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Abstract 

Estrogen is well-known to be protective against cardiovascular disease in women. 

In addition to improving lipid metabolism, it also decreases vascular resistance and 

enhances vascular reflexes, thereby improving vasomotor stability and increasing the 

arterial capacity for dilatation. Laser Doppler flowmetry (LDF) has demonstrated these 

changes in research trials, and is emerging as having potential application in many 

clinical and surgical situations. In this study, our aim was to examine the impact of 

estrogen upon baseline blood flow as well as the response to vasodilatory interventions 

and to further evaluate the utility of laser Doppler as a clinical non-invasive measurement 

of blood flow in such contexts. We compared blood flow in the forehead cutaneous 

microvasculature of women during both high and low estrogen states of their menstrual 

cycle, and compared this to the flow in male subjects. To evaluate differences in vascular 

reactivity, we subjected the microvasculature to two challenges: the cutaneous 

application of nitroglycerin to the site of the probe; and transient occlusion of flow to 

evince a hyperemic response. Furthermore, to investigate the reproducibility of laser 

Doppler data, we examined both temporal and spatial variability, and used each subject 

as his/her own control. We found significant spatial variability in the LDF measure of 

baseline flow rates. Temporal variability was also seen within subjects, but was decreased 

by using median baseline values. Hormone state in females did not significantly affect 

baseline flow, response to topical nitroglycerin, or hyperemic response to occlusive 



                         

pressure. In males, the difference between session 1 and session 2 LDF readings was not 

significant.  

Although LDF has potential clinical applications, the clinical scenarios and 

patient populations must be further defined. Furthermore, the most practical technique 

with consistent reproducibility must be developed. 
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Introduction  

Estrogen affects many tissues within the body, made evident with the changes that 

occur following menopause. Well-recognized are the effects upon fertility, sexual 

function, and bone density, but the hot flashes and flushing during menopause may have 

been an early hint of the interaction of estrogen with cardiovascular function. In fertile 

women, cyclic alterations in arterial pressure and blood flow parameters have been noted 

[1-3]. It is now known that the variability in hormone levels throughout a woman’s life 

has significant effects upon vascular function.  

Considering the significant impact of estrogen upon the endometrial vasculature 

throughout the menstrual cycle, it should not be surprising that the hormone has more 

widespread consequence upon cardiovascular function. In fact, the protective effects of 

estrogen upon cardiovascular health are now well recognized [4-7]. Heart disease has 

been the malady of men, and indeed its risk in women is much lower [2]. Soon after 

menopause, however, this risk matches that of men [8]. The rate of cardiovascular disease 

in women is rising, and it has become the leading cause of death in women in the United 

States [9]. Hormone replacement therapy can lower their risk by 50%, although 

improvement in lipid metabolism can only account for 25-50% of this reduction 

[10,11].The additional improvement in cardiovascular function may be attributed to 

enhanced vessel reflexes, flow rates, and reduction in vascular resistance [12].  

Recent studies have documented this suspected influence of estrogen upon global 

cardiovascular function. Women have been noted to have lower skin perfusion than 

men[13]. During the high estrogen luteal phase of the menstrual cycle, women have 

lower diastolic blood pressure [1]. Endothelial-dependent vasodilation of the brachial 
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artery is greater in the follicular and luteal phase compared to the menstrual phase [14]. 

Exogenous estrogen treatment of menopausal women has been found to decrease their 

coronary and peripheral vascular resistance. In women suffering from angina or 

migraines, estrogen treatment may provide symptomatic relief [15].  

Estrogen-induced vasoactivity 

Although the precise mechanism of action has not yet been defined, estrogen has 

been found to affect vascular function both through endothelial-dependent and 

endothelial independent actions. The overall effect of estrogen is to improve vasomotor 

tone and stability, to increase vessel diameter, and to augment the capacity of vessels to 

dilate, thereby reducing vascular resistance. Its presence has been shown to influence the 

production, release, or metabolism of many vasoactive substances, including nitric oxide 

(NO), prostacyclin, endothelin, calcium ions, and monoamine neurotransmitters [15,16]. 

With both acute administration and long-term therapy, exogenous estrogen has been 

found to augment the vasodilatory effect of acetylcholine and corticotropin-releasing 

hormone [17]. In vascular samples from various tissues, estrogen receptors have been 

identified on endothelial and vascular smooth muscle cells, in both the nuclear 

compartment and cytosol as well as upon the cellular membrane [6,12,15]. While the 

nuclear receptors mediate genomic estrogenergic effects, binding of the extra-nuclear 

receptors may initiate the rapid effects on vasomotor function seen with acute estrogen 

administration [15]. These receptors have been found to be upregulated by the presence 

of estrogen and down-regulated by some progestins [16,18,19]. 

 Perhaps the most significant mediator of the estrogenergic vasoregulation is nitric 

oxide. Its tonic release is an important determinant of vascular smooth muscle tone; acute 
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local production of NO occurs in response to various signals. Acetylcholine induces the 

endothelium to release NO, which has a vasodilatory effect strong enough to 

overwhelm the vascular smooth muscle contractile response to ACh. Estrogen is 

known to stimulate the release of NO and enhances the response of the endothelial cells 

to ACh [7,16]. Women with atherosclerosis experienced coronary artery vasoconstriction 

in response to ACh, but infusion of 17ß-estradiol resulted in vasodilation within 20 

minutes [20]. In human endothelial cell cultures, administration of estrogen at 

physiological concentrations alone caused a rapid increase in NO production. This 

response was coupled with an increased concentration of cGMP, signifying that this 

estrogen-associated increase in NO production was non-genomic. Furthermore, blocking 

estrogen receptors inhibited the response [21]. In women, basal NO decreases following 

menopause, although hormone replacement therapy (HRT) can restore premenopausal 

levels [16,22]. Estrogens and estrogen receptor agonists have been shown to increase 

reactive hyperemia, the NO-mediated increase in flow following vascular occlusion [23].  

Prostacyclin, a potent vasodilator produced through the cyclooxygenase pathway, 

has also shown enhanced production with estrogen [6]. In a systematic review, 

pretreatment of endothelial cells with tamoxifen blocked the increased production of 

prostacylin induced by estrogen application. In another study, prostacylin production 

induced by raloxifene was not impeded by an estrogen receptor antagonist [24]. 

Carlsson et al. found that in humans ibuprofen decreased post-occlusive reactive 

hyperemia of the forearm, suggesting that prostacyclin may contribute acutely to vascular 

reactivity [25]. Prostacyclin also has important anti-atherosclerotic effects by inhibiting 

the formation of foam cells and also cholesterol deposits via its effects on vascular 
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smooth muscle cells. Additionally, it works synergistically with NO to inhibit the 

aggregation of platelets [6].  

Furthermore, estrogen has been demonstrated to interfere with endothelin, a 

powerful vasoconstrictor produced by endothelial cells. Through specific receptors, 

endothelin stimulates vascular smooth muscle contraction and the proliferation of smooth 

muscle cells and fibroblasts. It is also proinflammatory, activating macrophages and 

promoting adherence of monocytes to the vessel wall [23]. Estrogen suppresses the 

endothelial production of endothelin and interferes with its activity at receptors.  

Endothelin counteracts the effects of NO, and the balance of these two molecules is 

believed to create the basal tone of vascular smooth muscle [26]. Thus, in the estrogen-

poor state of menopause, the level of potentially harmful endothelin would be 

disproportionately high compared to the protective NO. 

 With these effects that estrogen has been shown to have, it may be an important 

contributor to the maintenance of overall endothelial health and protection against 

cardiovascular disease. By contributing to the preservation of the balance between NO 

and endothelin, estrogen may help to prevent endothelial dysfunction [7]. This 

dysfunction is a pathological process central to the progression of vessel disease. In 

menopause without estrogen to support NO production, its inhibition of smooth muscle 

proliferation and platelet aggregation would diminish [27]. Endothelin would further 

enhance the atherogenic process. Furthermore, activation of the cyclooxenase pathways 

during estrogen deficiency may further damage the endothelium through the production 

of oxygen radical species [7]. In the background of a damaged endothelium, autonomic 
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release of ACh, which would result in vasodilation with normal physiology, would 

instead cause smooth muscle constriction in the absence of relaxing factors  

Laser Doppler Flowmetry 

Several research techniques have been used to evaluate vascular blood flow and 

the mechanisms by which estrogen modulates it. Laser Doppler flowmetry (LDF) is 

gaining prominence as a noninvasive measure of blood flow. Monochromatic light is 

delivered to the tissue under study, where it is frequency-shifted by moving red blood 

cells in proportion to the concentration of moving RBCs and their velocities. The 

resulting signal (in volts) provides a measure of RBC “flux” in 1 mm3 of tissue (the 

approximate volume monitored) per unit time [28]. The laser Doppler provides spatial 

and temporal resolution previously unattainable through other measures of blood flow, 

such as halide clearance or thermistor anemometry methods [29]. 

Utility of LDF in research has been verified in numerous applications. Studies 

comparing it to established techniques have found estimation of flow to be similar. In the 

small bowel of anesthetized dogs, Lynch et al. demonstrated 85% sensitivity in laser 

Doppler flow velocity and 94% sensitivity in the laser Doppler index, comparable to 

Doppler ultrasound and perfusion fluorometry [30]. Another study comparing LDF to 

fluorometry in canine island flaps found similar results in the two methods [31]. 

Measurements of endometrial perfusion by LDF, xenon clearance and hydrogen 

clearance techniques yielded similar results [32].  In the forearm of humans, Braverman 

et al. correlated degree of superficial vascularity of cutaneous biopsy to flow rates found 

by LDF [33].  The application of these various techniques may ultimately depend on the 

desired level of flow estimation. For instance, clearance techniques typically measure 
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entire organs or tissue bodies, whereas Doppler ultrasound measures flow within a 

specific vessel. LDF has the benefit of temporal and spatial resolution, as well as its non-

invasive application without need of dye injections. 

Another useful of application of LDF is the measure of reactive hyperemia (RH), 

or the increase in blood flow that occurs in response to certain stimuli such as heat or 

flow obstruction. Post-occlusive reactive RH is created by the endothelial response [11], 

which is mediated by different factors depending on the method used, the tissue anatomy, 

and duration of flow deprivation. Flow occlusion using a blood pressure cuff will elicit a 

response in the larger arteries and arterioles as well as local tissue microvasculature, 

whereas local compression of skin will isolate the response to the cutaneous 

microvasculature. The duration of vascular occlusion determines the proportion of 

response mediated by the myogenic and metabolic components. A brief occlusion of flow 

causes a dilation of the resistance vessels, which would result in a myogenic increase in 

flow with release of the obstruction. A longer suspension of flow (1-3 minutes) would 

result in a local increase in vasoactive metabolites, further enhancing the hyperemia. [25] 

The contribution of particular metabolic components has been demonstrated to vary by 

the targeted vessels. Having found a significantly augmented response with statin pre-

treatment, Binggeli et al. reasoned prostaglandins to play a significant role in skin post-

occlusion hyperemia [34]. Alternatively, flow-dependent dilation in large peripheral 

conduit arteries is primarily mediated by nitric oxide [35]. Local anatomy likely also has 

an impact upon the response, as well as the specific innervation of the vasculature.  

LDF has demonstrated potential in a wide variety of clinical situations. Primary 

care physicians may find it useful assessing peripheral vascular disease and treatment 
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response in hypertensive and diabetic patients. In one investigation, LDF evaluation of 

lower limb blood flow was able to differentiate between healthy subjects and patients 

with known atherosclerosis [36]. Schonberger et al. found with LDF a diminished 

response to vasoactive substances in diabetic subjects compared to healthy subjects, 

likely a reflection of decreased compliance due to peripheral vascular disease [37]. It may 

also be used by OB/GYN and reproductive specialists to monitor responses to hormone 

treatments in estrogen deficient women and those undergoing fertility treatments. 

Through intra-uterine Doppler, Gannon et al. identified significantly elevated mean 

endometrial perfusion in the early follicular and early secretory phases of the menstrual 

cycle [32]. Clinical LDF evaluation of the latter phase may improve the probability of 

successful embryo implantation or in vitro fertilization [38,39]. Surgeons of various 

specialties may find the utility in LDF measurement of perfusion. In selective 

devascularization of pig bowel, LDF intraoperative detection of low flow rates was 

predictive of subsequent ischemic necrosis [40]. In graft surgeries, such as flap or 

coronary bypass, LDF may be able to confirm effective perfusion and predict outcomes. 

Despite this promise, LDF measure of cutaneous flow as a reflection of systemic 

hemodymic parameters may be confounded by multiple variables. The cutaneous 

vasculature is highly responsive to various factors including temperature, blood volume, 

activity, and mental stress. The specific innervation and neurotransmitter receptor 

distribution is an important determinant of this responsiveness. For instance, despite an 

insignificant change in blood pressure, volunteers subjected to the mental stress of 

arithmetic demonstrated a 37% decrease in blood flow in the finger’s superficial 

vasculature, which has a high density of ά-adrenergic receptors [41]. In a similar study 
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using the cold pressor test, with the immersion of the hand in ice water, the blood flow of 

the finger of the contralateral hand decreased by 48% compared to the 2% decrease in 

flow of the ear [42]. Considering these findings, the regional placement of LDF probes is 

of essential importance. The forehead recently has become a site for pulse oximetry 

measurement, as well as the experimental measure of blood flow using LDF [37].  

Another ongoing concern is the reproducibility of data found with LDF. Using 

endoscopic LDF as a measure of human gastric blood flow, Kvernebo et al. reported 

temporal and spatial variability to be within acceptable limits [29]. In unpublished data, 

Gannon et al. analyzed LDF variance and found that although intrasubject variation was 

high, variability could be reduced within treatment groups by increasing the number of 

sampling sites[32]. However, considering the high reactivity of the cutaneous vasculature 

and difficulty in reducing the numerous influential variables, LDF measurement of the 

superficial blood flow of the skin may not correlate well to the perfusion of visceral 

tissues. To overcome this, further evaluation of intra-subject variability must be 

conducted. This includes both spatial variability, the difference between probe measures 

on the same subject in a similar region, and temporal variability, the difference in one 

subject from one period to the next. 

Purpose: 

In our study design, we attempted to address both the nature and mechanism of 

estrogenergic effects upon blood flow, and to evaluate the reproducibility of LDF data. 

We chose to examine the impact of estrogen upon nitroglycerin-induced vasodilatation 

and reactive hyperemia in women compared to male controls and to further evaluate the 

utility of laser Doppler as a clinical non-invasive measurement of blood flow. We 
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compared flow rates of the forehead cutaneous microvasculature in women during both 

high and low estrogen states of their menstrual cycle, and compared this to the flow rates 

in male subjects. To evaluate differences in vascular reactivity, we subjected the 

microvasculature to two challenges: the cutaneous application of nitroglycerin to the site 

of the probe; and transient interruption of local flow to evince a hyperemic response. 

Furthermore, to investigate the reproducibility of laser Doppler data, we tested both 

temporal and spatial variability, and used each subject as his/her own control. In 

evaluating vascular responsiveness, our primary endpoints were the response to topical 

nitroglycerin and the degree of reactive hyperemia following occlusion of blood flow. 

Secondary endpoints were baseline flow rates and biological zero values, and time to 

peak hyperemic response and to recovery of pre-occlusion flow rate. We hypothesized 

women to have an increased responsiveness of flow parameters during high estrogen state 

compared to low estrogen state.  

Methods 

The protocol of this investigation was submitted by Dr. David Silverman and 

approved through the Human Investigations Committee of Yale University School of 

Medicine. Prior to their participation, informed consent was obtained by the author from 

all subjects in writing. 

Subjects 

Participants were recruited by the author through an advertisement at the Yale-

New Haven Medical Center to compose two subject groups: 8 healthy females with 

regular menstrual cycles and 6 healthy males. Volunteers with a history of cardiovascular 

disease, diabetes, migraines, or fainting were excluded. 
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Doppler flowmetry readings 

Each subject participated in two 30 minute recording sessions on two different 

days. Female participants were monitored once during the low estrogen period in their 

menstrual cycle (days 1-6) and once during the high estrogen period (days 21-23, or 

while on monocyclic oral contraception pills). The readings were scheduled based upon 

the upcoming phase of their cycle so that the high-estrogen reading of 3 female subjects 

preceded the low-estrogen reading. Male controls were monitored on two non-specified 

days. All scheduling and recording sessions were performed by the author. 

All data recording sessions took place in a temperature-regulated room (68 ± 1 º 

F). Subjects refrained from smoking tobacco or ingesting caffeinated beverages for 4 

hours prior to their participation. The forehead was prepared by lightly swabbing with 

alcohol, followed by wet and dry gauze. Four laser Doppler probes were applied to the 

forehead of the subjects, avoiding the large vessels of the temple and medial forehead. 

Each of the three experimental probes was applied with a standardized 6 mm diameter 

hole-punched section of a translucent 0.6 mg/hr 20 cm2 MinitranTM homogenous 

nitroglycerin patch (3M, Minnesota). This portion of the patch delivered drug at a rate of 

approximately 0.008 mg/hr, calculated from the specified rate of 0.03 mg/hour per 100 

mm2 area of the patch. The patch section was adhered to the laser Doppler probe with a 

double stick disk. The fourth probe was a control, applied to the forehead with a double 

stick disk and no drug. Each lead was adhered to the forehead using Double-Stick Discs 

(#M Health Care, Neuss, Germany) to allow undisturbed monitoring. Laser Doppler 

fluxmetry was performed continuously at each site for 30 to 32 minutes. Between 28 and 

32 minutes of the trial, uniform pressure was applied to the control lead to occlude blood 
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flow to the site for 5 seconds. Occlusion of flow was confirmed by observing flattening 

of the lead tracing. Release of the pressure created a characteristic and transient increase 

in flow rate, known as reactive hyperemia (Figure 1).  

Chart for Windows (ADInstruments, Colorado Springs, CO) was utilized for the 

collection of data at a rate of 1000Hz. All laser Doppler sensors were calibrated using 

motility standards (Perimed, Sweden).  
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Figure 1 Reactive hyperemia curve. This curve is typical of occlusive reactive hyperemia. It includes the 
pre-occlusive baseline (a), the occlusive period from which the biological zero is taken (b), the release 
point and sudden resumption of flow (c), the peak hyperemic response (d), and the gradual return to the 
pre-occlusive baseline (e). This image was taken from the Chart for Windows recording of one of our male 
subjects and modified with labels in Microsoft Word. 
 
Data analysis 

Each data tracing was analyzed by blinded researchers, including the author and 

another member of the lab. For each of the four monitoring probes, baseline and peak 

flow rates were calculated. Mean flow rates were calculated for the baseline and peak 

flow values during the two minutes after application of the probe for the visibly lowest 10 

second period (baseline) and for the visibly highest 10 second period within 26-28 

minutes following application of the probe (peak flow). To assess reactive hyperemia 

following a five second compression of local skin, the peak response value was recorded 

along with the calculated time to peak and time to the return to pre-occlusive baseline. 
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Motion artifact was avoided when choosing baseline or peak periods. Fluctuations from 

the trending flow rate visualized in more than two leads were suspected to be systemic 

reflexes rather than a local response and were also avoided.  

In analysis of the reactive hyperemia, a pre-occlusive flow rate average was 

calculated. The lowest point of the Doppler wave was recorded as the biological zero. 

The peak response was recorded at the point of greatest flow rate during the transient 

post-occlusive hyperemic response. Time to peak response was measured from 

immediately prior to the release of the occlusive pressure to the point of greatest flow. 

The former point also began the measure of time to return to pre-occlusive flow rate. The 

end point of this measure was the point at which the Doppler wave first equaled the 

calculated pre-occlusive flow rate average. 

Statistical analysis 

Statistical analysis was performed by another member of the lab using SPSS for 

Macintosh (SPSS, Inc. Chicago, IL) software. The Wilcoxon signed ranks test was used 

to make comparisons within each subject group and between recording sessions. Student 

t-tests were used to compare between males and females.  

During the course of the study, the high-hormone recording session was held prior 

to the low hormone for three women, while the opposite was true of the remaining 5 

women. To correct for the 3 women whose high-hormone reading occurred first, the 

order of the readings of 2 randomly chosen male subjects were reversed for many of the 

calculations. This reversal was made when it was important to compare high hormone to 

low hormone states. To assess variability, the recordings were organized by the order in 

which they occurred.    



 18

Results 

LDF Variability 

To assess the reliability and reproducibility of the laser Doppler as an estimation 

of flow rate, we examined both spatial variability and temporal variability. To assess 

spatial variability, the range of baseline values for the four probes applied to a single 

subject was calculated for the male subjects. The maximum flow rate was between 2 to 

6.4 times greater than the lowest within a single subject [Figure 2]. Temporal variability 

was evaluated by comparing the baseline values from the first session to the second 

within each subject. Because of the high spatial variability found, the median of the three 

nitroglycerin probes was used in the calculations. Use of the median value was effective 

in decreasing the relative variability (Figure 3 and 4). The ratio of median baseline values 

from the second to the first reading ranged from 0.32 to 1.4 in the males and 0.47 to 1.8 

in the females. In 2 of the men and 6 of the women, the median baseline of the second 

reading was decreased compared to the first. The overall change in baseline was 

increased in the males (-0.1) and decreased in the females (0.06). However, none of these 

differences were found to be significant.  

Baseline values 

In the comparisons of baseline flow rates, the median value recorded within a 

session was used as above. In women, there was no difference of baseline seen between 

high or low hormone states (Figure 5). Likewise, no significant difference was seen in 

men between sessions, when correcting for the altered order of the women’s readings 

(Figure 6). When the baseline rates of the males were compared from the first recording 

session to the subsequent, again no difference was seen. 
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Figure 2 Range of baseline flow rates in males. Range of the flow rate values found for each of the 4 laser 
Doppler probes applied to each male subject during their first data recording session. The (x) is the control 
lead. 
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Figure 3 Median baseline values in males. A 
comparison of the median baseline flow values 
between the first data recording session and the 
subsequent session. 

Figure 4 Median baseline values in females. A 
comparison of the median baseline flow values between 
the first data recording session and the subsequent 
session
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Figure 5a Figure 5b  
Figures 5a and b Median baseline flow rates in a) females and  b) males. Males were corrected for the 
order reversal in females (The order of the recordings of subjects chosen randomly, represented by the 
yellow triangle and dark blue circle, were reversed.) 
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Response to nitroglycerin 

To assess whether hormonal state had an impact upon endothelial-independent 

vasodilation, we compared the relative rise in flow after local cutaneous application of 

nitroglycerin at the two during hormone states. No significant was found in the mean or 

median relative rise of three leads with applied topical nitroglycerin (Figure 7; average 

rise not shown). The median relative rise increased during the high hormone state of 6 

females and during the second reading of 1 male. Little difference in the absolute rise in 

response to nitroglycerin was seen in females between their low and high hormone states 

(Figure 8). 
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Figure 7b 

Figure 7a and 7b. Relative rise of flow rates in response to nitroglycerin. In both 
graphs, the median value of the three experimental LDF leads were used for the 
comparison. 7a) Response in females is compared by hormonal status. 7b) Response in 
males by recording session, including correction for the order of female subjects 
readings.   
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Figure 8 Absolute rise of flow rates in response to nitroglycerin by hormonal status 
in females. 
 
Reactive hyperemia 

To further evaluate the impact of hormonal state upon vascular reactivity, the 

reactive hyperemia response was assessed using peak response value and the relative rise 
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(peak/pre-occlusive baseline), as well as calculated time to peak and the time to return to 

pre-occlusive flow rate. The lowest absolute flow rate during occlusion was measured as 

the biological zero. There was no significant difference of biological zero from one 

reading to the next in either group (Figure 9). Four females demonstrated an increase in 

biological zero during the high hormone state, compared to three males during their 

second reading. 

The difference in peak response also was not significant (Figure 10). Three men 

decreased during the second reading and 6 women decreased in their high hormone state. 

The relative rise of the peak response compared to pre-occlusive baseline also showed no 

significant differences (Figure 11). During the high hormone state 4 women showed an 

increase; and during the second session, 2 males had a relative increase. Similarly, there 

was no difference in the duration of the response, or the time to return to the pre-

occlusive baseline (Figures 12 and 13). Two males and three females took longer to 

return to the pre-occlusive baseline flow rate during the second reading and high 

hormone state respectively.  
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Figure 9a Comparison of biological zero in 
females. Biological zero attained during 
occlusion pressure was compared between low 
and high hormone states. 

Figure 9b Comparison of biological zero in males. 
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Figure 10a Peak hyperemic response in 
females. 

Figure 10b Peak hyperemic response in males. 
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Figure 11a Relative rise of hyperemic response 
in females. A comparison of the relative rise of 
the hyperemic response over the pre-occlusive 
baseline flow in females in both low hormone 
and high hormone states.  

Figure 11b Relative rise of hyperemic response in 
males.  
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Figure 12a Time to peak hyperemic response 
in females.  

Figure 12b Time to peak hyperemic response in 
males.
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Figure 13a  Duration of hyperemic response in 
females.  

Figure 13b Duration of hyperemic response in 
males. 

 
Discussion 

The clinical implications of estrogen or estrogen receptor agonist therapy could 

well extend beyond reproductive medicine to contribute to the fields of cardiovascular 

medicine, neurology, and surgery. Considering the protective effects it has upon vascular 

function, it may once again become a mainstay in the health management of post-

menopausal women, particularly for those having hypertension, atherosclerosis, or other 

significant cardiac risk factors [7]. Estrogen may also gain prominence as a preventative 

measure for menstrual migraines [15]. For those at risk for stroke or suffering from other 

ischemic brain diseases, it may play a role in improving blood flow and protecting cortex. 

In ovarectomized rats, estrogen replacement was protective against cortical damage 

during middle cerebral artery occlusion [43]. Battaglia et al. found improvement in 

pulsatility and peak systolic flow of the carotids and ophthalmic artery during HRT in 

menopausal women [44]. Many surgical procedures have an inherent risk of 

postoperative ischemia that potentially might be predicted by intra-operative LDF 

analysis and alleviated by temporary estrogen therapy. In addition to improving flow 

parameters, it may actually promote neovascularization, as was found in a rabbit model 
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of ischemic limb injury [45]. With this potential, estrogen may be a beneficial adjunct to 

abdominal surgeries, flap and transplant operations, as well as cardiovascular procedures.  

Although previous research investigations have overwhelmingly found a positive 

effect of estrogen upon blood flow [2,7,13,16,18,23,32 ], we did not find any significant 

differences in women between high hormone and low hormone states. This may either 

confirm the results of those studies that found no effect [3,46], or the negative results in 

this case may simply be due to differences in methods used and/or subjects studied. 

Another important possibility to consider is that the current manner in which the laser 

Doppler is applied is subject to too many variables.  

As discussed previously, laser Doppler evaluation of cutaneous microvasculature 

flow is subject to many physiologic and anatomic variables. In this investigation, we 

attempted to evaluate these by analyzing both spatial and temporal variability. For the 

former, we compared four sites within each subject for both baseline flow and 

vasodilatory responsiveness. For the latter, we compared the same parameter in subjects 

on two different days. We found a wide range in baseline flow rates in both females and 

males without a significant day or hormone effect. Although the impact of variability 

may be minimized by increasing the number of subjects and sites evaluated as Kvernebo 

et al. suggested [29], a greater benefit may be obtained by actually reducing intersite 

variability at the microvascular level. Using skin biopsy, Braverman et al. demonstrated 

the relationship between blood flow values found by LDF and the underlying 

arrangement of cutaneous microvasculature [33]. Using a similar method of mapping, it 

may be possible to develop a non-invasive technique to apply LDF probes, perhaps 

through site sampling. Regional occlusion of flow might also be used on limbs to visually 



 26

demonstrate sites of high and low vessel concentration through the hyperemic flush 

produced upon reperfusion [33]. Using this reactive hyperemic flush, however, might not 

be reliable in patients with vascular disease including those who might benefit most from 

clinical monitoring with LDF, such as patients with diabetes and atherosclerosis. Another 

method that might prove more valuable may be the use of the integrating LDF probe, 

which averages the values gained through continuous LDF monitoring over several 

neighboring sites. Members of our lab are currently evaluating the reproducibility of this 

probe. We are furthermore attempting to develop a method of LDF site selection and 

probe application that would ease the production of reliable data in both clinical and 

research situations.  

For the purpose of evaluating the effects of estrogen upon microvasculature flow 

in this study, the timing of the LDF readings may have also significantly impacted our 

results. For the high hormone state, we chose to perform the reading between the 21-23 

days of the women’s cycles. Previous studies have used a similar time period or have 

attempted to approximate the day of the pre-ovulatory peak [11,14,39]. The benefit to the 

latter period is the ability to isolate estrogenergic effects from those of elevated 

progesterone. Progesterone has on occasion been demonstrated to strongly counteract the 

effects of estrogen upon vascular function, although this seems to be an effect of only 

certain progesterones [6,12,15]. On other occasions, progesterone has been found to have 

effects similar to estrogen [6,12,15]. Due to this possible interaction, day 13 may be 

optimal to evaluate the vascular effects of estrogen. However, this pre-ovulatory estrogen 

surge is short lived, and may be easily missed due to cyclic differences in females. 

Because our protocol and HIC approval did not include IV blood draws (to confirm the 
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pre-ovulatory estrogen surge) and our subject population included women on OCP’s 

(combined estrogen and progesterone), we felt day 21-23 to be a better time period for 

our investigation.  

Another impact upon outcome might be due to differences in autonomic and auto- 

regulatory factors. As discussed earlier, the skin microvasculature is dramatically 

responsive to many factors including temperature and mental stress. Furthermore, certain 

regions are less responsiveness than others. But an important influence may be in the 

regulatory differences in the cutaneous and subcutaneous vasculature to that of the 

internal organs. This difference may interfere with non-invasive LDF evaluation of 

cutaneous vessel function as a representation of the health of internal organ vasculature.  

Weaknesses in study design that may have further contributed to the lack of 

positive findings include subject selection bias and low number of subjects. Our subjects 

were all young and healthy selected through advertisement at Yale-New Haven Medical 

Center. Considering that the studies referenced utilized many different methods in many 

different subject groups, it would be useful to evaluate the impact of age and health upon 

LDF measurement of blood flow and the impact of gonadal hormones.   

Regarding the potential of estrogenergic effects upon vascular function, it is likely 

that the lack of positive findings in this study is due to the variables as discussed, most 

particularly the variability of flow between probe sites. Despite the lack of positive 

findings in this case, through this study we have identified an area of further research that 

may significantly progress the use of LDF in both research and clinical applications. 
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