
Yale University
EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Medicine Thesis Digital Library School of Medicine

11-15-2006

Cellular Oxidative Efficiency: A New Approach to
Calculating Theoretical P/O Ratios
Douglas Walled

Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl

This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital
Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

Recommended Citation
Walled, Douglas, "Cellular Oxidative Efficiency: A New Approach to Calculating Theoretical P/O Ratios" (2006). Yale Medicine Thesis
Digital Library. 302.
http://elischolar.library.yale.edu/ymtdl/302

http://elischolar.library.yale.edu?utm_source=elischolar.library.yale.edu%2Fymtdl%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/yale_med?utm_source=elischolar.library.yale.edu%2Fymtdl%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl/302?utm_source=elischolar.library.yale.edu%2Fymtdl%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu


 
 
 
 
 

Cellular Oxidative Efficiency:  
A New Approach to Calculating Theoretical P/O Ratios 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Douglas Walled 
 
 

Yale University School of Medicine 
 
 

2006 
 



 
 
 
 
 

Cellular Oxidative Efficiency: A New Approach to Calculating Theoretical P/O Ratios 
 
 
 
 
 
 
 
 

A Thesis Submitted to the 
Yale University School of Medicine 

in Partial Fulfillment of the Requirements for the 
Degree of Doctor of Medicine 

 
 
 
 
 
 
 
 

by 
 

Douglas Walled 
 

2006 
 
 

 

 

 

 



 2

 

CELLULAR OXIDATIVE EFFICIENCY: A NEW APPROACH TO CALCULATING 

THEORETICAL  P/O RATIOS. Douglas G. Walled (Sponsored by Paul K. Maciejewski) 

Magnetic Resonance Research Center, Department of Psychiatry, Yale University, School of 

Medicine, New Haven, CT. 
 

 For decades the oxidative efficiency of cellular metabolism has been under 

investigation. After numerous reports of varied stoichiometric measurements, consensus in 

the literature has begun moving toward two currently accepted theoretical P/O ratios (the 

number of adenosine triphosphate (ATP) molecules formed for every oxygen atom 

consumed): 2.5 for NADH-linked substrates and 1.5 for FADH2-linked substrates. It is 

shown here, however, that the currently accepted theoretical values are inappropriately 

calculated underestimates, and that P/O ratios of real biochemical systems are variable.   

 The complete oxidative metabolism of glucose, beta-hydroxybutyrate, malate, pyruvate, 

and succinate, utilizing three different electron shuttles (or exclusive mitochondrial 

metabolism) and two different values of the H+/ATP ratio (4 and 13/3) is examined using a 

new method of analysis. Calculations are made within the rigid mathematical framework of 

linear algebra, relying on the Law of Conservation of Matter as a first principle.  

 Calculated P/O values from systems modeled after cell-free mitochondrial extracts 

ranged from 2.711 to 3.183, or 3.000 to 3.500 depending on H+/ATP ratios of 13/3 or 4/1, 

respectively. These estimates are within the range of measured values (1.07 - 3.73) but are 

higher than the commonly accepted theoretical values of ~2.5 and ~1.5 for NADH and 

FADH2-linked substrates, respectively. A new view of the P/O ratio as variable, based on 
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specific details of molecular physiology, is offered as a potentially useful means for 

understanding variation in measured values of the P/O ratio reported in the literature. 
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Introduction 

 For decades the stoichiometry of cellular oxidative phosphorylation has been under 

investigation as a means of measuring metabolic efficiency. Since the realization that 

phosphorylation reactions were coupled with the oxidation of organic compounds in the 

earlier part of last century (1, 2) biochemists have made countless attempts to quantify the 

stoichiometric ratio for this process. The characteristic measure originally implemented and 

now entrenched by tradition is the P/O ratio: the number of adenosine triphosphate (ATP) 

molecules formed for every oxygen atom consumed. Recent literature and textbooks suggest 

that there are two set mechanistic values of the P/O ratio (to be described shortly), and that 

the process of theoretically deriving these ratios is well understood and supported by 

experimental measurements. It will be shown, however, that the currently accepted 

theoretical values are inappropriately calculated underestimates. In addition, the P/O ratio of 

real biochemical systems should be considered variable, instead of being forced into one of 

two mechanistic values. The potential ratios span an essentially continuous range depending 

on a number of factors, and the true calculation of theoretical P/O ratios is more complex 

than has been considered to date. After describing the historical issues of measuring and 

calculating the P/O ratio, a new methodology will be outlined and applied. This method will 

supply more reliable estimates of theoretical P/O ratios for several substrates, and offer 

insight into conflicting measurements seen in the literature. 
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Measuring P/O, An Historic Problem 

 The P/O ratio (using pyruvate as a substrate) was initially measured by Kalckar and 

Belitzer to have a value of 2 (1,3), and shortly re-determined with confidence to be 3 in the 

oft cited work by Ochoa in 1943 (4). It was thought that this single value represented the 

efficiency of aerobic respiration. By extension, considering the chemical equation for the 

complete oxidation of glucose should give the theoretical ATP yield for metabolizing that 

substrate. 

1 C6H12O6  +  6 O2    6 CO2  +  6 H2O 

If 12 atoms of oxygen (from 6 molecules of O2) are consumed by machinery that produces 

three high energy phosphate bonds per oxygen atom consumed (P/O = 3), then 36 molecules 

of ATP must be produced when glucose is fully oxidized. This first suggestion still survives 

as dogma in some biochemistry textbooks today (5). Predicting ATP yields will be 

considered later in the discussion section, however the rest of the Introduction will focus 

specifically on the problem of the P/O ratio.  

 

 Conflict over the value of the P/O ratio has existed since its inception. Dissenters such 

as Lehninger and Bartley sided with Kalckar and Belitzer, reporting values closer to 2, and 

criticizing Ochoa’s value of 3 (which was reported as a corrected value in his original 
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publication) as having been “arrived at by making corrections of questionable validity for 

dephosphorylation." (6, 7) Still others backed Ochoa, tauting values of 3 (8). Although no set 

P/O ratio was officially settled upon in the 40s and 50s, people did agree that the mechanistic 

ratio must be an integer (most reported measurements were not integers, but were rounded as 

a result of error correction in the discussion). 

 

The Chemiosmotic Hypothesis, a paradigm shift 

 The introduction of the chemiosmotic hypothesis (9) removed the restriction that the 

P/O ratio must be an integer. Chemiosmotic Theory describes oxidative metabolism as two 

independent but linked processes. The first process is the translocation of protons from the 

mitochondrial matrix to the cytosol, coupled to the oxioreductive reactions of the electron 

transport chain (ETC). The second process is the opposite—translocation of protons from the 

cytosol to the matrix, coupled to the phosphorylation reaction that makes ATP (10). Reduced 

electron carriers produced in earlier steps of energy metabolism (such as NADH and FADH2) 

funnel their electrons into molecular Oxygen (O2) through the massive protein complexes of 

the ETC. As these electrons flow in a steady state system, protons moving into the matrix, 

driving the ATPase to phosphorylate ATP, balance the protons moving out through the ETC 

complexes. These complimentary processes result in the maintenance of a constant 

chemiosmotic gradient. Since these processes are linked through the common medium of 

protons, it is not necessary that there be a whole number ratio between ATP produced, and 

oxygen consumed. Instead, exactly balancing proton translocations to maintain a steady state 

determines the ratio.   
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P/O Measures Continue to No Avail 

 After the introduction of the chemiosmotic hypothesis, numerous P/O ratios were 

experimentally determined using many different methodologies and several different 

substrates. Though the system studied was almost always a cell-free mitochondrial extract, 

the organ and species from which the native tissues were harvested varied. Experiments were 

carried out in a wide variety of prepared media containing (most commonly) one of the 

following five substrates: glucose, β-hydroxybutyrate, malate, pyruvate, and succinate.  

  

 Reported P/O ratios from the literature have appeared in various forms: as ranges, 

means with standard deviations, or even single values with no mention of error (especially in 

earlier reports). Since these inconsistent measures cannot be meaningfully compared with 

statistics, they are reviewed here as ranges from the lowest to the highest possible measure 

reported within a publication (see Table 1). Over the last sixty years, biochemists have 

reported P/O ratios for five substrates spanning from 1.07 to 2.2 for succinate and 1.86 to 

3.73 for the other four common substrates (see Figure 1). Since the succinate to fumarate 

oxidation step produces an FADH2 and bypasses the first part of the ETC, many have tried to 

consider P/O ratios associated with it to be distinct from other substrates that produce mostly 

NADH in their oxidation. In order to force this result, studies measuring the P/O ratio of 

succinate oxidation generally include an inhibitor that blocks complex I of the ETC, often 

lowering the measured P/O ratio (first demonstrated experimentally by Greengard et al, 

1959).  The ETC, FADH2-linked, and NADH-linked substrates will be discussed in detail 

shortly.  
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 The variability of measured P/O ratios, reflecting disagreement in the literature, led to 

many analyses and reviews accounting for how others had miscalculated, over or under 

corrected, or simply mismeasured the P/O ratio. Researchers began striving to simplify the 

wealth of findings. Currently, many biochemists believe that the issue is practically settled, 

and that definitive P/O values exist. The trend is to correct the numerous measurements 

toward a P/O ratio of 1.5 for succinate- or FADH2-linked substrates, and 2.5 for NADH-

linked substrates (11, 12, 13), values that appear in current textbooks (14, 15). Some 

contemporary studies have continued to question these values however, claiming that 1.5 and 

2.5 are underestimates (16, 17, 18), an opinion shared by the author to be justified herein. 

 

Calculating the P/O Ratio, A New Hope 

 By 1980 the state of disagreement between P/O measurements drove biochemists to 

begin investigating a means to calculate the P/O ratio. Some groups attempted sophisticated 

methods of calculating P/O ratios utilizing non-equilibrium thermodynamics (19, 20, 21, 22). 

However, these calculations rely on measured values of concentrations of metabolic 

intermediates. Due to the reliance upon measured values, they are not purely theoretical, and 

are subject to the same experimental errors measured P/O ratios have suffered in the past.  

 

 The more commonly accepted way to calculate a theoretic P/O ratio is a simple 

arithmetic combination of two other ratios given by the chemiosmotic theory. These are the 

H+/2e- ratio (also called H+/O ratio because one atom of oxygen accepts two electrons as the 

final reaction of the ETC) and the H+/ATP ratio. These ratios, their values, and how they are 

combined to calculate currently accepted P/O ratios are described below. 
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The H+/2e- Ratio  

 The H+/2e- ratio is the number of protons translocated by an ETC complex per two 

electrons passing through its oxioreductive center. The ETC contains four complexes (I-

NADH/Q reductase, II-Succinate/Q reductase, III-cytochrome reductase, and IV-cytochrome 

oxidase). Since only complexes I, III, and IV translocate protons (thus having an H+/2e- 

ratio), they are often referred to as site 1, site 2, and site 3 of the ETC, respectively. Earlier 

studies demonstrated an H+/2e- ratio of four for at all three sites (23, 24, 25, 26). These 

studies did not take into consideration the important distinction between scalar protons and 

vector protons, however. A scalar proton is one that is produced or consumed in the cytosol 

or matrix without being consumed or produced, respectively, in the opposite compartment. A 

vector proton (i.e. one that is transported) is consumed in one compartment and produced in 

the other with a 1:1 ratio.  

 

 Other studies used the notion of scalar and vector protons to give a more precise 

indication of H+/2e- ratios at individual ETC complexes. For example, even though Villalobo 

demonstrated that four protons appear in the cytosol as two electrons flow through site 2 

(25), this does not mean that site 2 pumps four protons. In fact, it is now widely accepted that 

site 2 pumps two protons vectorily, and 2 scalar protons appear in the cytosol when two 

electrons flow through it (27).  Similarly, Antonini et. al. have clearly shown that when two 

electrons flow through site 3, two scalar protons disappear from the matrix and two protons 

are vectorily pumped to the cytosol (28), which agreed with previous work by Thelen et al. 

(29). Site 1 is believed to truly pump four protons (30), though a scalar proton does still 
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disappear from the matrix (30). The exact mechanisms of all reactions within the ETC 

complexes (especially proton pumping) are still not completely known, thus currently 

accepted H+/2e- ratios are not absolutely certain. However, it is generally accepted as 

accurate that site 1 translocates four protons with an additional proton disappearing from the 

matrix, site 2 translocates two protons with two additional protons appearing in the cytosol, 

and site 3 translocates two protons with additional protons disappearing from the matrix. See 

Figure 2a & 2b for a complete summary of the ETC as described.  

 

 

H+/ATP Ratio 

 The maintenance of the electrochemical gradient generated by the electron transport 

chain drives ATP formation via the inner mitochondrial membrane-associated ATPase. 

Traditionally, the H+/ATP ratio (the number of protons translocated from cytosol to matrix 

per ATP produced) is said to have two components: transport and ATP formation. The 

transport component is generally accepted as a single proton cotransported into the matrix 

with an orthophosphate (HPi
-1, or Pi) in an electroneutral exchange (31). The ATP translocase 

swaps a matrix ATP-4 into the cytosol while bringing a cytosolic ADP-3 into the matrix in an 

electrogenic exchange (32) that does not contribute to the H+/ATP ratio. The second 

component (how many protons must be transported across the ATPase to drive the 

production of an ATP) is the subject of some controversy. Mitchell proposed the first value: 

two protons translocated into the matrix per ATP produced, including transport (33). Shortly 

thereafter, other groups found the ratio to be two not including transport, giving an overall 

H+/ATP ratio of three (34, 35). The two vs. three debate waged for some time (reviewed in 
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36). In 1983, a convincing study demonstrated that the overall H+/ATP ratio should be four 

including transport (37), the value used most often in P/O ratio calculations. This implies the 

ATPase requires the translocation of three protons to generate one ATP, a value accepted by 

many people today. At the time however, some dissenters still insisted on an overall ratio of 

three (38), and Vink et. al. argued that the H+/ATP ratio was variable, ranging from 2.15-3.6 

(39).  

 

 The discrepancy between measurements, as well as advances in technology and 

methodologies of determining the physical structure of the ATPase, have driven biochemists 

to a new approach. Many now believe that the H+/ATP does not have to be measured, but 

instead is determined by an intrinsic ratio of ATPase subunits. Since the nanomotors 

comprising the moving core of the ATPase (namely subunits F0 and F1) are mechanically 

coupled, the ratio of their subunits represents the non-transport portion of the H+/ATP ratio 

(40, 41). Since the F1 subunit has three binding sites for ADP, one full revolution of the 

ATPase core will result in the production of three molecules of ATP. If every F0 subunit c 

takes up a cytosolic proton for transport as it rotates, after a full revolution the total number 

of protons transported to make three molecules of ATP is equal to the number of c subunits 

in F0. Thus, the H+/ATP ratio should be the number of F0 c subunits divided by three ATPs 

formed, plus one (for Pi transport). Unfortunately, the number of F0 subunits in mammalian 

mitochondria has not been definitively measured to the author’s knowledge. It is well 

characterized in several other examples, however (see Table 2). These values lead some to 

believe the human F0/F1 ratio should be 10/3 (13), resulting in a total H+/ATP ratio of 13/3 

or 4.33 (10/3 H+ plus 1 H+ for Pi transport) instead of 4 (3 H+ plus 1 H+ for Pi) as cited above.  
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Current P/O Ratio Calculations: an Oversimplification? 

 As outlined above, the values for the H+/2e- ratio and the H+/ATP ratio are reasonably 

agreed upon. Given these ratios, one can argue that the ATP/O ratio (i.e. the P/O ratio) is the 

sum of the H+/2e- ratios of ETC complexes involved in a substrate’s complete oxidation, 

divided by the H+/ATP ratio. For example, a landmark review calculated the theoretical P/O 

ratio for the oxidation of NADH and FADH2. By extending the calculation, the theoretical 

ATP yield for the full oxidation of a single molecule of glucose (reflecting back to Ochoa’s 

original work) is then reported (12). This calculation gives a yield of ~30 ATP per glucose, 

another value commonly published in textbooks (14, 15). The derivation of the P/O ratio is 

presented here in depth, but a closer analysis of the ATP yield is reserved for the discussion 

section. 

 As mentioned above, a simplification of reviewed H+/2e- ratio literature leads the 

authors of (12) to the conclusion that the H+/O ratios for sites 1, 2, and 3 are 4:1, 2:1, and 4:1, 

respectively. Also mentioned earlier, the H+/ATP ratio is assumed to be 4. Thus, a 

mechanistic P/O ratio can be derived for each site of the ETC by dividing the two values, 

thus giving sites 1, 2, and 3 P/O ratios of 1:1, 0.5:1, and 1:1, respectively. Since NADH 

donates its electrons first at complex I (which subsequently pass through sites 2 and 3), the 

P/O ratio for a substrate that is oxidized to NADH would be 2.5 (1 + 0.5 + 1). On the other 

hand, FADH2 donates its electrons at complex II (which then only pass through sites 2 and 3) 

giving a P/O ratio of 1.5 (0.5 + 1).  

 Though it may sound complicated, the above calculation is merely an arithmetic 

combination of several values, and it is grossly oversimplified. A true calculation of a 

substrate-specific theoretic P/O ratio should be dependent upon several variables and 
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considerably more involved. First, it should be noted that most substrates will not yield 

strictly one of two P/O ratios (i.e. one for NADH-linked substrates, and another for FADH2-

linked substrates). It should be immediately obvious that substrates are oxidized into a 

mixture of both NADH- and FADH2- linked intermediates, thus a substrate-specific P/O 

should never be exactly 2.5 or 1.5. Second, there is an issue of electron shuttling. When a 

process such as glycolysis produces reduced equivalents (e.g. NADH) in the cytosol, instead 

of directly transporting NADH (a huge, charged molecule) into the matrix, various shuttles 

(e.g. the glycerophosphate shuttle or the malate/aspartate shuttle) functionally transport the 

electrons (each with different costs of transport, and the potential to switch from NADH-

linked to FADH2-linked). These shuttles are reviewed below. Third, the existence of a 

chemiosmotic gradient requires compartmentalization and necessitates accounting for energy 

consuming transport processes between the cytosol and matrix (which may be different 

depending on the substrate and/or its intermediates). Fourth, substrate-level phosphorylation 

can alter the P/O ratio in metabolically similar systems. For example, the two molecules of 

ATP produced anaerobically in glycolysis mean that glucose will always have a slightly 

higher P/O ratio than pyruvate when all other conditions are the same. Fifth, allowing the 

constraint of a steady-state system greatly simplifies the calculation and makes the result 

more physiologically meaningful (as a respiring mitochondrion in vivo is overall at a steady 

state). Finally, at steady state, all catabolic reactions associated with the given substrate must 

be known, and all reaction byproducts must be accounted for simultaneously. Molecular 

intermediates across all reactions must remain zero. For example, in complete oxidative 

glucose metabolism, more than 70 molecules participating in over 50 reactions must exactly 

balance to yield the overall equation: 
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C6H12O6  +  6 O2    6 CO2  +  6 H2O 

Devising and assuring such a balance is a cumbersome and complex task, particularly one 

that does not lend itself to mental manipulation.   

 

Electron Shuttles, Altering Metabolic Efficiency 

 A number of different electron shuttles transport electron equivalents from the cytosol to 

the matrix. These shuttles utilize different transports and can ultimately change the ETC 

point of entry of a metabolic intermediate. For example, the glycerophosphate (G3P) shuttle 

is less efficient because it converts cytosolic NADH equivalents (which enter the ETC at 

Complex I) to matrix FADH2 equivalents (which enter the ETC at Complex II, and 

ultimately translocate less protons to be used by the ATPase) (42, 43). The malate-aspartate 

shuttle (MAS) effectively shuttles NADH equivalents from cytosol to matrix in an 

irreversible mechanism (44, 45, 46). An NADH equivalent begotten via the MAS, however, 

is worth slightly less energetically because it requires the transport of one proton with the 

glutamate/aspartate exchanger See Figure 2a and 2b for mechanistic details.  

 

 As another alternative, there is an NADH dehydrogenase (NADH-DH) situated in the 

mitochondrial membrane facing the cytosol that is linked to Complex I of the ETC. This 

NADH-DH can directly utilize cytosolic NADH equivalents, but is limited in its distribution. 

Specifically, the NADH-DH has only been demonstrated to exist in the heart, and has been 

proven to be absent from the liver (47, 48). See figure 2c for mechanistic details. The 

utilization of different electron shuttles (of which there may be more than the three 
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mentioned and examined here), and the proportion in which they are used directly affects the 

efficiency of oxidative metabolism, thereby altering the P/O ratio.  

 

Summary of Introduction 

 Many have struggled to define a set stoichiometric relationship between the oxygen 

consumption and ATP production of energy metabolism for over half of a century, leaving 

behind a vastly diverse collection of data, theories, and measured ratios in the literature. 

Discrepant measurements have led to the use of widely accepted H+/O and H+/ATP ratios in 

order to calculate theoretical P/O ratios. These theoretical values are meant to guide a 

selection process of which measured P/O ratios are the most valid. Unfortunately, these 

theoretical values have only led to selective criticism of experiments that measured 

significantly different values. The calculation of the theoretical values themselves have not 

been scrutinized. Given the potential errors and oversimplification of the calculations 

outlined above, a more rigorous calculation is required. Such a calculation should be strictly 

grounded in an indisputable physical law (here, the Law of Conservation of Matter), fully 

account for all reactions and transport processes, and be purely mathematical. The 

introduction of (one of several) substrates into a cell-free, respiring mitochondrial system 

must result in the complete use of ATP (to maintain steady state) generated by the complete 

oxidative metabolism of those substrates. The result of the calculation should describe all 

molecular species consumed and produced in the process. Ideally, this will be the balanced 

oxidation reaction of the substrate only. 
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Purpose 

 The purpose of this study is to provide accurately computed theoretical P/O ratios for 

glucose, beta-hydroxybutyrate, malate, pyruvate, and succinate. Results will be based on the 

fundamental values (e.g. H+/2 e- and H+/ATP ratios), and reaction mechanisms of oxidative 

metabolism reviewed from the literature above. They will be calculated within the rigid 

mathematical framework of linear algebra, relying on the Law of Conservation of Matter as a 

first principle. Consideration will be given to costs of transport and utilization of various 

electron shuttles in oxidizing the aforementioned substrates within a steady-state system. It is 

expected that the P/O ratio will be variable depending on the conditions listed above, and that 

predictions made in the literature (e.g. theoretical ATP yield from the complete oxidation of 
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glucose) may be incorrect or misleading because they are based on an oversimplified means 

of calculation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Methods 

 Complex biochemical processes (such as oxidative metabolism) can be represented as a 

system of linear equations (individual chemical reactions) in terms of matrices and vectors. 

Though the specific analysis outlined here has not been done before, linear algebraic 

manipulation of matrices and vectors representing biochemical systems have been described 

in the past (49, 50). Observe: 

 R · v = b  where: 
 R is an m X n reaction matrix (rows = molecules, columns = reactions) 
 v is a vector of elements {vn | vn is the reaction rate of column n of R} 
 b is a vector of elements {bm | bm is the net production of row m of R} 
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This matrix equation is justified by the Law of Conservation of Matter. Simply put, elemental 

pieces of reacting molecules (counts of atomic species and charge) must remain constant 

across a reaction or, by extension, an arbitrarily large system of reactions. Thus, when set 

equal to a vector of net consumption/production of participating molecules b, the system of 

equations represented by R ּ v = b may be solved to determine the relative rates of reactions 

given by v (reaction stoichiometry).   

 

 To do this, individual biochemical reactions are first encoded into vectors using 

textbooks and primary literature. These vectors are then combined as the columns of a matrix 

R to represent the desired system or biochemical process. Using the lower-upper (LU) 

decomposition algorithm to assist in matrix factorization, the system of equations 

(represented by the equation R ּ v = b) is solved for some given b of overall 

production/consumption of molecules in the system. The solution vector v represents the 

relative rates of reaction within a steady-state system. Comparing any two elements of v 

gives a reaction stoichiometry. When scaled by the coefficients of molecules within balanced 

chemical equations, the reaction stoichiometries become molecular stoichiometries (e.g. 

converting the ATPase to Complex IV reaction stoichiometry to an ATP production to 

Oxygen consumption molecular stoichiometry).  A sample calculation is presented here. 

 

Example of Linear Algebraic Calculation 

 Individual reactions are encoded as vectors whose elements represent the coefficients of 

the balanced reaction. For example, the first step of glycolysis: 

 
  ATP  +  Glucose       Glucose-6-Phosphate  +  ADP  +  H+   
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Would translate as the reaction vector: 

  r1 = {-1, -1, 1, 1, 1}, representing the linear equation:  

  -ATP4-  -  Glucose  +  Glucose-6-Phosphate 2-  +  ADP3-  +  H+ = 0 

 
Central to the interpretation of this equation is the mass and charge balance required by the 

Law of Conservation of Matter. A negative coefficient represents consumption in a reaction, 

and a positive represents production. Close inspection will reveal that the tally of all 

individual atoms and charges are all perfectly balanced (hence “= 0”).  

 

 Once these reaction vectors are obtained for an entire system (in this example, the first 

five reactions of Glycolysis), they are used to construct a matrix. Arbitrarily many 

‘molecules’ (elements) may be added to any reaction vector (as long as the coefficient is 0), 

and the reaction will still be balanced. Arranging reaction vectors as columns, the rows of the 

matrix correspond to molecules participating in the system of reactions. For example, the 

first five reactions of glycolysis: 

 

RG5 = {r1, r2, r3, r4, r5}   

RG5 r1 r2 r3 r4 r5 
H+ 1 0 1 0 0 
ATP -1 0 -1 0 0 
ADP 1 0 1 0 0 
Glucose -1 0 0 0 0 
Glucose-6-Phosphate 1 -1 0 0 0 
Fructose-6-Phosphate 0 1 -1 0 0 
Fructose-1,6-BisPhosphate 0 0 1 -1 0 
Glyceraldehyde-3-Phosphate 0 0 0 1 1 
Glycerone-3-Phosphate 0 0 0 1 -1 
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 The reaction matrix, RG5, when right multiplied by a vector of relative reaction rates (v), 

gives an overall production/consumption vector (b) of individual molecules in the system. 

Observe: 

  v = { vr1, vr2, vr3, vr4, vr5 }  And: RG5 · v = b  Where: 
  b = {b1, b2, b3, b4, b5, b6, b7, b8, b9 } And:  
  bi is the net production/consumption of the ith molecule (row) in the matrix above 
 
For example:  
 
  if v = { 1, 1, 1, 1, 1 },  then  RG5 · v = b  Where: 
  b = { 2, -2, 2, -1, 0, 0, 0, 2, 0 } 
  
 This example shows that if (according to v) all reactions in the RG5 system occur in 

perfect one-to-one correspondence (1:1 reaction stoichiometry, for all rj : rk), for each glucose 

consumed (b4 = -1) with 2 ATP (b2 = -2), there will be 2 protons, 2 ADP, and 2 molecules of 

Glyceraldehyde-3-Phosphate produced (b1, b3, and b8, respectively). It also tells us Glucose-

6-Phosphate, Fructose-6-Phosphate, Fructose-1,6-Bisphosphate, and Glycerone-3-Phosphate 

are never produced or consumed, regardless of how many cycles of the process occur. In 

addition, there is a 2:1 molecular stoichiometry of ATPs produced per glucose molecule 

consumed (b2 : b4).   

 

 Often, the relative rates of reaction (v) are unknown, or at least not obvious (as they are 

in the limited example above). In this case b may be specified, and using an LU-

decomposition to factor the matrix allows the system (represented by RG5) to be solved for v. 

The specifics of LU-decomposition can be obtained from any Linear Algebra text (e.g. 51, 

pp. 142-146).   
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 Real biochemical systems (such as oxidative energy metabolism) are almost always 

“over determined.” That is, the matrices that represent them have more rows (molecules) 

than columns (reactions). In order to facilitate solution, the system of reactions may be 

represented by splitting the original full matrix R into a square matrix and a rectangular 

remnant. This introduces some limitations. First, the rows (molecules) included in the square 

matrix must represent linearly independent equations (see 51, pp. 65-73 for discussion of 

linearity in this context). Second, the expected overall production/consumption for the 

molecules included in the square matrix must be known. Third, in order to solve the system, 

the square matrix must be non-singular (i.e. invertible: see 51, pp. 118-125 for discussion). If 

an appropriate (that is, non-singular) square matrix Rg5sqr and corresponding partial bsqr 

vector can be constructed, then v can be determined after using the LU decomposition 

algorithm to factor the square reaction sub-matrix. Once v is determined, it can be left-

multiplied by the rectangular remnant to give brmt: the production/consumption of the 

remaining molecules. Together, bsqr and brmt represent the entire production/consumption (b) 

vector for the original system. Consider the following example: 

 

 Assume it is known that consuming glucose in the first five reactions of Glycolysis 

produces Glyceraldehyde-3-Phosphate, but the stoichiometric ratio of production is not 

known. Now suppose the relative production and consumption of intermediates are also not 

known, except the other phosphate bearing intermediates, which are neither produced nor 

consumed overall. Construct the square matrix: 

 
The Square Matrix, Rg5sqr: 
 

Rg5sqr r1 r2 r3 r4 r5 
Glucose-6-Phosphate 1 -1 0 0 0 
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Fructose-6-Phosphate 0 1 -1 0 0 
Fructose-1,6-BisPhosphate 0 0 1 -1 0 
Glycerone-3-Phosphate 0 0 0 1 -1 
Glucose -1 0 0 0 0 
 
And set bsqr = { 0, 0, 0, 0, -2 } to see what is produced/consumed when 2 molecules of 

glucose is consumed by the system. The 0’s in bsqr represent no net production of phosphate 

bearing intermediates, and the -2 represents the two molecules of glucose consumed.  

Now: 

  Rg5sqr · v = bsqr = { 0, 0, 0, 0, -2 } 

LU decomposition of Rg5sqr subsequently allows for the solution: 

  v = { v1, v2, v3, v4, v5 } = { 2, 2, 2, 2, 2 } 

Back substituting v into 

  Rg5rmt · v = brmt  

 
Where the rectangular “remnant” matrix Rg5rmt is: 
 

Rg5Rmt r1 r2 r3 r4 r5 
H+ 1 0 1 0 0 
ATP -1 0 -1 0 0 
ADP 1 0 1 0 0 
Glyceraldehyde-3-Phosphate 0 0 0 1 1 
 
Gives (by simple matrix multiplication): brmt = { 4, -4, 4, 4 } This means 4 ATP are 

consumed, and 4 H+, 4 ADP, and 4 molecules of Glyceraldehyde-3-Phosphate are produced. 

 

 In this example, merely knowing which molecules are neither produced nor consumed 

at steady state and specifying how much glucose to consume gives all non-trivial reaction 

stoichiometries as the solution of the system of reactions represented by the square matrix 

Rg5sqr. Molecular stoichiometries can then be derived by left-multiplying v by the rectangular 
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matrix remnant Rg5rmt. This operation shows how many Glyceraldehyde-3-Phosphate 

molecules are produced, how many ATP it costs, and how much ADP and H+ byproduct are 

expected. This is a very simple example, and it should be noted that the true power of this 

method emerges with large systems (e.g. the complete oxidative metabolism of glucose).  

 

Calculating Molecular Stoichiometries of Oxidative Metabolism 

 In order to calculate P/O ratios for oxidative metabolism, glycolysis, pyruvate 

dehydration, the citric acid cycle, the ETC, ATPase, several other reactions, and all necessary 

transport processes must be encoded as described above. Solution of the system is achieved 

with the aid of an interactive computer program developed by the author. The core linear 

algebraic manipulations utilize an LU decomposition algorithm freely available from the 

National Institute of Standards and Technology (TNT: linear algebra module, NIST). The 

complete commented source code is included in Appendix I1.  

 

 The systems studied were designed around several variables: substrate oxidized, 

electron shuttle utilized, and the H/ATP ratio. Substrates analyzed include glucose, beta-

hydroxybutyrate, malate, pyruvate, and succinate. The electron shuttles considered are the 

glycerophosphate shuttle, the malate-aspartate shuttle, and the NADH-DH complex. The 

value of the H+/ATP ratio as a potentially unknown variable is also a consideration. 

Calculations were executed using both H+/ATP ratios of 4 (a convincing measured result), 

and 13/3 (the suggested subunit ratio of 10/3 plus one H+ for transport). See the Introduction 

for the discussion and justification of these values.  
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 The formulation of the mathematical structures representing the systems examined is as 

follows. First, the system is modeled as a fraction of suspended, cell-free mitochondria.  This 

design is implemented to provide better comparison to values reported in the literature (since 

measurements are usually done on cell-free systems). If instead the systems were designed as 

whole cells respirating at steady state, another set of channels and carriers allowing for 

transport between the cytosol and extracellular space would have to be taken into account. 

This would be another degree of freedom affecting the P/O ratio (as most transporters require 

energy) that is not represented in the experimentally obtained P/O measurements reviewed in 

the Introduction. In addition, all individual reaction stoichiometries and atomic compositions 

of all molecules must be explicitly known. For well-established reactions (e.g. the steps of 

glycolysis), two textbooks (15, 52) and two websites (www.biocyc.com, 

www.reactome.com) were checked for consensus to confirm coefficients of reactions. For 

more controversial reactions (e.g. those occurring at the ETC complexes), primary literature 

was extensively reviewed to summarize reaction mechanisms. Even after encoding reactions 

according to published values of coefficients, every one was checked for conservation of 

atomic species. This was achieved by a matrix multiplication  

      

     A · R = N  where: 

A is an m X n atomic matrix (rows = atomic species, columns = molecules) 
R is an m X n reaction matrix (rows = molecules, columns = reactions) 
N is an m X n net production matrix (rows = atomic species, columns = reactions) 
 
 

Assuming all reactions are balanced, the matrix N should be comprised entirely of zeros. 

Otherwise implies that one of the encoded reactions is creating or destroying atoms (or 

charge). In the event of a non-zero value, the source of the error must be traced back to either 
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an incorrect atomic encoding of a molecule, or an unbalanced reaction equation. See 

Appendix I for a complete list of reactions and/or reaction summaries used in this analysis. 

 

 In solving a system of equations, the square matrix fed to the LU decomposition 

contains only rows corresponding to molecules whose relative rates of production and 

consumption can be unambiguously specified. Specifically, this is most often the rate at 

which the substrate is consumed, which is set to a value of -1, and the rates at which 

intermediates that are neither produced nor consumed in a steady state system (e.g. 1,3-

bisphosphoglycerate, cis-aconitate, or cytochromes that are a fixed part of the ETC), which 

are set to a value of 0. In the event that a square matrix is still singular, other rows with 

specified net molecular production/consumption may be swapped into the square matrix (e.g. 

CO2 production in a complete oxidation reaction).  

 

 The output of the program is the vector v containing the relative rates of reaction within 

the system. From this vector the number of moles of ATP produced in the complete oxidation 

of 1 mol of substrate, and the moles of O2 consumed is readily attained. The P/O ratio is 

equivalent to the reaction rate of hydrolysis of cytosolic ATP (representing the total usable 

energy produced) divided by twice the rate of the O2 consuming reaction (since the P/O ratio 

is traditionally molecules of ATP produced to atoms of Oxygen consumed) at Complex IV of 

the ETC.  

 

Results 
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 Solutions for the complete oxidative metabolism of five substrates, utilizing three 

different electron shuttles (or exclusive mitochondrial metabolism in the cases of pyruvate 

and succinate which have no cytosolic component) and two different values of the H+/ATP (4 

and 13/3) were obtained. A summary of the P/O ratios are listed in Table 3, and depicted 

graphically (assuming an H+/ATP ratio of 13/3) in Figure 4.  

 

 The generic mechanisms for the catabolism of all of the examined substrates are shown 

in Figures 5a-e. These pathways are derived from the reaction stoichiometries calculated by 

solving individual systems of equations for each substrate. There are compartmental 

constraints that must be placed on each step in the overall oxidation pathway. Glucose, for 

example, always has a cytosolic component of oxidation (see Figure 5a) because glycolytic 

machinery does not exist in the matrix. Thus, every time glucose is the substrate being 

oxidized, the P/O ratio will be partially dependent on the mechanism of electron shuttling, 

and it is impossible to have a value reflecting purely mitochondrial metabolism (note there is 

no value under “no shuttle:” for glucose in Table 3). Conversely, some substrates have no 

cytosolic component to their metabolism, making their P/O ratios independent of any 

electron shuttling mechanism. For example, the pyruvate dehydration complex (the first step 

in pyruvate oxidation) only exists in the matrix (see Figure 5b). As a result, pyruvate may 

only be metabolized within the mitochondrial matrix. Also, the machinery responsible for the 

citric acid cycle only exists inside the mitochondria, forcing succinate to be exclusively 

oxidized within the matrix as well (see Figure 5c). Notice that only one P/O ratio can be 

calculated (at a given H+/ATP ratio) for pyruvate and succinate, so there are no shuttle-

dependent values listed in Table 3. Finally, some substrates have early steps in their 
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metabolism that can occur either in the cytosol or in the mitochondrion. Both β-OHbutyrate 

and Malate have NADH-producing reactions (catalyzed by β-OHbutyrate dehydrogenase, 

and malic enzyme, respectively) that may occur in either compartment. Thus, these two 

substrates can give rise to either shuttle-dependent or shuttle–independent values as listed in 

Table 3. 

 

 Calculated P/O values range from 2.711 to 3.183 (for an H+/ATP ratio of 13/3), or 3.000 

to 3.500 (for an H+/ATP ratio of 4/1) depending on substrate oxidized and shuttle utilized. 

Thus, the P/O ratios calculated for the specific combinations of substrate and electron shuttle 

shown in Tables 3a & 3b can vary by more than 17%. These estimates are fully contained 

within the range of all possible measured values cited in the introduction (1.07 - 3.73) but are 

higher than the commonly accepted theoretical values of ~2.5 and ~1.5 for NADH and 

FADH2 linked substrates, respectively.  

 

 When separated by substrate, calculated P/O ratios are in the range of, but on average 

higher than, measured P/O ratios in the literature with one exception. The mid-range of 

measured values of malate was higher than the mid-range for calculated outputs presented 

here (but only for an H+/ATP of 13/3, not when calculated with an H+/ATP of 4/1; see Figure 

6). The measured P/O ratios for malate generally exceeded the calculated values here because 

of additions to the experimental media. In these experiments, malate is often added with 

glutamate, a tradition started by Cross et. al. in 1949 (8) that is often continued today (16, 20, 

53). Glutamate, though not studied in this analysis (and never metabolized by any of the 

systems analyzed), tends to inflate measured P/O ratios as a result of being simultaneously 
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consumed with a component of substrate level phosphorylation (13). This is similar to the 

way that glucose might inflate the P/O ratio of pyruvate if the two were mixed in a media, 

compared with pyruvate alone.  

 

 Also, the calculated P/O ratios for oxidation of succinate were much higher than 

literature values. The reason for this is the addition of inhibitors to the experimental media in 

succinate preparations. As briefly mentioned in the introduction, it was established early on 

that measuring the P/O ratio of succinate oxidation “required” the use of a site I inhibitor to 

prevent getting values that were “too high” (54). Modern preparations always include 

equimolar concentrations of rotenone (a complete Complex I inhibitor) in succinate-rich 

media (12, 16, 17, 18, 55). 

 

 When different H+/ATP ratios are used to calculate the P/O ratios of a single substrate 

across all electron shuttles, or the P/O ratios of a given electron shuttle across all substrates 

studied, the shift is linear. [R2=1 for 9 analyses, including lactate and acetoacetate as 

substrates, though they have been excluded from this work as they are not used in 

experimental P/O measurement designs in the literature (analyses not shown)] This result is 

expected (even trivial) as the underlying mathematical structure is a linear system of 

equations, and only changing one variable should yield a linear shift in the P/O ratio. This 

has an important implication, however. Relative variations of P/O ratios dependent upon 

which substrate is being oxidized, or which electron shuttle is being utilized, is not dependent 

on the value of the H+/ATP ratio (for which a definite value is not available in the literature). 

That is, even if the absolute values attained with the calculations made here are incorrect 
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because the H+/ATP ratio is not correct, the conclusion that the P/O ratio is variable by as 

much as 17% given the conditions analyzed still stands. 

 

 There is a clear trend dependent upon the electron shuttle implemented. In the complete 

oxidative metabolism of any of the substrates examined, P/O values are increasingly higher 

when the glycerophosphate, the malate-aspartate, and then the NADH-DH shuttles are used, 

respectively. The glycerophosphate shuttle is the least efficient because of its functional 

conversion of a cytosolic NADH to a matrix FADH2. Although the other two shuttles convert 

cytosolic NADH to matrix NADH, there are efficiency differences because of differences in 

transport requirements (2 protons for MAS and 0 for the NADH-DH). 

  

 There is also a clear trend dependent upon the substrate metabolized. P/O values are 

increasingly higher when beta-hydroxybutyrate, succinate, pyruvate, malate, or glucose is 

metabolized, respectively within each shuttle. In general, the substrate-dependent differences 

in P/O ratios result from producing and consuming more electron equivalents (i.e. FADH2 

and NADH) as intermediates per oxygen atom consumed by the system. In the case of 

glucose, however, the P/O ratio is also bolstered by substrate-level phosphorylation.  
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Discussion 

 Over time, numerous studies in the literature have moved toward embracing two 

currently accepted theoretical P/O ratios: 2.5 for NADH-linked substrates and 1.5 for 

FADH2-linked substrates (12). This assumes an H+/ATP ratio of 4:1. However, if the 

H+/ATP ratio is 13/3, the mechanistic P/O ratios should be 2.3 and 1.4 (13). Calculating a 

theoretical P/O ratio serves as a target or check to verify which of the disparate measured P/O 

values (often attributed to measurement error) should be recognized as correct. However, it 

seems no one has critically examined whether or not the theoretical calculations themselves 

are appropriate and correct. Besides, even though it may be possible to calculate a P/O ratio 

for a molecule of NADH or a molecule of FADH2 as a substrate, the exact bearing of these 

numbers on P/O ratios of oxidizing organic substrates (e.g. succinate as an FADH2–linked 

substrate) in a real system is unclear. Nor is it clear whether or not there is one, two, or any 

finite number of theoretical P/O values that empirical measurements should reflect. In fact, 

Kingsley-Hickman et. al. have suggested that experimentally measured P/O ratios and 

theoretically calculated P/O ratios should be considered entirely separately (56).  

 

The Relationship Between Measured and Theoretical P/O Values 

 First, it is important to recognize that real measurements of P/O values may never match 

theoretical values. Aside from human errors in measurement, several phenomena may 

prevent respiratory machinery from functioning at theoretic values in vitro/vivo. Anything 

that effectively sinks the electrochemical gradient across the inner mitochondrial membrane 
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(thus undermining the ability of the ATPase to generate high-energy phosphate bonds) will 

reduce the P/O ratio. This process, generally referred to as slip (failure of an ETC complex to 

translocate protons despite successfully transferring a pair of electrons through the chain) or 

leak (proton movement with the gradient, not associated with an ETC complex) is reviewed 

in (57) and more recently in (58). Also, any process unrelated to energy metabolism 

occurring simultaneously at the time of measurement may alter the P/O ratio. If such a 

reaction requires ATP, NADH, FADH2, or the proton gradient (as many processes required 

to maintain steady state and execute cellular functions do) in order to proceed, the observed 

P/O ratio will be decreased. If a net amount of protons are either consumed in the cytosol or 

produced in the matrix from ongoing reactions (whether related to metabolism or not), a 

measured P/O ratio of this system will again be less than the calculated theoretical maximum. 

Contrary to these conditions, if a real system is utilizing any anaerobic means of energy 

metabolism, the measured P/O ratio will be higher than the theoretical value.  

 

Is the Current Calculation Correct? 

 In the well-oxygenated systems studied for P/O measurements, extensive anaerobic 

energy production is unlikely. However, the potential inefficiencies mentioned above are 

likely to be present. Thus, it follows that calculated P/O ratios should be greater than or equal 

to (accurately) measured values. Instead, the opposite is reported in the literature. Modern 

measurements of P/O ratios are often higher than the accepted theoretical values of 2.5 (or 

2.3) and 1.5 (or 1.4) such as 2.9 and 1.8 (17), 3.1-3.7 (NADH-linked only: 16), 2.7-2.9 and 

1.6-1.8 (22). Though the possibility certainly remains that some of these may be over-

measurements (in fact, the range of the Toth study extends past the calculated values of this 

analysis), to the author’s knowledge, no modern measurements are significantly lower than 
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2.5 and 1.5 (and thus 2.3 and 1.4). This direct contradiction calls current methods of 

calculation into question, while the method outlined herein is reinforced by producing P/O 

ratios that are almost uniformly greater than or equal to currently measured values.  

 

 In fact, on close examination the currently accepted theoretical P/O ratios are not 

computed correctly. The existing method of calculation (detailed in the Introduction) is 

oversimplified. It ignores transport phenomena, other contributors/sinks to the proton 

gradient, and the fact that a naturally respiring system maintains an overall steady state.  

 

 Active transport processes between the cytosol and matrix are important energy 

consumers, requiring the use of the electrochemical gradient. This reduces the cell’s potential 

to generate ATPs. Some examples include (but are not limited to) the transport of pyruvate 

into the matrix, the transport of Pi into the matrix for GTP formation during TCA, and 

glutamate/aspartate exchange as part of the malate-aspartate shuttle.  

  

 Furthermore, careful attention must be paid to protons that are consumed or produced by 

all reactions, and the compartment in which those reactions occur. If a proton is consumed in 

the cytosol, there is one less proton available to power the ATPase, sinking the gradient. 

Similarly, if a proton is produced in the matrix, it will also lessen the driving force of the 

gradient. For example, when two acetyl-CoA’s complete the citric acid cycle (as would occur 

in the metabolism of a single molecule of glucose), 4 protons are produced as a byproduct in 

the matrix. The net effect would be to nullify the driving force of up to 4 protons otherwise 

translocated into the cytosol by the ETC.  
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 Finally, determining how many ATPs accumulate when NADH and FADH2 are totally 

consumed by the ETC (as is done in the accepted calculation) does not reflect a steady state 

system. Ideally, a cell maintains constant levels of ADP, ATP, NADH, FADH2, H+, etc. and 

only consumes or produces substrate, water, oxygen, and carbon dioxide (fuels and waste 

products that are easily, and often freely, transported throughout the system). This means that 

energy equivalents are being consumed as they are produced and vice versa in a continuous 

cycle. While examining the steady state case adds the complication of necessarily 

considering the entire system simultaneously, it also lends itself to the mathematical tools 

used in this analysis. The benefit is instead of viewing energy metabolism as a cumbersome 

causal chain of events that lead to a massive accumulation of ATPs, this method facilitates a 

cyclic explanation. The cycle is such that every product of every reaction is simultaneously 

consumed as a reagent in the succeeding reaction. The result is a clean, circumscribed 

biochemical system that more closely approximates reality.  

 

 The hydrolysis of ATP (standard reaction linked to energy consuming processes) is 

represented by the following equation: 

 
 (cytosol) H2O  +  ATP4-      ADP3-  +  Pi

2-  + H+ 

 
From this, if ATP is being used at the same rate it is being produced, it is seen that there is an 

extra proton appearing in the cytosol every time an ATP is consumed/produced. This same 

proton disappeared from the matrix in the reverse reaction (ADP ATP phosphorylation) 

that created the energy molecule at the inner membrane associated ATPase. Not considered 
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in contemporary literature calculations, this de facto translocated proton can potentially drive 

the production of more ATP. In fact, one way to envision ATP production and consumption 

is as a partially self-sustaining cycle (see Figure 7).  

 

 It is apparent from Figure 7 that at steady state, the overall H+/ATP ratio can be seen as 

simply the F0/F1 ratio, and does not need to include a proton for transport. Instead, the 

proton consumed when ATP is produced in the matrix that is subsequently produced in the 

cytosol with ATP hydrolysis cancels the Pi transport proton (see Figure 7). Thus, the 

traditional notion of the H+/ATP ratio outlined in the introduction should be reconsidered. In 

fact, this misconception may have been a source of confusion in the attempts (also reviewed 

in the Introduction) to measure H+/ATP ratios, leading to differences qualified as ‘including’ 

or ‘not including transport.’ Some experimental designs may create systems that are closer to 

a natural steady state than others, altering the extent to which the self-sustaining portion of 

the cycle occurs. For example, many different buffering solutions have been used in 

experimental media, including varying concentrations of (to name just a few) Mg2+, EDTA, 

and hexokinase (for “ATP trapping”). Even if ATP production were perfectly isolated, 

altered turnover and stability of produced ATP could cause H+/ATP (and thus P/O) measures 

to be variable. Furthermore, if the H+/ATP ratio does not need to include transport, this 

reinforces the implication that currently accepted theoretical P/O ratios are likely to be 

underestimates. Again, this is supported by the fact that modern measurements tend to be 

higher than currently accepted calculated P/O ratios. It is important to recognize that 

“including transport” and “not including transport” is an arbitrary naming convention. That 

is, the H+/ATP ratio can still be reported as 13/3 including transport, but as long as the 
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method outlined herein is being utilized, the “transport proton” is handled separately and is 

guaranteed to always be accounted for and appropriately balanced. Problems arise when 

carelessness in accounting leads to the loss or gain of a proton with each ATP 

production/consumption cycle.  

 

 Perfect examples of non-steady state systems are exactly the calculations touted in the 

literature: mechanistic P/O ratios for NADH and FADH2 of 2.3 and 1.4 or 2.5 and 1.5 

depending on whether the H+/ATP ratio is 13/3 or 4/1, respectively. These systems can be 

represented by the following equations: 

  
 x NADH  +  y ADP  +  z/2 O2    x NAD+  +  y ATP  +  z H2O  (P/O = 2.5 or 2.3) 
 x FADH2  +  y ADP  +  z/2 O2    x FAD  +  y ATP  +  z H2O    (P/O = 1.5 or 1.4) 
 
 
Although there may be an academic reason to describe what might be called mechanistic P/O 

ratios for NADH and FADH2, there are two reasons why these equations do not reflect real 

physiological situations. First, it behaves as if the bulky nucleotide electron carriers NADH 

and FADH2 are being transported around a cell, tissue, organ system, or entire body as a 

primary energy-supplying medium. The overall reactions imply that NADH and FADH2 are 

delivered to the respiratory apparatus and metabolized to produce NAD+ or FAD, 

respectively. Such a view would require elaborate transporters and molecular systems to 

handle these large molecules. This is clearly not the case. Instead, physiologic systems use 

organic substrates like those examined here (glucose, etc.) which are much easier to transport 

and have far cleaner, freely diffusible breakdown products (CO2 and H2O). If oxidation of an 

organic substrate is occurring in parallel (which it always is), all of the reactions associated 

with it must be considered in the P/O calculation (as outlined above), and by linking the two 
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oxidative processes, the NAD+ and FAD byproducts become necessary inputs to feed the 

production of NADH and FADH2.. This eliminates the need to worry about systems that 

handle and transport the bulky redox pairs, as they may remain in the same compartment, 

constantly cycling back and forth.  

  

 Another non-steady assumption is that it is acceptable to accumulate ATPs while 

massive amounts of ADP vanish. Using the methods described herein, the ATP steady state 

problem can easily be handled, allowing the ATPs to be consumed as they are produced. 

Thus, it is possible to calculate pure mechanistic values corresponding to the complete 

oxidative metabolism of NADH and FADH2 using this method also. It is noted that this 

reaction is not physiologically meaningful, and does not represent a steady-state reaction. 

However these values (for NADH and FADH2, respectively) should be either 3.3 and 1.8 or 

3.67 and 2 depending on whether the H+/ATP ratio is 13/3 or 4/1, respectively. The balanced, 

many-reaction mechanistic systems reduce to the following overall equations: 

 
 1.0 NADH + 1.0 cH  + 0.5 O2  -->  1.0 NAD+  +  1.0 H2O   (P/O =  3.67 or 3.3) 
 1.0 FADH2   +  0.5 O2  -->  1.0 FAD+  +  1.0 H2O   (P/O = 2.00 or 1.8) 
 
 
Again, the calculations made here for mechanistic NADH and FADH2 P/O ratios contribute 

to the consistent demonstration that currently accepted theoretical values are underestimates. 

 

Flawed Calculations Lead to Failed Predictions 

 Even if mechanistic P/O ratios for NADH and FADH2 (by themselves) exist and can be 

determined, it is not immediately obvious how these values justify the terms NADH-linked 

and FADH2-linked substrate. Clearly, in a real system executing the complete oxidative 
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metabolism of an organic substrate (such as glucose), both NADH and FADH2 will be 

produced and consumed as intermediates. Thus, the assumption that a P/O ratio associated 

with glucose will have one of the two accepted values instead of some intermediate value 

should be incorrect. That is, even disregarding every subtle complexity of calculating a P/O 

ratio cited above (e.g. substrate-level phosphorylation, side reactions, proton slip, etc.), the 

P/O ratio of a substrate should still be in some range between the two currently accepted 

values, and not simply one or the other.  

 

 Succinate is a perfect example. Because of the widely accepted dual P/O ratio system, 

the oxidation of succinate is expected to proceed with a P/O ratio of 1.5. With near 

uniformity, measured values reported in the literature significantly exceed this value. In 

addition to the fact that 1.5 has been shown to most likely be an underestimate, literature 

values are also low because ETC inhibitors are often added with succinate (12, 16, 17, 18, 

55). Moreover, the system is sometimes controlled such that it only proceeds one step to 

fumarate (e.g. 59, 11). This might be acceptable as a strategy for determination of the P/O of 

FADH2, however it is blatantly unrelated to a natural system that is freely metabolizing an 

excess of succinate as a fuel source. Despite all attempts to force control over this system, the 

reported values are often still high. This is because either the value of P/O for FADH2 is 

higher than believed (as above), there is further downstream metabolism of fumarate and/or 

other unaccounted sources of phosphorylation, or both. 

 

 Putting the above aside, assuming P/O ratios for NADH and FADH2 exist and are 

known, it is still not clear how these should be used to inform the calculation of a P/O ratio 
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for whole substrate metabolism. Without a rigorous mathematical infrastructure to bolster 

confidence that consideration is given to every intricate detail, it seems making such a 

calculation would be difficult. For example, in a landmark review Hinkle (12) used P/O 

ratios of 2.5 and 1.5 for NADH and FADH2, respectively, to calculate the theoretical ATP 

yield given by the complete oxidation of glucose. He concludes the value is either 29.5 ATP 

or 31 ATP (depending on whether the G3P or MAS is utilized), challenging and displacing 

the previously accepted measured value, 36. Indeed, the ~30 ATP result is the most 

commonly cited value in textbooks. (14, 15) Presented here is the extended reasoning and 

calculation (relying upon an H+/ATP ratio of 4), unaltered, from Hinkle et al. (12): 

 

Finally, the traditional calculation of the number of moles of ATP synthesized during the 
oxidation of 1 mol of glucose should be reconsidered. The complete oxidation of 1 mol of 
glucose yields 8 mol of matrix NADH which on oxidation would yield 20 mol of ATP, 2 mol of 
succinate yielding 3 mol of ATP, 2 mol of cytoplasmic NADH yielding 3 mol of ATP via the 
glycerol phosphate shuttle, 2 mol of cytoplasmic ATP from substrate level phosphorylation, and 
2 mol of matrix GTP from succinyl-CoA synthetase. The matrix GTP forms ATP by nucleoside 
diphosphokinase. However, since the ATP must still be transported to the cytoplasm transporting 
1 proton for each ATP, the amount of ATP that can be synthesized by oxidative phosphorylation 
is decreased by 2 protons or 0.5 ATP. Thus, the overall yield of ATP from glucose oxidation is 
29.5 ATP per glucose, rather than the traditional value of 36 ATP per glucose based on integer 
values of the P/O ratios. If cytoplasmic NADH is oxidized via the malate-aspartate shuttle, then 
4.5 ATP would be synthesized during oxidation of the 2 mol of cytoplasmic NADH, because 
glutamate/aspartate exchange is coupled to the influx of 1 proton per glutamate (LaNoue & 
Schoolworth, 1979), and the overall yield would be 31 ATP per glucose. 

 

 While more attention to detail is granted than most would give (i.e. considering the 

electron shuttling mechanism, some transport phenomena, and substrate phosphorylation), it 

is still an oversimplification, relying on inspection. Once again the ATP yield of a single 

molecule of glucose should be called into question and its calculation challenged by a more 

mathematically rigorous technique.  

 The currently accepted algorithm for this calculation (heretofore referred to as Hinkle 

Inspection) is also carried out for P/O ratios of 2.3 and 1.4, corresponding to the mechanistic 
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NADH and FADH2 values of a system with an H+/ATP ratio of 13/3 (as suggested by Hinkle 

in (13)). These values are compared with the calculated ATP yields from this study, and the 

Hinkle Inspection algorithm is explicitly reported (see Table 4). The ATP yields calculated in 

this analysis are consistently ~30% greater than those derived by Hinkle Inspection. While 

there are no guarantees about maintaining a balanced steady state or total energy accounting 

with Hinkle Inspection, assurance of those conditions is automatic in using the linear 

algebraic method on a deterministically modeled system.  

 

 The methodology presented here can also be used to delineate biochemical mechanisms 

and reaction pathways and circuits (as shown briefly with the schematic metabolism 

summaries of substrates listed in Results).  A diagram representing this circuit can easily be 

translated from the model’s output. One such diagram of a single analysis (complete 

oxidative metabolism of glucose, exclusively utilizing the MAS, with an H+/ATP ratio of 

13/3) is included as a demonstration (see Figure 8). Though it is a very complicated diagram, 

close inspection will reveal that the only molecular species either consumed or produced 

reduce to the following equation: 

  1 C6H12O6  +  6 O2    6 CO2  +  6 H2O  +  ΔH  

A single molecule of glucose consumes six molecules of oxygen to produce six molecules of 

both carbon dioxide and water as byproducts, and in the process, a certain quantity of energy 

is stored and released via the production and consumption of ATP (the ΔH term, note: no net 

ATP is produced or consumed).  

 

Striving for THE P/O Ratio—a Vain Pursuit? 
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 In the past, two P/O ratios have been argued as standards against which measurements 

should be compared. In addition to demonstrating that these currently accepted theoretic P/O 

values are most likely wrong (underestimates), this analysis also shows that regardless of the 

absolute quantitative accuracy of this method, variability of the P/O ratio is inevitable. In a 

controlled experiment, the measured result should depend upon several factors: substrate, 

electron shuttle utilization, proton slip and leak, and any side reactions that may be occurring 

in the system. This is not a surprising conclusion. In a quick thought experiment, one can 

imagine an in vivo system in an anaerobic state. If this system was producing ATP 

exclusively through glycolysis or lactic acid fermentation, for example, no oxygen would be 

consumed and an infinite P/O ratio would be expected. Conversely, if one were studying the 

energetic metabolism of brown fat, the excess of UDP-1 (an uncoupling protein causing 

dose-dependent slip of the proton gradient) should make the measured P/O ratio arbitrarily 

lower than the theoretical value. Thus, it seems the conceivable natural range of the P/O ratio 

is from zero to infinity. This is the reason multiple groups using different methodologies 

cannot agree on a single pair of P/O ratios for energy metabolism: because no single value 

can possibly describe the infinite permutations of varying conditions.  

 

 In this analysis, P/O ratios were demonstrated to differ by as much as 17% (regardless 

of the H+/ATP ratio), simply by altering which of five substrates was consumed and which of 

four electron shuttles was utilized (including ‘no shuttle’ as an option). Table 5 is included as 

a summary of variable conditions that may alter a P/O ratio. There are 15 that have been 

explicitly stated in this text, however others certainly exist that have not been mentioned. 

Note that the calculations in this work are idealized (excluding all inefficiencies) within a 
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purely theoretical framework in which all but two conditions are identical. This would 

suggest that in an experimental setting, where inefficiency does exist and more than two of 

these conditions are varied by the sheer design of the system preparation, one should expect 

measured P/O ratios to vary much more widely than seen here. As such, it is no surprise that 

an overall range of 1.07 to 3.73 (from all studies reviewed) is observed.  

 

 Perhaps the notion of a variable P/O ratio should be embraced, and future 

experimentation focused on exploring the basis of this variability. Instead of striving to find a 

single number to describe oxidative cellular machinery, a variable P/O can be used (in a 

standardized experimental system) as an indicator of oxidative efficiency for a given set of 

variables and conditions. After all, a variable P/O ratio has useful physiological implications. 

Different tissues have different metabolic goals, and thus employ slight variations of energy 

production, giving rise to different P/O ratios (60). For example, enzymatic 

compartmentalization may be tissue specific out of mechanistic need. Very early on it was 

shown that the P/O ratios for rat heart muscle vs. liver differ in the face of otherwise identical 

experimental conditions and supporting media (54). The same study showed that guinea pig 

myocyte P/O ratios were significantly greater than those of rat myocytes, again in the setting 

of identical conditions. More recently it was shown that the heart may prefer ketones and 

fatty acids to glucose as its primary substrate (61).  

 

 This analysis demonstrates that different electron shuttles are unquestionably associated 

with different P/O ratios. This may be an important point of in vivo metabolic control. For 

example, Scholz et. al. demonstrated that thyroxin (T3) can alter the balance of G3P to MAS 
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utilization in cardiomyocyte  and hepatocyte mitochondria in a tissue-specific fashion (62). 

This example of hormonal regulation of energetic efficiency operates by changing the P/O 

ratio via altering the extent and balance of shuttle utilization. Also, Cairns et. al. (60) have 

suggested, though a thermodynamic argument, that temporal efficiency may also be a factor. 

While the liver attempts to maximize chemical efficiency in terms of ATPs per Oxygen 

consumed, the brain may be trying to turnover ATP at a maximum efficiency per unit of 

time, and the heart is simply maximizing the number of ATPs it can produce. This suggests 

that measures of oxidative efficiency other than P/O ratio be considered and tested 

experimentally.  

 

 

 

Summary of Discussion 

 In recent years, consensus in the literature surrounding the P/O ratio has moved toward 

two calculated theoretical values (2.5 for NADH-linked substrates, and 1.5 for FADH2-linked 

substrates) in an attempt to discover which of many varied measurements are the closest 

approximations to true values. The analysis outlined here demonstrates the following: 

1) Theoretical P/O ratios have been inappropriately calculated to date, and are likely 

underestimates. This is further demonstrated by failed predictions of ATP production. 

 

2) Assuming the ATPase subunit ratio hypothesis of the H+/ATP ratio is correct (and 

that ratio is 10:3) a steady state, respiring mitochondrion that is exclusively using 

oxidative metabolism will have a theoretical maximum efficiency (assuming no slip, 

leak, proton uncoupling, or side reactions), in terms of a P/O ratio, in the range of 
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2.767 – 3.238 for any combination of the five substrates and four electron shuttles 

studied. 

 

3) Mechanistic P/O ratios are not very useful tools in approaching real physiological 

conditions. Despite this fact, the mechanistic P/O ratio for NADH oxidation should be 

either 3.3 or 3.67 instead of the currently accepted 2.3 or 2.5 (depending whether the 

H+/ATP ratio is 13/3 or 4/1, respectively), and the mechanistic P/O ratio for FADH2 

should be 1.80 or 2.00 instead of the accepted values 1.4 and 1.5 (with similar H+/ATP 

dependence). 

 

4) The P/O ratio should be variable, its value based on many conditions. 
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Tables 

Subs Author Year P/O Error 
Glucose Kalckar 1937 2 NR 
Pyruvate Belitzer 1939 2 NR 
Pyruvate Ochoa 1943 3.2 0.4 

B-OHButyrate Lehninger 1949 2.02 0.26 
Succinate Cross 1949 1.25 0.179

Malate + Glu Cross 1949 2.25 0.1 
Pyruvate Cross 1949 2.47 0.12 
Pyruvate Bartley 1953 2.35 0.25 

B-OHButyrate Chance 1955 2.6 NR 
Succinate Chance 1955 1.8 NR 
Succinate Greenard 1959 1.91 0.29 

B-OHButyrate Hinkle 1979 2.11 0.13 
Succinate Hinkle 1979 1.39 0.1 
Succinate Lemasters 1984 1.85 0.23 

Malate Lemasters 1984 2.89 0.31 
B-OHButyrate Lemasters 1984 2.93 0.42 

Succinate Beavis 1986 1.71 0.12 
B-OHButyrate Beavis 1986 2.78 0.12 

Glucose Stoner 1987 2.62 0.05 
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Glucose + Pyruvate Kingsley-Hickman 1987 2.34 0.38 
Pyruvate + Malate Toth 1990 3.43 0.3 

B-OHButyrate Toth 1990 3.21 0.24 
Succinate Toth 1990 1.9 0.01 

B-OHButyrate Hinkle 1991 2.27 0.08 
B-OHButyrate Hinkle 1991 2.85 0.15 

Pyruvate + Malate Lee 1996 2.73 0.22 
Succinate Lee 1996 1.81 0.07 

Malate + Glu Devin 1997 2.49 0.22 
Succinate Gnaiger 2000 1.77 0.04 

Table 1. 29 studies reporting P/O measurements between 1937 and 2000 are summarized as 
ranges reported within the text of the reference. NR signifies no range reported, i.e. the work 
reports a single value. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. 8 studies reporting F0/F1 subunit ratios of the mitochondrial ATPase in various 

species. 

Muller, 2004{6,8,12,13}:3*Archaea 
Murata, 20037:3Enterococcus 
Stahlberg, 200111:3Ilyobacter 
Junge, 199912:3Cyanobacteria 
Seelert, 200014:3Leaf Chloroplast 
Turina, 200312:3Leaf Chloroplast 
Jian, 200110:3E. Coli 

Stock, 199910:3Yeast Mitochondria 
SourceSubunit ratioOrganism 

* Archaea is a class of ancient bacteria. Here Muller et al. studied species for A1/A0 subunit ratios which varied according to 
alternately spliced transcripts 
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3a.  No 
Shuttle:

 Shuttle:  

 H+/ATP = 4.33 Matrix G3P MAS NADH 

  Glucose * 2.933 3.083 3.183 
  β-OH Butyrate 2.844 2.711 2.811 2.878 
   Substrate:  Malate 3.017 2.767 2.917 3.017 
  Pyruvate 2.960 * * * 

  Succinate 2.843 * * * 
 

3b.  No 
Shuttle:

 Shuttle:  

 H+/ATP = 4.00 Matrix G3P MAS NADH 

  Glucose * 3.222 3.389 3.500 
  β-OH Butyrate 3.148 3.000 3.111 3.185 
   Substrate:  Malate 3.333 3.056 3.222 3.333 
  Pyruvate 3.267 * * * 

  Succinate 3.143 * * * 
Table 3. Calculated P/O ratios organized by substrate consumed and electron shuttle utilized. 
3a reports calculated values in a system where the H+/ATP ratio was 13/3, and 3b  contains 
values from a system where the H+/ATP ratio was 4. 
 

  Hinkle Inspection* Linear Algebraic

H/ATP G3P 29.50 38.67 

=4.000 MAS 31.00 40.67 

H/ATP G3P 27.54 35.20 

=4.333 MAS 28.88 37.00 

Table 4. Calculated theoretical ATP yield for glucose: Hinkle inspection vs. Linear Algebraic 
Method 
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1  Substrate 
2  Electron Shuttle 

3  H+/ATP Ratio (F0/F1 Subunit  
 variability) 

4  Substrate-level phosphorylation 

5  Proton consuming/producing  
 reactions of energy metabolism 

6  Slip and/or leak of proton gradient

7  Energy consuming (ATP or proton 
 gradient) side reactions 

8  Side Redox reactions 
9  Cell type 

10  Media additions (inhibitors,  
 Mg2+, EDTA, etc.) 

11  Measurement techniques 
12  pH 
13  Temperature 
14  Hormonal control 
15  Organism 

Table 5. Short List of Degrees of Freedom in Measuring a P/O Ratio. 
 
Figures 

*Hinkle Inspection  =  [#NADH * (P/ONADH)]  +  [#FADH2 * (P/OFADH2)]  +  SLphos  -  [#H+
trans/(H-ATPratio)]

 
Where:  
 #NADH = number of NADH produced  #FADH2 = number of FADH2 produced 
 P/ONADH = P/Oratio of NADH (given H/ATP) P/OFADH2 = P/Oratio of FADH2 (given H/ATP) 
 SLphos = #substrate-level phosphorylations #H+trans = number of protons used for xport 
 H-ATPratio = the H+/ATP ratio of the system 
 
E.G. for G3P shuttle and H+/ATP = 4.0 from the verbal argument in the block quote: 
 ATP Yield = (8*2.5) + (4*1.5) + 4 – (2/4.0) = 20+6+4-0.5 = 29.50 
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Literature P/O Ranges By Substrate
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Figure 1. Summary of Measured P/O Values from Literature (29 sources). Bar height 
represents the middle of a reported range. Error bars represent the entire range reported 
regardless whether the range represented statistical error of one consensus value, several 
measurements, or otherwise (they do not reflect any statistical analysis).  
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11 (m) H+ + 1 (m) NADH + 0.5 (x) O2 -->  10 (c) H+ + 1 (m) NAD+ + 1 (x)H2O 
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Figure 2. Summary of ETC mechanisms. 2a depicts NADH oxidation from Complex I to 
Complex IV. 2b depicts FADH2 oxidation from Complex II to Complex IV. Summary 
reactions are provided. 

6 (m) H+ + 1 (m) FADH2 + 0.5 (x) O2  -->  6 (c) H+ + 1 (m) FAD+ + 1 (x)H2O 
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Figure 3. Summary of mechanisms for various electron shuttles. 3a is the glycerophosphate 
shuttle (G3P), 3b. is the malate/aspartate shuttle (MAS), and 3c is the NADH-DH complex. 
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Figure 4. Summary of calculated P/O Outputs 
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5b. Pyruvate Metabolism 
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5e. Malate Metabolism 
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Figure 5. Mechanisms for complete oxidative metabolism of: 5a. glucose; 5b. pyruvate; 5c. 
succinate; 5d β-OHbutyrate; 5e malate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Comparison of Measured Literature P/O Ratio Ranges and Calculated Output 
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Figure 8. Schematic representation of the complete oxidative metabolism of glucose, utilizing the Malate-Aspartate electron shuttle, 
with an H+/ATP ratio of 13/3. 37 molecules of ATP are generated and consumed by energy-dependent cytosolic processes. 
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Appendix I 
 The following is a compressed list of reactions and reaction summaries (wherever possible) used in the formulation of the modeled 
biochemical systems. The written equations are the direct output of a computer program that extracts the coefficients directly from the vectors 
internal to the program executing the linear algebraic manipulations that describe these systems.  
 Where possible, enzyme commission numbers (EC#s) have been provided so the reaction being referenced is unambiguous. 
 Many of the reactions listed are summaries (e.g. P99 – pyruvate dehydrogenase summary). In the case of P99, P11- P16 have also been 
included (the constituent reactions that make up P99) as a demonstration. Summary reactions are only used when their constituent reactions never 
produce intermediates that participate in side reactions. For example, all ETC complexes have complicated mechanisms involving many reactions, 
cytochromes, and non-redox reactants. However, in the systems studied, the redox intermediates never participate in any reactions outside of 
oxidative metabolism. This allows the series of reactions that always progress in a stoichiometrically identical way to be collapsed into a single, 
summarized reaction. This makes the system less cumbersome, easier to understand, and allows the program to run more quickly and efficiently. 
 System 
ID Enzyme / Rxn Name Compartment EC # BALANCED REACTION 

G10 
Hexokinase / 
Glucokinase cytosol 2.7.1.1 

1. (c)Adenosine-triphosphate + 1. (c)Glucose  -->  1. (c)Adenosine-
diphosphate + 1. (c)Glucose_6-phosphate + 1. (c)Proton 

G11 
Phosphoglucose 
isomerase cytosol 5.3.1.9 1. (c)Glucose_6-phosphate  -->  1. (c)Fructose_6-phosphate 

G12 Phospho-fructokinase cytosol 2.7.1.11 

1. (c)Adenosine-triphosphate + 1. (c)Fructose_6-phosphate  -->  1. 
(c)Fructose_1,6-bisphosphate + 1. (c)Adenosine-diphosphate + 1. 
(c)Proton 

G13 Aldolase cytosol 5.3.1.1 
1. (c)Fructose_1,6-bisphosphate  -->  1. (c)Glyceraldehyde_3-phosphate + 
1. (c)Glycerone_phosphate 

G14 
Triosephospht 
Isomerase cytosol 5.3.1.1 1. (c)Glycerone_phosphate  -->  1. (c)Glyceraldehyde_3-phosphate 

G15 G-3P dehydrogenase cytosol 1.2.1.12 

1. (c)Glyceraldehyde_3-phosphate + 1. 
(c)Nicotinamide_Adenine_dinucleotide_(ox) + 1. (c)Orthophosphate    -->  
1. (c)1,3-Bisphospho-glycerate + 1. (c)Proton + 1. 
(c)Nicotinamide_Adenine_dinucleotide_(red) 

G16 
Phospho-glycerate 
kinase cytosol 2.7.2.3 

1. (c)1,3-Bisphospho-glycerate + 1. (c)Adenosine-diphosphate  -->     1. 
(c)Adenosine-triphosphate + 1. (c)3-Phospho-glycerate 

G17 
Phospho-glycerate 
mutase cytosol 5.4.2.1 1. (c)3-Phospho-glycerate  -->  1. (c)2-Phospho-glycerate 

G18 Enolase cytosol 4.2.1.11 
1. (c)2-Phospho-glycerate  -->  1. (c)Phosphoenolpyruvate +   
1. (x)Water 
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G19 Pyruvate kinase cytosol 2.7.1.40 
1. (c)Phosphoenolpyruvate + 1. (c)Adenosine-diphosphate +  
1. (c)Proton  -->  1. (c)Adenosine-triphosphate + 1. (c)Pyruvate 

cP50 
Lactate 
dehydrogenase cytosol 1.1.1.28 

1. (c)Proton + 1. (c)Nicotinamide_Adenine_dinucleotide_(red) +  
1. (c)Pyruvate  -->  1. (c)Lactate +  
1. (c)Nicotinamide_Adenine_dinucleotide_(ox) 

P11 
Pryuvate dehydration 
complex E1 matrix 1.1.1.28 

1. (m)Carbanion_Thiamine_pyrophosphate + 1. (m)Proton +  
1. (m)Pyruvate  -->  1. (m)Addition_Compound 

P12 
Pryuvate dehydration 
complex E1 matrix 1.1.1.28 

1. (m)Addition_Compound  -->   
1. (m)Hydroxyethel_Thiamine_pyrophosphate + 1. (x)Carbon_Dioxide 

P13 
Pryuvate dehydration 
complex E1 matrix 1.2.4.1 

1. (m)Hydroxyethel_Thiamine_pyrophosphate + 1. (m)Lipoamide  -->  1. 
(m)Acetyllipoamide + 1. (m)Carbanion_Thiamine_pyrophosphate 

P15 
Dihydrolipoyl 
transacetylase matrix 1.2.4.1 

1. (m)Acetyllipoamide + 1. (m)CoA  -->  1. (m)Acetyl_CoA +  
1. (m)Dihydrolipoamide 

P16 
Dihydrolipoyl 
dehydrogenase matrix 1.2.4.1 

1. (m)Dihydrolipoamide + 1. (m)Nicotinamide_Adenine_dinucleotide_(ox)  -
->  1. (m)Proton +  
1. (m)Lipoamide + 1. (m)Nicotinamide_Adenine_dinucleotide_(red) 

P99 
Pyruvate Dehydration 
Complex--Summary matrix 2.3.1.12 

1. (m)CoA + 1. (m)Nicotinamide_Adenine_dinucleotide_(ox) +  
1. (m)Pyruvate  -->  1. (m)Acetyl_CoA + 1. 
(m)Nicotinamide_Adenine_dinucleotide_(red) + 1. (x)Carbon_Dioxide 

T10 Citrate synthase matrix 1.8.1.4 
1. (m)Acetyl_CoA + 1. (m)Oxaloacetate + 1. (x)Water  -->   
1. (m)Citrate + 1. (m)CoA + 1. (m)Proton 

T11 Aconidate hydratase matrix N/A 1. (m)Citrate  -->  1. (m)cis-Aconitate + 1. (x)Water 
T12 Aconidate hydratase matrix 2.3.3.1 1. (m)cis-Aconitate + 1. (x)Water  -->  1. (m)isocitrate 

T13 
Isocitrate 
dehydrogenase matrix 4.2.1.3 

1. (m)isocitrate + 1. (m)Nicotinamide_Adenine_dinucleotide_(ox)  -->  1. 
(m)a-ketoglutarate + 1. (m)Nicotinamide_Adenine_dinucleotide_(red) + 1. 
(x)Carbon_Dioxide 

T14 
α-ketoglutarate 
dehydration complex matrix 4.2.1.3 

1. (m)CoA + 1. (m)a-ketoglutarate + 1. 
(m)Nicotinamide_Adenine_dinucleotide_(ox)  -->  1. 
(m)Nicotinamide_Adenine_dinucleotide_(red) + 1. (m)Succinyl_CoA + 1. 
(x)Carbon_Dioxide 

T15 
Succinyl CoA 
synthetase matrix 1.1.1.42 

1. (m)Guanosine-diphosphate + 1. (m)Orthophosphate + 1. 
(m)Succinyl_CoA  -->  1. (m)CoA + 1. (m)Guanosine-triphosphate +  
1. (m)Succinate 

T16 
Succinate 
dehydrogenase matrix N/A 

1. (m)Flavin_Adenine_dinucleotide_(ox) + 1. (m)Succinate  -->   
1. (m)Flavin_Adenine_dinucleotide_(red) + 1. (m)Fumarate 

T17 Fumarase matrix 6.2.1.4 1. (m)Fumarate + 1. (x)Water  -->  1. (m)L-Malate 
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T18 
Malate 
dehydrogenase matrix 1.1.1.37 

1. (m)L-Malate + 1. (m)Nicotinamide_Adenine_dinucleotide_(ox)  -->  1. 
(m)Proton + 1. (m)Nicotinamide_Adenine_dinucleotide_(red) + 1. 
(m)Oxaloacetate 

mT20 Malic Enzyme matrix 
1.1.1.38-
40 

1. (m)L-Malate + 1. (m)Nicotinamide_Adenine_dinucleotide_(ox)  -->  1. 
(m)Nicotinamide_Adenine_dinucleotide_(red) + 1. (m)Pyruvate +  
1. (x)Carbon_Dioxide 

cT20 Malic Enzyme cytosol 
1.1.1.38-
40 

1. (c)L-Malate + 1. (c)Nicotinamide_Adenine_dinucleotide_(ox)  -->   
1. (c)Nicotinamide_Adenine_dinucleotide_(red) + 1. (c)Pyruvate +  
1. (x)Carbon_Dioxide 

O199 
NADH-Q reductase 
(complex I)--summary matrix N/A 

5. (m)Proton + 1. (m)Nicotinamide_Adenine_dinucleotide_(red) +  
1. (m)Ubiquinone  -->  4. (c)Proton + 1. 
(m)Nicotinamide_Adenine_dinucleotide_(ox) + 1. (m)Ubiquinol 

O299 

Succinate-Q 
reductase (complex 
II)--summary matrix N/A 

1. (m)Flavin_Adenine_dinucleotide_(red) + 1. (m)Ubiquinone  -->   
1. (m)Flavin_Adenine_dinucleotide_(ox) + 1. (m)Ubiquinol 

O399 

Cytochrome 
reductase (complex 
III)--summary matrix N/A 

2. (m)Cyt_c_(ox) + 1. (m)Ubiquinol  -->  2. (c)Proton +  
2. (m)Cyt_c_(red) + 1. (m)Ubiquinone 

O499 

Cytochrome oxidase 
(complex IV)--
summary matrix N/A 

4. (m)Cyt_c_(red) + 12. (m)Proton + 1. (x)Molecular_Oxygen  -->   
8. (c)Proton + 4. (m)Cyt_c_(ox) + 2. (x)Water 

O50 
ATP Synthase--
summary matrix N/A 

3.33333 (c)Proton + 1. (m)Adenosine-diphosphate +  
1. (m)Orthophosphate  -->  1. (m)Adenosine-triphosphate +  
2.33333 (m)Proton + 1. (x)Water 

mH12 
Nucleoside 
Diphosphate Kinase matrix 2.7.4.6 

1. (m)Adenosine-diphosphate + 1. (m)Guanosine-triphosphate  -->   
1. (m)Adenosine-triphosphate + 1. (m)Guanosine-diphosphate 

cX01 pyruvate carrier Xport: c->m None 1. (c)Proton + 1. (c)Pyruvate  -->  1. (m)Proton + 1. (m)Pyruvate 

cX02 

MCT-1 
(monocarboxylate 
transporter) Xport: c->m None 1. (c)Proton + 1. (c)Lactate  -->  1. (m)Proton + 1. (m)Lactate 

cX021 

MCT-1 
(monocarboxylate 
transporter) Xport: c->m None 

1. (c)ß-HydroxyButyrate + 1. (c)Proton  -->  1. (m)ß-HydroxyButyrate + 1. 
(m)Proton 

cX022 

MCT-1 
(monocarboxylate 
transporter) Xport: c->m None 

1. (c)Acetoacetate + 1. (c)Proton  -->  1. (m)Acetoacetate +  
1. (m)Proton 

cX03 Dicarboxylate Xport: c->m None 1. (c)L-Malate + 1. (m)Orthophosphate  -->  1. (c)Orthophosphate +  
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transporter 1. (m)L-Malate 

cX031 
Dicarboxylate 
transporter Xport: c->m None 

1. (c)Succinate + 1. (m)Orthophosphate  -->  1. (c)Orthophosphate + 1. 
(m)Succinate 

cX50 
Orthophosphate 
carrier Xport: c->m None 

1. (c)Proton + 1. (c)Orthophosphate  -->  1. (m)Proton +  
1. (m)Orthophosphate 

mX51 ATP-ADP translocase Xport: m->c None 
1. (c)Adenosine-diphosphate + 1. (m)Adenosine-triphosphate  -->   
1. (c)Adenosine-triphosphate + 1. (m)Adenosine-diphosphate 

G3P99 
Glycerophosphate 
Shuttle--Summary Xport: c->m N/A 

1. (c)Proton + 1. (c)Nicotinamide_Adenine_dinucleotide_(red) +  
1. (m)Flavin_Adenine_dinucleotide_(ox)  -->   
1. (c)Nicotinamide_Adenine_dinucleotide_(ox) +  
1. (m)Flavin_Adenine_dinucleotide_(red) 

MAS99 
Malate Aspartate 
Shuttle--Summary Xport: c->m N/A 

2. (c)Proton + 1. (c)Nicotinamide_Adenine_dinucleotide_(red) +  
1. (m)Nicotinamide_Adenine_dinucleotide_(ox)  -->   
1. (c)Nicotinamide_Adenine_dinucleotide_(ox) + 2. (m)Proton +  
1. (m)Nicotinamide_Adenine_dinucleotide_(red) 

LAC99 
Lactate Shuttle--
Summary Xport: c->m N/A 

2. (c)Proton + 1. (c)Nicotinamide_Adenine_dinucleotide_(red) +  
1. (c)Pyruvate + 1. (m)Nicotinamide_Adenine_dinucleotide_(ox)  -->  1. 
(c)Nicotinamide_Adenine_dinucleotide_(ox) + 2. (m)Proton +  
1. (m)Nicotinamide_Adenine_dinucleotide_(red) + 1. (m)Pyruvate 

NADHDH NADH-DH--Summary Xport: c->m N/A 

1. (c)Nicotinamide_Adenine_dinucleotide_(red) + 5. (m)Proton +  
1. (m)Nicotinamide_Adenine_dinucleotide_(ox)  -->  4. (c)Proton +  
1. (c)Nicotinamide_Adenine_dinucleotide_(ox) +  
1. (m)Nicotinamide_Adenine_dinucleotide_(red) 

HLK99 
Proton Transport--
Generic Xport: c->m N/A 1. (c)Proton  -->  1. (m)Proton 

H50 
Energy Usage 
Function--Generic matrix N/A 

1. (c)Adenosine-triphosphate + 1. (x)Water  -->  1. (c)Adenosine-
diphosphate + 1. (c)Proton + 1. (c)Orthophosphate 

cK10 
Betahydroxybutyrate 
dehydrogenase cytosol 1.1.1.30 

1. (c)ß-HydroxyButyrate + 1. (c)Nicotinamide_Adenine_dinucleotide_(ox)  -
->  1. (c)Acetoacetate + 1. (c)Proton + 1. 
(c)Nicotinamide_Adenine_dinucleotide_(red) 

mK10 
Betahydroxybutyrate 
dehydrogenase matrix 1.1.1.30 

1. (m)ß-HydroxyButyrate + 1. (m)Nicotinamide_Adenine_dinucleotide_(ox)  
-->  1. (m)Acetoacetate + 1. (m)Proton + 1. 
(m)Nicotinamide_Adenine_dinucleotide_(red) 

mK20 Thiophorase matrix 2.8.3.5 
1. (m)Acetoacetate + 1. (m)Succinyl_CoA  -->  1. (m)Aceto-acetyl_CoA + 
1. (m)Succinate 

mK21 
Acetyl-CoA C-
Acetyltransferase matrix 2.3.1.9 1. (m)Aceto-acetyl_CoA + 1. (m)CoA  -->  2. (m)Acetyl_CoA 
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Appendix II 
This is the source code for the program that manipulates the mathematical representations of the biochemical systems studied here.  

// Productions: RESEARCH 
// Solving Matrices: Math utility to solve a 2D Matrix 
// Author: Douglas Walled  
// June 23rd, 2005 
 
 
 /********************MATRIX SOLVER.cpp:  ************************* 
 **          ** 
 ** This program will read a labelled 2D matrix in from a file. It will  ** 
 ** ask the user to specify which equations to consider when solving     ** 
 ** and to specify inhomogenous terms, if any. The template utilizes ** 
 ** a third party numerical toolkit developed at the National Institute ** 
 ** of Technology. The 2D Matrix represents a system of m molecules by ** 
 ** n biochemical reactions. A menu is provided to manipulate the ** 
 ** inputs, retrieve outputs, and access SpecVBuilder.cpp and  ** 
 ** BalanceChecker.cpp       ** 
 **          ** 
 *****************************************************************/ 
 
 
//************************** 
//**     Header Files       ** 
//************************** 
#include "DGW_jama_lu.h" // Includes 3rd party TNT library 
#include <fstream>  // Required for file I/O 
#include <string>  // Need for use of 'string' class 
#include <cstring>  // Required for strcmp() 
#include <stdlib.h> 
 
using namespace JAMA; // TNT namespace 
using namespace std;  // standard namespace 
//#include <cstdlib>  // Required for strchr()  
 
 
//********************************** 
//**   Global Variables (reference only)   ** 
//********************************** 
//const int nMolecules  // Number of Molecules in the System 
//const int nReactions  // Number of Reactions in the System 
//const double Produced // Standard of Production/Consumption  
//extern const int nAtoms  // Number of Atoms comprising system Molecules 
//extern const int nSpecies  // Number of Total species known to the model 
 
extern int newsize;  // # Molecules after exclusion 

extern int pref[nMolecules]; // Preferred order of molecules 
extern char *spcfile;  // File containing molecular specifications 
extern char *inspecies;  //File containing all Molecule definitions 
 
char *infile = "Balanced Reactions.txt";  //File containing original matrix 
char *outfile = "Summary.txt";  // File containing solution summary 
char sTable[8];    // Name of Reaction Matrix 
char sMolecule[nMolecules][8]; // Array of Molecule Names 
char sReactions[nReactions][8]; // Array of Reaction Names 
extern char sAtoms[nAtoms][8]; // Array of Atom Names 
 
 
extern Array2D<double> AllSpecies;   // Init Matrix for all molecule definitions  
   
extern Array2D<double> SystemSpecies; // Init Matrix for incld. molecule defs. 
extern Array2D<double> NetAtoms;   // Init Matrix for net produced atomic species 
 
Array2D<double>     // Init Reaction Matrix object for program 
 Reaction(nMolecules,nReactions); 
Array2D<double>     // Init Reaction Matrix object as an 'ORIGINAL' 
 orgReaction(nMolecules,nReactions);    
Array2D<double>     // Init specification vector to 0 for all 
 SpcV(nMolecules, 2, 0.0);  
Array1D<double>     // Solution x to the adjusted matrix 
 Soln(nReactions, 0.0); 
Array2D<double>     // Overall production/destruction of species 
 ProdVector(nMolecules,1, 0.0);  
Array2D<double>     // Hold molecular specifications from file 
 MolecKey(nMolecules,2,0.0);   
 
 
//*************************** 
//**  Function Prototypes     ** 
//*************************** 
int get_Reactions(char *);  // Reads Reaction Matrix from infile 
 
char MainMenu();   // Basic user interface  
int display_Reactions();  // Prints modified Reaction Matrix to screen 
int display_FileReact(char *);  // Prints Reaction Matrix from file to screen 
int display_Pivots();   // Prints LU Objects' pivoting of Reaction Matrix 
int check_Balance();   // Checks that equations being used are balanced 
int display_ProdVect();   // Displays all species produced/destroyed 
int reset_Matrix(char *);  // Resets Matrix to match original infile 
int solve_System(void);  // Solves Matrix where possible and prints solution 
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int quick_Solve();   // Automatically writes basic solution to file 
int Summary(char *);   // Writes a summary of findings to a txt file 
string EquationWriter();  // Writes the Equation 
 
//Functions from SpcVBuilder file 
int build_SpcV();   // User specifies b, esp. which equations to include 
int get_SpcV();    // Displays current specifications 
int file_Specs(char *);   // Writes molecule specs to SpcV from file 
int perm_Matrix();   // Permutes the reaction matrix according to SpcV 
 
 
 
//************************** 
//**   MAIN PROGRAM            ** 
//************************** 
int main(void) 
{ 
 int i; 
 char choice; 
  
 get_Reactions(infile); 
 newsize = nMolecules; 
 
 cout << "\nWELCOME TO MATRIX SOLVER V.2.0!!!\n";   
  
  //initialize indices of SpcV from 0 to nMolecules 
 for (i=0; i < SpcV.dim1(); i++) SpcV[i][0] = i; 
 
 for(;;) 
 { 
  choice = MainMenu(); 
 
 try  
 {  
  switch(choice) 
  { 
   case 'v': display_Reactions(); 
    break; 
   case 'f': display_FileReact(infile); 
    break; 
   case 'p': display_Pivots(); 
    break; 
   case 'c': check_Balance(); 
    break; 
   case 's': build_SpcV(); 
    break; 
   case 'o': solve_System(); 
    break; 
   case 'u': display_ProdVect(); 
    break; 
   case 't': reset_Matrix(infile); 
    break; 
   case 'x': quick_Solve(); 

    break; 
   case 'm': Summary(outfile); 
    break; 
   case 'q':      
    return 0; //Ends main() 
   default: 
    break; 
  } 
 }//END TRY 
 catch(int i)  
 { 
  switch(i) 
  { 
   case 1: cout << "\nMOLECULE NOT FOUND!!!\n\n"; 
    break; 
   case 2: cout << "\nSAME SPECIFICATION!!! No change made\n\n"; 
    break; 
   case 3: cout << "\nTRIVIAL CASE--SOLUTION IS 0!!!\n\n"; 
    break; 
   case 4: cout << "\nPERMUTED MATRIX CAN'T BE SOLVED--CHANGE   
      SPECIFICATIONS!\n\n"; 
    break; 
   case 5: cout << "\nFILE NOT FOUND!!!\n\n"; 
    break; 
   case 6: cout << "\nCANNOT BE SOLVED, MATRIX IS SINGULAR!!!\n\n"; 
    break; 
   case 7: cout << "\nLESS EQUATIONS THAN VARIABLES! INCLUDE MORE  
      MOLECULES!!!\n\n"; 
    break; 
   case 8: cout << "\nONE OR MORE MOLECULES DOESN'T APPEAR IN "  
      <<inspecies <<"!\n\n"; 
    break; 
   default: cout << "\nUNDEFINED ERROR!!!\n"; 
    break; 
  }//END SWITCH 
 }//END TRY 
 }//END for(;;) 
}//END main() -- Exits program 
 
 
 
/*********** MainMenu(): Simple user interface prompts user to choose action*********** 
 ***********   and returns choice to execute a function above   ***********/ 
char MainMenu() 
{ 
 char ch; 
 do 
 { 
  cout << "\n\n******Matrix Solver Main Menu (enter a letter):******\n\n"; 
  cout << "(v) View current matrix to be solved.\n"; 
  cout << "(f) View matrix from infile.\n"; 
  cout << "(p) View pivoting of matrix.\n"; 
  cout << "(c) Check to ensure that all reactions are truly balanced.\n"; 
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  cout << "(s) Change specifications of system molecules.\n"; 
  cout << "(o) Solve current matrix.\n"; 
  cout << "(u) Displays all net consumption and production given current solution.\n"; 
  cout << "(t) Reset to current matrix to match file.\n"; 
  cout << "(x) QuickSolve it!\n"; 
  cout << "(m) Print current summary to file.\n"; 
  cout << "(q) Quit program.\n\n"; 
  
  cin >> ch; cout << endl; 
 
 }while(!strchr("vfpcsoutxmq",tolower(ch))); 
 
 return tolower(ch); 
} 
 
 
 
/*********** get_Reactions(): Function reads Reaction matrix from file *********** 
 ***********   and writes to respective global arrays  ***********/ 
int get_Reactions(char *) 
{ 
 int i,j; 
 
 ifstream in(infile, ios::in | ios::binary); 
   
 if(!in)throw 5; 
 
  
// in >> nMolecules  >> nReactions;  
 in >> sTable; 
 
 for (j=0;j<nReactions;j++) in >> sReactions[j];  
  
 for (i=0;i<nMolecules;i++)  
 { 
  in >> sMolecule[i];  
  for (j=0;j<nReactions;j++)  
  { 
   in >> Reaction[i][j]; 
  }  
 } 
 
 in.close(); 
 
//Makes "Backup copy" of Reaction matrix 
 orgReaction = Reaction.copy(); 
 
 return 0; 
} 
 
 
/*********** display_Reactions(): Function prints Reaction matrix to *********** 
 ***********   the screen.     ***********/ 

int display_Reactions() 
{ 
 int i,j; 
 
 cout << "The current system of reactions is:\n\n"; 
  
 cout << sTable  << "\t"; 
 for (j=0;j<nReactions;j++) cout << sReactions[j] << "\t"; 
 cout << "\n"; 
 for (i=0; i < newsize ;i++) 
 { 
  cout << sMolecule[(int)SpcV[i][0]]  << "\t"; 
  for (j=0;j<nReactions;j++) 
  { 
   cout << Reaction[i][j]  << "\t"; 
  } 
  cout << "\n"; 
 } 
 
 cout << endl << endl; 
 
 cout << "Solving for the following b:\n"; 
  
 for(i=0; i<newsize; i++) 
 { 
  cout << "b[" << sMolecule[(int)SpcV[i][0]] << "]: "  << SpcV[i][1]  << "\n"; 
 } 
 
 return 0; 
} 
 
 
/*********** display_FileReact(): Function prints Reaction matrix from *********** 
 ***********   original file to the screen.   ***********/ 
int display_FileReact(char *) 
{ 
 int i,j; 
 
 cout << "The system of reactions is:\n\n"; 
  
 cout << sTable  << "\t"; 
 for (j=0;j<nReactions;j++) cout << sReactions[j] << "\t"; 
 cout << "\n"; 
 for (i=0; i < nMolecules ;i++) 
 { 
  cout << sMolecule[i]  << "\t"; 
  for (j=0;j<nReactions;j++) 
  { 
   cout << orgReaction[i][j]  << "\t"; 
  } 
  cout << "\n"; 
 } 
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 cout << endl << endl; 
 
 return 0; 
} 
 
 
 
 
/*********** display_Pivots(): Function prints LU pivoting of original *********** 
 ***********   matrix to the screen.   ***********/ 
int display_Pivots() 
{ 
 int i; 
 
 Array2D<double> A = Reaction.copy(); 
 Array1D<int> P(Reaction.dim1()); 
 LU<double> B(A); 
 P=B.getPivot();  
  
 cout << "\nPivot vector P: \n"; 
  
 for (i=0; i < nMolecules; i++) 
 { 
  cout << "["  << i  << "]: "  << P[i]  << "\n"; 
 } 
 cout << endl  << endl; 
 
 return 0; 
} 
 
 
 
/*********** display_ProdVect(): Displays the production and use of all *********** 
 ***********   species included in the system.   ***********/ 
int display_ProdVect() 
{ 
 int i; 
 
 Array2D<double> tmpSoln(nReactions,1, 0.0); 
 for (i=0; i<nReactions; i++) tmpSoln[i][0] = Soln[i]; 
 
 ProdVector = matmult(orgReaction , tmpSoln); 
  
 cout << "\n\nThe overall Production/Consumption vector is:\n"; 
 
 for (i=0; i < nMolecules ;i++) 
 { 
  cout << sMolecule[i]  << ":    \t" << ProdVector[i][0];   
  cout << "\n"; 
 } 
 return 0; 
} 
 

 
 
/*********** reset_Matrix(): Function restorest all values to match  *********** 
 ***********   those contained in the infile.  ***********/ 
int reset_Matrix(char *) 
{ 
 int i; 
 get_Reactions(infile); 
 
 for(i=0; i < Soln.dim(); i++) {Soln[i] =0;} 
 
 newsize = nMolecules; 
 
  //reset SpecV 
 for (i=0; i < SpcV.dim1(); i++) SpcV[i][0] = i; 
 for (i=0; i < SpcV.dim1(); i++) SpcV[i][1] = 0; 
  
 cout << "MATRIX SOLVER HAS BEEN FULLY RESET!"; 
 return 0; 
} 
 
 
 
/*********** Solve_System(): Function solves system of equations and *********** 
 ***********   prints that solution    ***********/ 
int solve_System(void) 
{ 
 int i,j; 
 int Rank = Reaction.dim2(); 
 Array2D<double> A(Rank,Rank);   //Use only top 'RANK' equations 
 Array2D<double> slvReaction(newsize,Rank); //Use first 'NEWSIZE' equations 
 Array1D<double> x(Rank), b(Rank), InhomB(newsize); 
 
  // Checks to see if enough molecules have been included 
 if(newsize < Rank) throw 7; 
 
 for (i=0;i<Rank;i++) 
 { 
  for (j=0;j<Rank;j++) A[i][j] = orgReaction[(int)SpcV[i][0]][j]; 
 } 
 
 LU<double> B(A); 
  
 //Solve and report solution if first 'RANK' equations can be solved without pivoting 
 if (B.isNonsingular())  
 { 
  cout << "\nSystem of initial " << Rank << " preferred equations CAN be solved.\n"; 
  cout << "Using " << Rank << " out of " << newsize << " included molecules.\n"; 
   
  for(i=0; i < Rank; i++)  {b[i] = SpcV[i][1];} 
 
  x = B.solve(b); 
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  for(i=0; i < Rank; i++) Soln[i] = x[i]; 
 
  cout << "\nThe solution is:\n"; 
  for(i=0; i < Soln.dim(); i++) {cout << "x[" << i << "]: " << Soln[i] << "\n";} 
 
  return 1; 
 } 
 else cout << "\nSINGULAR system of first " << Rank << " equations CANNOT be solved.\n"; 
  
  
 //Allow for pivoting, but still do not allow excluded molecules. 
 for(i=0; i < newsize; i++)  {InhomB[i] = SpcV[i][1];} 
 for (i=0; i < newsize; i++) 
 
 { 
  for (j=0;j<Rank;j++) slvReaction[i][j] = orgReaction[(int)SpcV[i][0]][j]; 
 } 
 
 LU<double> C(slvReaction); 
  
 if (C.isNonsingular())  
 { 
  cout << "\nThe solution, utilizing all  " << newsize << " included molecules:\n"; 
 
  x = C.solve(InhomB); 
  
  for(i=0; i < Rank; i++) Soln[i] = x[i]; 
 
  cout << "\nThe solution is:\n"; 
  for(i=0; i < Soln.dim(); i++) {cout << "x[" << i << "]: " << Soln[i] << "\n";} 
 
  return 1; 
 } 
 else 
 { 
 ofstream out(outfile, ios::out | ios::trunc); 
 if(!out)throw 5; 
 
 out << "Most recent specifications led to no solution."; 
 out.close(); 
  
 throw 6; 
 } 
 
 return 0; 
} 
 
 
 
/*********** Summary(char *): Function prints vital information  *********** 
 ***********   from current session to outfile  ***********/ 
 
int Summary(char *) 

{ 
 int i,j; 
  
 ofstream out(outfile, ios::out | ios::trunc); 
 if(!out)throw 5; 
 
 out << "SUMMARY FOR MATRIX SOLVER V 2.0:\n\n"; 
 
  // Print Overall Equation 
 out << EquationWriter(); 
 out << "\n\n"; 
  
  // Print Critical Numbers for this run  
 out << nMolecules << "\tnMolecules\n" << nReactions  << "\tnReactions\n"; 
 out << nAtoms << "\tnAtoms\n" << nSpecies  << "\tnSpecies\n"; 
 out << Produced << "\tProduced\n\n"; 
 
  // Print Molecules' names, specifications, and procuction/consumption  
 //Better formatting if viewing summary in excel: 
 out << "Molecule:\t\tSpecification:\t\tNet Produced:\n"; 
 //Better formatting if viewing summary as .txt file: 
 //out << "Molecule:\tSpecification:\tNet Produced:\n"; 
 for(i=0; i < nMolecules; i++)  
 { 
  out << sMolecule[(int)SpcV[i][0]] << "\t\t"; 
   //Better formatting if viewing summary in excel: 
  if(SpcV[i][1] == -286.314159265359) out << "Excluded!" << "\t"; 
   //Better formatting if viewing summary as .txt file: 
   //if(SpcV[i][1] == -286.314159265359) out << "Excluded!"; 
  else out << SpcV[i][1]  << "\t"; 
  
  out << "\t"; 
   
  out << ProdVector[(int)SpcV[i][0]][0] << "\n"; 
 }  
 
  // Print Reaction Rates of Solution 
 out << "\n\nReaction rates:\n"; 
 for(i=0; i < nReactions; i++)  
 { 
  out << sReactions[i] << "   \t"; 
  out << Soln[i]  << "\n"; 
 } 
 
  // Print Original Matrix 
 out << "\n\nOriginal Matrix read in from file:\n"; 
 // Labels 
 out << sTable  << "\t"; 
 for (j=0;j<nReactions;j++) {out << sReactions[j]  << "\t";}  
 out << "\n"; 
 // Molecules and coefficients in ORIGINAL order 
 for (i=0;i<nMolecules;i++)  
 { 
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  out << sMolecule[i]  << "\t";  
  for (j=0;j<nReactions;j++)  
  { 
   out << orgReaction[i][j]  << "\t"; 
  }  
  out << "\n"; 
 } 
 // Molecules and coefficients in PERMUTED order 
/* for (i=0;i<nMolecules;i++)  
 { 
  out << sMolecule[(int)SpcV[i][0]]  << "\t";  
  for (j=0;j<nReactions;j++)  
  { 
   out << orgReaction[(int)SpcV[i][0]][j]  << "\t"; 
  }  
  out << "\n"; 
 } 
*/ 
 
  // Print System Species definitions 
 out << "\n\nIncluded Species are defined as follows:\n" << "Species"  << "\t"; 
 for (j=0; j<nMolecules; j++) out << sMolecule[j] << "\t"; 
 out << "\n"; 
 for (i=0; i < nAtoms ; i++) 
 { 
  out << sAtoms[i]  << "\t"; 
  for (j=0; j<nMolecules; j++) 
  { 
   out << SystemSpecies[i][j]  << "\t"; 
  } 
  out << "\n"; 
 } 
 
 
  // Print NetAtoms production matrix to check balance 
 out << "\n\nAtomic Balance Matrix is:\n" << "Atomic"  << "\t"; 
 for (j=0; j<nReactions; j++) out << sReactions[j] << "\t"; 
 out << "\n"; 
 for (i=0; i < nAtoms ; i++) 
 { 
  out << sAtoms[i]  << "\t"; 
  for (j=0; j<nReactions; j++) 
  { 
   out << NetAtoms[i][j]  << "\t"; 
  } 
  out << "\n"; 
 } 
 
 out.close(); 
 
 cout << "\n\nSummary file successfully written!\n"; 
 
 return 0; 

} 
 
 
 
 
 
 
 
/*********** EquationWriter(): Function returns an equation that *********** 
 ***********   represents current solution of system ***********/ 
string EquationWriter() 
{ 
 int i,j; 
 double delta = .001; 
 char number[10]; 
 string Equation; 
 Equation = ""; 
 
 for (i=0; i < nMolecules ;i++) 
  { 
    //Put net consumed (b < -0.001) species on left side of eqn 
   if(ProdVector[i][0] < -(delta)) 
   { 
    _gcvt(ProdVector[i][0],9,number); //translates to char string 
      
     //Get rid of negative signs 
    for(j=0; number[j]; j++) {number[j] = number[j+1];} 
 
    Equation.insert(Equation.size(), number);   //writes coeff. to Equation 
 
    Equation += " "; 
 
    Equation += sMolecule[i];  //writes Species name to Equation 
    
    Equation += " + "; 
 //DEBUG  cout << Equation  << "\n"; 
   } 
  } 
 Equation.erase(Equation.size()-3,2); //Removes last "+" sign and one space 
 
 Equation += " -->  "; 
 
 for (i=0; i < nMolecules ;i++) 
  { 
    //Put net produced (b > 0.001) species on right side of eqn 
   if(ProdVector[i][0] > delta) 
   { 
    _gcvt(ProdVector[i][0],9,number);        //translates to char string 
    Equation.insert(Equation.size(), number);   //writes coeff. to Equation 
 
    Equation += " "; 
 
    Equation += sMolecule[i]; //writes Species name to Equation 
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    Equation += " + "; 
 //DEBUG  cout << Equation  << "\n"; 
   } 
  } 
 Equation.erase(Equation.size()-3,3); //Removes last "+" sign and two spaces 
 return Equation; 
} 
/*********** quick_Solve(): Function solves system of equations and *********** 
 ***********   given infile preferences, prints to file  ***********/ 
int quick_Solve() 
{ 
 int i;    //Must initialize SpcV 
 for (i=0; i < SpcV.dim1(); i++) SpcV[i][0] = i; 
  
 file_Specs(spcfile); // Load in user specified inclusion/inhomogenous values 
 perm_Matrix();   // Permute Matrix according to user specifications 
 solve_System();   // Solve the current system 
 display_ProdVect();  // Display net productions 
 check_Balance();  // Checks to make sure original equations are balanced 
 
 cout << "\nOverall System can be represented by the following equation:\n\n"; 
 cout << EquationWriter(); 
 
 Summary(outfile);  // Writes this solution to file called "Summary.txt" 
 
 return 0; 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
// Productions: RESEARCH 
// Specifying Solutions: Permutes Reaction Matrix for 'desirable solution' 
// Author: Douglas Walled  
// June 23rd, 2005 
 
 
 /********************SpcVBuilder:  *************************************** 
 **           ** 
 ** This file contains the code necessary to provide a fully interfaced  ** 
 ** opportunity for the user to create a "specification vector" for a  ** 
 ** system of reactions being solved. This vector will be used to swap  ** 
 ** rows of the reaction matrix and present it to the LU decomposer so  ** 
 ** that molecules whose production/destruction rates are unknown are  ** 
 ** omitted from the square matrix being solved, and all other molecules  ** 
 ** have a specified rate of production/destruction (inhomogenous term).  ** 
 **           ** 
 ***********************************************************************/ 
 
//************************** 
//**     Header Files       ** 
//************************** 
#include "DGW_jama_lu.h" // Includes 3rd party TNT library 
#include <fstream>  // Required for file I/O 
#include <string>  // Need for use of 'string' class 
using namespace JAMA; // TNT namespace 
using namespace std;  // standard namespace 
 
 
//************************** 
//**   Global Variables    ** 
//************************** 
//extern const int nMolecules=10; // Number of Molecules in the System 
//extern const int nReactions=5; // Number of Reactions in the System 
//extern const double Produced=1; // Standard of Production/Consumption 
int newsize;    // # Molecules after exclusion 
int pref[nMolecules];   // Preferred order of molecules 
char *spcfile = "MolecKey.txt";  // File containing molecular specifications 
 
extern char sTable[8];    // Name of Reaction Matrix 
extern char sMolecule[nMolecules][8];  // Array of Molecule Names 
extern char orgMolecule[nMolecules][8]; // Array of 'Original' Molecule Names 
extern char sReaction[nReactions][8];  // Array of Reaction Names 
extern char orgReactions[nReactions][8]; // Array of 'Original' Reaction Names 
 
extern Array2D<double> Reaction;  // Initialize Reaction Matrix object  
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extern Array2D<double> orgReaction;  // Initialize Reaction Matrix object 'ORIGINAL' 
extern Array2D<double> SpcV;  // Initialize specification vector to 0 for all  
extern Array2D<double> MolecKey;  // Hold molecular specifications from file 
 
 
 
 
 
//*************************** 
//**  Function Prototypes     ** 
//*************************** 
int build_SpcV(); // User specifies b, esp. which equations to include 
 
char SpecMenu(); // Basic user interface 
int get_Molecules(); // Displays list of molecules in the system 
int get_SpcV();  // Displays current specifications 
int file_Specs(char *); // Writes molecule specs to SpcV from file 
int change_SpcV(); // Alters SpcV through prompted user interface 
int excclude_Mol(); // Excludes a molecule from being used in solution 
int include_Mol(); // Reincludes a molecule for solution attempts 
int move_Mol(); // Move a molecule to the top of the current matrix 
int perm_Matrix(); // Permutes the reaction matrix according to SpcV 
 
 
 
/************************************************************************* 
 *********** build_SpcV(): Function is as explained above. Due to its *********** 
 ***********   size, it was put in a second file for clarity. *********** 
 *************************************************************************/ 
int build_SpcV() 
{ 
 char choice; 
 
 cout << "\nPLEASE SPECIFY MOLECULES FOR INCLUSION AND PRODUCTION RATES.\n"; 
 
 for(;;) 
 { 
  choice = SpecMenu(); 
 
 try  
 {  
  switch(choice) 
  { 
   case 'm': get_Molecules(); 
    break; 
   case 's': get_SpcV(); 
    break; 
   case 'f': file_Specs(spcfile); 
    break; 
   case 'c': change_SpcV(); 
    break; 
   case 'e': excclude_Mol(); 
    break; 

   case 'i': include_Mol(); 
    break; 
   case 'v': move_Mol(); 
    break; 
   case 'p': perm_Matrix(); 
    break; 
   case 'q':      
    return 0; //Ends build_SpcV() call 
   default: 
    break; 
  } 
 }//END TRY 
 catch(int i)  
 { 
  switch(i) 
  { 
   case 1: cout << "\nMOLECULE NOT FOUND!!!\n\n"; 
    break; 
   case 2: cout << "\nSAME SPECIFICATION!!! No change made.\n\n"; 
    break; 
   case 3: cout << "\nTRIVIAL CASE--SOLUTION IS 0!!!.\n\n"; 
    break; 
   case 4: cout << "\nPERMUTED MATRIX CAN NOT BE SOLVED -- CHANGE  
      SPECIFICATIONS!!!\n\n"; 
    break; 
   case 5: cout << "\nFILE NOT FOUND!!!\n\n"; 
    break; 
   case 6: cout << "\nCANNOT MOVE AN EXCLUDED MOLECULE!!!\n\n"; 
    break; 
   default: cout << "\nUNDEFINED ERROR!!!\n"; 
    break; 
  }//END SWITCH 
 }//END TRY 
 }//END for(;;) 
}//END build_SpcV() -- return to call in 'switch(choice)' above 
 
 
 
/*********** SpecMenu(): Simple user interface prompts user to choose action*********** 
 ***********   and returns choice to execute a function above    ***********/ 
char SpecMenu() 
{ 
 char ch; 
 do 
 { 
  cout << "\n\n*******What would you like to do? (enter a letter)*******\n\n"; 
  cout << "(m) View list of molecules in the system\n"; 
  cout << "(s) View current specification values\n"; 
  cout << "(f) Set Molecule specifications from file.\n"; 
  cout << "(c) Change a molecule's specification\n"; 
  cout << "(e) Exclude a molecule from solution attempts\n"; 
  cout << "(i) Re-include a molecule for solution attempts\n"; 
  cout << "(v) Move a molecule to the top of the current matrix\n"; 
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  cout << "(p) Permute Matrix according to current sepecifications\n"; 
  cout << "(q) Accept specifications and return to main menu\n\n"; 
  
  cin >> ch; cout << endl; 
 
 }while(!strchr("msfceivpq",tolower(ch))); 
    
 return tolower(ch); 
} 
 
 
 
/*********** get_Molecules(): Displays numbered, ordered list of rows/ *********** 
 ***********   Molecules in Reaction Matrix.   ***********/ 
int get_Molecules()   
{ 
 int i; 
 
 cout << "MOLECULES IN REACTION MATRIX(in order): \n"; 
 for(i=0; i < nMolecules; i++)  
 { 
  cout << i <<") " << sMolecule[i] << "  \t"; 
  if(!((i+1)%5)) cout << endl; 
 } 
 
 cout << endl  << endl; 
 return 0; 
} 
 
 
 
/*********** get_SpcV(): Displays SpcV to the screen. *********** 
 ***********       ***********/ 
int get_SpcV()  
{ 
 int i,j; 
 
 cout << "CURRENT MOLECULE SPECIFICATIONS: \n"; 
 for(i=0; i < nMolecules; i++)  
  for(j=0; j<2; j++)  
  { 
   if(!j) cout << "Molecule: " << sMolecule[(int)SpcV[i][0]] << "   \t"; 
   if(j) 
   { 
    cout << "Spec: "; 
    if(SpcV[i][j] == -286.314159265359) cout << "Excluded!"  << endl; 
    else cout << SpcV[i][j]  << endl; 
   } 
  } 
  
 cout << endl; 
 return 0; 
} 

 
 
 
/*********** file_Specs(): Reads file "Molec Key" and adjusts SpcV  *********** 
 ***********   accordingly.     ***********/ 
int file_Specs(char *) 
{ 
 char Key[8]; 
 int i,j; 
 
 cout << "Loading in specifications from file.\n\n"; 
 ifstream in(spcfile, ios::in | ios::binary); 
   
 if(!in)throw 5; 
 
 for(i=0; i<3; i++) in >> Key; 
 
 for (i=0;i<nMolecules;i++) 
 { 
  in >> Key; 
  in >> MolecKey[i][0];  
  in >> MolecKey[i][1]; 
 } 
 
 in.close(); 
 
// Automatically make appropriate changes to SpcV 
 for (i=0;i<nMolecules;i++) 
 { 
  if(MolecKey[i][0] == 1)  
  { 
   for(j=0; j<nMolecules; j++)  
   { 
    if(SpcV[j][0] == i) 
    SpcV[j][1] = -286.314159265359; 
   } 
  }else for(j=0; j<nMolecules; j++)  
   { 
    if(SpcV[j][0] == i) 
    SpcV[j][1] = MolecKey[i][1]; 
   } 
 } 
/* 
//OUTPUTS FOR DEBUG  
 cout << "MKey\tExcl\tSpc\n"; // Headers 
 
 for (i=0; i < nMolecules; i++) // Matrix 
 { 
  cout << sMolecule[i]  << "\t"; 
  cout << MolecKey[i][0]  << "\t"  << MolecKey[i][1]  << "\n"; 
 } 
 cout << "\n\n"; 
 get_SpcV();  // SpcV out 
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*/ 
 return 0; 
} 
/*********** change_SpcV(): Prompts user through menu options to create *********** 
 ***********   a "specification vector" for the reaction matrix***********/ 
int change_SpcV() 
{ 
 int i,j; 
 int index = -1; 
 double s; 
 string mol(""); 
 char indMolecule[nMolecules][8]; //lowercase index to check names against 
 
 cout << "\nEnter the name of the molecule you would like to specify: \n"; 
 cout << "(Or type 'reset' to reset all to 0)\t"; 
 
 cin >> mol;   //User Inputs molecule name, converted to lowercase 
  
 for(i=0; i < mol.length(); i++) mol[i] = tolower(mol[i]); 
 
 if(mol == "reset") //Resets if 'reset' was input and returns 
 { 
  for (i=0; i < SpcV.dim1(); i++) SpcV[i][1] = 0; 
  cout << "\nAll specifications have been reset to 0(steady state).\n\n"; 
  return 0; 
 } 
 
  //Finds Molecule to be changed  
 for(i=0; i < nMolecules; i++) 
 { 
  for(j=0; sMolecule[i][j]; j++) indMolecule[i][j] = tolower(sMolecule[i][j]); 
  indMolecule[i][j] = '\0'; 
  if(indMolecule[i] == mol) index = i; 
 } 
 if(index<0) throw 1; //Error handled if no match 
 
  //Outputs current value, prompts for new value  
 for(i=0; i < nMolecules; i++) 
 { 
  if(SpcV[i][0] == index) 
  { 
   cout << "\nCurrent specification of " << sMolecule[index] << " is "  << 
SpcV[i][1]; 
   cout << "\n\nSet new production/consumption value: \n"; 
   cout << "(X=0 for steady state, X<0 for consumed, X>0 for produced)  "; 
 
   cin >> s; 
    
   if(s == SpcV[i][1]) throw 2; //Error if entry is same as current specification 
   else SpcV[i][1] = s; 
     
    //Displays new value 
   cout << "\nNew specification for " << mol << " is: ";   

   if(SpcV[i][1] == -286.314159265359) cout << "Excluded!"  << endl; 
   else cout << SpcV[i][1]  << endl; 
  } 
 } 
 return 0; 
} 
 
 
 
/*********** exclude_Mol(): Prevents a molecdule from being considered *********** 
 ***********   in the LU decomposition object.  ***********/ 
int excclude_Mol() 
{ 
 int i,j; 
 int index = -1; 
 string mol(""); 
 char indMolecule[nMolecules][8]; //lowercase index to check names against 
 
 
 cout << "\nEnter the name of the molecule you would like to exclude: \n"; 
 
 cin >> mol;    //User Inputs molecule name, converted to lowercase 
 for(i=0; i < mol.length(); i++) mol[i] = tolower(mol[i]); 
 
 
  //Finds Molecule to be excluded, and does so.  
 for(i=0; i < nMolecules; i++) 
 { 
  for(j=0; sMolecule[i][j]; j++) indMolecule[i][j] = tolower(sMolecule[i][j]); 
  indMolecule[i][j] = '\0'; 
  if(mol == indMolecule[i]) index = i; 
 } 
 if(index<0) throw 1;   //Error handled if no match 
   
 for(i=0; i < nMolecules; i++) 
 { 
  if(SpcV[i][0] == index) SpcV[i][1] = -286.314159265359; 
   
 } 
 cout << sMolecule[index] << " has been excluded."; 
  
 return 0; 
} 
 
 
 
/*********** include_Mol(): Allows user to "put back" a molecule that *********** 
 ***********   was once excluded from SpcV.   ***********/ 
int include_Mol() 
{ 
 int i,j; 
 int index = -1; 
 string mol(""); 
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 char indMolecule[nMolecules][8]; //lowercase index to check names against 
 
 
 cout << "\nEnter the name of the molecule you would like to Re-include: \n"; 
 
 cin >> mol;    //User Inputs molecule name, converted to lowercase 
 for(i=0; i < mol.length(); i++) mol[i] = tolower(mol[i]); 
 
 
  //Finds Molecule to be included, and does so.  
 for(i=0; i < nMolecules; i++) 
 { 
  for(j=0; sMolecule[i][j]; j++) indMolecule[i][j] = tolower(sMolecule[i][j]); 
  indMolecule[i][j] = '\0'; 
  if(mol == indMolecule[i]) index = i; 
 } 
 if(index<0) throw 1; //Error handled if no match 
   
 for(i=0; i < nMolecules; i++) 
 { 
  if(SpcV[i][0] == index)SpcV[i][1] = 0; 
 } 
 cout << sMolecule[index] << " is included, and has been set to 0."; 
 
 return 0; 
} 
 
 
 
/*********** move_Mol(): Allows user to move a molecule from anywhere  *********** 
 ***********   in SpcV to the top of SpcV. Others shift down. ***********/ 
int move_Mol() 
{ 
 int i,j,marker; 
 int index = -1; 
 string mol(""); 
 char indMolecule[nMolecules][8]; //lowercase index to check names against 
 
 cout << "\nEnter the name of the molecule you would like to move to the top: \n"; 
 
 cin >> mol;   //User Inputs molecule name, converted to lowercase 
 for(i=0; i < mol.length(); i++) mol[i] = tolower(mol[i]); 
 
  //Finds Molecule to be moved  
 for(i=0; i < nMolecules; i++) 
 { 
  for(j=0; sMolecule[i][j]; j++) indMolecule[i][j] = tolower(sMolecule[i][j]); 
  indMolecule[i][j] = '\0'; 
  if(mol == indMolecule[i])  
  { 
   index = i;  //Set index, then error if try to move excluded mol 
   for(j=0; j<nMolecules; j++)  
   {if(SpcV[j][0] == index && SpcV[j][1] == -286.314159265359)throw 6;} 

  } 
 } 
 if(index<0) throw 1; //Error handled if no match 
 
  //Outputs for debug 
// cout << "\nPrevious order was: "; 
// for (j=0; j < newsize; j++) cout << sMolecule[pref[j]]  << " "; 
   
  //Swap and permute   
 for(j=1; j<newsize; j++) 
 { 
  if(pref[j] == index) marker = j; 
 } 
 
 for(j=marker; j >0; j--) {pref[j] = pref[j-1];} 
 pref[0] = index; 
 
//Outputs for debug 
// cout << "\n\nNew order is: "; 
// for (j=0; j < newsize; j++) cout << sMolecule[pref[j]]  << " "; 
   
  //Copy SpcV into spv_tmp for storage 
 Array2D<double> spv_tmp = SpcV.copy(); 
 
 //Permute SpcV 
 // cout << "\nSpcV: \n"; 
 for (i=0; i < newsize; i++) 
 {  
  SpcV[i][0] = pref[i]; 
  for(j=0; j < newsize; j++) 
  { 
   if(spv_tmp[j][0] == pref[i]) SpcV[i][1] = spv_tmp[j][1]; 
  } 
   
//Outputs for Debug: 
//   cout << SpcV[i][0] << " " << SpcV[i][1] << "\n"; 
 
   //Permute Reaction 
  for (j=0; j<nReactions; j++) 
   { 
    Reaction[i][j] = orgReaction[pref[i]][j]; 
   } 
 } 
 return 0; 
} 
 
 
 
/*********** perm_Matrix(): Permutes reaction matrix based on SpcV and *********** 
 ***********   checks solvability. Permutes until solvable. *********** 
 ***********   Prefers 1 net produced, and rest steady state. ***********/ 
int perm_Matrix() 
{ 
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 int h, i, j, k, l, m;  
 static int prod[nMolecules]; 
 static int std_st[nMolecules]; 
 static int excld[nMolecules]; 
 static int othr[nMolecules];  
 
 
  //Finds and displays indices of molecules that are to be  
  //excluded at steady state, or produced/consumed at known amount 
 h=0; j=0; k=0; l=0; m=0; 
 for(i=0; i < (nMolecules); i++) 
 { 
  if(abs(SpcV[i][1]) == Produced) prod[h++] = SpcV[i][0]; 
  else if(SpcV[i][1] == -286.314159265359) excld[j++] = SpcV[i][0]; 
  else if(SpcV[i][1] == 0) std_st[k++] = SpcV[i][0]; 
  else othr[m++] = SpcV[i][0]; 
 } 
 excld[j] = '\0'; std_st[k] = '\0'; prod[h] = '\0'; othr[m] = '\0'; 
/* Outputs for debug 
 cout << "\nstd_st: "; for(l=0; l<k; l++) cout << std_st[l] << " "; 
 cout << "\nexcld: "; for(l=0; l<j; l++) cout << excld[l] << " "; 
 cout << "\nprod: "; for(l=0; l<h; l++) cout << prod[l] << " "; 
 cout << "\nother: "; for(l=0; l<m; l++) cout << othr[l] << " "; 
*/  
  //Permutes Reaction Matrix (and sMolecule) to suggest inclusion and exclusion  
  //in solution. Will try to put things produced by 'Produced' near top,  
  //then 'std_st', and 'excld' at bottom 
 for(i=0; i<h; i++) pref[i] = prod[i];  //prod[el] first 
 for(i=0; i<k; i++) pref[i+h] = std_st[i]; //std_st[el] next 
 for(i=0; i<m; i++) pref[i+h+k] = othr[i]; //prod/cons next 
 for(i=0; i<j; i++) pref[i+h+k+m] = excld[i]; //excld[el] at end 
 newsize = nMolecules - j;   //#Molecules after exclusion 
 
/* Outputs for debug  
 cout << "\n\nA preferred order is: "; 
 for (i=0; i < nMolecules; i++) cout << pref[i]  << " "; 
*/ 
 cout << "\nPERMUTING>>>>>>>>>>>>>\n\n"; 
 
  //Copy SpcV into spv_tmp for storage 
  Array2D<double> spv_tmp = SpcV.copy(); 
 
  //Permute SpcV 
  // cout << "\nSpcV: \n"; 
 for (i=0; i < nMolecules; i++) 
 {  
  SpcV[i][0] = pref[i]; 
  for(j=0; j < nMolecules; j++) 
  { 
   if(spv_tmp[j][0] == pref[i]) SpcV[i][1] = spv_tmp[j][1]; 
  } 
   
   //  cout << SpcV[i][0] << " " << SpcV[i][1] << "\n"; 

   //Permute Reaction 
  for (j=0; j<nReactions; j++) 
   { 
    Reaction[i][j] = orgReaction[pref[i]][j]; 
   } 
 } 
 return 0; 
} 
// Productions: RESEARCH 
// Solving Matrices: Math utility to solve a 2D Matrix 
// Author: Douglas Walled  
// August 8th, 2005 
 
 
 /********************BALANCE CHECKER.cpp:  *********************** 
 **          ** 
 ** This file will read a labelled 2D matrix in from a file containing  ** 
 ** the atomic proportions of all molecules in the model. It will then   ** 
 ** build a matrix called SystemMolecules, which will contain ONLY the  ** 
 ** molecules being included in a particular run. It will then execute ** 
 ** matrix multiplication with the balanced reaction matrix to check if ** 
 ** the original reactions from file are in fact balanced. This is a   ** 
 ** secondary safegaurd intended to minimize human error, and is not ** 
 ** essential to MatrixSolver.cpp's function.    ** 
 **          ** 
 *****************************************************************/ 
 
 
//************************** 
//**     Header Files      ** 
//************************** 
#include "DGW_jama_lu.h" // Includes 3rd party TNT library 
#include <iostream> 
#include <fstream>  // Required for file I/O 
#include <string>  // Need for use of 'string' class 
#include <cstring>  // Required for strcmp() 
using namespace JAMA; // TNT namespace 
using namespace std;  // standard namespace 
//#include <cstdlib>  // Required for strchr()  
 
 
//************************** 
//**   Global Variables    ** 
//************************** 
char *inspecies = "Species Library.txt";  //File containing all Molecule definitions 
char *outspecies = "Balanced Molecules.txt";  //File with included Molecule definitions 
 
extern int newsize;  // # Molecules after exclusion 
extern int pref[nMolecules]; // Preferred order of molecules 
 
extern char *spcfile;  // File containing molecular specifications 
extern char *infile;  //File containing original matrix 
extern char *outfile;  // File containing solution summary 
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extern char sTable[8];    // Name of Reaction Matrix 
extern char sMolecule[nMolecules][8];  // Array of Molecule Names 
extern char sReactions[nReactions][8]; // Array of Reaction Names 
char sAtoms[nAtoms][8];   // Array of Atom Names 
 
Array2D<double>  // Init Matrix object containing all molecule definitions 
 AllSpecies(nAtoms,nSpecies,77.0);     
Array2D<double>    // Init Matrix object containing incld. molecule defs.  
  
 SystemSpecies(nAtoms,nMolecules,0.0); 
Array2D<double>    // Init Matrix to contain net produced atomic species 
 NetAtoms(nAtoms,nReactions); 
extern Array2D<double> Reaction;  // Init Reaction Matrix object for program to act on 
extern Array2D<double> orgReaction;  // Init Reaction Matrix object as an 'ORIGINAL' 
extern Array2D<double> SpcV;  // Init specification vector to 0 for all  
extern Array2D<double> MolecKey;  // Hold molecular specifications from file 
 
 
 
//*************************** 
//**  Function Prototypes   ** 
//*************************** 
int check_Balance();  // Checks that equations being used are balanced 
 
 
 
/*************************************************************************  
 *********** check_Balance(): Uses Matrix multiplication to check if  *********** 
 ***********   reactions are actually balanced.  *********** 
 *************************************************************************/ 
check_Balance() 
{ 
 int i,j,k,l; 
 string dmy(" ");  // Dummy variable to waste input 
// float dum;   // For C code trial 
 int warning = 0;  // Warning flag can be toggled 
 int Found = 0;   // Toggles whether molecule found or not 
 double delta = 0.001;  // Error margin 
 char indMolecule[nMolecules][8]; //lowercase index to check names against below: 
 
 
 for(i=0; i<nMolecules; i++) 
 { 
  for(j=0; sMolecule[i][j]; j++) {indMolecule[i][j] = tolower(sMolecule[i][j+1]);} 
 } 
 
  
  // OPENS SpeciesLibrary.txt to read in the entire list of molecule definitions 
 ifstream in(inspecies, ios::in | ios::binary); 
 if(!in){cout << inspecies; throw 5;} 
 
 in >> dmy;   //Ignores table name 

 for(i=0; i < nSpecies; i++) 
 { 
  in >> dmy; 
 } 
  
 for(k=0; k<nAtoms; k++) 
 { 
  in >> sAtoms[k]; // Loads in array of atom names 
  for(i=0; i < nSpecies; i++)  // Constructs entire Species Library 
  { 
   if(!in) in.open(inspecies); 
   in >> AllSpecies[k][i];  
  } 
 } 
 in.close();   
 
 
  // OPENS SpeciesLibrary.txt again, writes table of Included Molecules, SystemSpecies 
 ifstream in2(inspecies, ios::in | ios::binary); 
 in2 >> dmy;    // Ignores table name 
 
 Found = 0; 
 for(i=0; i < nSpecies ; i++)  // Searches first row 
 { 
  in2 >> dmy;  
  
  for(l=0; l < dmy.length(); l++) dmy[l] = tolower(dmy[l]); 
 
  for(j=0; j<nMolecules; j++) 
  { 
   if(indMolecule[j] == dmy) // If finds included molecule, copies column 
   { 
    Found++; 
    for(k=0; k<nAtoms; k++) {SystemSpecies[k][j] = AllSpecies[k][i];} 
   } 
  } 
 } 
 in2.close(); 
 
  
  // Writes SystemMolecules to text file "Balanced Molecules.txt" 
 ofstream out(outspecies, ios::out | ios::trunc); 
 if(!out)throw 5; 
 
 out << "Atomic"  << "\t"; 
 for (j=0; j<nMolecules; j++) out << sMolecule[j] << "\t"; 
 out << "\n"; 
 for (i=0; i < nAtoms ; i++) 
 { 
  out << sAtoms[i]  << "\t"; 
  for (j=0; j<nMolecules; j++) 
  { 
   out << SystemSpecies[i][j]  << "\t"; 
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  } 
  out << "\n"; 
 } 
 out.close(); 
 
 cout << "\n**"  << Found  << " species definitions have been included in SystemSpecies**"; 
 if(Found != nMolecules) throw 8; 
   
  // Does SystemSpecies X orgReaction = NetAtoms 
 NetAtoms = matmult(SystemSpecies, orgReaction); 
 
  // Searches NetAtoms for nonzero entries, and reports molecules and reactions involved 
 for(i=0; i<nAtoms; i++) 
 { 
  for(j=0; j<nReactions; j++) 
  { 
   if(abs(NetAtoms[i][j]) > delta) 
   { 
    warning = 1; 
    cout << "\n\n******* WARNING!!! Unbalanced Reaction Found!!!  
      *********\n"; 
    cout << "Try checking the definitions of all molecules containing "; 
    cout << sAtoms[i] << " in reaction " << sReactions[j]; 
    cout << "\nAlso check that all coefficients are balanced in the  
      above reaction."; 
   } 
  } 
 } 
 
  // Prints NetAtoms to screen if a warning is flagged, else provides pos. feedback 
 if(warning) 
 { 
  cout << "\n\nThe NetAtoms Matrix is:\n\n" << "Atomic"  << "\t"; 
  for (j=0; j<nReactions; j++) cout << sReactions[j] << "\t"; 
  cout << "\n"; 
  for (i=0; i < nAtoms ; i++) 
  { 
   cout << sAtoms[i]  << "\t"; 
   for (j=0; j<nReactions; j++) 
   { 
    cout << NetAtoms[i][j]  << "\t"; 
   } 
   cout << "\n"; 
  } 
 }else cout << "\n*** ALL REACTIONS ARE BALANCED!!! ***\n"; 
 
 return 0; 
} 
 
 
 
 
 

 
 
 
 
 
 
 
 

 The following files are the header files for the external 
dependencies of the above code.  For the most part, these 
comprise part of a third party numerical toolkit developed at the 
National Institute of Technology (NIST).  
 
 DGW_Globals.h is a header file containing the system’s 
global variables for easy access and alteration. 
 
 
/**** DGW_Gloabals.h  ******* 
**    ** 
** Global variables. ** 
**    ** 
**************************/ 
//Global Variables of note!      
const int nMolecules = xx ; // enter values for ‘xx’ 
const int nReactions = xx ; 
const int nAtoms  = xx ; 
const int nSpecies = xx ; 
const double Produced = xx ; 
 
 
 
 
 
 
 
 
 
 
/**** DGW_tnt.h  ******* 
**      ** 
**  Include header files.  ** 
**      ** 
***********************/ 
 
// Includes all relevant headers by only including dgw_tnt.h 
#ifndef TNT_H 
#define TNT_H 
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#include "dgw_Globals.h"  //Global Variables shared by program files 
 
#include "tnt_array2d.h"  //2 Dimensional array class definition 
#include "tnt_array2d_utils.h"  //2 Dimensional array class utils 
 
#endif 
 
 
 
/******** TNT_array2D.h   ********** 
**     ** 
** Defining 2D Matrix type. ** 
**     ** 
*********************************/ 
 
/* 
* 
* Template Numerical Toolkit (TNT): Two-dimensional numerical array 
* 
* Mathematical and Computational Sciences Division 
* National Institute of Technology, 
* Gaithersburg, MD USA 
* 
* 
* This software was developed at the National Institute of Standards and 
* Technology (NIST) by employees of the Federal Government in the course 
* of their official duties. Pursuant to title 17 Section 105 of the 
* United States Code, this software is not subject to copyright protection 
* and is in the public domain. NIST assumes no responsibility whatsoever for 
* its use by other parties, and makes no guarantees, expressed or implied, 
* about its quality, reliability, or any other characteristic. 
* 
*/ 
 
 
 
#ifndef TNT_ARRAY2D_H 
#define TNT_ARRAY2D_H 
 
#include <cstdlib> 
#include <iostream> 
#ifdef TNT_BOUNDS_CHECK 
#include <assert.h> 
#endif 
 
namespace TNT 
{ 
 
/** 
 Tempplated two-dimensional, numerical array which 
 looks like a conventional C multiarray.  
 Storage corresponds to C (row-major) ordering. 
 Elements are accessed via A[i][j] notation.  

  
 <p> 
 Array assignment is by reference (i.e. shallow assignment). 
 That is, B=A implies that the A and B point to the 
 same array, so modifications to the elements of A 
 will be reflected in B. If an independent copy 
 is required, then B = A.copy() can be used.  Note 
 that this facilitates returning arrays from functions 
 without relying on compiler optimizations to eliminate 
 extensive data copying. 
 
 <p> 
 The indexing and layout of this array object makes 
 it compatible with C and C++ algorithms that utilize 
 the familiar C[i][j] notation.  This includes numerous 
 textbooks, such as Numercial Recipes, and various 
 public domain codes. 
 
 <p> 
 This class employs its own garbage collection via 
 the use of reference counts.  That is, whenever 
 an internal array storage no longer has any references 
 to it, it is destoryed. 
*/ 
template <class T> 
class Array2D  
{ 
 
 
  private: 
    T** v_;                   
 int m_; 
    int n_; 
    int *ref_count_; 
 
 void initialize_(int m, int n); 
    void copy_(T* p, const T*  q, int len) const; 
    void set_(const T& val); 
    void destroy_(); 
 inline const T* begin_() const; 
 inline T* begin_(); 
 
  public: 
 
    typedef         T   value_type; 
 
        Array2D(); 
        Array2D(int m, int n); 
        Array2D(int m, int n,  T *a); 
        Array2D(int m, int n, const T &a); 
    inline Array2D(const Array2D &A); 
 inline Array2D & operator=(const T &a); 
 inline Array2D & operator=(const Array2D &A); 
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 inline Array2D & ref(const Array2D &A); 
        Array2D copy() const; 
     Array2D & inject(const Array2D & A); 
 inline T* operator[](int i); 
 inline const T* operator[](int i) const; 
 inline int dim1() const; 
 inline int dim2() const; 
 inline int ref_count() const; 
               ~Array2D(); 
 
 
}; 
 
 
/** 
 Copy constructor. Array data is NOT copied, but shared. 
 Thus, in Array2D B(A), subsequent changes to A will 
 be reflected in B.  For an indepent copy of A, use 
 Array2D B(A.copy()), or B = A.copy(), instead. 
*/ 
template <class T> 
Array2D<T>::Array2D(const Array2D<T> &A) : v_(A.v_), m_(A.m_),  
 n_(A.n_), ref_count_(A.ref_count_) 
{ 
 (*ref_count_)++; 
} 
 
 
 
/** 
 Create a new (m x n) array, WIHOUT initializing array elements. 
 To create an initialized array of constants, see Array2D(m,n,value). 
 
 <p> 
 This version avoids the O(m*n) initialization overhead and 
 is used just before manual assignment. 
 
 @param m the first (row) dimension of the new matrix. 
 @param n the second (column) dimension of the new matrix. 
*/ 
template <class T> 
Array2D<T>::Array2D(int m, int n) : v_(0), m_(m), n_(n), ref_count_(0) 
{ 
 initialize_(m,n); 
 ref_count_ = new int; 
 *ref_count_ = 1; 
} 
 
 
 
/** 
 Create a new (m x n) array,  initializing array elements to 
 constant specified by argument.  Most often used to 

 create an array of zeros, as in A(m, n, 0.0). 
 
 @param m the first (row) dimension of the new matrix. 
 @param n the second (column) dimension of the new matrix. 
 @param val the constant value to set all elements of the new array to. 
*/ 
template <class T> 
Array2D<T>::Array2D(int m, int n, const T &val) : v_(0), m_(m), n_(n) , 
 ref_count_(0) 
{ 
 initialize_(m,n); 
 set_(val); 
 ref_count_ = new int; 
 *ref_count_ = 1; 
 
} 
 
/** 
 Create a new (m x n) array,  as a view of an existing one-dimensional 
 array stored in <b>C order</b>, i.e. right-most dimension varying fastest.   
 (Often referred to as "row-major" ordering.) 
 Note that the storage for this pre-existing array will 
 never be garbage collected by the Array2D class. 
 
 @param m the first (row) dimension of the new matrix. 
 @param n the second (column) dimension of the new matrix. 
 @param a the one dimensional C array to use as data storage for 
  the array.  
*/ 
template <class T> 
Array2D<T>::Array2D(int m, int n, T *a) : v_(0), m_(m), n_(n) , 
 ref_count_(0) 
{ 
 T* p = a; 
 v_ = new T*[m]; 
 for (int i=0; i<m; i++) 
 { 
  v_[i] = p; 
  p += n; 
 } 
 ref_count_ = new int; 
 *ref_count_ = 2;  /* this avoid destorying original data. */ 
 
} 
 
 
/** 
 Used for A[i][j] indexing.  The first [] operator returns 
 a conventional pointer which can be dereferenced using the 
 same [] notation.   
  
 If TNT_BOUNDS_CHECK macro is define, the left-most index (row index) 
 is checked that it falls within the array bounds (via the 
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 assert() macro.) Note that bounds checking can occur in 
 the row dimension, but the not column, since 
 this is just a C pointer. 
*/ 
template <class T> 
inline T* Array2D<T>::operator[](int i)  
{  
#ifdef TNT_BOUNDS_CHECK 
 assert(i >= 0); 
 assert(i < m_); 
#endif 
 
return v_[i];  
 
} 
 
template <class T> 
inline const T* Array2D<T>::operator[](int i) const { return v_[i]; } 
 
/** 
 Assign all elemnts of A to a constant scalar. 
*/ 
template <class T> 
Array2D<T> & Array2D<T>::operator=(const T &a) 
{ 
 set_(a); 
 return *this; 
} 
/** 
 Create a new of existing matrix.  Used in B = A.copy() 
 or in the construction of B, e.g. Array2D B(A.copy()),  
 to create a new array that does not share data. 
 
*/ 
template <class T> 
Array2D<T> Array2D<T>::copy() const 
{ 
 Array2D A(m_, n_); 
 copy_(A.begin_(), begin_(), m_*n_); 
 
 return A; 
} 
 
 
/** 
 Copy the elements to from one array to another, in place. 
 That is B.inject(A), both A and B must conform (i.e. have 
 identical row and column dimensions). 
 
 This differs from B = A.copy() in that references to B 
 before this assignment are also affected.  That is, if 
 we have  
 <pre> 

 Array2D A(m,n); 
 Array2D C(m,n); 
 Array2D B(C);        // elements of B and C are shared.  
 
</pre> 
 then B.inject(A) affects both and C, while B=A.copy() creates 
 a new array B which shares no data with C or A. 
 
 @param A the array from elements will be copied 
 @return an instance of the modifed array. That is, in B.inject(A), 
 it returns B.  If A and B are not conformat, no modifications to  
 B are made. 
 
*/ 
template <class T> 
Array2D<T> & Array2D<T>::inject(const Array2D &A) 
{ 
 if (A.m_ == m_ &&  A.n_ == n_) 
  copy_(begin_(), A.begin_(), m_*n_); 
 
 return *this; 
} 
 
 
 
 
 
/** 
 Create a reference (shallow assignment) to another existing array. 
 In B.ref(A), B and A shared the same data and subsequent changes 
 to the array elements of one will be reflected in the other. 
 <p> 
 This is what operator= calls, and B=A and B.ref(A) are equivalent 
 operations. 
 
 @return The new referenced array: in B.ref(A), it returns B. 
*/ 
template <class T> 
Array2D<T> & Array2D<T>::ref(const Array2D<T> &A) 
{ 
 if (this != &A) 
 { 
  (*ref_count_) --; 
  if ( *ref_count_ < 1 ) 
  { 
   destroy_(); 
  } 
 
  m_ = A.m_; 
  n_ = A.n_; 
  v_ = A.v_; 
  ref_count_ = A.ref_count_; 
 



 83

  (*ref_count_) ++ ; 
   
 } 
 return *this; 
} 
 
/** 
 B = A is shorthand notation for B.ref(A). 
*/ 
template <class T> 
Array2D<T> & Array2D<T>::operator=(const Array2D<T> &A) 
{ 
 return ref(A); 
} 
 
/** 
 @return the size of the first dimension of the array, i.e. 
 the number of rows. 
*/ 
template <class T> 
inline int Array2D<T>::dim1() const { return m_; } 
 
/** 
 @return the size of the second dimension of the array, i.e. 
 the number of columns. 
*/ 
template <class T> 
inline int Array2D<T>::dim2() const { return n_; } 
 
 
/** 
 @return the number of arrays that share the same storage area 
 as this one.  (Must be at least one.) 
*/ 
template <class T> 
inline int Array2D<T>::ref_count() const 
{ 
 return *ref_count_; 
} 
 
template <class T> 
Array2D<T>::~Array2D() 
{ 
 (*ref_count_) --; 
 
 if (*ref_count_ < 1) 
  destroy_(); 
} 
 
/* private internal functions */ 
 
template <class T> 
void Array2D<T>::initialize_(int m, int n) 

{ 
 
 
 T* p = new T[m*n]; 
 v_ = new T*[m]; 
 for (int i=0; i<m; i++) 
 { 
  v_[i] = p; 
  p+=n; 
 } 
 m_ = m; 
 n_ = n; 
} 
 
template <class T> 
void Array2D<T>::set_(const T& a) 
{ 
 T *begin = &v_[0][0]; 
 T *end = begin+ m_*n_; 
 
 for (T* p=begin; p<end; p++) 
  *p = a; 
 
} 
 
template <class T> 
void Array2D<T>::copy_(T* p, const T* q, int len) const 
{ 
 T *end = p + len; 
 while (p<end ) 
  *p++ = *q++; 
 
} 
 
template <class T> 
void Array2D<T>::destroy_() 
{ 
 
 if (v_ != 0) 
 { 
  delete[] (v_[0]); 
  delete[] (v_); 
 } 
 
 if (ref_count_ != 0) 
  delete ref_count_; 
} 
 
/** 
 @returns location of first element, i.e. A[0][0] (mutable). 
*/ 
template <class T> 
const T* Array2D<T>::begin_() const { return &(v_[0][0]); } 
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/** 
 @returns location of first element, i.e. A[0][0] (mutable). 
*/ 
template <class T> 
T* Array2D<T>::begin_() { return &(v_[0][0]); } 
 
/** 
 Create a null (0x0) array.   
*/ 
template <class T> 
Array2D<T>::Array2D() : v_(0), m_(0), n_(0)  
{ 
 ref_count_ = new int; 
 *ref_count_ = 1; 
} 
 
 
 
 
 
} /* namespace TNT */ 
 
#endif 
/* TNT_ARRAY2D_H */ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
/******* TNT_array2D_utils.h  ******** 
**      ** 
** Tools for 2D Matrix type.  ** 
**      ** 
*********************************/ 
#ifndef TNT_ARRAY2D_UTILS_H 
#define TNT_ARRAY2D_UTILS_H 
 
#include <cstdlib> 
#include <cassert> 
 
namespace TNT 
{ 
 
 
/** 
 Write an array to a character outstream.  Output format is one that can 
 be read back in via the in-stream operator: two integers 
 denoting the array dimensions (m x n), followed by m 
 lines of n  elements. 
 
*/ 
template <class T> 
std::ostream& operator<<(std::ostream &s, const Array2D<T> &A) 
{ 
    int M=A.dim1(); 
    int N=A.dim2(); 
 
    s << M << " " << N << "\n"; 
 
    for (int i=0; i<M; i++) 
    { 
        for (int j=0; j<N; j++) 
        { 
            s << A[i][j] << " "; 
        } 
        s << "\n"; 
    } 
 
 
    return s; 
} 
 
/** 
 Read an array from a character stream.  Input format 
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 is two integers, denoting the dimensions (m x n), followed 
 by m*n whitespace-separated elments in "row-major" order 
 (i.e. right-most dimension varying fastest.)  Newlines 
 are ignored. 
 
 <p> 
 Note: the array being read into references new memory 
 storage. If the intent is to fill an existing conformant 
 array, use <code> cin >> B;  A.inject(B) ); </code> 
 instead or read the elements in one-a-time by hand. 
 
 @param s the charater to read from (typically <code>std::in</code>) 
 @param A the array to read into. 
*/ 
template <class T> 
std::istream& operator>>(std::istream &s, Array2D<T> &A) 
{ 
 
    int M, N; 
 
    s >> M >> N; 
 
 Array2D<T> B(M,N); 
 
    for (int i=0; i<M; i++) 
        for (int j=0; j<N; j++) 
        { 
            s >>  B[i][j]; 
        } 
 
 A = B; 
    return s; 
} 
 
 
/** 
 Matrix Multiply:  compute C = A*B, where C[i][j] 
 is the dot-product of row i of A and column j of B. 
  
 
 @param A an (m x n) array 
 @param B an (n x k) array 
 @return the (m x k) array A*B, or a null array (0x0) 
  if the matrices are non-conformant (i.e. the number  
  of columns of A are different than the number of rows of B.) 
  
 
*/ 
 
 
template <class T> 
Array2D<T> matmult(const Array2D<T> &A, const Array2D<T> &B) 
{ 

 if (A.dim2() != B.dim1()) 
  return Array2D<T>(); 
 
 int M = A.dim1(); 
 int N = A.dim2(); 
 int K = B.dim2(); 
 
 Array2D<T> C(M,K); 
 
 for (int i=0; i<M; i++) 
  for (int j=0; j<K; j++) 
  { 
   T sum = 0; 
 
   for (int k=0; k<N; k++) 
    sum += A[i][k] * B [k][j]; 
 
   C[i][j] = sum; 
  } 
 
 return C; 
 
} 
 
 
 
} // namespace TNT 
 
#endif 
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/********* DGW_jama_lu.h ********** 
**      ** 
**     Code for LU Decomposition.  ** 
**      ** 
*********************************/ 
#ifndef JAMA_LU_H 
#define JAMA_LU_H 
 
#include "DGW_tnt.h" 
 
using namespace TNT; 
 
 
namespace JAMA 
{ 
 
   /** LU Decomposition. 
   <P> 
   For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n 
   unit lower triangular matrix L, an n-by-n upper triangular matrix U, 
   and a permutation vector piv of length m so that A(piv,:) = L*U. 
   If m < n, then L is m-by-m and U is m-by-n. 
   <P> 
   The LU decompostion with pivoting always exists, even if the matrix is 
   singular, so the constructor will never fail.  The primary use of the 
   LU decomposition is in the solution of square systems of simultaneous 
   linear equations.  This will fail if isNonsingular() returns false. 
   */ 
template <class Real> 
class LU 
{ 
   /* Array for internal storage of decomposition.  */ 
   Array2D<Real>  LU_; 
   int m, n, pivsign;  
   Array1D<int> piv; 
 
 
   Array2D<Real> permute_copy(const Array2D<Real> &A,  
      const Array1D<int> &piv, int j0, int j1) 
 { 
  int piv_length = piv.dim(); 
 
  Array2D<Real> X(piv_length, j1-j0+1); 
 
 

         for (int i = 0; i < piv_length; i++)  
            for (int j = j0; j <= j1; j++)  
               X[i][j-j0] = A[piv[i]][j]; 
 
  return X; 
 } 
 
   Array1D<Real> permute_copy(const Array1D<Real> &A,  
     const Array1D<int> &piv) 
 { 
  int piv_length = piv.dim(); 
  if (piv_length != A.dim()) 
   return Array1D<Real>(); 
 
  Array1D<Real> x(piv_length); 
 
 
         for (int i = 0; i < piv_length; i++)  
               x[i] = A[piv[i]]; 
 
  return x; 
 } 
 
 
 public : 
 
   /** LU Decomposition 
   @param  A   Rectangular matrix 
   @return     LU Decomposition object to access L, U and piv. 
   */ 
 
    LU (const Array2D<Real> &A) : LU_(A.copy()), m(A.dim1()), n(A.dim2()),  
  piv(A.dim1()) 
  
 { 
 
   // Use a "left-looking", dot-product, Crout/Doolittle algorithm. 
 
   int i=0; 
   int j=0; 
   int k=0; 
 
      for (i = 0; i < m; i++) { 
         piv[i] = i; 
      } 
      pivsign = 1; 
      Real *LUrowi = 0;; 
      Array1D<Real> LUcolj(m); 
 
      // Outer loop. 
 
      for (j = 0; j < n; j++)  
   {  // Make a copy of the j-th column to localize references. 
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         for (i = 0; i < m; i++)  
   { 
            LUcolj[i] = LU_[i][j]; 
         } 
 
         // Apply previous transformations. 
 
         for (int i = 0; i < m; i++)  
   { 
            LUrowi = LU_[i]; 
 
            // Most of the time is spent in the following dot product. 
 
            int kmax = min(i,j); 
            double s = 0.0; 
            for (k = 0; k < kmax; k++)  
   { 
               s += LUrowi[k]*LUcolj[k]; 
            } 
 
            LUrowi[j] = LUcolj[i] -= s; 
         } 
    
         // Find pivot and exchange if necessary. 
 
         int p = j; 
//PKM         for (int i = j+1; i < m; i++) { 
         for (i = j+1; i < m; i++)  
   { 
            if (abs(LUcolj[i]) > abs(LUcolj[p]))  
   { 
    p = i; 
   } 
         } 
         if (p != j)  
   { 
            for (k = 0; k < n; k++)  
   { 
               double t = LU_[p][k];  
      LU_[p][k] = LU_[j][k];  
      LU_[j][k] = t; 
            } 
            k = piv[p];  
   piv[p] = piv[j];  
   piv[j] = k; 
            pivsign = -pivsign; 
         } 
 
         // Compute multipliers. 
          
         if ((j < m) && (LU_[j][j] != 0.0))  
   { 

            for (i = j+1; i < m; i++)  
   { 
               LU_[i][j] /= LU_[j][j]; 
            } 
         } 
      } 
   } 
 
 
   /** Is the matrix nonsingular? 
   @return     1 (true)  if upper triangular factor U (and hence A)  
       is nonsingular, 0 otherwise. 
   */ 
 
   int isNonsingular () { 
      for (int j = 0; j < n; j++) { 
         if (LU_[j][j] == 0) 
            return 0; 
      } 
      return 1; 
   } 
 
   /** Return lower triangular factor 
   @return     L 
   */ 
 
   Array2D<Real> getL () { 
   int nn= n<m ? n : m; //PKM 
//PKM      Array2D<Real> L_(m,n); 
      Array2D<Real> L_(m,nn);//PKM 
      for (int i = 0; i < m; i++) { 
//PKM         for (int j = 0; j < n; j++) { 
         for (int j = 0; j < nn; j++) {//PKM 
            if (i > j) { 
               L_[i][j] = LU_[i][j]; 
            } else if (i == j) { 
               L_[i][j] = 1.0; 
            } else { 
               L_[i][j] = 0.0; 
            } 
         } 
      } 
      return L_; 
   } 
 
   /** Return upper triangular factor 
   @return     U portion of LU factorization. 
   */ 
 
   Array2D<Real> getU () { 
   int mm= n<m ? n : m; //PKM 
//PKM      Array2D<Real> U_(n,n); 
      Array2D<Real> U_(mm,n);//PKM 
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//PKM      for (int i = 0; i < n; i++) { 
      for (int i = 0; i < mm; i++) {//PKM 
         for (int j = 0; j < n; j++) { 
            if (i <= j) { 
               U_[i][j] = LU_[i][j]; 
            } else { 
               U_[i][j] = 0.0; 
            } 
         } 
      } 
      return U_; 
   } 
 
   /** Return pivot permutation vector 
   @return     piv 
   */ 
 
   Array1D<int> getPivot () { 
//PKM      return p; 
      return piv; 
   } 
 
 
   /** Compute determinant using LU factors. 
   @return     determinant of A, or 0 if A is not square. 
   */ 
 
   Real det () { 
      if (m != n) { 
         return Real(0); 
      } 
      Real d = Real(pivsign); 
      for (int j = 0; j < n; j++) { 
         d *= LU_[j][j]; 
      } 
      return d; 
   } 
 
   /** Solve A*X = B 
   @param  B   A Matrix with as many rows as A and any number of columns. 
   @return     X so that L*U*X = B(piv,:), if B is nonconformant, returns 
        0x0 (null) array. 
   */ 
 
   Array2D<Real> solve (const Array2D<Real> &B)  
   { 
 
   /* Dimensions: A is mxn, X is nxk, B is mxk */ 
       
      if (B.dim1() != m) { 
    return Array2D<Real>(0,0); 
      } 
      if (!isNonsingular()) { 

        return Array2D<Real>(0,0); 
      } 
 
      // Copy right hand side with pivoting 
      int nx = B.dim2(); 
 
 
   Array2D<Real> X = permute_copy(B, piv, 0, nx-1); 
 
      // Solve L*Y = B(piv,:) 
      for (int k = 0; k < n; k++) { 
         for (int i = k+1; i < n; i++) { 
            for (int j = 0; j < nx; j++) { 
               X[i][j] -= X[k][j]*LU_[i][k]; 
            } 
         } 
      } 
      // Solve U*X = Y; 
      for (int k = n-1; k >= 0; k--) { 
         for (int j = 0; j < nx; j++) { 
            X[k][j] /= LU_[k][k]; 
         } 
         for (int i = 0; i < k; i++) { 
            for (int j = 0; j < nx; j++) { 
               X[i][j] -= X[k][j]*LU_[i][k]; 
            } 
         } 
      } 
      return X; 
   } 
 
 
   /** Solve A*x = b, where x and b are vectors of length equal  
     to the number of rows in A. 
 
   @param  b   a vector (Array1D> of length equal to the first dimension 
         of A. 
   @return x a vector (Array1D> so that L*U*x = b(piv), if B is nonconformant, 
        returns 0x0 (null) array. 
   */ 
 
   Array1D<Real> solve (const Array1D<Real> &b)  
   { 
 
   /* Dimensions: A is mxn, X is nxk, B is mxk */ 
       
      if (b.dim1() != m) { 
    return Array1D<Real>(); 
      } 
      if (!isNonsingular()) { 
        return Array1D<Real>(); 
      } 
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   Array1D<Real> x = permute_copy(b, piv); 
 
      // Solve L*Y = B(piv) 
      for (int k = 0; k < n; k++) { 
         for (int i = k+1; i < n; i++) { 
               x[i] -= x[k]*LU_[i][k]; 
            } 
         } 
       
   // Solve U*X = Y; 
//PKM      for (int k = n-1; k >= 0; k--) { 
      for (k = n-1; k >= 0; k--) { 
            x[k] /= LU_[k][k]; 
        for (int i = 0; i < k; i++)  
             x[i] -= x[k]*LU_[i][k]; 
      } 
      
 
      return x; 
   } 
 
}; /* class LU */ 
 
} /* namespace JAMA */ 
 
#endif 
/* JAMA_LU_H */ 
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