/
 cout << "\nPERMUTING>>>>>>>>>>>>>\n\n";

 //Copy SpcV into spv_tmp for storage
 Array2D<double> spv_tmp = SpcV.copy();

 //Permute SpcV
 // cout << "\nSpcV: \n";
 for (i=0; i < nMolecules; i++)
 {
 SpcV[i][0] = pref[i];
 for(j=0; j < nMolecules; j++)
 {
 if(spv_tmp[j][0] == pref[i]) SpcV[i][1] = spv_tmp[j][1];
 }

 // cout << SpcV[i][0] << " " << SpcV[i][1] << "\n";

 //Permute Reaction
 for (j=0; j<nReactions; j++)
 {
 Reaction[i][j] = orgReaction[pref[i]][j];
 }
 }
 return 0;
}
// Productions: RESEARCH
// Solving Matrices: Math utility to solve a 2D Matrix
// Author: Douglas Walled
// August 8th, 2005

 /********************BALANCE CHECKER.cpp: ***********************
 ** **
 ** This file will read a labelled 2D matrix in from a file containing **
 ** the atomic proportions of all molecules in the model. It will then **
 ** build a matrix called SystemMolecules, which will contain ONLY the **
 ** molecules being included in a particular run. It will then execute **
 ** matrix multiplication with the balanced reaction matrix to check if **
 ** the original reactions from file are in fact balanced. This is a **
 ** secondary safegaurd intended to minimize human error, and is not **
 ** essential to MatrixSolver.cpp's function. **
 ** **
 ***/

//**************************
//** Header Files **
//**************************
#include "DGW_jama_lu.h" // Includes 3rd party TNT library
#include <iostream>
#include <fstream> // Required for file I/O
#include <string> // Need for use of 'string' class
#include <cstring> // Required for strcmp()
using namespace JAMA; // TNT namespace
using namespace std; // standard namespace
//#include <cstdlib> // Required for strchr()

//**************************
//** Global Variables **
//**************************
char *inspecies = "Species Library.txt"; //File containing all Molecule definitions
char *outspecies = "Balanced Molecules.txt"; //File with included Molecule definitions

extern int newsize; // # Molecules after exclusion
extern int pref[nMolecules]; // Preferred order of molecules

extern char *spcfile; // File containing molecular specifications
extern char *infile; //File containing original matrix
extern char *outfile; // File containing solution summary

 78

extern char sTable[8]; // Name of Reaction Matrix
extern char sMolecule[nMolecules][8]; // Array of Molecule Names
extern char sReactions[nReactions][8]; // Array of Reaction Names
char sAtoms[nAtoms][8]; // Array of Atom Names

Array2D<double> // Init Matrix object containing all molecule definitions
 AllSpecies(nAtoms,nSpecies,77.0);
Array2D<double> // Init Matrix object containing incld. molecule defs.

 SystemSpecies(nAtoms,nMolecules,0.0);
Array2D<double> // Init Matrix to contain net produced atomic species
 NetAtoms(nAtoms,nReactions);
extern Array2D<double> Reaction; // Init Reaction Matrix object for program to act on
extern Array2D<double> orgReaction; // Init Reaction Matrix object as an 'ORIGINAL'
extern Array2D<double> SpcV; // Init specification vector to 0 for all
extern Array2D<double> MolecKey; // Hold molecular specifications from file

//***************************
//** Function Prototypes **
//***************************
int check_Balance(); // Checks that equations being used are balanced

/***
 *********** check_Balance(): Uses Matrix multiplication to check if ***********
 *********** reactions are actually balanced. ***********
 ***/
check_Balance()
{
 int i,j,k,l;
 string dmy(" "); // Dummy variable to waste input
// float dum; // For C code trial
 int warning = 0; // Warning flag can be toggled
 int Found = 0; // Toggles whether molecule found or not
 double delta = 0.001; // Error margin
 char indMolecule[nMolecules][8]; //lowercase index to check names against below:

 for(i=0; i<nMolecules; i++)
 {
 for(j=0; sMolecule[i][j]; j++) {indMolecule[i][j] = tolower(sMolecule[i][j+1]);}
 }

 // OPENS SpeciesLibrary.txt to read in the entire list of molecule definitions
 ifstream in(inspecies, ios::in | ios::binary);
 if(!in){cout << inspecies; throw 5;}

 in >> dmy; //Ignores table name

 for(i=0; i < nSpecies; i++)
 {
 in >> dmy;
 }

 for(k=0; k<nAtoms; k++)
 {
 in >> sAtoms[k]; // Loads in array of atom names
 for(i=0; i < nSpecies; i++) // Constructs entire Species Library
 {
 if(!in) in.open(inspecies);
 in >> AllSpecies[k][i];
 }
 }
 in.close();

 // OPENS SpeciesLibrary.txt again, writes table of Included Molecules, SystemSpecies
 ifstream in2(inspecies, ios::in | ios::binary);
 in2 >> dmy; // Ignores table name

 Found = 0;
 for(i=0; i < nSpecies ; i++) // Searches first row
 {
 in2 >> dmy;

 for(l=0; l < dmy.length(); l++) dmy[l] = tolower(dmy[l]);

 for(j=0; j<nMolecules; j++)
 {
 if(indMolecule[j] == dmy) // If finds included molecule, copies column
 {
 Found++;
 for(k=0; k<nAtoms; k++) {SystemSpecies[k][j] = AllSpecies[k][i];}
 }
 }
 }
 in2.close();

 // Writes SystemMolecules to text file "Balanced Molecules.txt"
 ofstream out(outspecies, ios::out | ios::trunc);
 if(!out)throw 5;

 out << "Atomic" << "\t";
 for (j=0; j<nMolecules; j++) out << sMolecule[j] << "\t";
 out << "\n";
 for (i=0; i < nAtoms ; i++)
 {
 out << sAtoms[i] << "\t";
 for (j=0; j<nMolecules; j++)
 {
 out << SystemSpecies[i][j] << "\t";

 79

 }
 out << "\n";
 }
 out.close();

 cout << "\n**" << Found << " species definitions have been included in SystemSpecies**";
 if(Found != nMolecules) throw 8;

 // Does SystemSpecies X orgReaction = NetAtoms
 NetAtoms = matmult(SystemSpecies, orgReaction);

 // Searches NetAtoms for nonzero entries, and reports molecules and reactions involved
 for(i=0; i<nAtoms; i++)
 {
 for(j=0; j<nReactions; j++)
 {
 if(abs(NetAtoms[i][j]) > delta)
 {
 warning = 1;
 cout << "\n\n******* WARNING!!! Unbalanced Reaction Found!!!
 *********\n";
 cout << "Try checking the definitions of all molecules containing ";
 cout << sAtoms[i] << " in reaction " << sReactions[j];
 cout << "\nAlso check that all coefficients are balanced in the
 above reaction.";
 }
 }
 }

 // Prints NetAtoms to screen if a warning is flagged, else provides pos. feedback
 if(warning)
 {
 cout << "\n\nThe NetAtoms Matrix is:\n\n" << "Atomic" << "\t";
 for (j=0; j<nReactions; j++) cout << sReactions[j] << "\t";
 cout << "\n";
 for (i=0; i < nAtoms ; i++)
 {
 cout << sAtoms[i] << "\t";
 for (j=0; j<nReactions; j++)
 {
 cout << NetAtoms[i][j] << "\t";
 }
 cout << "\n";
 }
 }else cout << "\n*** ALL REACTIONS ARE BALANCED!!! ***\n";

 return 0;
}

 The following files are the header files for the external
dependencies of the above code. For the most part, these
comprise part of a third party numerical toolkit developed at the
National Institute of Technology (NIST).

 DGW_Globals.h is a header file containing the system’s
global variables for easy access and alteration.

/**** DGW_Gloabals.h *******
** **
** Global variables. **
** **
**************************/
//Global Variables of note!
const int nMolecules = xx ; // enter values for ‘xx’
const int nReactions = xx ;
const int nAtoms = xx ;
const int nSpecies = xx ;
const double Produced = xx ;

/**** DGW_tnt.h *******
** **
** Include header files. **
** **
***********************/

// Includes all relevant headers by only including dgw_tnt.h
#ifndef TNT_H
#define TNT_H

 80

#include "dgw_Globals.h" //Global Variables shared by program files

#include "tnt_array2d.h" //2 Dimensional array class definition
#include "tnt_array2d_utils.h" //2 Dimensional array class utils

#endif

/******** TNT_array2D.h **********
** **
** Defining 2D Matrix type. **
** **
*********************************/

/*
*
* Template Numerical Toolkit (TNT): Two-dimensional numerical array
*
* Mathematical and Computational Sciences Division
* National Institute of Technology,
* Gaithersburg, MD USA
*
*
* This software was developed at the National Institute of Standards and
* Technology (NIST) by employees of the Federal Government in the course
* of their official duties. Pursuant to title 17 Section 105 of the
* United States Code, this software is not subject to copyright protection
* and is in the public domain. NIST assumes no responsibility whatsoever for
* its use by other parties, and makes no guarantees, expressed or implied,
* about its quality, reliability, or any other characteristic.
*
*/

#ifndef TNT_ARRAY2D_H
#define TNT_ARRAY2D_H

#include <cstdlib>
#include <iostream>
#ifdef TNT_BOUNDS_CHECK
#include <assert.h>
#endif

namespace TNT
{

/**
 Tempplated two-dimensional, numerical array which
 looks like a conventional C multiarray.
 Storage corresponds to C (row-major) ordering.
 Elements are accessed via A[i][j] notation.

 <p>
 Array assignment is by reference (i.e. shallow assignment).
 That is, B=A implies that the A and B point to the
 same array, so modifications to the elements of A
 will be reflected in B. If an independent copy
 is required, then B = A.copy() can be used. Note
 that this facilitates returning arrays from functions
 without relying on compiler optimizations to eliminate
 extensive data copying.

 <p>
 The indexing and layout of this array object makes
 it compatible with C and C++ algorithms that utilize
 the familiar C[i][j] notation. This includes numerous
 textbooks, such as Numercial Recipes, and various
 public domain codes.

 <p>
 This class employs its own garbage collection via
 the use of reference counts. That is, whenever
 an internal array storage no longer has any references
 to it, it is destoryed.
*/
template <class T>
class Array2D
{

 private:
 T** v_;
 int m_;
 int n_;
 int *ref_count_;

 void initialize_(int m, int n);
 void copy_(T* p, const T* q, int len) const;
 void set_(const T& val);
 void destroy_();
 inline const T* begin_() const;
 inline T* begin_();

 public:

 typedef T value_type;

 Array2D();
 Array2D(int m, int n);
 Array2D(int m, int n, T *a);
 Array2D(int m, int n, const T &a);
 inline Array2D(const Array2D &A);
 inline Array2D & operator=(const T &a);
 inline Array2D & operator=(const Array2D &A);

 81

 inline Array2D & ref(const Array2D &A);
 Array2D copy() const;
 Array2D & inject(const Array2D & A);
 inline T* operator[](int i);
 inline const T* operator[](int i) const;
 inline int dim1() const;
 inline int dim2() const;
 inline int ref_count() const;
 ~Array2D();

};

/**
 Copy constructor. Array data is NOT copied, but shared.
 Thus, in Array2D B(A), subsequent changes to A will
 be reflected in B. For an indepent copy of A, use
 Array2D B(A.copy()), or B = A.copy(), instead.
*/
template <class T>
Array2D<T>::Array2D(const Array2D<T> &A) : v_(A.v_), m_(A.m_),
 n_(A.n_), ref_count_(A.ref_count_)
{
 (*ref_count_)++;
}

/**
 Create a new (m x n) array, WIHOUT initializing array elements.
 To create an initialized array of constants, see Array2D(m,n,value).

 <p>
 This version avoids the O(m*n) initialization overhead and
 is used just before manual assignment.

 @param m the first (row) dimension of the new matrix.
 @param n the second (column) dimension of the new matrix.
*/
template <class T>
Array2D<T>::Array2D(int m, int n) : v_(0), m_(m), n_(n), ref_count_(0)
{
 initialize_(m,n);
 ref_count_ = new int;
 *ref_count_ = 1;
}

/**
 Create a new (m x n) array, initializing array elements to
 constant specified by argument. Most often used to

 create an array of zeros, as in A(m, n, 0.0).

 @param m the first (row) dimension of the new matrix.
 @param n the second (column) dimension of the new matrix.
 @param val the constant value to set all elements of the new array to.
*/
template <class T>
Array2D<T>::Array2D(int m, int n, const T &val) : v_(0), m_(m), n_(n) ,
 ref_count_(0)
{
 initialize_(m,n);
 set_(val);
 ref_count_ = new int;
 *ref_count_ = 1;

}

/**
 Create a new (m x n) array, as a view of an existing one-dimensional
 array stored in C order, i.e. right-most dimension varying fastest.
 (Often referred to as "row-major" ordering.)
 Note that the storage for this pre-existing array will
 never be garbage collected by the Array2D class.

 @param m the first (row) dimension of the new matrix.
 @param n the second (column) dimension of the new matrix.
 @param a the one dimensional C array to use as data storage for
 the array.
*/
template <class T>
Array2D<T>::Array2D(int m, int n, T *a) : v_(0), m_(m), n_(n) ,
 ref_count_(0)
{
 T* p = a;
 v_ = new T*[m];
 for (int i=0; i<m; i++)
 {
 v_[i] = p;
 p += n;
 }
 ref_count_ = new int;
 ref_count_ = 2; / this avoid destorying original data. */

}

/**
 Used for A[i][j] indexing. The first [] operator returns
 a conventional pointer which can be dereferenced using the
 same [] notation.

 If TNT_BOUNDS_CHECK macro is define, the left-most index (row index)
 is checked that it falls within the array bounds (via the

 82

 assert() macro.) Note that bounds checking can occur in
 the row dimension, but the not column, since
 this is just a C pointer.
*/
template <class T>
inline T* Array2D<T>::operator[](int i)
{
#ifdef TNT_BOUNDS_CHECK
 assert(i >= 0);
 assert(i < m_);
#endif

return v_[i];

}

template <class T>
inline const T* Array2D<T>::operator[](int i) const { return v_[i]; }

/**
 Assign all elemnts of A to a constant scalar.
*/
template <class T>
Array2D<T> & Array2D<T>::operator=(const T &a)
{
 set_(a);
 return *this;
}
/**
 Create a new of existing matrix. Used in B = A.copy()
 or in the construction of B, e.g. Array2D B(A.copy()),
 to create a new array that does not share data.

*/
template <class T>
Array2D<T> Array2D<T>::copy() const
{
 Array2D A(m_, n_);
 copy_(A.begin_(), begin_(), m_*n_);

 return A;
}

/**
 Copy the elements to from one array to another, in place.
 That is B.inject(A), both A and B must conform (i.e. have
 identical row and column dimensions).

 This differs from B = A.copy() in that references to B
 before this assignment are also affected. That is, if
 we have
 <pre>

 Array2D A(m,n);
 Array2D C(m,n);
 Array2D B(C); // elements of B and C are shared.

</pre>
 then B.inject(A) affects both and C, while B=A.copy() creates
 a new array B which shares no data with C or A.

 @param A the array from elements will be copied
 @return an instance of the modifed array. That is, in B.inject(A),
 it returns B. If A and B are not conformat, no modifications to
 B are made.

*/
template <class T>
Array2D<T> & Array2D<T>::inject(const Array2D &A)
{
 if (A.m_ == m_ && A.n_ == n_)
 copy_(begin_(), A.begin_(), m_*n_);

 return *this;
}

/**
 Create a reference (shallow assignment) to another existing array.
 In B.ref(A), B and A shared the same data and subsequent changes
 to the array elements of one will be reflected in the other.
 <p>
 This is what operator= calls, and B=A and B.ref(A) are equivalent
 operations.

 @return The new referenced array: in B.ref(A), it returns B.
*/
template <class T>
Array2D<T> & Array2D<T>::ref(const Array2D<T> &A)
{
 if (this != &A)
 {
 (*ref_count_) --;
 if (*ref_count_ < 1)
 {
 destroy_();
 }

 m_ = A.m_;
 n_ = A.n_;
 v_ = A.v_;
 ref_count_ = A.ref_count_;

 83

 (*ref_count_) ++ ;

 }
 return *this;
}

/**
 B = A is shorthand notation for B.ref(A).
*/
template <class T>
Array2D<T> & Array2D<T>::operator=(const Array2D<T> &A)
{
 return ref(A);
}

/**
 @return the size of the first dimension of the array, i.e.
 the number of rows.
*/
template <class T>
inline int Array2D<T>::dim1() const { return m_; }

/**
 @return the size of the second dimension of the array, i.e.
 the number of columns.
*/
template <class T>
inline int Array2D<T>::dim2() const { return n_; }

/**
 @return the number of arrays that share the same storage area
 as this one. (Must be at least one.)
*/
template <class T>
inline int Array2D<T>::ref_count() const
{
 return *ref_count_;
}

template <class T>
Array2D<T>::~Array2D()
{
 (*ref_count_) --;

 if (*ref_count_ < 1)
 destroy_();
}

/* private internal functions */

template <class T>
void Array2D<T>::initialize_(int m, int n)

{

 T* p = new T[m*n];
 v_ = new T*[m];
 for (int i=0; i<m; i++)
 {
 v_[i] = p;
 p+=n;
 }
 m_ = m;
 n_ = n;
}

template <class T>
void Array2D<T>::set_(const T& a)
{
 T *begin = &v_[0][0];
 T *end = begin+ m_*n_;

 for (T* p=begin; p<end; p++)
 *p = a;

}

template <class T>
void Array2D<T>::copy_(T* p, const T* q, int len) const
{
 T *end = p + len;
 while (p<end)
 *p++ = *q++;

}

template <class T>
void Array2D<T>::destroy_()
{

 if (v_ != 0)
 {
 delete[] (v_[0]);
 delete[] (v_);
 }

 if (ref_count_ != 0)
 delete ref_count_;
}

/**
 @returns location of first element, i.e. A[0][0] (mutable).
*/
template <class T>
const T* Array2D<T>::begin_() const { return &(v_[0][0]); }

 84

/**
 @returns location of first element, i.e. A[0][0] (mutable).
*/
template <class T>
T* Array2D<T>::begin_() { return &(v_[0][0]); }

/**
 Create a null (0x0) array.
*/
template <class T>
Array2D<T>::Array2D() : v_(0), m_(0), n_(0)
{
 ref_count_ = new int;
 *ref_count_ = 1;
}

} /* namespace TNT */

#endif
/* TNT_ARRAY2D_H */

/******* TNT_array2D_utils.h ********
** **
** Tools for 2D Matrix type. **
** **
*********************************/
#ifndef TNT_ARRAY2D_UTILS_H
#define TNT_ARRAY2D_UTILS_H

#include <cstdlib>
#include <cassert>

namespace TNT
{

/**
 Write an array to a character outstream. Output format is one that can
 be read back in via the in-stream operator: two integers
 denoting the array dimensions (m x n), followed by m
 lines of n elements.

*/
template <class T>
std::ostream& operator<<(std::ostream &s, const Array2D<T> &A)
{
 int M=A.dim1();
 int N=A.dim2();

 s << M << " " << N << "\n";

 for (int i=0; i<M; i++)
 {
 for (int j=0; j<N; j++)
 {
 s << A[i][j] << " ";
 }
 s << "\n";
 }

 return s;
}

/**
 Read an array from a character stream. Input format

 85

 is two integers, denoting the dimensions (m x n), followed
 by m*n whitespace-separated elments in "row-major" order
 (i.e. right-most dimension varying fastest.) Newlines
 are ignored.

 <p>
 Note: the array being read into references new memory
 storage. If the intent is to fill an existing conformant
 array, use <code> cin >> B; A.inject(B)); </code>
 instead or read the elements in one-a-time by hand.

 @param s the charater to read from (typically <code>std::in</code>)
 @param A the array to read into.
*/
template <class T>
std::istream& operator>>(std::istream &s, Array2D<T> &A)
{

 int M, N;

 s >> M >> N;

 Array2D<T> B(M,N);

 for (int i=0; i<M; i++)
 for (int j=0; j<N; j++)
 {
 s >> B[i][j];
 }

 A = B;
 return s;
}

/**
 Matrix Multiply: compute C = A*B, where C[i][j]
 is the dot-product of row i of A and column j of B.

 @param A an (m x n) array
 @param B an (n x k) array
 @return the (m x k) array A*B, or a null array (0x0)
 if the matrices are non-conformant (i.e. the number
 of columns of A are different than the number of rows of B.)

*/

template <class T>
Array2D<T> matmult(const Array2D<T> &A, const Array2D<T> &B)
{

 if (A.dim2() != B.dim1())
 return Array2D<T>();

 int M = A.dim1();
 int N = A.dim2();
 int K = B.dim2();

 Array2D<T> C(M,K);

 for (int i=0; i<M; i++)
 for (int j=0; j<K; j++)
 {
 T sum = 0;

 for (int k=0; k<N; k++)
 sum += A[i][k] * B [k][j];

 C[i][j] = sum;
 }

 return C;

}

} // namespace TNT

#endif

 86

/********* DGW_jama_lu.h **********
** **
** Code for LU Decomposition. **
** **
*********************************/
#ifndef JAMA_LU_H
#define JAMA_LU_H

#include "DGW_tnt.h"

using namespace TNT;

namespace JAMA
{

 /** LU Decomposition.
 <P>
 For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
 unit lower triangular matrix L, an n-by-n upper triangular matrix U,
 and a permutation vector piv of length m so that A(piv,:) = L*U.
 If m < n, then L is m-by-m and U is m-by-n.
 <P>
 The LU decompostion with pivoting always exists, even if the matrix is
 singular, so the constructor will never fail. The primary use of the
 LU decomposition is in the solution of square systems of simultaneous
 linear equations. This will fail if isNonsingular() returns false.
 */
template <class Real>
class LU
{
 /* Array for internal storage of decomposition. */
 Array2D<Real> LU_;
 int m, n, pivsign;
 Array1D<int> piv;

 Array2D<Real> permute_copy(const Array2D<Real> &A,
 const Array1D<int> &piv, int j0, int j1)
 {
 int piv_length = piv.dim();

 Array2D<Real> X(piv_length, j1-j0+1);

 for (int i = 0; i < piv_length; i++)
 for (int j = j0; j <= j1; j++)
 X[i][j-j0] = A[piv[i]][j];

 return X;
 }

 Array1D<Real> permute_copy(const Array1D<Real> &A,
 const Array1D<int> &piv)
 {
 int piv_length = piv.dim();
 if (piv_length != A.dim())
 return Array1D<Real>();

 Array1D<Real> x(piv_length);

 for (int i = 0; i < piv_length; i++)
 x[i] = A[piv[i]];

 return x;
 }

 public :

 /** LU Decomposition
 @param A Rectangular matrix
 @return LU Decomposition object to access L, U and piv.
 */

 LU (const Array2D<Real> &A) : LU_(A.copy()), m(A.dim1()), n(A.dim2()),
 piv(A.dim1())

 {

 // Use a "left-looking", dot-product, Crout/Doolittle algorithm.

 int i=0;
 int j=0;
 int k=0;

 for (i = 0; i < m; i++) {
 piv[i] = i;
 }
 pivsign = 1;
 Real *LUrowi = 0;;
 Array1D<Real> LUcolj(m);

 // Outer loop.

 for (j = 0; j < n; j++)
 { // Make a copy of the j-th column to localize references.

 87

 for (i = 0; i < m; i++)
 {
 LUcolj[i] = LU_[i][j];
 }

 // Apply previous transformations.

 for (int i = 0; i < m; i++)
 {
 LUrowi = LU_[i];

 // Most of the time is spent in the following dot product.

 int kmax = min(i,j);
 double s = 0.0;
 for (k = 0; k < kmax; k++)
 {
 s += LUrowi[k]*LUcolj[k];
 }

 LUrowi[j] = LUcolj[i] -= s;
 }

 // Find pivot and exchange if necessary.

 int p = j;
//PKM for (int i = j+1; i < m; i++) {
 for (i = j+1; i < m; i++)
 {
 if (abs(LUcolj[i]) > abs(LUcolj[p]))
 {
 p = i;
 }
 }
 if (p != j)
 {
 for (k = 0; k < n; k++)
 {
 double t = LU_[p][k];
 LU_[p][k] = LU_[j][k];
 LU_[j][k] = t;
 }
 k = piv[p];
 piv[p] = piv[j];
 piv[j] = k;
 pivsign = -pivsign;
 }

 // Compute multipliers.

 if ((j < m) && (LU_[j][j] != 0.0))
 {

 for (i = j+1; i < m; i++)
 {
 LU_[i][j] /= LU_[j][j];
 }
 }
 }
 }

 /** Is the matrix nonsingular?
 @return 1 (true) if upper triangular factor U (and hence A)
 is nonsingular, 0 otherwise.
 */

 int isNonsingular () {
 for (int j = 0; j < n; j++) {
 if (LU_[j][j] == 0)
 return 0;
 }
 return 1;
 }

 /** Return lower triangular factor
 @return L
 */

 Array2D<Real> getL () {
 int nn= n<m ? n : m; //PKM
//PKM Array2D<Real> L_(m,n);
 Array2D<Real> L_(m,nn);//PKM
 for (int i = 0; i < m; i++) {
//PKM for (int j = 0; j < n; j++) {
 for (int j = 0; j < nn; j++) {//PKM
 if (i > j) {
 L_[i][j] = LU_[i][j];
 } else if (i == j) {
 L_[i][j] = 1.0;
 } else {
 L_[i][j] = 0.0;
 }
 }
 }
 return L_;
 }

 /** Return upper triangular factor
 @return U portion of LU factorization.
 */

 Array2D<Real> getU () {
 int mm= n<m ? n : m; //PKM
//PKM Array2D<Real> U_(n,n);
 Array2D<Real> U_(mm,n);//PKM

 88

//PKM for (int i = 0; i < n; i++) {
 for (int i = 0; i < mm; i++) {//PKM
 for (int j = 0; j < n; j++) {
 if (i <= j) {
 U_[i][j] = LU_[i][j];
 } else {
 U_[i][j] = 0.0;
 }
 }
 }
 return U_;
 }

 /** Return pivot permutation vector
 @return piv
 */

 Array1D<int> getPivot () {
//PKM return p;
 return piv;
 }

 /** Compute determinant using LU factors.
 @return determinant of A, or 0 if A is not square.
 */

 Real det () {
 if (m != n) {
 return Real(0);
 }
 Real d = Real(pivsign);
 for (int j = 0; j < n; j++) {
 d *= LU_[j][j];
 }
 return d;
 }

 /** Solve A*X = B
 @param B A Matrix with as many rows as A and any number of columns.
 @return X so that L*U*X = B(piv,:), if B is nonconformant, returns
 0x0 (null) array.
 */

 Array2D<Real> solve (const Array2D<Real> &B)
 {

 /* Dimensions: A is mxn, X is nxk, B is mxk */

 if (B.dim1() != m) {
 return Array2D<Real>(0,0);
 }
 if (!isNonsingular()) {

 return Array2D<Real>(0,0);
 }

 // Copy right hand side with pivoting
 int nx = B.dim2();

 Array2D<Real> X = permute_copy(B, piv, 0, nx-1);

 // Solve L*Y = B(piv,:)
 for (int k = 0; k < n; k++) {
 for (int i = k+1; i < n; i++) {
 for (int j = 0; j < nx; j++) {
 X[i][j] -= X[k][j]*LU_[i][k];
 }
 }
 }
 // Solve U*X = Y;
 for (int k = n-1; k >= 0; k--) {
 for (int j = 0; j < nx; j++) {
 X[k][j] /= LU_[k][k];
 }
 for (int i = 0; i < k; i++) {
 for (int j = 0; j < nx; j++) {
 X[i][j] -= X[k][j]*LU_[i][k];
 }
 }
 }
 return X;
 }

 /** Solve A*x = b, where x and b are vectors of length equal
 to the number of rows in A.

 @param b a vector (Array1D> of length equal to the first dimension
 of A.
 @return x a vector (Array1D> so that L*U*x = b(piv), if B is nonconformant,
 returns 0x0 (null) array.
 */

 Array1D<Real> solve (const Array1D<Real> &b)
 {

 /* Dimensions: A is mxn, X is nxk, B is mxk */

 if (b.dim1() != m) {
 return Array1D<Real>();
 }
 if (!isNonsingular()) {
 return Array1D<Real>();
 }

 89

 Array1D<Real> x = permute_copy(b, piv);

 // Solve L*Y = B(piv)
 for (int k = 0; k < n; k++) {
 for (int i = k+1; i < n; i++) {
 x[i] -= x[k]*LU_[i][k];
 }
 }

 // Solve U*X = Y;
//PKM for (int k = n-1; k >= 0; k--) {
 for (k = n-1; k >= 0; k--) {
 x[k] /= LU_[k][k];
 for (int i = 0; i < k; i++)
 x[i] -= x[k]*LU_[i][k];
 }

 return x;
 }

}; /* class LU */

} /* namespace JAMA */

#endif
/* JAMA_LU_H */

	Yale University
	EliScholar – A Digital Platform for Scholarly Publishing at Yale
	11-15-2006

	Cellular Oxidative Efficiency: A New Approach to Calculating Theoretical P/O Ratios
	Douglas Walled
	Recommended Citation

	ThesisCoverPage
	ThesisATPFINAL

