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Hypoxic Regulation of VEGF and PAI-1 Expression by HIF-1α and HIF-2α in First 
Trimester Trophoblasts 
 
Eliza Meade, Yuehong Ma and Seth Guller.  Department of Obstetrics, Gynecology and Reproductive 

Sciences.  Yale University School of Medicine, New Haven, CT, 06510. 

  
 Preeclampsia results from incomplete trophoblast invasion of the spiral arteries during early 

pregnancy. Vascular endothelial growth factor (VEGF) and plasminogen activator inhibitor-1 (PAI-1) are 

critical factors involved in angiogenesis, invasion and hemostasis at the maternal-fetal interface.  Both 

factors are transcriptionally regulated by hypoxia inducible factor (HIF), a heterodimeric complex 

consisting of HIF-1β and either HIF-1α or -2α whose specificity or redundancy in gene regulation is cell-

type specific. This study uses siRNA technology to dissect the mechanisms of hypoxia-mediated regulation 

of PAI-1 and VEGF expression in first trimester trophoblasts. Immortalized first trimester human 

extravillous trophoblasts (HTR8/SVneo cells) were maintained in serum-free and serum-containing media 

for 4h (n=3-4), 8h (n=6), 24h (n=5) and 48h (n=5) under normoxic (21% O2) and hypoxic (1-2% O2) 

conditions to determine a time of maximum induction of both VEGF and PAI-1.  Subsequently, cells were 

maintained for 48h in the presence or absence of siRNA for HIF-1α, HIF-2α, HIF-1α +     -2α, a non-

targeting (NT) sequence or Cyclophilin B (CB). Media were then removed, cells lysed, and Western 

blotting used to assess HIF-α knockdown. VEGF and PAI-1 levels in the media were quantified by ELISA 

and results expressed as pg or ng/μg protein. Results from 3 to 8 independent experiments were analyzed 

using unpaired t-tests.  Under hypoxic conditions treatment of cells with HIF-1α, HIF-2α or HIF -1α + -2α 

siRNA resulted in >90% HIF-α protein knockdown as determined by Western blotting. 48h of hypoxic 

treatment caused a statistically significant increase in PAI-1 levels (p<0.01) and VEGF levels (p<0.001) 

compared to normoxic controls. Under hypoxic conditions, PAI-1 levels were 4.75 ± 0.46 ng/μg protein 

and VEGF levels were 7.27 ± 1.08 pg/μg protein. Treatment with siRNA to HIF-1α, HIF-2α and HIF-1α + 

-2α significantly reduced PAI-1 levels to 3.3 ± 0.35 (p<0.02), 3.1 ± 0.38 (p<0.03) and 2.4 ± 0.19 

(p<0.003), respectively. No significant difference in PAI-1 reduction was noted between the three HIF 

siRNA conditions.  Under hypoxic conditions, levels of VEGF in cells treated with siRNA to HIF-1α (5.79 

± 0.55), HIF-2α (5.50 ± 1.24) and HIF-1α + -2α (4.24 ± 0.93) were reduced compared to the hypoxic 

control (7.27 ± 1.08), yet these effects did not reach statistical significance.  However, when compared with 
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the levels observed in cells treated with NT siRNA (9.90 ± .98), all HIF siRNA treatments promoted a 

significant reduction in VEGF expression (p<0.003, p<0.02 and p<0.003 for HIF-1α, HIF-2α and HIF-1α+ 

-2α, respectively).  In conclusion, these results indicate that hypoxia-mediated changes in PAI-1 and VEGF 

expression in trophoblasts are regulated similarly by both HIF-1α and HIF-2α. This provides important 

insight into the molecular mechanisms regulating hemostasis and trophoblast invasion as well as their 

potential dysfunction in pregnancies complicated by preeclampsia. 
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Introduction 

Preeclampsia and Abnormal Placentation 

 Preeclampsia is the leading cause of maternal mortality in the Western world affecting 5-

7% of all women (1).  It is a disease manifest by hypertension and proteinuria that presents 

anytime after 20 weeks of gestation, during labor or during the early period after delivery. 

Without proper management, it can result in maternal ecclampsia, characterized by generalized 

seizures and fetal intra-uterine growth restriction (IUGR).  Women with preeclampsia and 

eclampsia have a 3- to 25-fold increased risk of severe complications, such as abruptio placentae, 

thrombocytopenia, disseminated intravascular coagulation, pulmonary edema, and aspiration 

pneumonia (1).  The disease remains one of the most common reasons for a woman to die during 

pregnancy.  Presently incurable, it is managed with screening and labor induction when 

necessary.  Furthermore, it is one of the most common reasons for induced preterm delivery.  

Risk factors include previous history of preeclampsia, primiparity, obesity, family history of 

preeclampsia, multiple (twin) pregnancies and chronic medical conditions such as long-term 

hypertension, renal disease and diabetes (2).   

 The etiology of preeclampsia is presently unknown.  However, it is widely believed that 

it is a disease of placental dysfunction.  Preeclamptic placentas appear histologically abnormal, 

with evidence of underperfusion and ischemic injury.  It is generally thought that focal regions of 

hypoxia/ischemia stimulate production of various proinflammatory cytokines and other placental 

factors that are released into the maternal circulation thereby causing endothelial dysfunction and 

systemic disease (3,4). Reduced uteroplacental perfusion is generally thought to result from 

incomplete invasion of the maternal spiral arteries by fetally-derived extravillous trophoblast cells 

(EVTs) (3,5).   

 During early placentation (weeks 6-9 of pregnancy), trophoblasts exist in a relatively 

hypoxic environment (6).  The trophoblasts are highly proliferative, and uterine invasion is 

predominantly interstitial.  Trophoblast stem cells form two types of chorionic villi: floating and 
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anchoring (7).  The floating villi are primarily responsible for gas and nutrient exchange.  They 

are composed of trophoblasts, which early in placentation, have fused to form the multinucleate 

synctiotrophoblast layer (8).  The cytotrophoblasts of the anchoring villi can fuse to form 

synctiotrophoblast or break through the synctium to form multi-layered columns, which connect 

the embryo to the uterine wall (9). The EVTs of the cell columns invade through the interstitium 

of the first third of the uterine wall and can also form plugs within the uterine spiral arteries to 

minimize placental perfusion (10).  At this time, the fetus is undergoing organogenesis.  It 

requires minimal oxygen and is highly susceptible to teratogenic damage from oxygen radicals 

(11,12). From weeks 9-12 the uteroplacental arteries recanalize (11,12).  There is markedly 

increased trophoblast growth and differentiation.  By the 20th week the EVTs begin to transform 

from epithelial to endothelial-like cells and migrate along the lumen of the vessels to remodel the 

decidual and inner third of the myometrial segments of spiral arteries (11,13). As a result the 

vessels become greatly dilated, and are no longer under maternal vasomotor control.  The 

“pseudoendothelium”, composed of endovascular trophoblasts, expresses endothelial markers 

including angiogenic factors and their receptors (14).  The process of “psuedovascularization” 

enormously expands the vascular capacity of the uteroplacental circulation into the intervillous 

space, thus guaranteeing maximal placental blood supply regardless of maternal attempts to 

regulate blood distribution within the body. 

In order to invade, trophoblasts must switch expression of adhesion molecules from an 

epitheilial to a mesenchymal/endothelial profile. Studies have suggested that impaired invasion is 

due to a failure of trophoblasts to acquire the vascular repertoire of adhesion molecules.  Zhou et 

al. have found that EVTs in normal pregnancies show reduced expression of epithelial cell 

adhesion markers such as Epithelial-cadherin and up-regulation of endothelial cell markers such 

as Vascular Endothelial-cadherin, vascular cell adhesion molecule-1, platelet endothelial 

adhesion molecule 1 and α4-integrins (15,16).  They were also found to acquire αvβ3 integrin, 

which is present on activated endothelial cells.  On the contrary, EVTs in preeclampsia fail to 
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express these markers.  This group hypothesizes that endovascular invasion is dependent on 

expression of a vascular phenotype.  It is worth noting, however, that this model of endovascular 

mimicry has not held in studies by other groups looking at expression in placental bed biopsies 

(17,18). 

 

Aberrant Trophoblast Gene Expression in Preeclampsia: VEGF and PAI-1 

 Presently, it is unclear how incomplete trophoblast invasion with the resulting insufficient 

uteroplacental circulation translates into the clinical presentation of preeclampsia.  There is 

research to suggest preeclampsia results from an immunologic rejection of the fetal/placental cells 

by maternal cells with different allogenecity (19,20).  As mentioned above, it is also thought that 

the syndrome could arise from certain factors produced by the dysfunctional placenta, which, 

once released into the maternal circulation, cause a systemic inflammatory response (21).  One 

such factor is soluble fms-like tyrosine kinase 1 (sFlt-1), which acts as a potent anti-angiogenic 

molecule by binding to vascular endothelial growth factor (VEGF) and placental growth factor 

(PlGF). sFlt-1 is produced by trophoblasts as well as other cell types, and levels have been found 

to be elevated in preeclamptic women compared to normal gestational controls (22,4).  

Furthermore, treating rats with sFlt-1 results in glomerular endotheliosis, a lesion pathognomonic 

of preeclampsia (23).  

 Given the radical changes in oxygen tension at the uterine-placental interface that occur 

throughout early gestation (6), the role of oxygen in trophoblast proliferation, differentiation and 

invasion is critical to our understanding of normal placental development and potential 

dysregulation in preeclampsia.  Many studies have shown that a hypoxic environment (similar to 

<10 weeks gestation) promotes trophoblast proliferation and prevents differentiation towards an 

invasive phenotype.  Significant work by Genbacev et al. has found that cytotrophoblasts (10-12 

week gestation) in vitro appear to enter the preliminary stages of differentiation, but show 

significantly decreased invasion through an extracellular matrix (ECM) at 2% O2 (hypoxia) 
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compared to 20% O2 (normoxia) .  Unlike cells at 20% O2 or 8% O2, they also failed to up-

regulate the integrin α1β1 (a collagen/laminin receptor), normally seen in vivo when cells invade 

the uterus (24).  Further work by Caniggia et al. using human villous explants showed that 

exposure to 3% O2 resulted in increased cell proliferation and production of biochemical markers 

characteristic of immature EVTs (25).        

 However, other studies using first trimester trophoblasts have shown that compared to 

normoxic conditions, hypoxic treatment stimulated cells to invade through reconstituted basement 

membrane (26).  Furthermore, in vivo models of reduced uteroplacental perfusion in non-human 

primates lead to increased invasion of the uterine wall (27).  It is likely that variations in cell-type 

and experimental models (i.e. primary culture vs. cell-line, in vitro vs. in vivo) contribute to the 

differences in outcomes of these experiments.  However, it is clear that trophoblast proliferation 

and invasion are regulated by the oxygen tension. 

  The processes of interstitial and vascular invasion, angiogenesis and endothelial 

transformation are very complex and not completely understood.  It is known that they involve 

many different growth factor and cytokine interactions with different cell-types at the maternal-

fetal interface. Trophoblasts must undergo regulated changes in the synthesis and degradation of 

extracellular matrix proteins (ECMs) and their receptors in order to assume an invasive 

phenotype (similar to tumor cells).  Numerous studies have shown that the urokinase-pathway is 

involved in cellular migration and invasion through the extracellular matrix.  Urokinase-type 

plasminogen activator (uPA) is secreted as a single-chain inactive proenzyme (pro-uPA), which, 

upon binding to a specific uPA receptor (uPAR) on the cell surface, is cleaved into the active 

two-chain molecule.  Cell bound-uPA converts plasminogen to plasmin.  Plasmin degrades 

various components of the ECM including fibrin, fibronectin, collagen and laminin.  For this 

reason, uPA is essential for ECM degradation, a critical process for cellular invasion.  

Plasminogen activator inhibitor 1 (PAI-1) inhibits uPA thus blocking uPA conversion of 

plasminogen to plasmin (28). 
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 The evidence suggesting that PAI-1 may play a role in cellular migration and invasion 

through the ECM pertains to both normal processes like placentation, as well as certain disease 

processes such as tumor invasion and metastasis.  High levels of PAI-1 indicate poor prognosis 

from a variety of malignancies including breast (29), gastric (30), lung (31,32) and ovarian (33).  

Further studies have shown that PAI-1 promotes cellular migration on the ECM protein 

vitronectin (Vn) by competing for binding with uPAR to the Vn receptor and causing cell 

dissociation from Vn (34).  PAI-1 mediated release of cells from the ECM (in this case, Vn) 

could potentially help explain why high levels of PAI-1 are indicative of poor prognosis in 

multiple types of cancer.   

 Levels of PAI-1 are elevated in the plasma and placenta of preeclamptic women, and are 

positively correlated to the severity of placental damage (35,36).  This finding contrasts what one 

might expect since high PAI-1 levels seem to correlate with invasiveness, and preeclampsia is a 

disease of decreased invasion.  However, there have been in vitro studies demonstrating a role for 

PAI-1 in the inhibition of trophoblast migration (37).  In addition, PAI-1 also serves an important 

role in mediating fibrinolyis.  PAI-1 has a high affinity for tPA as well as uPA. Whereas uPA 

binds to plasma membrane receptors, tPA binds to fibrin and other components of the ECM and 

is a key mediator of fibrinolysis.  Therefore, the fibrin deposition and occlusive lesions in the 

intervillous space and vasculature of preeclamptic placentas could potentially arise from 

excessive inhibition of the fibrinolytic activity of tPA.  As a dynamic molecule with the potential 

to affect both invasion and hemostasis, PAI-1 is likely to be a key factor in the dysregulation of 

these processes as seen in preeclmapsia. 

 PAI-1 expression is stimulated by a number of different growth factors including TGF-β, 

IL-1 and basic Fibroblast Growth Factor.  However studies by Fitzpatrick and Graham using 

immortalized first trimester EVTs (HTR8/SVneo cells) show that PAI-1 is upregulated by low 

oxygen levels similar to those of the first trimester placenta, independent of TGF -β regulation 
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(38).  Although it has never been proven, this finding suggests that the increase in PAI-1 levels in 

preeclampsia might be a consequence of a hypoxic environment. 

 VEGF, a potent inducer of endothelial cell proliferation and chemotaxis, is a critical 

factor in vasculogenesis and angiogenesis.  The extent of its role in placental development is not 

fully understood, but it is widely expressed not only by enodothelial cells, but by placental 

cytotrophoblasts, Hofbauer cells (fetally-derived macrophages), maternal macrophages (39), and 

first trimester EVTs (40).  Lower levels of VEGF mRNA have been found in placental biopsies 

of women with preeclampsia compared to normal controls (41).  Furthermore, in preeclamptic 

placenta, there is decreased terminal villous volume, and abnormal terminal villous maturation 

and branching.  The capillaries are long, poorly branched and highly coiled (42).  It has been 

suggested that altered VEGF regulation and hence expression at the maternal-fetal interface could 

contribute to dysregulated angiogenesis and spiral artery remodeling during placentation as seen 

in preeclampsia (42). 

 Although VEGF mRNA levels were found to be lower in placenta of women with PE, 

there is conflicting evidence regarding the serum levels of VEGF in preeclamptic women.  

Numerous studies have found elevated levels of VEGF in the serum of patients with preeclampsia 

(43,44,45), while other studies have found the opposite (46,47).  Resolution of these disparate 

results may be due to the measurement of free or bound VEGF (i.e. sflt-1 involvement). Despite 

the abundance of literature linking VEGF to preeclampsia, its actual role in the pathology and 

clinical presentation is unknown, and under intense investigation. 

 

Role of hypoxia inducible factor (HIF) in gene regulation 

 Both VEGF and PAI-1 are induced under hypoxic conditions, and are regulated by 

hypoxia inducible factor (HIF).  This transcription factor is a regulator of many genes involved in 

cell survival, cell proliferation, apoptosis, glucose metabolism and angiogenesis.  For this reason, 

much of the work that has been done on HIF involves its crucial role in tumor growth.  HIF 
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expression and activation has been shown to correlate with tumor progression and resistance to 

cancer treatments.  Hypoxia is the main mechanism by which HIF is activated, although there is 

increasing evidence that non-hypoxic stimuli are also capable of activating this transcription 

factor albeit through different mechanisms (48).  The regulation of HIF is complex and occurs at 

the transcriptional, translational and protein levels.  The HIF protein is rapidly degraded by the 

proteasome pathway under normoxic conditions, but under hypoxic conditions it is stabilized and 

permits activation of genes essential to cell survival under low oxygen conditions.  

 HIF is a heterodimer composed of either: HIF-1α or HIF-2α and HIF-1β all of which 

contain basic helix-loop-helix motifs and Per-ARNT-Sim domains.  Either HIF-1α or HIF-2α is 

the main functional component of the HIF complex and both contain an oxygen degradation 

domain (ODD).  There appears to be overlap with most of the genes that either the HIF-1α or -2α 

regulate, but recent studies have shown cell-type specific control of certain genes by one or 

another of the HIF-α subunits (49,50,51). Transcription and translation of HIF-α remain 

unchanged by the switch from normoxia to hypoxia.  However, HIF-α is an extremely labile 

protein under normoxia, with a half-life of ~ 5 minutes.  Under normoxic conditions, HIF-α is 

hydroxylated on two proline residues, and the HIF herterodimer is ubiquitinated by the Von-

Hippel-Lindau complex and rapidly targeted for degradation by the proteasome.  Iron and oxygen 

are necessary for full enzymatic hydroxylation of HIF-α (52) by prolyl hydroxylase.  Under low 

oxygen availability the activity of the prolyl hydroxylase is decreased and HIF-α is stabilized.  

HIF-α can then translocate to the nucleus to bind with the constitutively expressed HIF-1β.  The 

heterodimer can then bind to hypoxic response elements (HREs) of target genes such as VEGF 

and PAI-1 to increase their expression. 

 Hypoxia plays an integral role in the early placental environment, particularly as it effects 

trophoblast invasion.  There has been significant work done by several groups on the expression 

of HIF in the placenta.  Rajakumar et al. have shown that HIF-1α and-2α are highly expressed in 
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first trimester placenta, and their levels decrease as gestation progresses (53). Caniggia et al. have 

shown that inhibition of HIF-1α expression in hypoxic villous explants (5-8 weeks gestation) 

arrested cell proliferation, decreased α5 expression (normally associated with proliferative, non-

invasive cells) and triggered biochemical markers of an invasive trophoblast phenotype (such as 

α1 integrin and gelatinase B expression) (54).  This suggests that in the hypoxic environment of 

early gestation, HIF expression contributes to the regulation of trophoblasts as proliferative rather 

than invasive cells.  In addition, more studies by Rajakumar et al. determined that HIF-2α 

protein, unlike HIF-1α or HIF-1β, is over expressed in the placentas of preeclamptic women 

(55).  They have also shown that oxygen dependent down-regulation of HIF-1α and -2α proteins 

is impaired in placental villous explants from women with preeclampsia (56). 

 The mechanism of regulation of trophoblast invasion are exceptionally complex, 

involving numerous cell types and cellular interactions at the maternal-fetal interface that 

somehow result in degradation of extracellular matrices, invasion, phenotypic changes and 

angiogenesis.  How exactly these processes go awry in preeclampsia, leading to incomplete 

invasion and to the maternal symptoms of disease, are still largely unknown.  Hypoxia has a 

profound effect on the expression of so many important factors in this complex process that it is 

likely to play an integral role in development of the disease, which is characterized by ischemic 

injury and underperfusion of the placenta.  HIF, the master regulator of hypoxia, appears to be 

dysregulated in preeclampsia along with two factors controlled by HIF, VEGF and PAI-1, both of 

which are critical to the process of angiogenesis and trophoblast invasion. The purpose of this 

study was to test the hypothesis that HIF regulates VEGF and PAI-1 expression in first trimester 

trophoblasts using siRNA technology. 
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Our Specific Aims Are To: 

1.  Establish a time course of hypoxic induction of VEGF and PAI-1 in first trimester    

trophoblasts. 

2.  Perform knock-down of HIF-1α and HIF-2α protein expression in hypoxic cells using siRNA 

technology.  

3.  Determine if hypoxic induction of VEGF and PAI-1 is mediated similarly by HIF-1α and HIF-

2α. 

 

Methods 

Cell culture: Immortalized first trimester extravillous trophoblast cells (HTR8/SVneo), a gift 

from Dr. Charles Graham (Queen’s University, Kingston, Ontario, Canada) were used for all 

experiments.  This cell-line was established following immortalization of a short-lived first 

trimester extravillous trophoblast cell-line (HTR-8) transformed with SV40 large T-cell antigen 

(which is known to cause extended life-span in multiple cell-types) (57) and selected for with 

neomyocin resistance (58).  The HTR-8/SVneo cells and the parental cell line are 

morphologically similar and both express cytokeratin-7 confirming their trophoblastic identity.  

Both cell lines also express 72kDA type IV collagenase and respond to TGF-β with reduced 

thymidine incorporation and decreased secretion of PAI-1.  In addition, neither cell type was 

capable of growth in soft agar, and no sign of tumor formation was evident more than 5 months 

after subcutaneous inocculation of the parental or transfected cells into nude mice.  Unlike the 

parental cells, however, the HTR8/SVneo cells produced human chorionic gonadotropin (hCG) 

and did not show any decrease in in vitro invasion in response to TGF-β (59). 

 All experiments were conducted in RPMI-1640 (Sigma R8758) supplemented with 5% 

fetal bovine serum (Gemini bio-products, Woodland CA) and 1% antibiotic/antimicotic 

(10,000U/ml penicillin G sodium, 10,000ug/ml streptomycin sulfate and 25ug/ml amphotericin 
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B) (Gibco, Grand Island N.Y.) or RPMI-1640 alone.  Cells were maintained at 37°C in a 

humidified atmosphere of 5%CO2/95%air.  

   

 Hypoxic Induction Studies:  All experiments were conducted in 6-well plates (#353046, Becton 

Dickinson, Franklin Lakes NJ) with 2.5x105 cells (passages 10-30) plated in triplicate wells for 

each experimental condition.  Cells were allowed to grow under normoxic conditions (21% O2) 

until 60-70% confluent.  At this time, they were washed one time with Dulbecco’s phosphate 

buffered saline (PBS) (Gibco, Grand Island, NY) and then 2ml media were added to each well.  

Experiments were carried out with serum containing media (5% FBS) or with serum free media 

consisting of a 1:1 mixture of phenol red-free Hams’ F12: Dulbecco’s Modified Eagle’s medium 

and ITS+ (a supplement utilized to obtain a final concentration of insulin of 6.25μg/ml, 

transferring 6.25μg/ml, selenous acid 6.25ng/ml, bovine serum albumin 1.25mg/ml and linoleic 

acid 5.35μg/ml) (59). Cells assigned to the normoxic (Nx) group remained in the incubator.  

Cells assigned to the Hypoxic (Hx) group were incubated in a sealed Plexiglass hypoxia chamber 

(Belleco Glass Co., Vineland NJ) containing a beaker of water to maintain humidity and a gas 

oxygen analyzer (Hudson RCI, Temecula CA) (60).  The chambers were equilibrated to 0-1% O2 

with CO2 and balanced N2 gas flowing into the chamber at a rate of 20 L/min (approximately 10 

minutes). The hypoxia chamber was then placed back into the incubator along with the 6-well 

plates to be maintained under normoxic conditions. 

  

 Supernatant and Protein Harvest:  After the designated time in the Nx or Hx conditions (4, 8, 24 

or 48 hrs) the plates were removed from the incubator and/or hypoxia chamber and rapidly placed 

on ice to minimize protein degradation. The supernatant was alliquoted into 2.0ml tubes and 

stored at -20°C until further analysis.  The cells were quickly washed with PBS and then lysed 

with 100ul/well lysis buffer (50mM Hepes pH 7.5, 150mM NaCl, 1mM EDTA, 1mM EGTA, 
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1mM NaF, 1%Triton X-100, 10% Glycerol) mixed with PMSF (1:100) and protease inhibitor 

cocktail (1:100).  A cell scraper (Fisherbrand, Pittsburgh PA) was used to scrape the lysate from 

each well, which was then transferred into 1.5ml tubes.  Each lysate was then vortexed (30sec), 

placed on ice (10min), centrifuged (7000 x g, 10min, 4°C) and the supernatant alliquoted into 

separate tubes and stored at -80°C. 

  

ELISAs: Levels of VEGF and PAI-1 in the culture media were measured by ELISA according to 

information provided by the manufacturer (R&D Laboratories, Minneapolis, MN for VEGF and 

American Diagnostica, Stamford, CT for PAI-1).  Media for VEGF was diluted 5x (in the 

provided RDW1 diluent) for  

the 24h and 48h samples and media for PAI-1 was diluted 5x (in PBS with 1% BSA) for 4h 

samples, 20x for 8h samples, 100x for 24h samples and 200x for 48h samples.  The 

concentrations of VEGF and PAI-1 were determined in triplicate wells and normalized to cell 

protein.  The average of the triplicate wells was considered the value for any given experiment.  

The number (n) of experiments, conducted in the presence of serum and under serum-free 

conditions, at each time point is included in the following table: 

 

 4h 8h 24h 48h

VEGF 4 6 5 5 

PAI-1 3 6 5 5 

 

 
 
 

 

Protein Assays:  Determination of the protein concentration for each sample was done using the 

DC Protein Assay from Bio-Rad Laboratories (Hercules, CA).  Standards for the protein assay 

were made with bovine serum albumin (Boerhinger Mannheim, Indianapolis, IN) and lysis buffer 

(described above).  
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siRNA Experiments:  It has been well established that small interfering RNA (19-21bp RNA 

fragments) upon binding to the complementary mRNA within the cell, leads to degradation of the 

mRNA (61). siRNA to HIF-1α has been successfully used in the past to knock-down HIF-1α at 

both the RNA and protein levels (62,53,51).   For these studies, 2.5x105 cells/well were plated in 

triplicate in 6-well dishes with RPMI (5% FBS, 1% antibiotic/antimicotic) and allowed to grow 

until 60-70% confluence (48-72 hrs).  Cells were then washed once with PBS and transfected 

with siRNA duplexes (Dharmacon Incorportated, Lafayette, CO) to HIF-1α (100nM) (sense: 

GGA CAC AGA UUU AGA CUU GUU, antisense: CAA GUC UAA AUC UGU GUC CUU), 

HIF-2α (sense: GCA AAU GUA CCC AAU GAU AUU, antisense: UAU CAU UGG GUA CAU 

UUG CUU) (100nM), HIF-1α+ -2α (200nM), non-targeting siRNA (NT) (sequence not released, 

cat # D-001210-01-05) (100nM) as a negative control, cyclophilin B siRNA(CB) (sequence not 

released, cat # D-001136-0105) (100nM) as a positive control or transfection reagent alone for 

mock transfection (M) (DharmaFECT 1 Transfection Reagent) (4μl transfection reagent/100nM 

siRNA) in serum-free RPMI.  The cells were transfected according to Dharmacon Incorporated 

protocol for 6-well plates.   For any given experiment each transfection/siRNA condition was 

done in triplicate wells. 

 Once treated with siRNA, all cells were placed at 37°C, 21% O2.  After 30 minutes, cells 

being treated under hypoxic conditions were placed into a hypoxic chamber following the same 

protocol as for the hypoxic induction experiments.  After 48 hrs, the chambers were opened and 

the supernatant was removed to be stored at -20°C until further analysis by ELISA.  The adherent 

cells were harvested for protein analysis. The protein harvest was conducted on ice, within 1-2 

minutes of opening the hypoxia chamber in order to minimize HIF protein degradation due to re-

oxygenation.  Each well was lysed with 100μl lysis buffer (50mMHepes pH7.5, 150mM NaCl, 

1mM EDTA, 1mM EGTA, 1mM NaF, 1% Triton-X 100%, 10% Glycerol) supplemented with 

1% protease inhibitor cocktail, 1%PMSF and 0.1%SDS.   The lysate was vortexed (30sec) and 
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placed on ice (10 min) before being centrifuged (7000 x g, 10 min, 4°C).  Supernatant was 

subsequently alliquoted to 1.5ml tubes and stored at -80°C until further analysis.  The number (n) 

of each siRNA experiment is as follows: 

 

 Untreated Mock NT CB HIF-1α HIF-2α HIF-1α + -2α

Normoxia 8 -- 3 -- -- -- -- 

Hypoxia 8 6 8 6 8 5 5 

 

Western blotting:  Western blotting was used to assess protein expression and knock-down of 

HIF-1α, HIF-2α and Cyclophilin B.  25μg of cell lysate diluted with Laemelli sample buffer 

(Bio-Rad, Hercules, CA) was loaded per well.  Prior to loading samples they were heated to 37°C 

(5 min).  Samples along with 10μl Kaleidoscope Prestained Standards (Bio-Rad, Hercules, CA) 

were electrophoresed (100V for 1.5 hrs) on a 4-15% Tris-HCL Ready-Gel (Bio-Rad, Hercules, 

CA) and transferred to a HybondTM ECLTM Nitrocellulose membrane (Amersham Pharmacia 

Biotech, Buckinghamshire, England) at 4°C (100V for 1.0 hr).  The membranes were then 

blocked with 5% Carnation non-fat dry milk in PBS-2%Tween.  Proteins were detected using a 

monoclonal antibody to HIF-1α (BD Biosciences, Palo Alto, CA), HIF-2α (Novus Biologicals, 

Littleton, CO) and cyclophilin B (Abcam Incorporated, Cambridge, MA) at 1:250, 1:1000 and 

1:2000 respectively.  Cyclophilin B served as a loading control as well as a positive control for 

siRNA knock-down.  Overnight primary antibody incubation (4°C) was followed by incubation 

with goat anti-mouse (1:5000) or goat anti-rabbit (1:15,000) horseradish peroxidase (1 hr, RT) 

secondary antibodies (Bio-Rad, Hercules, CA) followed by signal detection using enhanced 

chemiluminescence developing reagents (SuperSignal West Femto Maximum Sensitivity 

Substrate, Pierce, Rockford, IL).  Blots were exposed to film (Denville Scientific, Metuchen, NJ) 

for between 1sec and 5min. Blots were washed 3 times (10 min each) with PBS-2% tween 
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between each incubation step.  Prior to reprobing any blots, they were stripped with Blot Restore 

(Chemicon Intenational, Temecula, CA). 

 

Statistics.  Results are expressed as a mean ± s.e.  Statistical comparison of VEGF and PAI-1 

expression between normoxic and hypoxic conditions for each time point was done using paired 

t-tests performed by Graphpad Prism software (San Diego, CA).   Comparisons of VEGF and 

PAI-1 expression between any two siRNA groups were also carried out using unpaired t-tests 

performed by Graphpad.  A P value <0.05 was considered significant. 

 

All experiments described above were done by the author. 

 

Results 

Hypoxic effects on expression of VEGF and PAI-1 in first trimester trophoblasts 

 Placental development within the first 10 weeks of pregnancy occurs in a relatively 

hypoxic environment (6).  Preeclamptic placentas demonstrate regions of ischemic injury and in 

vitro studies have shown that hypoxia affects trophoblast invasion (16).  Two factors in the 

process of placentation, VEGF and PAI-1, are critical to angiogenesis and trophoblast invasion 

and are regulated by hypoxia.  In order to better understand how these two factors are regulated 

by hypoxic treatment in first trimester trophoblast cells, this study investigated the protein 

expression of VEGF and PAI- 1 in an immortalized first trimester trophoblast cell-line 

(HTR8/SVneo cells).  Fitzpatrick el. al (39) have evaluated the effects of hypoxia on PAI-1 

mRNA expression, however the mechanism of this regulation and the direct role of HIF remain 

unelucidated.  In addition, no studies on hypoxia-mediated changes on PAI-1 protein expression 

have been carried out. Furthermore, hypoxia-mediated expression of VEGF in these cells has not 

been examined.  We were also interested in determining if there was a difference in the time 
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course of VEGF and PAI-1 induction, since there could be other mechanisms involved in their 

hypoxic induction, aside from HIF.    

 HTR8/SVneo cells were incubated for 4, 8, 24 and 48 hours under normoxic (21%O2) or 

hypoxic conditions (0-2%O2). Levels of PAI-1 and VEGF in culture media were determined by 

ELISA following normalization to total cellular protein in order to control for potential changes 

in overall rates of protein synthesis.  Experiments were preliminarily conducted in serum-

supplemented media and then repeated in serum-free media to be sure that endogenous levels of 

VEGF and PAI-1, or other serum factors, did not affect ELISA results.  We observed similar 

hypoxia-dependent changes in PAI-1 and VEGF levels in both the absence and presence of 

serum.  For cells in serum-containing media, hypoxic conditions promoted a 1.5 fold induction of 

VEGF at 4h (*p<0.05) compared to normoxia (0.90 ± 0.15 pg/μg protein vs. 0.59 ± 0.18 pg/μg 

protein), a 2.4 fold induction at 8h (**p<0.004) (1.90 ± 0.33 pg/μg protein vs. 0.80 ± 0.18 pg/μg 

protein), a 3.0 fold induction at 24h (**p<0.006) (4.15 ± 0.86 pg/μg protein vs. 1.37 ± 0.38 pg/μg 

protein) and a 3.2 fold induction at 48h (**p<0.001) (7.84 ± 0.98 pg/μg protein vs. 2.42 ± 0.54 

pg/μg protein) (fig. 3A).  Cells cultured in serum-free media expressed levels of VEGF 

comparable to cells cultured in serum-supplemented media, and there was a statistically 

significant induction in VEGF at all four time points (fig. 3B).  These results demonstrate that 

hypoxic induction of VEGF occurs as early as 4h, and the induction continues for at least 48hrs.  

Time points beyond 48h were not investigated because of concerns about cell survival under 

extensively long hypoxic conditions.  Preliminary studies showed decreased protein levels in cells 

under hypoxic conditions at 96 hrs (data not shown).  
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Figure 3.  Hypoxia induces VEGF expression by first trimester trophoblast cells cultured in either 
serum free or serum supplemented media.   HTR8/SVneo cells were cultured in either serum free media 
(A) or media supplemented with 5% FCS (B).  These cells were exposed to ambient oxygen (normoxia) or 
0-2% oxygen (hypoxia) and at the indicated times supernatant was harvested and analyzed by ELISA for 
VEGF protein expression.  Results were normalized to total protein content. 
 

 The same time course was evaluated for PAI-1 expression.  For cells in serum-

supplemented media, hypoxic conditions promoted a 3.0 fold induction of PAI-1 at 24h 

(*p<0.03) compared to normoxic conditions (3.42 ± 0.82 ng/μg protein vs. 1.14 ± 0.28 ng/μg 

protein) and a 5.0 fold induction at 48h (*p<0.02) compared to normoxic conditions (4.77 ± 0.51 

ng/μg protein vs. 0.96 ± 0.09 ng/μg protein) (fig. 4A).  PAI-1 levels were not significantly 

induced at 4h (0.08 ± 0.0 ng/μg protein vs. 0.14 ± 0.04 ng/μg protein) or 8h (0.86 ± 0.20 ng/μg 

protein vs. 0.58 ± 0.09 ng/μg protein).  Similar results were found with experiments performed in 

serum-free conditions (fig. 4B).   These results indicate that PAI-1 is also induced by hypoxia, 

although significant induction occurs later than VEGF induction.  For this reason it was 

determined that 48h would be an appropriate time point to conduct experiments aimed at 

examining the role of HIFs in hypoxia-dependent changes in PAI-1 and VEGF expression. 

 
 
 
 
 
 
 
 

10.0
Normoxia**

4 h 8 h 24 h 48 h
0.0

2.5

5.0

7.5
Hypoxia

*
**

**

Time

VE
G

F 
(p

g/
μ g

 p
ro

te
in

)

 21



 
A.                                                                                           B.  

 

4 h 8 h 24 h 48 h
0

2

4

6

8
Normoxia
Hypoxia

**

**

Time

PA
I-1

 (n
g/
μ

g 
pr

ot
ei

n)

 
 
    
  
   
  
   
   
   
  
 

4 h 8 h 24 h 48 h
0

2

4

6

8
Normoxia
Hypoxia

*
*

Time

PA
I-1

 (n
g/
μ

g 
pr

ot
ei

n)

Figure 4.  Hypoxia induces PAI-1 expression by first trimester trophoblast cells cultured in either 
serum free or serum supplemented media.   HTR8/SVneo cells were cultured in either serum free media 
(A) or media supplemented with 5% FCS (B).  These cells were exposed to ambient oxygen (normoxia) or 
0-2% oxygen (hypoxia) and at the indicated times supernatant was harvested and analyzed by ELISA for 
PAI-1 protein expression.  Results were normalized to total protein content. 
 
 
Protein Expression of HIF-1α and HIF-2α in HTR8/SVneo after siRNA treatment 

 HIF is a heterodimeric transcription factor composed of a constitutively expressed β 

subunit and a hypoxically regulated α subunit (-1α/-2α).  Under normoxic conditions, the α 

subunit is hydroxylated, ubiquitinated and targeted for proteasomal degradation.  In hypoxic 

conditions, the α subunit is stabilized, and it is able to translocate to the nucleus and bind to the β 

subunit.  The complex is then able to bind to the promoter region of certain genes (ie VEGF and 

PAI-1), through hypoxia response elements, to induce transcription.   

 siRNA technology has been used previously to knock-down HIF expression at the RNA 

and protein level (63,53,51) in various cancer cell lines and villous explants, but not in 

HTR8/SVneo cells.  Before evaluating VEGF and PAI-1 levels after treatment with HIF-1α and 

HIF-2α siRNA, it was necessary to determine the efficacy and specificity of HIF knock-down 

after siRNA treatment.  HTR8/SVneo cells were transfected with siRNA to HIF-1α, HIF-2α, 

HIF-1α + -2α, a non-targeting sequence (NT), cyclophilin B (CB) or transfection reagent alone 

(mock).  The NT siRNA was used as a negative control to determine if there were any non-

specific effects of siRNA transfection on HIF -1α (-2α) expression.  Cyclophilin B siRNA served 
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as a positive control for siRNA knock-down of a known protein, as well as a loading control 

because cyclophilin B is a constitutively expressed protein.  Thirty minutes after siRNA 

transfection, cells were placed under normoxic or hypoxic conditions.  After 48 hrs, cells were 

lysed and cellular protein was extracted and analyzed by Western blotting for HIF-1α, -2α and 

cyclophilin B knock-down.  Figure 5 is a representative of 5-8 independent experiments.   

                         
           N     H      1       2      ½     NT   CB     M 

 
                120kDA                                                                                   HIF-1α                                     
 
                
                120kDA                                                                                   HIF-2α 
 
                       
                    19kDA                                                                                   Cyclophilin B  
 
 
Figure 5.  Western Blot of specific siRNA knockdown.  HTR8/SVneo cells were transfected with the 
indicated siRNA constructs. Normoxia: untreated (N), Hypoxia: untreated (H), Hypoxia: HIF-1α siRNA 
(1), Hypoxia: HIF-2α siRNA (2), Hypoxia: HIF-1α + -2α siRNA (1/2), Hypoxia: Non-targeting siRNA 
(NT), Hypoxia: Cyclophilin B siRNA (CB) and Hypoxia: transfection alone -mock (M).  Equal amounts of 
protein were loaded per well.  Membranes were blotted with antibodies to HIF-1α (top blot), HIF-2α 
(middle blot) and Cyclophilin B (bottom blot).  

 

Comparison of normoxia (N) and hypoxia (H) show that, as expected, there is induction 

of both HIF-1α (top blot) and HIF-2α (middle blot) under hypoxia compared to normoxia.  

Furthermore, cyclophilin B (bottom blot) is not induced, a finding that is expected since it is not a 

hypoxically-regulated protein.  Blot 1 demonstrates that treatment with siRNA to HIF-1α leads to 

significant knock-down of HIF-1α protein (1) compared to hypoxic treatment alone (H).  

Similarly, treatment with siRNA to both HIF-1α + -2α (1/2) also leads to significant knock-down 

of HIF-1α protein.  Blot 2 demonstrates that treatment with siRNA to HIF-2α (2) leads to 

significant knock-down of HIF-2α protein compared to hypoxic treatment alone (H).  

Furthermore, similar HIF-2α knock-down was seen when cells were treated with siRNA to both 

HIF-2α + -1α (1/2).   Non-targeting siRNA (NT), cyclophilin B siRNA (CB) and transfection 
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reagent alone-mock (M) did not appear to have significant effects on protein expression of HIF-

1α (top blot) or HIF-2α (middle blot).  Cyclophilin B siRNA (CB) resulted in significant knock-

down of CB protein (bottom blot) indicating that the siRNA treatment protocol was effective.  

Furthermore cyclophilin B (bottom blot) levels were similar for all other lanes, serving as an 

appropriate loading control.  

 

Non-specific effects of siRNA treatment on VEGF and PAI-1 expression in HTR8/SVneo 

cells 

 In addition to treating the HTR8/SVneo cells with siRNA to HIF-1α and HIF-2α, cells 

were transfected with transfection reagent alone-mock (M), a non-targeting siRNA (NT) and 

cyclophilin B (CB) siRNA.  These reagents were used to determine if the transfection protocol or 

siRNA treatment per se had any non-specific effects on VEGF and PAI-1 expression.  After 48h 

of treatment with siRNA, the media from the HTR8/SVneo cells was harvested and ELISAs were 

performed to quantitate levels of VEGF and PAI-1 in culture media.  Results were then 

normalized to cellular protein.  Figure 6A demonstrates that there was no significant difference in 

VEGF levels in untreated cells under hypoxic conditions (Hx) (7.27 ± 1.08 pg/μg protein) 

compared to transfection reagent alone (M) under hypoxia (7.43 ± 1.09 pg/μg protein). Compared 

with Hx, there was a significant increase in VEGF levels under hypoxia after siRNA transfection 

both with NT siRNA (9.90 ± 0.98 pg/μg protein) (p<0.02) and CB siRNA (9.20 ± 1.36 pg/μg 

protein) (p<0.02).  This suggests siRNA per se non-specifically induces VEGF levels under 

hypoxic conditions.  Although there was a non-specific increase in VEGF levels under normoxic 

conditions between untreated cells (Nx) and cells treated with NT siRNA, this effect was not 

statistically significant.  
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Figure 6.  VEGF and PAI-1 expression after treatment with siRNA controls.  HTR8/SVneo cells were 
exposed to either normoxic (Nx) or hypoxic (Hx) conditions for 48 hrs.  Cells were then transfected with 
the indicated siRNA controls; non-targeting siRNA (NT), transfection reagent alone - mock (M), 
cyclophilin B siRNA (CB).  Serum was analyzed for VEGF (A) and PAI-1 (B) protein expression by 
ELISA. 
 

 Figure 6B also demonstrates the non-specific effects of siRNA treatment on expression of 

PAI-1 levels in media of HTR8/SVneo cells after treatment for 48 hrs.  Similar to the VEGF 

results, there was no significant difference in PAI-1 levels in untreated cells under hypoxia (Hx) 

(4.75 ± 0.46 ng/μg protein) compared to M under hypoxia (6.28 ± 0.68 ng/μg protein).  

Furthermore, compared to Hx, there was a significant increase in PAI-1 levels with NT siRNA 

(7.02 ± 0.61 ng/μg protein) (p<0.003).  However, unlike the results of VEGF expression, 

treatment with CB siRNA did not affect PAI-1 levels under hypoxic conditions (4.79 ± 0.42 

ng/μg protein) compared to hypoxia alone (Hx).  Under normoxic conditions, there was not a 

significant difference between levels of PAI-1 in cells treated with NT siRNA (1.11 ± 0.34 ng/μg 

protein) compared to Nx alone (Nx) (1.21 ± 0.13 ng/μg protein).   

 The overall results from these experiments suggest that transfection itself does not affect 

VEGF and PAI-1 expression.  The siRNA, however, appears to cause an induction of both VEGF 

and PAI-1 expression under hypoxic conditions.  VEGF levels were induced after treatment with 

NT and CB siRNAs whereas PAI-1 levels were induced only after treatment with NT siRNA. 

This result suggests that individual siRNA sequences have different effects on protein expression 
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depending on the siRNA sequence as well as the specific protein under analysis.  Thus, we must 

test the effects of NT siRNA on levels of PAI-1 and VEGF expression in studies of HIF knock-

down under hypoxic conditions.  

 

Effects of HIF-1α and HIF-2α siRNA on VEGF and PAI-1 expression in HTR8/SVneo cells 

 Current evidence suggests that HIF-1α and HIF-2α are dysregulated in preeclamptic 

placentas (58,57).  As stated above, VEGF and PAI-1 are two soluble factors that are also 

dysregulated during preeclampsia and many studies suggest that they have a role in the etiology 

of this disease.  It is known in cancer cells and villous tissue explants that HIF regulates VEGF 

and PAI-1 expression, but how this complex regulates expression of these soluble factors early in 

placentation is unclear.  Furthermore, HIF-1α and HIF-2α have previously been shown to have 

different effects on the regulation of certain genes depending on cell–type (52).  Therefore, in this 

study we wanted to characterize the effect of genetic knock-down of various elements of the HIF 

complex on the expression of VEGF and PAI-1 during hypoxia in early first trimester trophoblast 

cells.  Figure 7A demonstrates the effects of siRNA for HIF-1α, HIF-2α, HIF-1α + HIF-2α and 

non-targeting (NT) on VEGF expression under hypoxia compared to untreated cells under 

hypoxia (Hx) or normoxia (Nx).  

 Culture media levels of VEGF under Hx (7.27 ± 1.08 ng/μg protein) were reduced after 

treatment with either HIF-1α (5.79 ± 0.55 pg/μg protein), HIF-2α (5.50 ± 1.24 pg/μg protein) or 

HIF-1α + HIF-2α (4.24 ± 0.93 pg/μg protein) under Hx, although these effects did not reach 

statistical significance.  However, compared to cells treated with NT siRNA under Hx (9.90 ± 

0.98 pg/μg protein) treatment with HIF specific siRNA caused a statistically significant decrease 

in VEGF with HIF-1α siRNA (**p<0.003), with HIF-2α siRNA (*p<0.02) and with both HIF-1α 

+ HIF-2α siRNA (**p<0.003). VEGF levels in cells treated with both HIF-1α + HIF-2α siRNA 
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were not statistically different from levels noted in cells treated with HIF-1α or HIF-2α siRNA 

alone.  
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Figure 7.  VEGF and PAI-1 expression under hypoxia are reduced by HIF-1α and HIF-2α siRNA 
knock-down.  HTR8/SVneo cells were exposed to either normoxic (Nx) or hypoxic (Hx) conditions for 48 
hrs.  Cells were transfected with the indicated siRNA specific for HIF-1α, HIF-2α, both HIF-1α and HIF-
2α, or non-targeting (NT).  Serum was analyzed for VEGF (A) and PAI-1 (B) protein expression by 
ELISA.   
 

 Figure 7B demonstrates the effects of siRNA for HIF-1α, HIF-2α, HIF-1α + HIF-2α and 

NT on PAI-1 expression under hypoxic conditions along with the same controls as discussed for 

Figure 7A.  PAI-1 levels in untreated cells under Hx (4.75 ± 0.46 ng/μg protein) were 

significantly reduced after treatment with HIF-1α siRNA (3.27 ± 0.35 ng/μg protein) (*p<0.02), 

with HIF-2α siRNA (3.10 ± 0.38 ng/μg protein) (*p<0.03) and with both HIF-1α + HIF-2α 

siRNA (2.37 ± 0.19 ng/μg protein) (**p<0.003).  Since PAI-1 expression from cells treated under 

Hx with the NT siRNA were significantly higher than from cells under Hx alone, it follows that 

levels of PAI-1 in HIF-α siRNA treated cells were significantly less than that noted for cells 

treated with NT siRNA.  The results from these experiments suggest that both HIF-1α and HIF-

2α regulate VEGF and PAI-1 expression in early first trimester trophoblast cells.  Furthermore, 
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HIF-1α and HIF-2α are each necessary but independently insufficient to promote maximal 

changes in PAI-1 and VEGF expression under hypoxic conditions.  

 

Discussion

 Preeclampsia, a disease manifest by hypertension and proteinuria during pregnancy, 

remains a leading global cause of maternal and fetal illness and death.  Although the etiology 

remains unknown, it is a disease of placental dysfunction, with incomplete trophoblast invasion 

of the maternal spiral arteries during the first trimester (3).  Early placental development occurs in 

a hypoxic environment, and there is evidence to suggest that hypoxia regulates trophoblast 

invasion of the extracellular matrix and transformation from epithelial-like to endothelial-like 

cells (25,56).  Vascular endothelial growth factor (VEGF) and plasminogen activator inhibitor-1 

(PAI-1), two critical factors in the process of trophoblast invasion, hemostasis and angiogenesis, 

are induced under hypoxia and are dysregulated in preeclampsia (39,37,38,46).  Hypoxia 

Inducible Factor (HIF) transcriptionally regulates the expression of PAI-1 and VEGF along with 

many other genes that are necessary for cellular adaptation to a hypoxic environment.  HIF 

consists of a constitutively expressed 1β subunit, also known as the arylhydrocarbon receptor 

nuclear translocator (ARNT), and a hypoxia-regulated α subunit (1α or 2α).  These two α 

subunits have regulatory effects which are gene- and cell-type specific (51).  It has been shown 

that HIF-2α is upregulated in preeclamptic placentas (57) and that both HIF-1α and HIF-2α in 

preeclamptic villous explants remain up-regulated inappropriately in response to re-oxygenation 

(58).  This study examined the regulation of VEGF and PAI-1 by HIF-1α and -2α in first 

trimester trophoblast cells in order to better understand the potential mechanism of dysregulation 

of these factors in preeeclampsia.    

 Placental trophoblasts differentiate throughout gestation to perform numerous roles, 

including nutrient/waste exchange at the maternal-fetal interface, placental anchoring to the 
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uterus and invasion of the endometrium and myometrium.  The first trimester extravillous 

trophoblasts are responsible for uterine invasion and are thus critical to the invasion deficiency 

seen in preeclamptic placentas.  It is extremely difficult to study this population of cells, however, 

for several reasons.  First and foremost, it is exceedingly challenging to examine in vivo the 

pathogenesis of a disease process in the first trimester when the disease does not manifest 

clinically until the third trimester.  Furthermore, there is no animal model of preeclampsia 

presently in existence.  For this reason we felt it was important to study an isolated population of 

extravillous trophoblasts in order to better characterize their inherent regulatory mechanisms, and 

how they might be disrupted.   By electing to study the regulation of VEGF and PAI-1 by HIF in 

an immortalized cell line, there is a compromise of physiologic relevance compared to using 

primary cultures.  However, establishing optimal transfection conditions for primary cultures can 

be exceptionally difficult and the HTR8/SVneo cell-line, although immortalized, maintains many 

of the same characteristics as the non-immortalized HTR-8 parental cells (39,60).  Both cell types 

share the same phenotype (both express cytokeratin 7 and other epithelial-cell markers), similar 

functions (both are responsive to anti-proliferative, anti-migratory and anti-invasive effects of 

TGF-β) and neither cell type showed any sign of tumor formation more than 5 months after 

subcutaneous inoculation into nude mice (59).    

 Using the HTR8/SVneo cells, we have shown a temporal sequence of induction of VEGF 

and PAI-1 under hypoxic conditions.  Specifically, VEGF expression is significantly induced 

under hypoxic conditions as early as 4 h whereas PAI-1 expression is not significantly up-

regulated until 24 h under hypoxic conditions.  There are multiple explanations for why VEGF 

induction occurred before PAI-1 induction.  Aside from HIF, other factors are known to regulate 

both VEGF and PAI-1 levels.  VEGF expression in HTR8/SVneo cells is induced by TNF-α and 

TGF-β (63). Furthermore, it has been shown that the VEGF secretion is synergistically enhanced 

by the combination of hypoxia and TGF-β (64).  Similarly, PAI-1 expression in HTR8/SVneo 
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cells is also up-regulated by TGF-β through a transcriptional mechanism (60) independent of 

hypoxic induction (39).  Therefore, it is likely that other factors are contributing to the induction 

of these factors.  In addition, studies have shown that VEGF can stimulate the activity of PAI-

1(65), and perhaps might also affect induction.  It is also possible that there are differences in 

post-transcriptional, post-translational or secretory processing of these two factors which could 

impact on the time course of protein induction.  Whatever the causes might be, recognizing that 

there is a temporal sequence of activation of these two factors could be of utility in understanding 

the mechanism of hypoxia-mediated changes in trophoblast gene expression.  After successfully 

knocking-down HIF-1α and -2α protein expression with siRNA technology, we found that both 

the -1α and -2α subunits were necessary, although independently insufficient, for maximum 

hypoxic induction of both VEGF and PAI-1 expression at 48h.  Demonstrating that both α 

subunits are necessary for maximum hypoxic induction of both VEGF and PAI-1 is of critical 

importance to understanding how these factors are regulated and potentially dysregulated in 

preeclampsia.  This is of particular interest because of overwhelming evidence that HIF-1α and 

HIF-2α are expressed differentially in a variety of cell types and show remarkable target gene 

specificity.  HIF-1α is ubiquitously expressed, and it was previously thought that HIF-2α was 

expressed only in vascular endothelial cells (66).  It is now known that HIF-2α is expressed in a 

variety of cell types including kidney fibroblasts, hepatocytes, intestinal epithelial cells, heart 

myocytes and lung type II pneumocytes (67). Gene array analysis in HEK293T human 

embryonic kidney cells has shown that 21 genes were found to be up-regulated by both HIF-1α 

and HIF-2α (including VEGF), 14 preferentially activated by HIF-1α, including several involved 

in glycolysis, and 10 genes were preferentially activated by HIF-2α (68). PAI-1 was not 

investigated in this particular study.  It has been shown that in human osteoblast-like cells, 

hypoxia-induced VEGF gene transcription is controlled by HIF-2α and not HIF-1α (69).  

Interestingly, Sowter et al. have shown, using siRNA to knock-down HIF-1α and -2α, that in 
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breast carcinoma and endothelial cell lines, HIF-2α cannot substitute for HIF-1α in regulating 

VEGF or uPAR (53).  The differential regulation of VEGF and PAI-1 by HIF-1α and HIF-2α in 

trophoblast cells has not been reported.  Our results indicate that dysregulation of either HIF-1α 

or HIF-2α in trophoblasts affects expression of both VEGF and PAI-1.  

 Rajakumar et al. have studied expression patterns of HIF-1α and HIF-2α in placentas of 

preeclamptic women.  They have demonstrated that HIF-2α, but not HIF-1α or HIF-1β, is 

selectively over expressed in preeclamptic placentas (57).  Further work by this group have 

shown that isolated cells from villous explants of preeclamptic placentas fail to adequately down 

regulate both HIF-1α and -2α protein expression upon re-oxygenation (58).  Although such work 

characterizes HIF expression in tissue from whole placenta and villous trophoblasts rather than 

the extravillous trophoblasts which are responsible for uterine invasion, it is still of note that 

alternations in villous HIF expression and its regulation are associated with preeclampsia. 

 Increased HIF activity may be responsible for elevated placental PAI-1 expression noted 

in preeclamptic placentas (37).  The pathological lesions of preeclamptic placentas 

characteristically contain areas of intervillous fibrin deposition and thrombosis which result from 

increased anti-fibrinolytic activity due to an excess of PAI-1.  However, the syncytiotrophoblasts 

were specifically implicated in the elevated PAI-1 levels (37) found in preeclamptic placentas, a 

finding that makes sense since these cells, being in contact with maternal blood, are well-situated 

to regulate fibrinolytic activity at the maternal-fetal interface (60).  Conversely, it is more difficult 

to explain decreased invasion by extravillous trophoblasts to elevated HIF and PAI-1 expression.  

PAI-1 levels are elevated in a variety of tumors and increased levels correlate with increased 

mortality, presumably due to increased invasion (33,34).  However, attempting to dissect a 

process as complex as cellular invasion by differences in expression of a single factor is likely to 

be flawed.  Invasion involves cell interactions with many different receptors, numerous proteases 
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and extracellular matrix proteins which are all subject to regulatory mechanisms, many of which 

are also independently regulated by HIF (70). 

 The role of HIF in the regulation of VEGF in preeclampsia is a complex issue, because 

HIF regulates sFlt-1, the soluble anti-angiogenic VEGF receptor that is also up-regulated in 

preeclampsia (71).  In vitro studies have shown that free VEGF is not detectable in the culture 

media of primary cultures of cytotrophoblasts despite an apparent increase in total VEGF 

concentrations under hypoxic conditions.  This suggests that sFlt-1 production, concurrently 

increased under hypoxia, may bind VEGF thereby negating its biological effects (72).  This 

finding is likely to account for the ostensibly disparate results concerning whether VEGF levels 

increase in maternal serum in preeclampsia (73).  Low or high levels are likely a function of 

whether measurements were of “free” or “total” VEGF respectively; compared to normal 

controls, total VEGF levels in the serum of women with preeclampsia are high, but the levels of 

functionally active, unbound VEGF are low. Concomitant elevations of VEGF and sFlt-1 levels 

in preeclamptic placenta do not explain why lower levels of VEGF mRNA were seen in placental 

biopsies of women with preeclampsia (38).  However, perhaps sFlt-1 itself or the high VEGF 

levels in the maternal circulation are affecting cellular production of VEGF in the placenta in 

ways yet to be determined.   

 Presently, it appears that the elevated placental levels of sFlt-1 could play a significant 

role in the pathogenesis of preeclampsia. Adenoviral gene transfer of sFlt-1 into rats resulted in a 

preeclampsia-like phenotype including hypertension, proteinuria and glomerular endotheliosis 

(24,4).  As a hypoxia-induced gene, it is important to also determine the regulation of sFlt-1 by 

HIF.  There are currently no studies that have evaluated the specificity of HIF-1α versus -2α in 

the regulation of sFlt-1.  We attempted to investigate the regulation of sFlt-1 in HTR8/SVneo 

cells, but expression levels even under hypoxic conditions were too low to be studied further 

(data not shown).    
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  Early placental development, involving trophoblast phenotype-switching, trophoblast 

invasion and angiogenesis is an extremely complex process dependent on a variety of different 

growth factors, cytokines and cell-types, all communicating at the maternal-fetal interface.  It 

follows, that the dysregulation of this process, as seen in preeclampsia is also quite complex and 

difficult to study.  Since the human trophoblast is by far the most highly invasive of all animal 

species, and human placentation is unique in several respects, one must be cautious of using 

animal models in studies of trophoblast biology.  Hypoxia is certain to play a critical role in 

successful placentation given the low oxygen milieu that is known to exist through the first 10-12 

weeks of gestation.  HIF, the predominant mediator of hypoxia-induced gene regulation, likely 

has a central role in orchestrating the complex interplay of cells and soluble mediators that 

characterize early placentation.  Our results have demonstrated that in human extravillous 

trophoblasts the HIF complex regulates the expression of PAI-1 and VEGF using a unique 

mechanism that requires both HIF-1α and HIF-2α.  Given their well established role in directing 

invasion and placentation, determining the fine details of cellular regulation of VEGF and PAI-1 

expression will likely contribute to a better understanding of normal placental biology and the 

pathogenesis of preeclampsia. 
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