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THE EFFECTS OF NOVEL DESIGN STRATEGIES ON THE RISKS AND  

BENEFITS OF PHASE I ONCOLOGY TRIALS 

Shlomo A. Koyfman, Cary P. Gross  
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Considerable ethical debate surrounding the risks and benefits of Phase I 

oncology trials is based on older response and toxicity data that does not account for 

recent changes in the types of agents and trial design.  This study aims to not only update 

these data, but to investigate the impact of novel trial designs on various clinical 

outcomes.    

We performed a review of the literature using the Medline database.  Part I 

included nearly all phase I trials published in 2002.  Part II identified phase I studies of 

cytotoxic agents alone, published from 2002 through 2004.   

221 Phase I oncology studies, consisting of 6,008 patients, were studied in Part I, 

while 149 studies, comprising 4,532 patients, were analyzed in Part II.  Overall, the 

response rate for Phase I oncology trials in 2002 was 19%, the mortality rate was 1.1%, 

and the rates of severe hematologic and non-hematologic toxicities were 19% and 22%, 

respectively.  “Classic” phase I trials of single agent cytotoxic drugs accounted for only 

18% of trials, while more than half (55%) included at least one FDA approved therapy.   

The response and toxicity rates varied with the class of agent (e.g. cytotoxic, biologic, 

vaccine), and the combinations of agents (e.g. approved, investigational) studied. 

Only 34% of studies utilized aggressive dose escalation schemes, 22% permitted intra-

patient dose escalation, and only 28% enrolled fewer than 3 patients to any dose level 

  



 

before proceeding to the next higher dose level.  Studies that allowed intra-patient dose 

escalation or used fewer than three patients per dose were not associated with rates of 

response or toxicity that differed from trials using a more “traditional” design, nor did 

they increase the percentage of patients who received the recommended phase II dose.  

However, aggressive dose escalations were associated with increased rates of both 

hematologic (17% vs.10%) and non-hematologic (17% vs. 13%) toxicity for participating 

patients without increasing response rates.   None of these novel design strategies were 

associated with a smaller patient requirement. 

Phase I oncology trials represent a spectrum of different classes of agents and 

design strategies that are often associated with distinct clinical outcomes.  Accounting for 

this variety is critical when evaluating their risk-benefit profiles and ethics.  While some 

innovations in trial design do not appear to be any more helpful or harmful than standard 

methods in phase I trials of single agent cytotoxic drugs, using aggressive dose 

escalations may, in fact, be more hazardous for patients.  These findings highlight the 

need for continued effort towards improving trial design and its impact on our patients. 
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INTRODUCTION 

Cancer remains the second leading cause of death in the United States, claiming 

the lives of more than 550,000 annually.  Despite the many advances made over the past 

several decades, there is still a continual need to develop new anti-cancer therapies.  In 

fact, as cancer research has become a national priority, the number of new anti-cancer 

therapies in development each year exceeds all other classes of therapeutics.1 

For an investigational anti-cancer drug to be approved for use in the U.S., it must 

endure three phases of clinical trials.  After a compound has shown promise in preclinical 

testing, an agent is administered to humans for the first time in a phase I oncology trial.  

This is primarily a dose finding study in which the highest dose that has an acceptable 

safety profile is identified and recommended for further testing.  The drug then proceeds 

to a phase II trial in which it is tested for both safety and efficacy, or how well the tumor 

responds to the therapy.  If the trial reveals at least a moderate response rate, the drug will 

proceed to a phase III trial, which requires the participation of greater numbers of patients 

in multiple centers and is conducted as a prospective randomized controlled trial 

comparing the new therapy to the current standard of care.  If the results demonstrate a 

substantial benefit in overall survival, or reduced cancer suffering, with an acceptable risk 

of toxicity, the drug will likely receive final approval.2  

As first in human trials, phase I clinical oncology trials play a vital role in 

translating laboratory science into therapies that may reduce cancer morbidity and 

mortality.  Traditionally, phase I oncology trials begin by administering a small dose of 

the experimental agent, typically 10% of the dose that would be lethal to 50% of exposed 

rats or dogs, to a group of 3-6 patients.  Subsequently, cohorts of patients receive 

  



 

increasing dosages, first by 100%, then 66%, 50%, 40%, 33% based on a “modified 

Fibonacci” protocol.  In addition, patients are usually restricted to their designated dose 

levels and may not receive higher doses of the investigational agent even if they 

experienced no significant toxicity.  The trial ends when severe, or life threatening 

toxicities (i.e., dose limiting toxicities, or DLTs) are experienced by a large fraction of 

patients at a given dosage level.  The dose just below this maximum tolerated dose 

(MTD) is generally recommended for phase II efficacy studies.  These studies often 

gather pharmacokinetic information as well, to help guide future dosing schedules.3, 4 It is 

important to recognize that phase I trials are also used to evaluate established therapies in 

new areas of clinical application (ie. a new cancer type) and are not restricted to agents 

that have never before been used in humans. 

Ethical concerns have been raised regarding the nature and design of phase I 

oncology trials.  In order to better appreciate these viewpoints, it is important to first 

review some of the basic ethical issues involved in clinical trials in general. 

 

Ethics of Clinical Trials 

 The primary objective of clinical research is to further our understanding of 

science and/or improve the health of a population.  To accomplish this, clinical trials 

enroll research participants who, at least in some sense, serve as a means towards 

obtaining results that can be applied towards society at large.  Because trials often times 

include a risk of harm to patients, clinical trials leave room for exploitation.5-7  As such, 

sets of criteria have been formulated against which the ethicality of a research trial can be 

gauged.  For example, Emanuel and colleagues identified seven elements that need to 

  



 

exist in order for a trial to be ethically justified.  These include value, scientific 

validation, fair subject selection, informed consent, favorable risk benefit ratio, 

independent review and respect.  Consequently, a trial would have to demonstrate its 

potential benefit to the scientific community and/or society at large according to rigorous 

scientific methodologies; offer participating patients potential for benefit that is 

commensurate, or greater than, the risk of harm; recruit patients equitably only after they 

understand the details of, and have freely agreed to participate in, a given trial; provide 

them with continued care and monitoring and allow for their withdrawal at any time, for 

any reason.6   

 

Ethics of Phase I Oncology Trials 

 

Phase I oncology trials present a unique challenge.  Patients have usually failed 

conventional therapies and are dying of a disease that is incurable with standard methods.  

Agents used in phase I trials, however, are often tested for the first time in humans 

without extensive knowledge experience with their potential toxicities.  Also, a narrow 

therapeutic window often characterizes cancer therapies; doses most likely to produce 

responses are also likely to produce toxicity.   

Two primary ethical challenges have been charged against these trials.  The first 

is based on the assumption that patients do not fully understand the nature of phase I 

studies and that they are primarily motivated by a misplaced hope of deriving clinical 

benefit from the investigational agent.8  Several surveys have confirmed this 

phenomenon.9, 10 Also, while dedicated to the best interests of their patients, physician-

  



 

scientists may have competing interests in conducting trials expeditiously that will yield 

scientifically meaningful results.  Consequently, even assuming the utmost integrity o the 

part of the physician, the interests of the clinician and the patient may diverge.11 

Physicians may also be able to capitalize on patients’ desperation and place undue 

emphasis on the potential benefits of participation, thereby perpetuating, albeit perhaps 

inadvertently and/or subconsciously, the “therapeutic misconception.”  This term 

characterizes the belief that the primary objective of a given trial is to directly benefit the 

research participant when this is, in fact, not the case.  This concern is not only limited to 

physician communication, but informed consent forms themselves have been implicated 

in this misrepresentation.12-16  

The accuracy of these critiques have been questioned.  Horng and colleagues 

found that consent forms do a fairly good job of conveying the dose finding nature of 

phase I trials, their associated risks and the unlikely prospects of deriving significant 

benefit.17 Whether this translates into better patient understanding remains a question.  A 

recent review found that the most effective means of ensuring adequate patient 

understanding before enrolling on a trial was having more time to discuss the details of 

the trials with the physician and/or researcher and that doing so was a more effective 

intervention than improving informed consent forms.18        

The second fundamental ethical problem stems from the supposition that these 

trials have an inherently unfavorable risk-benefit ratio for patients on account of the 

substantial risk of harm they present to patients with little chance of deriving any clinical 

benefit.3, 4, 19-21 Our study focuses on this concern.  Because these trials include dose 

escalations that often start at a relatively low dose, slowly increase, and prohibit 

  



 

individual patients from receiving higher doses, regardless of how he/she is tolerating the 

agent, investigators have claimed that too many patients are treated at “sub-therapeutic” 

dose levels.8  That is, because investigational agents have been shown to most often be 

biologically active (ie. produce tumor responses) between 80%-120% of the eventual 

recommended phase II dose, patients who receive lower doses of the drug are unlikely to 

be exposed to even potentially therapeutic doses.22 In fact, an older study by Estey and 

colleagues found that only 40% of participants received biologically active doses.23 

 

Response and Toxicity Data in Early Meta Analyses 

 

Several meta-analyses examined objective response rates experienced by patients 

who participated in phase I oncology trials.  These earlier studies looked at trials 

published in the 1970s and 1980s and found objective response rates around 4%, most of 

which were partial or minor responses.22-25 While clinical benefit was rare, the potential 

risks associated with participating in these trials was significant.  These studies found a 

toxic death rate of 0.5%, that is 5 out of every 1,000 patients participating in phase I 

studies experienced an early death due to the toxic effects of the investigational agent.24 

Although not recorded in these studies, the rate of serious, or life threatening toxicity 

could be presumed to be substantially higher.  This increased risk of serious toxicity, or 

death, coupled with the presumed inconveniences and costs of frequent blood draws, 

medical appointments, radiologic evaluations and biopsies in exchange for a small chance 

of benefit all bolster the position that these trials are not in the best interests of patients, 

and therefore, unethical.26 

  



 

In 2003, Agrawal and Emanuel presented a contemporary review of the ethics of 

these trials and challenged this perspective.19 They identified several limitations to the 

available aforementioned data.  First, the data was outdated, as the trials included in the 

meta-analyses were completed in the 1970s and 1980s.  Second, phase I studies of agents 

already approved by the Food and Drug Administration (FDA), or studies using more 

than one agent were not included in these analyses.  Third, neither newer compounds 

being evaluated, such as antibodies, vaccines, immunotoxins, and anti-angiogenesis 

factors, nor improved supportive care measures, were reflected in the commonly cited 

response rate of 5% and mortality rate of 0.5%.  These old data did not seem to reflect the 

increasing complexity and heterogeneity that characterize current phase I clinical trials.  

This review also highlighted the potential psychological benefits to participating in a trial 

either because of the frequent physician contact, or as an act of defiance and battle 

against one’s illness.  George Zimmer, a professor of English who participated in several 

phase I oncology trials, explained his motivation as follows: 

Letting a patient choose the poisons (under professional guidance) adds 
something to the will to struggle. We who are struggling to escape cancer 
do not, obviously, want to die of it. We do prefer death in the struggle to 
life under cancer's untender rule. The enemy is not pain or even death, 
which will come for us in any eventuality. The enemy is cancer, and we 
want it defeated and destroyed…Just before assaults on fortified positions, 
U.S. Civil War soldiers would pin their names and addresses to their 
uniforms to make it easier for the body-sorters to do their work after the 
battle. Patients going into these modified protocols could likewise place 
their names on specific protocol adjustments. Survivors could then 
proclaim: This is how I wanted to die-not a suicide and not passively 
accepting, but eagerly in the struggle.27 
 

Two meta analyses subsequently sought to update and expand upon the data 

derived from the older studies.  The first was published in JAMA in 2004 by Roberts and 

  



 

colleagues.1 They identified 213 single agent trials of non-FDA approved drugs the 

results of which were originally submitted to annual meetings of the American Society of 

Clinical Oncology (ASCO) from 1991 through 2002.  They reported an overall toxic 

death rate of 0.54%, which had decreased from 1.1% in 1991-1994, to 0.06% between 

1999-2002.  They also were the first to report the overall rate of serious (grade 3-4) 

toxicity experienced by patients at 10.3%.  To their surprise, they reported an overall 

objective response rate of only 3.8%, though they surmised that by excluding trials that 

tested approved agents, or a combination of agents, they had likely “biased downward” 

their response rate estimates.  They did, however, include non-cytotoxic agents and found 

that they accounted for almost half of all of the trials.  In addition, multivariate analysis 

showed that the odds of a patient dying from a biologic/targeted agent were one fourth 

those of a patient dying from a cytotoxic agent (OR, 0.25; 95% CI 0.10-0.65; p=.005), 

though they did not differ in predicting response.  

The second meta-analyses was published in the NEJM in 2005 by Horstmann and 

colleagues.28 They analyzed 460 trials sponsored by the Cancer Therapy Evaluation 

Program of the National Cancer Institute (NCI) between 1991 and 2002.  Their study 

offered the first published analysis that included FDA approved therapies, as well as trials 

which used a combinations of agents.  They found an overall objective response rate 

(complete and partial response, or CR+PR) of 10.6%, with a CR of 3.1% and a PR of 

7.5%.  When patients who experienced disease stabilization were included, the response 

rate climbed to 34.1%.  And while studies that tested single investigational agents were 

associated with an overall response rate of 4.2%, this percentage improved to 7.1% for 

  



 

studies that used multiple investigational agents, and to 27.4% for studies testing FDA 

approved therapies.   

The rates of toxicity also varied according to the types of agents that were used. 

Overall toxic deaths occurred in 0.49% of all patients, similar to all previous published 

reports, and overall 14.3% of patients experienced a grade 4, or life threatening, toxic 

event.  The rates were highest in trials using cytotoxic agents at 17.4%, while vaccine 

trials had no grade 4 toxic events.  And the rate varied even within the cytotoxic class, 

with 15% of patients on trials testing single agents experiencing a severe toxicity as 

compared to 34% of patients who received FDA approved therapies while on trial.  

 After enhancing our understanding of the objective risks and benefits of phase I 

oncology trials, especially through an appreciation for the heterogeneity of these trials, 

we decided to reexamine the ethical arguments presented above.  Indeed, Agrawal and 

Emanuel were correct in their speculation that modern response and toxicity rates would 

likely be different than those found in the 1970s and 1980s.  The rate of serious toxicities 

is considerable, estimated between 10-14%, and the death rate appears to be stable 

between 0.5-1%.  However, overall objective response rates have increased from about 

4% to between 10-20%, with almost half of all patients deriving some clinical benefit 

(CR+PR+SD), largely due to the increasing use of FDA approved agents and/or 

combinations of agents.  One could certainly argue that based on the updated data, the 

risk-benefit ratio of phase I oncology trials may be more favorable than was originally 

thought. 

 A careful review of the data, however, reveals that trials that tested single 

investigational agents reported response rates around 4%, similar to the data from older 

  



 

studies.  Cytotoxic agents were also associated with higher toxicity than targeted 

therapies or vaccines.  It would therefore seem that while overall, the risks and benefits of 

phase I oncology trials appeared to have changed for the better in recent years, this may 

not apply to trials involving single cytotoxic agents, especially investigational ones.  

 Perhaps more fundamentally, these updated data do not address some of the most 

compelling ethical charges against phase I oncology trials.  Largely due to constraints 

imposed by study design, many patients receive “sub-therapeutic” doses of an agent, yet 

are still exposed to the risks of participating.  Several components of the classic phase I 

trial design may contribute to this phenomenon.  Firstly, intra-patient dose escalation, or 

the ability of a patient who is tolerating an agent well to receive a higher dose, is usually 

prohibited, which confines patients enrolled earlier in the trial to the lowest, and probably 

inactive, doses.  There appears to be an inherent injustice in this design, insofar as 

patients with few, if any, alternative therapies who are tolerating the agent well do not get 

the chance to benefit from the drug.  A recent survey showed that most patients, in fact, 

desire to retain control of their destiny and are willing to endure higher risks for the 

possibility of clinical benefit.29  These trials also classically require 3-6 patients in each 

dose level, even the initial ones which are often several dose levels below the 

recommended phase II dose.  Both of these design limitations almost guarantee the need 

for a significant number of patients to fill the lower dose levels in which they are less 

likely to experience serious toxicity, but also less likely to experience a significant 

response.  Lastly, the ““modified Fibonacci”” escalation scheme is often times too 

conservative for agents that prove to be relatively benign during early dose levels. 

  

  



 

Aggressive Design Strategies: Current Data 

 

Based on these observations, there has been a concerted effort over the past 

decade or so to devise more innovative dosing strategies that will decrease the number of 

patients receiving lower doses of drugs on trial.  In 1997, Simon and colleagues at the 

NCI suggested a variety of accelerated titration designs, including allowing for 

intrapatient dose escalation, using fewer patients in earlier dosage levels and repeatedly 

increasing drug dose levels by 100%.  The trial would revert back to traditional designs 

when some patients experienced toxicity.  The goals of these newer designs were 

twofold: to increase the number of patients who received doses presumed to be 

biologically active, usually the recommended phase II dose, and to reduce the number of 

patients needed to complete a phase I trial.  They fit a stochastic model to data collected 

from 20 completed phase I trials and found that these methods increased the percentage 

of patients receiving higher doses and decreased the total number of patients required for 

a trial.  Objective response outcomes were not considered.30 

Other novel designs include sophisticated statistically based models, such as the 

continual reassessment method (CRM) and its variants, which employ certain predictions 

in designing a dose escalation which is then continually modified throughout the trial 

based on encountered toxicities.31, 32  Using pharmacokinetic, biologic and radiographic 

endpoints has also been suggested for newer targeted biological therapies, rather than the 

traditional toxicity endpoints of classic cytotoxic chemotherapeutic drugs.33-36   

While the use of these latter design strategies have been studied fairly extensively, 

surprisingly very little research has been published examining the prevalence of the three 

  



 

novel design strategies suggested by the NCI group and their impact on response and 

toxicity rates, the percentage of patients who receive recommended phase II doses and 

the overall number of patients needed to complete a trial.   

Dent and Eisenhauer reviewed 46 single agent trials of cytotoxic compounds that 

were published between 1993 and 1995.37 They found that the majority of trials still used 

a “modified Fibonacci” escalation, while only 3/46 doubled the dose until toxicity was 

seen.  Furthermore, they found that only 39% of patients received the recommended 

phase II dose in trials that tested agents being administered for the first time in human as 

compared to 57% of patients who received drugs that had previously undergone phase I 

study.  They did not examine the usage of intra-patient dose escalation or fewer patients 

per dosage level.  In 1998, a workshop of phase I investigators was convened to review 

their experiences with novel phase I designs.  They describe two phase I trials of the 

same investigational agent that were being conducted simultaneously at two different 

institutions.  One used a traditional design while the other allowed a single patient per 

dose and intra-patient dose escalation until toxicity was reached.  The latter design was 

able to accomplish 8 dose escalations with only 15 patients, compared to just 3 dose 

levels that required 12 patients in the study which used a traditional design.38 

Unfortunately, the two large meta-analyses published recently placed little 

emphasis on this issue.  The only data that was gleaned was that only 29% of the studies 

included in the Roberts paper allowed intra-patient dose escalation, and doing so was 

associated with greater odds of experiencing response in multivariate analysis (OR 1.7).   

There were no differences between these types of studies in predicting toxicity, and they 

  



 

did not evaluate the endpoints of patients receiving the recommended phase II dose, or 

the average number of patients needed to complete a trial.1 

Appropriately, the editorial that accompanied that paper included the subtitle, “A 

Case for More Innovation,” in which the authors argued that single agent trials of 

cytotoxics in particular are in need of new design strategies that can improve the 

opportunity for patient benefit, especially in light of their consistently minimal response 

rates.  They specified the design strategies introduced in the NCI study as hopeful 

possibilities.39   

 

Rationale for Current Study 

In trying to modernize and update the response and toxicity data of phase I 

oncology studies, we designed a project with Agrawal and Emanuel in which we would 

perform a meta analysis on phase I oncology studies published in 2002.  Our points of 

interest included cataloging the various types of agents used in phase I trials, including 

FDA approved agents and the use of multiple drugs, documenting response and toxicity 

rates, and investigating the impact that geography and study sponsorship had on these 

data.  Our hypothesis was that, in fact, the types of agents used in phase I oncology 

studies had changed over the past decade and that the variety of different categories of 

therapeutic options would yield a spectrum of response and toxicity results rather than a 

uniform picture.  This study would also be able to add to the two previous meta-analyses 

by providing a comprehensive data set, including the variety of agents and trial types 

looked at by Horstmann et al, as well as geography and sponsorship data looked at by 

  



 

Roberts et al, in a more recent cohort of studies.  The results of this study are included in 

PART I of the original research component of this thesis. 

Because ethical questions would remain even after we accumulate data from Part 

I, we proceeded towards an analysis of novel dosing strategies.  Their prevalence, as well 

as their utility in improving the risk-benefit profile of these trials remains largely 

unknown.  We therefore set out to answer these questions and decided to focus on single 

agent trials of cytotoxic agents, as they represent the ideal arena for the implementation 

of these novel designs.  However, as our data set from Part I of this thesis was 

insufficient, we decided to expand our body of studies to include those published in 2003 

and 2004 with the hopes of increasing our sample size and the power of our analysis.  

This comprises Part II of this project. 

 

METHODS 

 

 This section will detail the methods of two distinct components of our study, 

entitled part I and part II.  The first part of this study focused on identifying the various 

categories of agents (e.g. cytotoxic, biologic, vaccine) and types of agents (e.g. 

investigational, FDA approved) used in phase I oncology trials along with their 

associated rates of response and toxicity.  The second component aimed to identify the 

prevalence of several novel dose escalation design strategies and their impact on a variety 

of clinical endpoints, in a more uniform sample of single agent trials of cytotoxic drugs.   

  



 

 

Search Strategy 

 
We performed a review of the literature using the Medline database.  Part I 

included nearly all phase I trials published in 2002.  Part II identified phase I studies of 

cytotoxic agents, published from 2002 through 2004.  Their respective search criteria are 

included as an appendix (appendix 1).  Overall, the search criteria were purposely 

designed to be broad so as to include the vast majority of published phase I oncology 

trials. 

The primary reason for exclusion was that studies were not standard phase I 

chemotherapy trials.  This included trials for which: (1) the primary trial objective was 

not to determine safety; (2) the experimental treatment was not intended to have 

independent or synergistic anti-cancer effects; (3) there was not sufficient differentiation 

between data from a Phase I and Phase II portion of the study; (4) the trial was not 

performed on human subjects; (5) the experimental protocol included radiation or 

photodynamic therapy; (6) the paper did not directly report the results of a clinical trial; 

(7) the paper was not a complete report;  and (8) the trial was testing a supportive care 

rather than an anti-cancer intervention.  For Part II, studies were also excluded if more 

than one agent was used in the study and/or if the investigational agent was not cytotoxic 

(ie. immunotherapy, signal transduction inhibitor, angiogenesis inhibitor, gene therapy, 

vaccine).  Our search for Part I yielded 301 studies, of which 221 met all inclusion 

criteria.  Of the 955 studies originally identified in Part II, 149 were included (Figure 1). 

  



 

 

Data Extraction 

 
Two investigators independently extracted the pertinent information using a 

formal abstraction instrument that included number of patients, patient gender, patient 

age ranges, prior therapy history, toxicity and response data, dose escalation strategy, the 

allowance of intra-patient dose escalation, minimum patients per dose, class and approval 

status of agent and the number of patients who received the agent at or above the 

recommended phase II dose at least once.  For Part I, all results were compared and all 

discrepancies were resolved by consensus.  For Part II, in a comparison of the abstracted 

data from 15% of the studies, the discrepancy rate between data points was found to be 

less than 5% overall.  Discrepancies were reviewed and resolved by the two investigators.   

For Part I, trials were grouped into six different categories according to 

mechanism of action of the investigational agent(s):  1) chemotherapy/cytotoxic agents, 

2) immunomodulators, 3) receptor or signal transduction inhibitors 4) anti-angiogenesis 

agents, 5) gene-therapies, and 6) vaccines.  Treatments were categorized into three 

groups:  (1) non-chemotherapy agents, (2) FDA-approved chemotherapies, and (3) 

investigational chemotherapies.  Dosing strategies comprised three distinct categories: 1) 

traditional, according to a ““modified Fibonacci”” protocol; 2) conservative, in which the 

initial dose increase was less than 100%; and 3) aggressive in which at least the first two 

dose increases were by 100%.  Study design was obtained from the methods section of 

each published trial.  Intra-patient dose escalation was only recorded as allowed if the 

study explicitly indicated as such in the methods section. 

  



 

Study sponsorship was assessed in the trials conducted in the U.S. because 

information on study sponsorship was reported in only 30% of the studies conducted in 

Europe and the other countries.  Among U.S. studies, study sponsorship was coded into 

three categories:  1) industry, (this does not include instances in which only a drug was 

provided with no other financial support), 2) government, foundation or other non-profit, 

and 3) study support was not indicated. 

 The location of the first author’s employing institute or corporation was coded 

into three categories:  1) U.S., 2) Europe, or 3) other. 

 

Outcome Definitions 

 

Response data included the number of patients who experienced a complete 

response (CR), partial response (PR) and stable disease (SD) according to standard 

definitions.  For solid tumors, CR was defined as complete radiographic disappearance of 

the lesion at 4 weeks, a PR was 50% or greater decrease in the sum of the products of the 

perpendicular diameters of all measured lesions at 4 weeks, progressive disease was 

defined as an increase of these tumor dimensions by more than 25%, any new lesion, or 

any definitive increase in tumor size and SD included anything that did not qualify as 

progressive disease or a PR, including “minor responses.”40 

 Toxicity data included possible or probable toxic deaths, non-hematologic 

toxicity, and hematologic toxicity.  Deaths explicitly reported as toxic deaths or other 

deaths in the study not expressly reported to be unrelated to the intervention (ie. possible, 

probable) were counted in the toxic death rate. All toxicity grades follow the standard 

  



 

definitions outlined in the Common Toxicity Criteria v2.0 (1999) and/or the Common 

Terminology Criteria for Adverse Events v3.0 (2003) as part of the Cancer Therapy 

Evaluation Program (CTEP) of the National Cancer Institute.  Grade 3/4 non-hematologic 

and grade 4 hematologic toxicity were recorded because these determine toxicity rules for 

dosing modification in Phase I oncology studies.  For this reason, grade 3 febrile 

neutropenia was included as a hematologic toxicity.  Alopecia was not included as 

toxicity.   

 

Statistical Analysis 

 

For each study, response rates, mortality rate, and toxicity rates were calculated 

based on the published data and exact confidence limits estimated.  For some rates, data 

were not available and so the rates for these studies were treated as missing at random.  

For grade 3-4 non-hematologic and grade 4 hematologic toxicities, some of the studies 

only provided information such that the minimum and maximum number of patients 

incurring the toxicity could be ascribed (i.e. these studies reported the number of toxicity 

events rather than number of patients with toxicity events).  In these cases, we used a 

weighted approach for estimating the true number of patients who had experienced a 

toxicity, where the estimated number of toxicities (ti) is defined as: 

  ti i= × i+ ×0 75 0 25. min . max  

For example, in one study it could be assumed that at least six, but no more than 10 

patients, had grade 4 hematologic toxicities.   The imputed number of grade 4 

hematologic toxicities for this study was 7 patients.  This estimate is more conservative 

  



 

and also more appropriate than simply taking the average of the minimum and maximum. 

The distribution of toxicities across studies tends to be skewed:  the bulk of the toxicity 

rates are lower values, while higher values tend to be outliers, indicating that an estimate 

of the number of toxicities within any given study should tend to favor smaller values.   

Meta-analysis techniques were used for data analysis.  A beta-binomial model 

was used for estimating rates (i.e., proportions) across studies.  This model allows for 

extra-binomial variability, as would be expected in a meta-analytic setting.  For the 

multiple regression models, a random effects grouped logit model was used.  The model 

is essentially a generalized linear model from the binomial family with logit link where 

studies are ‘groups’ (i.e., the unit of analysis is study) and a random effect is included for 

each study.  Associations were considered significant if the null value was outside of the 

95% credible interval of a parameter.  For multiple regression models, we considered 

covariates that showed significance in simple regression models.  Multiple regression 

models were explored by including main effects and pairwise interactions, and then 

removing insignificant effects and interactions one by one.  These models were not fit for 

CR and for mortality because the event rates were very low and results were unstable.  

 For Part I, the WinBugs, version 1.4, software was used, which implements a 

Bayesian estimation approach, for model estimation with diffuse priors in all meta-

analyses.41   Reported point estimates are the means of the posterior distributions of the 

parameters, and the 95% credible interval for a parameter is the 2.5th and 97.5th 

percentiles of its posterior distribution.  For Part II a Markov chain Monte Carlo 

approach was implemented for estimating parameters.  Each of the coefficients in the 

regression model was assumed to have a Gaussian diffuse prior, and random effects were 

  



 

assumed to have a normal distribution with variance τ2, where the hyperprior for 1/τ2 is a 

diffuse Gamma distribution.  WinBugs within OpenBugs 2.01 was used for model 

estimation.  For each analysis, a burn-in period of 5000 iterations was performed.  Then 

an additional 20000 iterations were run where every 5th iteration was saved for inference.  

Multiple chains were run for each analysis and traceplots were explored to ensure 

convergence. No convergence problems were encountered.  Point estimates were defined 

as the posterior mean, 95% credible intervals as the 2.5th and the 97.5th percentiles of the 

posterior distribution, and tail probabilities as the (two-sided) proportion of area under 

the posterior distribution that is more extreme than the observed data.  The tail 

probabilities and 95% credible intervals can be interpreted similarly to p-values and 95% 

confidence intervals.  

 

 

RESULTS 

 

PART I: Response Rates and Toxicities in Phase I Oncology Studies in 2002 

 
The final study sample consisted of 221 Phase I oncology studies published in 

2002, which included 6,008 research participants assessable for toxicity and 5,362 

assessable for response (Table 1).  Almost all of the enrolled participants had an ECOG 

performance status of 0 or 1, that is they had normal physical activity or only need extra 

rest less than 50% of the day.42  Half of the participants were male, the mean age was 

60.5, 55% had prior chemotherapy, and 20% had prior radiotherapy.   

  



 

The majority of the studies were chemotherapy trials (173 trials, 78%) involving 

4,268 patients assessable for response.  Vaccines were the second largest group (13 trials, 

6%), and gene therapy the smallest group (3 trials, 1%) of trials.  Overall, 40 (18%) of the 

studies were “classic” Phase I studies in that they tested a single, non-approved cytotoxic 

agent.  A majority of the published Phase I studies (121, 55%) used only commercially 

available (ie. FDA approved) agents (Table 2). 

 
Response Rates 
 
 
 Considering all 221 studies, the mean overall response rate (CR + PR) was 19% 

(95% CI: 17, 22).  The complete response rate (CR), in which the tumor disappeared, was 

estimated to be 3.8%. When adding “minor responses” and stable disease to partial and 

complete responses, the total rate of clinical benefit was estimated to be 48% (Table 1). 

 The response rates differed considerably according to the type of Phase I agent(s) 

assessed (Table 1 and Figure 2a).  The estimated overall CR + PR rate was 21% for 

chemotherapy trials; while for vaccine trials it was just 2.9% (Table 1).  The response 

rates also varied considerably according to the type of trial (Table 2).  For non-

chemotherapy agents, trials with a single investigational agent alone had an estimated CR 

+ PR rate of 7.7%, while this figure was 4.8% for chemotherapy agents.  Studies using 

only FDA approved agents had an estimated response rate of 29%, and those with a 

combination of investigational and commercially available agents had an estimated 

response rate of 14%.  

After adjusting for other factors, including sponsorship, solid vs. non-solid tumor, 

and percentage of patients treated with prior therapies (Table 3), multiple regression 

  



 

analysis showed that chemotherapy studies using FDA approved agents had significantly 

higher response rates than non-chemotherapy studies (OR= 5.16, 95% CI 2.72-9.58).  

Chemotherapy studies using investigational agents, on the other hand, had lower response 

rates than non-chemotherapy studies (OR = 0.77, 95% CI 0.36-1.55), though statistical 

significance was not achieved. 

   

Death and Toxicities 
 
 
 The overall mortality rate across all 221 Phase I studies was 1.1% (95% CI 0.8-

1.6) (Table 4).  Studies of cytotoxic agents had a mortality rate of 1.3%, whereas trials 

involving vaccine and anti-angiogenesis agents had no observed deaths (Figure 2b). The 

estimated mortality rate was highest in studies that included FDA approved agents 

(1.6%), and lowest in studies of single, non-cytotoxic investigational agents (0.4%) 

(Table 4).   Phase I studies with a combination of commercial and investigational agents 

had an estimated mortality rate of 0.9%.  “Classic” phase I studies had a mortality rate of 

1.0% (95% CI 0.6%- 1.6%). 

 The overall grade 3/4 non-hematologic toxicity rate was estimated to be 22% and 

the grade 4 hematologic toxicity rate was 19% (Table 2).  Bivariate analysis showed that 

grade 3/4 non-hematologic toxicity was very similar for chemotherapy trials (19%) and 

trials testing non-cytotoxics (18%), with the exception of vaccine trials (0.9%) (Figure 

2c).  Rates of serious non-hematologic toxicity were also similar across trials regardless 

of whether trials used commercial agents alone, investigational agents alone, or a 

combination of agents.  By contrast, grade 4 hematologic toxicity rate was higher for both 

  



 

investigational chemotherapy trials relative to investigational non-chemotherapy trials 

(2.8% vs. 10%), as well as trials with commercial agents (29%) (Table 2). 

 Multiple regression analysis confirmed these associations.  While both 

investigational (OR = 5.26, 95% CI 1.99- 14.0) and FDA approved (OR = 18.9, 95% CI 

7.92- 48.4) chemotherapy agents were associated with dramatically higher rates of 

hematologic toxicity than non-chemotherapy agents, the risks of non-hematologic 

toxicity were similar for non-chemotherapy agents and investigational chemotherapy 

agents (OR = 1.09, 95%CI 0.64-1.88).  However, the multivariate model also found that 

FDA-approved chemotherapy agents appeared to be associated with a slightly higher rate 

of grade 3/4 toxicities (OR = 1.62, 95% CI 1.04-2.64) relative to non-chemo 

investigational agents (Table 3). 

 

Sponsorship 

 
Trials sponsored by for-profit and non-profit organizations had similar response 

rates, 17% and 16% respectively (Table 5 and Figure 3a).  However, the mortality rates 

did vary across sponsorship.  In crude bivariate analysis, for-profit sponsored studies had 

a mortality rate of 1.4%, as compared to 0.7% for those sponsored by non-profits. Grade 

3/4 non-hematologic toxicity did not vary between for-profit and non-profit sponsored 

studies (Table 5b-d).  However, multiple regression analysis showed relatively little 

differences in response and toxicity rates in for-profit and non-profit trials after adjusting 

for other factors. 

  



 

 

Geography  

 
There were variations in response rates according to the country in which the 

study was conducted (Table 6).  Studies in the U.S. had response rates of 14%, whereas 

studies from Europe had response rates of 24%, and the remaining nations had a response 

rate of 25%. The toxic death rate was 1.3% in the U.S., 1.1% in Europe, and 0.8% in the 

remaining countries.  Grade 3/4 non-hematological toxicity was 20% in the U.S., 25% in 

Europe, and 18% in the remaining countries.  Grade 4 hematological toxicity was 13% in 

the U.S., 25% in Europe and 26% in the other countries.  Multiple regression analyses 

showed the higher response rate for studies from Europe as compared to those done in the 

U.S. to be statistically insignificant after adjusting for other factors. 

  



 

PART II: The prevalence and impact of novel design strategies in 2002-2004  
  

Despite an updated knowledge of the rates of response and toxicity in Phase I 

trials overall, aspects of the traditional design of these trials have been implicated as a 

cause for many patients receiving “sub-therapeutic” doses, especially in single agent 

trials of cytotoxic drugs.  Novel design strategies have been introduced with the hopes of 

improving the ethically questionable risk-benefit ratios of these trials, but little research 

has been done to determine their prevalence and efficacy.  We therefore set out to 

investigate these questions in the second part of this study. 

In 149 phase I studies published between 2002 and 2004 which assessed single 

agent cytotoxic compounds, 4,350 patients were evaluable for toxicity and 4,027 were 

evaluable for response (Table 7).  Predominantly patients had solid tumors (90%), with 

9% of studies including only hematological or lymphatic malignancies and 1% of studies 

accepting patients with either solid or liquid tumors.  While the toxic death rate was small 

at 1%, there was a more significant incidence of serious, or life threatening drug related 

hematologic (15%) and non-hematologic (17%) toxicity.  The overall objective response 

rate was 3% (CR + PR), which increased to 25% with the addition of stable disease as an 

endpoint.  Also, 60% of patients received a dose of the investigational agent that was at 

or above the eventual recommended phase II dose.  

 As opposed to the first part of this study, most agents used in the phase I trials 

included in this latter component of the study were investigational, while the FDA had 

already approved only 26% of them.  The majority (66%) of these studies used traditional 

“modified Fibonacci” or even more conservative dose escalation schemes.  Only 34% of 

  



 

studies utilized aggressive dose escalation schemes, 22% permitted intra-patient dose 

escalation, and only 28% enrolled fewer than 3 patients to any dose level before 

proceeding to the next higher dose level (Table 8).  Interestingly, the prevalence of 

studies allowing intra-patient dose escalation or using aggressive titration designs 

declined in 2004 from the rates seen in the previous year, while a greater percentage of 

studies used fewer than 3 patients per dose in that year (Figure 4).   

 

Trials Using Different Escalation Designs 

 

Bivariate analysis revealed several important findings.  Conservative titration 

designs were associated with significantly higher hematologic (17%vs.10%, tail 

probability (tp)=.01) and non hematologic (20%vs.13%, tp=.03) toxicity rates, as well as 

higher response rates (CR+PR 6%vs.2%, tp=.002; CR+PR+SD 32%vs.21%, tp=.03) as 

compared to the traditional ““modified Fibonacci”” design.  Conservative designs also 

resulted in the highest percentage of patients who received at least one dose of the 

investigational agent at or above the recommended phase II dose (71%vs.46%, tp<.001) 

(Table 8).   

 When comparing the use of aggressive titration designs to studies using 

traditional designs, the former were associated with an increased risk of both hematologic 

(17%vs.10%, tp=.01) and non hematologic (17%vs.13%, tp=.20) toxicity for 

participating patients, although the finding for non hematologic toxicity was not 

statistically significant.  Importantly, response rates (CR+PR 1%vs.2%, tp=.53; 

CR+PR+SD 23%vs.21%, tp=.79) and the percentage of patients receiving the 

  



 

recommended phase II dose (55%vs.46%, tp=.18) showed no statistically significant 

differences (Table 8). 

 

Trials Allowing for Intra-patient Dose Escalation, Fewer Patients Per Dose 

 

The two other novel design strategies, allowing intra-patient dose escalation and 

using fewer than three patients in the initial dosage levels, revealed no statistically 

significant differences in response rates, toxicities, or the percentage of patients receiving 

the recommended phase II dose relative to the standards in their categories.  The single 

exception was an increased CR+PR+SD (28%vs.20%, tp=.03) in studies that did not 

allow fewer than three patients in any given dose level, a finding that is of questionable 

import (Table 8).   

 

Trials with FDA-Approved Agents 

 

We then analyzed studies using FDA approved agents.  Our initial expectations 

were that these agents would produce a better response rate, and that investigators might 

be more conservative with their dose escalations given the already well-known 

characteristics of the particular therapy.  What we found was that, in fact, studies that 

tested a drug that had already been approved by the FDA for another indication were 

associated with increased objective response rates (CR+PR 10%vs.2%, tp<.001; 

CR+PR+SD 40%vs.22%, tp<.001) as compared to investigational agents.  In multivariate 

analysis, no interaction was found between FDA approval and conservative dose 

  



 

escalation design, as these two variables were independently associated with the 

increased response (Figure 5).  However, multiple regression analysis of the CR+PR+SD 

endpoint revealed that these two trial types were independently associated with an 

increased clinical response rate only in trials that used fewer than three patients per dose 

early on.  There did seem to be interactions, however, when these studies used the more 

traditional design of 3 or more patients for every dose level (Figure 6).  Interestingly, 

increased tumor response to FDA approved drugs was not at the expense of a 

significantly increased risk of hematologic (18%vs.14%) or non hematologic 

(19%vs.16%) toxicity, although there did seem to be a trend in that direction.   

 

Number of Patients Required Per Trials 

 

Our final endpoint of interest was the average number of patients needed to 

complete these phase I trials.  If any of these novel designs could reduce this number, 

their use could possibly limit the number of patients having to participate in, and be 

exposed to the hazards of, phase I trials.  What we found was that trials which used 

conservative dose escalation designs required a lower average number of patients to 

complete their trials than those that used aggressive dose escalations (26.2 vs. 33.9; 

p=.04).  The same was true of studies that tested FDA approved agents (25.2 vs. 32.3; 

p=.02).  However, none of the novel design strategies in question had any significant 

impact on this endpoint as compared to “standard protocols” (Table 9). 

  



 

DISCUSSION 

Phase I oncology trials simultaneously embody some of the highest ideals of 

medicine, and some of the most challenging ethical dilemmas faced in clinical research.  

These trials serve as the bridge between the promises of laboratory research and powerful 

therapies that help the sick and suffering.  Yet, accomplishing this noble task requires the 

use of patients as research subjects, from whom objective data can be ascertained.  Unlike 

clinical trials in general which often use healthy volunteers, phase I oncology trials enroll 

patients with refractory cancer who have few therapeutic options and little hope.  This 

combination of patients in desperate circumstances and investigators who have an interest 

in the scientific validity of their trials in addition to their patients’ well-being, presents a 

scenario in which misplaced hopes and unjustifiable optimism can easily chart a course 

towards unintentionally violating a basic principle of medical ethics, nonmalfeasance – 

‘do no harm.’  Patients ought not be exploited, even for the sake of serving the greater 

good.  Participation in phase I oncology trials must be based on an adequate 

understanding of the primary aims of the study - assessing the safety of an agent and 

finding an appropriate dose to test in phase II trials - coupled with realistic expectations 

regarding toxicity and response potential.  Ensuring that this happens, either through 

consent forms, consultations with physicians, or both, is often easier said than done. 

Even when fully informed, phase I trials may present patients with a greater 

likelihood of harm than benefit.  Antitumor agents often present patients with substantial 

risks of severe, even life threatening toxicity, which can be even more dangerous with 

unknown, investigational agents.  And while these toxicities occur in phase I trials, 

historically, a majority of patients enrolled were treated at “sub-therapeutic” dose levels.  

  



 

The risk-benefit ratios of these trials can only be favorable if patients facing toxicity also 

have a genuine chance to benefit from these agents.  An accurate knowledge of the rates 

of response and toxicities, and the percentage of patients receiving therapeutic doses are 

indispensable for patients to weigh the risks and benefits they face.  Moreover, from the 

vantage point of investigators, efforts must be made to continually improve the “research 

system” and to strive to provide each patient with the opportunity to derive maximal 

potential benefit from a drug on trial.      

What are the overall risks of harm to patients participating in phase I oncology 

trials?  Our results show a toxic death rate of 1.1% overall.  Despite this low overall risk 

of toxic death, a significant percentage of patients did experience severe hematologic 

(19%) and non-hematologic (22%) toxicity.  While these rates were consistent between 

different categories of agents for both toxic deaths and non-hematologic toxicities, 

multivariate analysis confirmed that both FDA approved (OR = 18.9, 95% CI 7.92- 48.4) 

and investigational (OR = 5.26, 95% CI 1.99- 14.0) cytotoxic agents were associated with 

higher rates of hematologic toxicities than non cytotoxic agents.  These data are 

supported by their similarity to previous studies (Table 10) and are easily applicable to 

contemporary patients insofar as they reflect trials conducted in an era of better 

supportive care for much toxicity, including nausea, vomiting, pain, low blood counts and 

infections.   

Patients who participated in these trials also experienced significant tumor 

responses to the agents under investigation.  In fact, response rates seem to have 

increased substantially from the 3-5% reported in earlier studies (Table 10).  Objective 

response rates were higher than previously reported (CR+PR 19%), with nearly half of all 

  



 

patients experiencing some clinical benefit (CR+PR+SD 48%).  These increases appear 

to be at least partially due to the increasing use of non-cytotoxic agents, as well as FDA 

approved agents (55% of trials) in these early clinical trials.  Multivariate analysis 

confirmed the response advantage to commercially available cytotoxic agents (OR= 5.16, 

95% CI 2.72-9.58).  Indeed, classic single agent trials of investigational cytotoxics, which 

comprised only 18% of all trials, revealed modest response rates that were no higher than 

those reported in previous studies (CR+PR 2-4%). 

How to interpret these response and toxicity data in a way that can help an 

individual patient considering participating in a phase I trial understand the associated 

risks and benefits is in no way straightforward.  There are several important elements that 

must be considered.    

Firstly, these data are aggregates of the responses and toxicities seen in hundreds 

of trials, which tested scores of different agents, often in different tumor types.  Phase I 

trials have produced 98% response rates, as in the case of imatinib mesylate (Gleevac) in 

patients with chronic myelogenous leukemia, while a study of a novel spicamycin 

analogue resulted in more than 10% of patients suffering toxic deaths and another 50% 

experiencing severe or life threatening toxicity.43, 44 Our response and toxicity data do not 

apply to any individual phase I trial, but rather provides an estimate of the overall 

prevalence of these endpoints. 

 Secondly, whether tumor responses actually translate into clinical benefit is 

unclear.45, 46 Some contend that response rates are merely surrogate endpoints and do not 

correspond to different survival outcomes.47, 48 In their reply to this position, Horstmann 

and colleagues cite several studies that demonstrate relationships between tumor response 

  



 

while on trial and survival, symptom improvement and quality of life endpoints.28, 49-51 

While response rates are certainly an imperfect measure of clinical benefit, they do 

appear to have clinical meaning.   

How to interpret our response data is also complicated by our inclusion of the 

non-traditional endpoint of disease stabilization.  We believe the benefits of doing so are 

two-fold.  Firstly, disease stabilization captures the benefits of the drug in the form of 

“minor responses” that are excluded due to an arbitrary definition of 50% or greater 

tumor shrinkage needed to qualify as an objective response.52 Moreover, the proliferation 

of biologic agents that function in a cytostatic capacity, along with continually improving 

supportive care measures, argues for the value in measuring how well a drug can enable a 

patient to live with a cancer that is not progressing.28, 53  

In synthesizing our results, some guiding principles about how to assess the risks-

benefit ratios of these trials emerge.  First and foremost is the recognition that phase I 

trials are not all the same.  They encompass a wide array of agents and trial designs.  

Therefore, one must consider the particular type of agent (e.g. cytotoxic, biologic, 

vaccine), whether it is an investigational or approved therapy and whether it is being 

tested alone or in combination with other agents.  Next, in discussing likelihood of 

response and toxicity, an investigator must convey some of the uncertainty as to their 

interpretation.  One must also incorporate the values and disposition of an individual 

patient.  Is his/her priority to avoid suffering, or is the goal to persist “eagerly in the 

struggle” and try to overcome his/her disease to whatever extent possible?  Of course, the 

ability to effectively communicate these ideas in a way that empowers each patient to 

  



 

decide whether or not the risk-benefit profile of a particular trial is favorable to him/her is 

part of the difficult art of medicine.   

Our appreciation for how different types of trials were associated with distinct 

response and toxicity rates then led us to reexamine the need for improved trial design.  

We demonstrated that while the overall response rate in phase I oncology trials had 

significantly improved from previous reports, this was not the case for “classic” single 

cytotoxic agent trials, which were associated with increased toxicity without the benefit 

of increasing response rates.  We, therefore, decided to study whether single agent 

cytotoxic trials that used more aggressive dosing strategies were associated with 

differences in response and toxicity data, as well as other markers of patient benefit.   

With growing calls for the use of biologic, rather than toxic, endpoints in Phase I trials of 

targeted biologic agents, limiting our sample to studies of cytotoxics seemed even more 

valuable.33, 34, 38  

There has been much optimism about the potential for these novel design 

strategies to improve the risk benefit profile of phase I oncology trials for patients.  The 

rationale was that having fewer patients in lower dose levels, escalating the dose more 

quickly and allowing patients to increase their own dose, would reduce the number of 

patients receiving “sub-therapeutic” doses and enable more patients to have better 

chances of achieving response.30, 37-39 Lending partial support to this assumption, a study 

that looked at single agent trials of both cytotoxic and biologic agents found that studies 

that allowed intra-patient dose escalation predicted for an increased response rate with no 

added risk of toxicity.1  

  



 

We found, however, that these methods did not seem to provide any advantage in 

the setting of single agent trials of cytotoxic drugs.  Allowing intra-patient dose 

escalation, or using fewer patients in earlier, “sub-therapeutic” dose levels, was neither 

associated with any increased rates of response, nor with an increased proportion of 

patients receiving the recommended phase II dose.  Also, trials employing these strategies 

required, on average, the same number of patients as their more standard alternatives.  

Yet, they do not appear to be any more harmful than standard protocols and may still 

confer psychological benefits to patients enrolled.  Patients may be encouraged by the 

knowledge that all participants have the potential to receive the highest possible dose and 

that they would be limited in doing so only on the basis of toxicity rather than by study 

design constraints. 

A more concerning result was that aggressive titration designs were associated 

with larger percentages of patients who experienced severe, or life threatening toxicity as 

compared to trials that used traditional “modified Fibonacci” dose escalations, and this 

relationship was confirmed for hematologic toxicity in multivariate analysis.  This data 

suggests that aggressively increasing the dose of a cytotoxic agent in a single agent phase 

I trial adversely impacts the risk-benefit ratios that enrolled patients face.  While more 

research is needed to confirm this finding, investigators ought to inform their patients of 

this observation, and give greater consideration to other methods of reducing the number 

of patients treated at “sub-therapeutic” dose levels.    

Our results for conservative dose escalation strategies appeared counter-intuitive 

at first.  We would have expected trials that increased doses more slowly to be associated 

with more patients being exposed to “less potent” forms of the drug and therefore with 

  



 

lower rates of response and toxicity and higher numbers of patients receiving “sub-

therapeutic” doses.  Quite the contrary, these studies were associated with increased 

toxicity rates, higher response rates and a greater percentage of patients who received the 

recommended phase II dose.  One way to account for this data is to consider the high 

likelihood that investigators deliberately chose a more conservative design because of 

some prior indication as to the potency of the particular agent.  Of course, prior FDA 

approval would be a major reason to do so.  This is supported by the fact that of the 

studies that tested agents already approved by the FDA, 65% (24/38) used a conservative 

titration design, while only 32% of studies which tested novel agents used conservative 

titration designs.  Another outcome that highlights the overlap between trials that used 

conservative design strategies and those that tested FDA approved agents is that only 

these two trial categories required significantly fewer patients to complete their trials.    

This study has several limitations.  First, our study samples were imperfect. Part I 

reported the results of a meta-analysis that was restricted to 2002.  It is possible that 

studies published in 2002 were not representative of all Phase I oncology trials, although 

the similarities between our results and other recent meta-analyses reduces this concern.  

Our sample of studies was also heterogeneous with regard to the agents studied as well as 

cancer types.  This consideration provided the impetus to limit our investigation in Part II 

to single agent cytotoxic drugs, in order to minimize the impact that sample heterogeneity 

would have on our results.  In doing so, however, the generalizability of our results is 

limited and does not extend to the variety of design innovations currently being used and 

studied in non cytotoxics, most notably biological agents and targeted therapies.  Lastly, 

  



 

although not currently available, patient level data would have been preferable to trial 

level data. 

The lack of uniform reporting standards as well as publication biases may have 

also led to overestimated or underestimated response and toxicity rates.  However, since 

publication of Phase I studies is not dependent on response rates, and there was no 

indication of a suppression of adverse mortality data, publication bias may be less likely 

than in other types of meta-analysis.   

Finally, we must always be cautious about establishing causality in a retrospective 

analysis.  Unfortunately, given the nature of phase I oncology trials, prospective studies 

examining these different design strategies may be very difficult to undertake from both 

methodological and practical standpoints.  

 

CONCLUSION 

 

Phase I oncology trials reflect the high stakes of investigative medicine.  While 

the potential for discovery and innovation for the betterment of our patients and society at 

large is high, so is the potential for exploitation, misrepresentation and causing 

unnecessary harm to our patients.  An evaluation of how the interplay between the risks 

and benefits of these trials impact on their ethics should be informed by the most current 

and comprehensive data available.  The primary objective of this thesis was to provide 

this information and understand how it may answer some fundamental questions about 

the risks and benefits of phase I oncology trials.  By doing so, we have come to 

understand two fundamental insights.  

  



 

Firstly, all phase I oncology trials are not the same.  Rather, they represent a 

spectrum of different classes of agents and designs strategies that are often associated 

with distinct clinical outcomes.  Accounting for this variety is critical in trying to 

evaluate the risk-benefit ratios that these trials offer participating patients, and in 

considering the ethical questions involved. 

Secondly, while some novel dosing strategies appear to have little impact on 

clinical endpoints, others may in fact be harmful.  The allowance of intra-patient dose 

escalation and the use of fewer than three patients in initial dosage levels do not appear to 

impact response or toxicity rates, the percentage of patients who receive the 

recommended phase II “therapeutic” dose, or decrease the average number of patients 

needed to complete a trial.  Aggressive dose escalation designs expose patients to greater 

risk of toxicity with no increased likelihood of benefit.  These innovations do not seem to 

deflect some of the most fundamental ethical challenges made against these trials, which 

highlights the need for continued effort towards improving trial design and its impact on 

our patients. 
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TABLE 1: Response Rates of Phase I Oncology Trials published in 2002. 

 # of Trials # Assessable for 
Response 

Complete Response Rate* 
(CR) (%) 

Response Rate* 
(CR+PR) (%) 

Total Response Rate* 
(CR+PR+SD) (%) 

Total 
 

221 5362 3.8 (2.8, 5.0) 19 (17, 22) 48 (44, 52) 

Chemotherapy Cytotoxic 
 

173 4268 4.2 (3.1, 5.7) 21 (18, 25) 50 (45, 55) 

Immunomodulator  
 

12 216 6.2 (2.5, 11) 14 (6.0, 26) 43 (29, 59) 

Receptor/Signal 
Transduction 
                                     

11 377 3.5 (1.0, 8.4) 13 (6.1, 24) 37 (24, 53) 

Anti-Angiogensis 
 

9 225 1.0 (0.1, 2.8) 11 (4.1, 22) 38 (24, 55) 

Gene Therapy 
 

3 63 1.7 (<0.1, 6.1) 21 (10, 34) 33 (20, 46) 

Vaccine 
 

13 213 0.5 (<0.1, 2.0) 2.9 (1.0, 5.6) 44 (30, 59) 

*Numbers in CR, CR+PR, and CR+PR+SD columns are rates with 95% credible intervals in parentheses. 

 

 

 

 

 



 

 

 

TABLE 2: Response and Mortality Rates for Combinations of Agents in Phase I Oncology Trials.  

 
 # of 

Trials 
Complete 
Response 

Rate (CR) 

Response 
Rate 

(CR+PR) 

Total 
Response Rate 
(CR+PR+SD) 

Total 
Deaths 

Toxic 
Death 
Rate 

Grade 3-4 
non-heme 

toxicity 

Grade 4 
heme 

toxicity 
 

Total 
 

221 
3.8 

(2.8, 5.0) 
19 

(17, 22) 
48 

(44, 52) 
63 

 1.1 
(0.8, 1.6) 

22 
(19, 24) 

 

19 
(16, 23) 

 
chemo  

40 
0.6 

(0.2, 1.1) 
4.8 

(2.8, 7.8) 
26 

(21, 31) 
 

11 
1.0 

(0.5, 1.6) 
19 

(14, 24) 
10 

(6.1, 15) 
 

Single 
Investigational 

Agent Alone 
non-

chemo 
35 

 
 

1.7 
(0.6, 3.7) 

7.7 
(3.8, 14) 

38 
(28, 49) 

3 0.4 
(0.1, 1.0) 

18 
(12, 25) 

2.8 
(0.1, 6.5) 

Combination of Investigational 
and Commercial agents 

 

23 1.4 
(0.5, 2.8) 

14 
(9.3, 20) 

49 
(39, 59) 

5 0.9 
(0.3, 1.8) 

24 
(18, 31) 

16 
(9.8, 24) 

Commercial 
(No Investigational) Agents 

121 5.9 
(4.3, 7.9) 

29 
(25, 33) 

59 
(54, 64) 

44 1.6 
(1.0, 2.4) 

24 
(20, 27) 

29 
(24, 35) 

* Numbers are rates with 95% credible intervals in parentheses. 
** There were only two studies with multiple investigational agents.  These two studies were excluded because the number of studies 
was too few to make inferences. 
 
 

 

 

 



 

 

 

TABLE 3: Multiple regression analysis of Phase I Oncology Trials.    

 
 Response Rate  

(CR+PR)  
OR (95% PI) 

Total Response Rate 
(CR+PR+SD) 
OR (95% PI) 

Grade 3/4  
non-hematological toxicity 

OR (95% PI) 

Grade 4  
hematological toxicity 

OR (95% PI) 
non-cytotoxic agent 
 

1.0  (ref) 1.0  (ref) 1.0  (ref) 
 

1.0  (ref) 

investigational cytotoxic 
agent 
 

0.77 
(0.36, 1.55) 

0.65 
(0.36, 1.16) 

1.09 
(0.64, 1.88) 

5.26 
(1.99, 14.0) 

Non- Investigational 
cytotoxic agent 

5.16 
(2.72, 9.58)  

2.23 
(1.32, 3.74) 

1.62 
(1.04, 2.64) 

18.9 
(7.92, 48.4) 

US for-profit (ref) 
 

(ref) (ref) (ref) 

US non-profit 1.51 
(0.65, 3.39) 

0.90 
(0.47, 1.63) 

0.98 
(0.57, 1.79) 

0.85 
(0.28, 2.45) 

US other 0.61 
(0.24, 1.43) 

0.44 
(0.23, 0.87) 

1.56 
(0.81, 3.06) 

0.39 
(0.11, 1.39) 

Europe 1.68 
(0.93, 3.22)  

1.57 
(0.92, 2.56) 

1.39 
(0.89, 2.27) 

1.77 
(0.84, 3.97) 

Other nations 1.72 
(0.76, 3.90) 

2.34 
(1.17, 4.76) 

0.85 
(0.44, 1.62) 

2.29 
(0.84, 6.75) 

Solid Tumor 
 

0.34  
(0.16, 0.75) 

  0.32 
(0.10, 1.06) 

Prior chemo 
 

0.54 
(0.33, 0.87) 

0.63 
(0.41, 0.95) 

2.14 
(1.49, 3.19) 

 

 



 

 

 

TABLE 4: Deaths and Toxicities* in Phase I Oncology Trials published in 2002.   

 
 Number 

of Trials 
Number of 

Participants 
assessable for 

toxicity 

Total 
Number 

of 
Deaths** 

Toxic Death 
Rate (%)* 

Grade 3-4 
non-

hematologic 
toxicity (%)* 

Grade 4 
hematologic 
toxicity (%)* 

 
Total 

 
221 6,008 63 

1.1 
(0.8, 1.6) 

 

22 
(19, 24) 

 

19 
(16, 23) 

 
Chemotherapy Cytotoxic 173 4,724 59 1.3 

(0.9, 1.9) 
 

23 
(20, 25) 

 

25 
(21, 29) 

 
Immunomodulator  
 

12 261 1 0.9 
(0.1, 2.4) 

18 
(13, 24) 

8.3 
(5.2, 12) 

Receptor/Signal Transduction 
 

11 404 2 0.8 
(0.2, 2.1) 

23 
(18, 30) 

5.6 
(1.6, 14) 

Anti-Angiogensis 
 

9 251 0 0.4 
(<0.1, 1.4) 

22 
(13, 33) 

2.0 
(0.5, 4.1) 

Gene Therapy 
 

3 63 1 2.0 
(0.2, 7.6) 

31 
(20, 44) 

13 
(6.1, 22) 

Vaccine 
 
 

13 305 0 0.4 
(<0.1, 1.3) 

9.0 
(2.0, 21) 

0.7 
(0.1, 1.9) 

*Numbers in toxic death rate, grade 3-4 non-hem toxicity and grade 4 heme toxicity columns are rates with 95% credible intervals in 
parentheses. 
**Includes possible, probable and definite deaths. 
 

 



 

 

 

TABLE 5: Sponsorship of Phase I Oncology Trials published in 2002.   

 
 Number of 

Trials 
Complete Response 

Rate (CR) (%) 
Response Rate 
(CR+PR) (%) 

Total Response Rate 
(CR+PR+SD) (%) 

Total 
Deaths  

Toxic 
Death 

Rate (%) 

Grade 3-4 
non-

hematologic 
toxicity (%) 

Grade 4 
hematologic 
toxicity (%) 

 
Total 
 

114 
 

 
3.5 

(2.3, 5.1) 

14 
(11, 18) 

38 
(33, 43) 

 
35 

1.3 
(0.8, 2.1) 

20 
(17, 23) 

13 
(10, 18) 

Profit 54 5.0 
(2.9, 8.0) 

17 
(12, 23) 

44 
(36, 52) 

20 1.4 
(0.8, 2.4) 

19 
(15, 24) 

16 
(11, 24) 

Non-
profit 
 

34 3.2 
(1.8, 5.5) 

16 
(10, 23) 

39 
(31, 48) 

5 0.7 
(0.2, 1.3) 

19 
(13, 25) 

12 
(6.4, 20) 

Other 
(Not 
reported) 

26 0.8 
(0.2, 1.6) 

8.0 
(4.2, 12) 

27 
(20, 34) 

10 2.3 
(0.7, 5.1) 

24 
(19, 30) 

5.4 
(3.1, 8.4) 

 

 

 

 

 

 

 

 



 

 

 

TABLE 6: Geography in Phase I Oncology Trials published in 2002.  

 Number of 
Trials 

Complete 
Response Rate 

(CR) (%) 

Response Rate 
(CR+PR) (%) 

Total Response 
Rate 

(CR+PR+SD) 

Total 
Deaths  

Toxic Death 
Rate (%) 

Grade 3-4 non-
hematologic 
toxicity (%) 

Grade 4 
hematologic 
toxicity (%) 

 
Total 

 

 
221 

3.8 
(2.8, 5.0) 

19 
(17, 22) 

48 
(44, 52) 

63 
 

1.1 
(0.8, 1.6) 

 

22 
(19, 24) 

 

19 
(16, 23) 

 
U.S. 114 

 
 

3.5 
(2.3, 5.1) 

14 
(11, 18) 

38 
(33, 43) 

 
35 

1.3 
(0.8, 2.1) 

20 
(17, 23) 

13 
(10, 18) 

Europe 
 

80 4.6 
(2.9, 7.0) 

 

24 
(19, 30) 

56 
(49, 62) 

23 1.1 
(0.7, 1.7) 

25 
(21, 30) 

25 
(19, 32) 

Other 

 
 

27 2.6 
(1.3, 4.2) 

25 
(18, 34) 

64 
(53, 75) 

5 0.8 
(0.3, 1.7) 

18 
(12, 23) 

26 
(20, 34) 

 

 

 

 

 
 
 
 
 
 
 



 

 

 

TABLE 7:  Patient Characteristics for PART II 
 
 

Demographics Number of patients (%) 
# of patients 4,532 
# evaluable for toxicity 4,350 
# evaluable for response 4,027 
Male/Female 2610:1922 (58/42) 
Median Age (age range)* 56.5 (0.9-90) 
25th percentile/75th percentile 53/61 
Prior Treatment History**  
Prior Chemotherapy 3,084 (76) 
Prior Radiation 1135 (28) 
Prior Surgery/Transplant 758 (19) 
No Prior Cancer Treatment 105 (2.5) 
 
* Calculated as the median of the median age. 
**Percentages were determined with denominator of 4,051 patients for whom these data were provided. 

 
 
 
 
 
 
 
 
 



 

 

 

TABLE 8: Frequency and Bivariate Analysis 

Study Design % [Number] of 
Studies 

Grade 
3/4 Non 

Hematological 
Toxicity 
% [N] 

Complete + Partial 
Response 

+ Stable Disease 
% [N] 

Grade 4 
Hematological 

Toxicity 
% [N] 

Complete + Partial 
Response* 

 % [N] 
(95% CI) 

 
*Numbers in columns are rates with number of studies in brackets and 95% credible intervals in parentheses. 
            

(95% CI) (95% CI) (95% CI) 

 
Patients Receiving 

Recommended 
Phase II Dose 

% [N] 
(95% CI) 

     Total  100% [149] 3% [141] 25% [127] 15% [124] 17% [155] 60% [134] 

Dose Escalation 
Conservative 40% [59] 6% [55] 

(4-9) 
32% [46] 
(25-39) 

17% [50] 20% [54] 
(13-21) (15-25) 

71% [52] 
(63-77) 

Traditional 26% [37] 2% [35] 
(1-3) 

21% [32] 
(15-28) 

10% [30] 13% [33] 
(7-14) (9-18) 

46% [35] 
(37-57) 

Aggressive 34% [49] 1% [47] 
(1-2) 

23% [45] 
(17-29) 

17% [41] 17% [45] 
(13-21) (13-22) 

55% [45] 
(46-63) 

Intra-patient Dose Escalation 
Yes 22% [32] 2% [29] 24% [27] 15% [24] 16% [28] 66% [30] 
No 78% [112] 3% [108] 26% [97] 15% [97] 17% [103] 57% [101] 

Minimum Patients per dose for first course of therapy 
<3 patients 28% [40] 2% [38] 20% [36] 

(14-26) 
16% [32] 17% [35] 65% [39] 

3+ patients 72% [105] 3% [100] 28% [90] 
(24-33) 

14% [90] 17% [98] 57% [94] 

FDA approved agent 
FDA approved 26% [38] 10% [34] 

(6-17) 
40% [29] 
(31-49) 

18% [30] 19% [33] 
(13-23) (14-25) 

65% [35] 

not FDA approved 74% [111] 2% [107] 
(1-3) 

22% [98] 
(19-26) 

14% [94] 16% [102] 
(12-16) (14-19) 

58% [99] 



 

 

 

 
TABLE 9: Mean # patients needed for completion of phase I trials 

 
Category of dosing strategy or 

agent 
Mean # pts needed per 
trial 

Conservative 26.2 

Traditional 31.9 

Dose Escalation 

Aggressive 33.6 

Allowed 30.4 IPDE 

Not Allowed 29.9 

<3 31.7 Minimum 
Patients per 
dose in first 
course 

3 or more 30.1 

FDA approved 25.2 Approval Status 

unapproved 32.2 

 



 

 

 

TABLE 10: Comparison of Response and Toxicity Rates in Published Meta Analyses 

 

Lead Author Type of 
trials/agents 

studied 

Years 
Studied 

# studies 
(# patients) 

Toxic 
deaths 

(%) 

Grade 4 
Hematologic 
toxicity (%) 

Grade ¾ 
non-

hematologic 
toxicity (%) 

CR 
(%) 

PR 
(%) 

CR 
+PR 
+SD 
(%) 

Decoster24 Single agent 
cytotoxics 

1972-1987 211 (6,639) 0.5 N/R N/R 0.3 4.2 N/R 

Von Hoff22 Single agent 
cytotoxics 

1970-1983 228 (7,960) N/R N/R N/R 1.0 5.0 N/R 

Estey23 Single agent 
cytotoxics 

1974-1982 187 (6,447) N/R N/R N/R 0.7 3.5 N/R 

Itoh25 Single agent 
cytotoxics 

1981-1991 56 (2,200) N/R N/R N/R 1.1 2.2 N/R 

Roberts1 All single agent 1991-2002 213 (6,474) 0.54 10.3 overall 3.8 overall N/R 

Horstmann28 All 1991-2002 460 (11,935) 0.49 14.3 overall 3.1 7.5 34.1 

Current Study All 2002 221 (6,008) 1.1 19.0 22.0 3.8 15.2 48.0 

Abbreviations: N/R not recorded; CR complete response; PR partial response; SD stable disease  
  



 

 

 

Figure 1: Study Selection 
 
 
   Potentially relevant phase I  

oncology reports identified in  
literature search (n=955)   

Studies which conformed to  
standard phase I chemotherapy  
trial design (n=666)   

Excluded because fundamental  
study design was not standard  
phase I chemotherapy trial* 
(n=289)

Single agent trials (n=264)   

Excluded because tested more  
than one agent (n=402) 

 Phase I oncology studies meeting  
all inclusion criteria (n=149)   

Excluded because tested agent in 
non cytotoxic class** (n=115)  t   

 
 
* Includes studies which were not cancer related, not Phase I studies, or dose finding studies; those that did not assess the safety 
profile of the agent; those that included the use of radiotherapy, cryotherapy or photodynamic therapy; and those for which the trial 
data was inaccessible or incomplete. 



 

 

 

** This includes signal transduction inhibitors, angiogenesis inhibitors, immunotherapy and gene therapy. 

 
Figure 2A and 2B 



 

 

 

 
Figure 2C and 2D 
Figure 2. Response rates and toxicity of phase 1 oncology trials published in 2002 stratified by chemotherapy, immunomodulator, 
receptor/signal transduction, gene therapy, angiogenesis, vaccines.   Panel A. CR+PR  Panel B. Rate of Toxic Deaths  Panel C. Non-
hematological Grade 3/4 toxicity Panel D. Hematological Grade 4 toxicity.  
Agent:  black=chemotherapy, red=immmodulator, green=receptor/signal, blue=angio-genesis, light blue=gene therapy, pink=vaccines. 



 

 

 

Figure 3A and 3B 



 

 

 

 
Figure 3C and 3D 
Figure 3. Response rates and toxicities of phase 1 oncology trials published in 2002 stratified by sponsorship (profit, non-profit, other) 
Panel A. CR+PR  Panel B. Rate of Toxic Deaths  Panel C. Non-hematological Grade 3/4 toxicity Panel D. Hematological Grade 4 
toxicity. Support:  black=drug/device manufacturer, red=not for profit, green=other/not-specified. 



 

 

 

 
Figure 4: Frequency of Novel Design Strategies by Year 
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IPDE:  Studies that allowed intra-patient dose escalation 
Agg:    Studies that used an aggressive titration design 
<3ppd: Studies that used lass than 3 patients per dose in initial dose levels 



 

 

  

Figure 5: Multivariate regression analysis of association 
between FDA approval status and dose escalation strategy with 
outcome of rate of complete response (CR) + partial response 
(PR). 



 

 

 

 



 

Figure 6: Multivariate Regression Analysis of association 
of FDA approval status and dose escalation strategy with 
rate of complete response (CR), partial response (PR) and 
disease stabilization (SD) stratified by minimum patients 
required per dose of either >2 or <3. 
 

 

 

 

 

 

 

 

 

 

 

 

  

 



 

 

 

APPENDIX:  Search Criteria for Parts 1 and 2 

 

PART 1:  The Medline database was searched to identify Phase I clinical oncology trials published in 2002.  The search criteria were 

as follows:  neoplasms (mh) NOT (review (pt) OR meta-analysis (pt) OR editorial (pt) OR practice guideline (pt) OR (clinical trial, 

Phase ii (pt) NOT clinical trial, Phase i (pt)) OR radiotherapy (mh)) AND (clinical trial, Phase i (pt) OR "Phase i") AND (drug therapy 

(mh) OR antineoplastic agents (mh) OR drug evaluation (mh) OR cancer vaccines (mh) OR adjuvants, immunologic (mh) OR signal 

transduction (mh) OR angiogenesis inhibitors (mh) OR gene expression regulation, neoplastic (mh) OR gene therapy (mh) OR cell 

transplantation). The search was performed on all fields of the database, but was limited to articles that were written in the English 

language and were published in 2002.  Also, the publication type was defined as ‘clinical trials’ and the subset was designated as 

‘cancer.’ 

 

PART 2: The Medline database was searched to identify single agent phase I oncology trials of cytotoxic agents published between 

2002 and 2004.  The search criteria initially included antineoplastic or chemotherapy or cytotoxic and was limited to humans and the 

English language.  The subset was defined as ‘cancer,’ the publication type was designated as ‘clinical trial - phase I’ and the year of 

interest was selected.   
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