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Abstract 

 
Absence epilepsy is a generalized form of epilepsy where spike-wave  

discharges (SWDs) involve both hemispheres of the brain and thereby alter 
consciousness.  Recent evidence by Meeren et al (2002) in the WAG/Rij rat model of 
absence epilepsy points to a cortical focus of SWDs before rapid generalization of the 
SWDs.  This focus belongs in the peri-oral area of the somatosensory cortex, and it was 
found to consistently lead SWDs in other cortical and subcortical areas.  With this recent 
finding, it seems plausible that a defect lies in this focal region of the cortex, leading to 
SWD in the WAG/Rij model.  It is likely that an alteration of one or more ion channels 
leads to seizure generation in this rat model, as ion channels are what produce the 
hyperexcitability of seizures.   
 In this study, our laboratory performed three consecutive days of scalp EEG 
recordings on WAG/Rij animals at different ages and compared this to control rat EEGs.  
As has been found before, we saw an increase in time spent in SWDs as the WAG/Rij 
animals aged.  After completing EEG recordings, the animals were sacrificed and 
quantitative PCR and immunocytochemistry was performed on six regions of the cortex.  
In comparison to control animals, WAG/Rij rats had an increase in sodium channel 
subunits Nav1.1 and Nav1.6 in the region corresponding to the seizure focus identified by 
Meeren et al.  In addition, as WAG/Rij rats aged, the amount of Nav1.1 and Nav1.6 also 
steadily increased in the peri-oral region of the somatosensory cortex.  These findings 
suggest that specific sodium channelopathies may initiate SWD generation in this rodent 
model. 
 The results of our study have many implications.  Perhaps many, if not all, forms 
of human absence epilepsy are rooted in ion channelopathies which could be limited to 
specific regions of the brain.  If this is so, and if the specific channelopathies are 
identified, it is also possible that very targeted therapies could be devised – either 
medically or surgically – to treat both “benign” and refractory absence epilepsies.   

Future studies are needed to determine whether the sodium channel dysregulation 
found in this rodent model is the cause or effect of SWDs and whether other 
channelopathies or dysregulation of channels exists.  Our lab is currently looking at what 
effects ethosuximide, an anti-absence drug, has on sodium channel composition in the 
cortex of the WAG/Rij rat.           
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I. Introduction 

 History of Epilepsy 

 Throughout history and in different cultures, epilepsy has undergone many 

different interpretations and understandings.  Epilepsy can cause marked behavioral 

changes in an individual that can rouse panic and fear in those who witness a seizure.  In 

the book The Spirit Catches You and You Fall Down, the Hmong parents interpret Lia’s 

epileptic seizures as a loss of the spirit causing young Lia to “fall down” (Fadiman, 

1997).  This supernatural interpretation contrasts with the neurologic one proposed by 

modern medicine and by the American doctors of young Lia.   

 Descriptions of epilepsy are found as early as 2500 years ago, where references to 

the affliction are found in Babylonian texts (Wilson, et al 1990).  Supernatural and 

magical interpretations of epilepsy persisted in Roman times, and later in the Middle 

Ages where these cultures branded epilepsy as a magical, mystical experience (Wyllie, 

1993).  Hughlings Jackson began the modern thinking on epilepsy with his 1861 

description of the generation and spread of seizures from a grey matter focus in the brain.  

 

Seizures and Epilepsy 

A seizure causes a sudden change in behavior as a result of hyper-synchronization 

of neuronal networks in the central nervous system (Chang and Lowenstein, 2003).  A 

seizure and epilepsy are not synonymous.  A seizure is an isolated event.  Epilepsy is the 

condition when an individual develops recurrent seizures. 

Patients develop seizures for multiple reasons.  Metabolic abnormalities (e.g. 

hypocalcemia) and drugs (e.g. alcohol) can trigger seizures  In addition, systemic 
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diseases (e.g. hypertensive or hepatic encephalopathy) and CNS insults (e.g. trauma or 

stroke) may also cause seizures (Aminoff, 2001;  Kotagal and Luders, 1999).   

Whether the above causes of seizures lead to epilepsy depends on whether the 

insult causes a permanent change in the brain, creating a preponderance for future 

seizures.  In addition to the insults listed above, congenital causes (e.g. ion 

channelopathies or structural brain defects) are possible causes of epilepsy.   

 

Seizure Classification

A wide variety of seizures can occur in an epileptic patient.  There are two main 

categories of seizure:  partial and generalized.   

Partial seizures are limited to specific networks or regions of the brain, most often 

localized to one side of the brain.  Partial seizures are subdivided into three different 

classes:  simple partial seizures, complex partial seizures, and partial seizures evolving to 

secondarily generalized seizures.  Simple partial seizures do not involve impairment of 

consciousness, whereas complex partial seizures do.  Impairment of consciousness here is 

defined as an impairment of memory and/or the development of disorientation during a 

seizure.  Some partial seizures secondarily generalize, i.e. they begin in one region of the 

brain but subsequently spread to the entire brain.   

 Generalized seizures involve both hemispheres of the brain.  However it is 

becoming clear that in many generalized seizures, only certain neuronal networks are 

involved (Blumenfeld, 2003).  There are many different types of generalized seizures, 

including absence (petit mal), tonic-clonic (grand mal), tonic, myoclonic, atonic seizures, 

and others (Rosenberg, 2003). 
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 Absence Epilepsy 

 The International League Against Epilepsy (ILAE) has classified the different 

human generalized epilepsies as shown in Error! Reference source not found. 

(Commission on Classification and Terminology of the International League Against 

Epilepsy, 1981 and 1989).  

• Tonic-clonic seizures (includes variations beginning with a 
clonic or myoclonic phase)  

• Clonic seizures  
o Without tonic features 
o With tonic features  

• Typical absence seizures  
o Childhood absence epilepsy 
o Juvenile absence epilepsy 
o Juvenile Myoclonic Epilepsy 
o Myoclonic Absence Epilepsy 

• Atypical absence seizures  
• Myoclonic absence seizures  
• Tonic seizures  
• Spasms  
• Myoclonic seizures  
• Massive bilateral myoclonus  
• Eyelid myoclonia 

o Without absences  
o With absences  

• Myoclonic atonic seizures  
• Negative myoclonus  
• Atonic seizures  
• Reflex seizures in generalized epilepsy syndromes 
• Seizures of the posterior neocortex 
• Neocortical temporal lobe seizures 

Table 1:  Generalized Epilepsies (From:  Panayiotopoulos, 2004) 
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In this study, we will focus on a rat model of typical absence seizures in humans, 

as the rat model that we have chosen most closely resembles typical absences.  By 

definition, typical absence seizures are generalized epileptic seizures with a sudden onset 

and sudden termination (Panayiotopoulos, 2004).  In humans, the EEG shows 2.5-4 Hz 

spike-wave discharges and patients experience impairment of consciousness.      

 The impairment of consciousness in typical absence seizures ranges from 

inconspicuous to severe (Commission on Classification and Terminology of the 

International League Against Epilepsy, 1981 and 1989).  Impairment of consciousness 

usually manifests itself with a blank stare and cessation of activity, but without loss of 

muscle tone.  Classically, an individual will stop speaking in mid-sentence or stop a 

certain activity, only to resume the activity once the seizure is over.  External stimulation 

can sometimes abort the seizure.  While impairment of consciousness may be the only 

clinical manifestation of typical absence seizures, impairment of consciousness is often 

accompanied by other clinical features.  Automatisms of the eyes or mouth frequently 

occur.  Some patients also experience either localized or widespread myoclonic jerks.  In 

addition, some patients have atonic or tonic components, and some have autonomic 

manifestations (e.g. pallor or dilated pupils).  Absences may be the only seizure type in 

an epileptic patient (e.g. in many cases of childhood absence epilepsy), or they may 

simply be one of a host of seizure types that the patient experiences (e.g. in juvenile 

absence epilepsy:  absence seizures, myoclonic jerks, and generalized tonic-clonic 

seizures often all coexist).   
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The ILAE currently identifies four types of absence epilepsy syndromes in which 

typical absence seizures occur (Engel, 2001):  childhood absence epilepsy (CAE), 

juvenile absence epilepsy (JAE), juvenile myoclonic epilepsy (JME), and myoclonic 

absence epilepsy (MAE).   

 

 

 

 

Figure 1:  The four epileptic syndromes with typical absences – (1) childhood absence 
epilepsy, (2) juvenile absence epilepsy, (3) juvenile myoclonic epilepsy, and (4) myoclonic 
absence epilepsy. (From Engel and Pedley, 1997) 
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Each of the four typical absence epilepsy syndromes have different clinico-EEG 

characteristics.  The EEG patterns are shown in Figure 1.  For example, in childhood 

absence epilepsy, seizures usually begin between the ages of three and eight years of age, 

patients experience multiple seizures (up to 200) per day, and seizures are not triggered 

by sensory or visual stimuli (Crunelli and Leresche, 2002).  Table 2 lists the typical 

features of CAE.  The majority of patients with CAE (70%) have remission of their 

seizures around the time of puberty.  Many of those patients with CAE who do not 

undergo remission of their epilepsy have generalized tonic-clonic seizures.  The other 

typical absence syndromes differ from CAE in their clinical presentation, EEG 

characteristics, and prognosis.        

 

 
 
 

Table 2:  Clinical and EEG Characterisitcs of Childhood Absence Epilepsy (Table from: Crunelli and 
Leresche, 2003) 

The prognosis and complications of the four typical absence epilepsy syndromes 

differ (Panayiotopoulos, 2004). Childhood absence epilepsy usually remits within 2 to 5 

years from onset.  The other three syndromes usually have a life-long risk of absences, 

myoclonic jerks, and generalized tonic-clonic seizures, and therefore these patients 
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usually require life-long medical treament.  Though the response to treatment in this latter 

group is often quite good, 10-20% do not achieve control of their seizures.  

Typical absences are quite heterogeneous and are by no means uniform in terms 

of clinico-EEG characteristics (Futatsugi, 1998).  Typical absences are only labeled 

“typical” to contrast them from atypical absences.  Atypical absences occur mainly in the 

context of severe symptomatic epilepsies of children with learning difficulties who also 

suffer from frequent seizures of other types (e.g. atonic or tonic seizures).  Atypical 

absences also do not have the abrupt onset and extinction of seizures that typical absences 

do.  Changes in tone are more pronounced in atypical absences.  Finally, the ictal EEG of 

atypical absence seizures is generally slower than typical absence seizures, with a 

frequency less than 2.5 Hz SWDs.  These slower discharges are often heterogeneous, 

asymmetrical, and may include irregular complexes.  

 

Ion Channels and Epilepsy 

 Genetic studies have shown that many different channels, from GABA to Ca2+ to 

Na+ channels, are possibly defective or are dysregulated in epileptic brains (Crunelli and 

Leresche, 2003; Futatsugi and Riviello, 1998).  As noted above, there are many different 

types of human absence epilepsy, each with different clinical presentations.  This may 

indicate that defects in several ion channels could produce absence in different forms, 

and/or each ion channel can have multiple defects that create different clinical 

presentations.   

 Our study will look at several subtypes of the Na+ channel in a rodent model of 

absence epilepsy.  The sodium channel is made up of two subunits, α and β.  The α 
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subunit is approximately 260 kDa and contains four homologous domains named I-IV as 

shown in Figure 2.  Within each of these domains I-IV, there are 6 transmembrane 

segments, S1-S6.  The α subunit is the pore-forming portion of the sodium channel, 

through which the sodium ion traverses the cell.  The α subunit is associated with the β 

subunits by either non-covalent bonds or covalent, disulfide linkages (Goldin, 2001).  

Although the α subunit can function without the β subunits, it is the β subunits that 

regulate the kinetics and voltage dependence of the channel.           

 

 
 
 
 
 

Figure 2:  α subunit of the Na+ channel, with the four (I-IV) homologous domains and six (S1-S6) 
transmembrane segments.  β-subunits not shown.  (Figure from:  Goldin, 2002)

A sodium-channel nomenclature has been established.  The prefix Nav indicates 

the principle ion that crosses the channel, in this case, Na+.  The subscript ‘v’ indicates 

that the principle regulator of channel function is voltage.  Another type of channel, Nax, 

exists.  This channel is not thought to be voltage gated, but since it is not functionally 

expressed, it is not completely known.  A number following the subscript indicates the 
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gene subfamily, and the number following the decimal point indicates the specific 

channel isoform, e.g. Nav1.3 (Goldin, 2000).     

Table 3 lists each Nav isoform’s tissue distribution, e.g. Nav1.1 is found only in 

the CNS.  Moreover, each isoform probably has its own unique distribution within the 

tissue(s) it is expressed.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3:  Human Sodium Channel Subunits (Goldin, 2000) 
Channel Name Tissue found in

Nav1.1 CNS 
Nav1.2 CNS 
Nav1.3 CNS 
Nav1.4 Skeletal muscle 
Nav1.5 Skeletal muscle, heart 
Nav1.6 CNS, PNS 
Nav1.7 PNS, Schwann cells 
Nav1.8 DRG 
Nav1.9 PNS 

Nax Heart, uterus, skel. Muscle, astrocytes, DRG 
  
CNS, central nervous system; PNS, peripheral nervous system; DRG, dorsal root 
ganglion. 

 

Each sodium channel isoform has distinctive properties.  For example, Nav1.1 

mediates mainly a transient current, while Nav 1.6 mediates a persistent current (Vega-

Saenz de Miera, 1997).  The combination of sodium channels with different distributions 

in each tissue gives each tissue its electrogenic properties. 

In animal models, it has been shown that the number of specific types of sodium 

channel mRNAs increase following induced seizures.  Kainate-induced seizures in rats 

produced an increase in two types of sodium channel mRNA and an increase in the β2 

subunit mRNA, suggesting that kainate induces seizures by somehow altering sodium 
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channel compositions (Bartolomei et al, 1997; Gastaldi, 1998).  In an electrically-induced 

status epilepticus animal model, it was shown that certain sodium channel subtypes 

increased compared to controls (Aronica et al, 2001).   

 In humans, several sodium channel gene mutations have been identified that lead 

to different forms of epilepsy (Turnbull et al., 2005).  Turnbull et al. notes three sodium 

channel mutations that have been identified in human epilepsy.  The first is a mutation in 

the sodium channel gene SCN2A.  This mutation is linked with benign familial neonatal 

and infantile seizures (BFNIS) and generalized epilepsy with febrile seizures plus 

(GEFS+). 

 

Figure 3:  A.  Missense Mutations identified in families with generalized febrile seizures+ 
(GEFS+) in SCN1A and SCN1B.  B.  de novo SMEI Truncation Mutations in SCN1A (From 
Turnbull 2005). 
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Mutations in SCN1B and SCN1A have been linked with GEFS+, and mutations 

in SCN1A are also linked with severe myoclonic epilepsy of infancy (SMEI).  SMEI is 

an early-onset syndrome which is also marked by intellectual deterioration.  SMEI 

demonstrates how many mutations of a channel can cause a spectrum of disease, as 

seems to be the case in absence epilepsy.  For SMEI, 200 independent mutations in 

individuals have been identified in SCN1A (see Figure 3), with more than 90% of these 

cases being sporadic mutations.  Since there are so many different mutations causing 

SMEI, it is no surprise that there is a spectrum of disease, from moderate to severe 

symptoms.  As for SCN1B, two mutations in the β-1 subunit (as mentioned above, the β-

subunit regulates the kinetics of the Na+ channel) have been identified, which is thought 

to delay sodium channel inactivation.  With time, more mutations in sodium channels as 

well as in other ion channels and other non-ion channel genes will be found.  It is 

certainly becoming clear that in most instances of epilepsy, the genetics is complex, often 

involving many different ion channelopathies.  

The importance of sodium channels in epilepsy is further highlighted by the use 

of anti-epileptic drugs like ethosuximide that are thought to act, to some extent, on the 

sodium currents in the brain.  This is discussed below in the section “Ethosuximide and 

Absence Epilepsy”.   

 

Absence epilepsy genetics and ion channelopathy 

Absence epilepsy seems to be a genetic condition where no apparent insult is 

necessary for seizures to begin and where the disease tends to exist within certain 

families.  In most cases, absence epilepsy has a complex inheritance pattern.  One study 

   11



looked at 55 families with idiopathic generalized epilepsy (IGE), where IGE includes 

four different types of epilepsy:  childhood absence epilepsy (CAE), juvenile absence 

epilepsy (JAE), juvenile myoclonic epilepsy (JME), and idiopathic generalized epilepsy 

with tonic-clonic seizures (IGE-TCS) (Marini et al, 2004).  The study found that of the 55  

families with IGE probands, 34% of the probands had concordance with first-degree 

relatives and 14% had concordance with second-degree relatives.   

Crunelli and Leresche (2002) have summarized many of the genetic studies of 

IGE that have been performed both in humans and in rodents.  An excerpt of their review 

is shown in Table 4.  As of that publication, only two single point-mutations – in GABAA 

and a voltage-gated Ca2+ channel subunit (CACNA1A) – had been associated with CAE 

(Wallace RH et al, 2001; Jouvenceau A et al., 2001).  Perhaps this is not a surprise, as 

 

Table 4 :  Various Linkage and Genome Scan Studies of Idiopathic 
Generalized Epilepsies (from Crunelli and Leresche, 2002) 

Linked gene or 
association Protein Subjects Phenotype Reference 

GABRB3 
GABA A receptor 

B3 subunit 50 probands 

40 CAE only, 10 
with infrequent 

GTCS 
Feucht M et al. 

(1999) 

OPRM1 
µ-Opiod receptor 

type 1 72 probands 26 CAE, 46 JAE 
Sander T et al. 

(2000) 

CHRNA4 nAChR α4 subunit 
108 

probands IGE 
Steinlein et al. 

(1997) 

KCNQ2 
Voltage-gated K+ 

channel Q2 
115 

probands 
44 CAE or JAE; 

71 JME 
Steinlein et al. 

(1999) 

CACN1A1 

Voltage-gated 
Ca2+ channel α1A-

subunit 55 families 
42 CAE or JAE; 

26 JME 
Sander T et al. 

(1998) 

SCN1A 
Voltage-gated Na+ 
channel α1 subunit 165 families 

83 CAE or JAE; 
72 JME; 4 GTCS 

Escayg et al. 
(2001) 

     
CAE = Childhood absence epilepsy; JAE = Juvenile absence epilepsy; JME = Juvenile myoclonic 
epilepsy; GTCS = Generalized tonic-clonic seizures; IGE = Idiopathic Generalized Epilepsy 
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 most of the patients with IGE probably have multiple genetic “hits” in one or many types 

of channels rather than a single-point mutation.  

Absence epilepsy is confined to certain networks  

 Absence seizures have characteristic, bilateral spike-and-wave discharges.  As a 

result, absence seizures are considered “generalized”.  However, evidence demonstrates 

that although much of the brain is involved, only certain networks of the brain are 

affected.   

 Human EEG recordings of absence seizures reveal a frontal predominance to the 

seizures (Rodin and Ancheta, 1987).  In the WAG/Rij rat model, anesthetized rats were 

found to have focal increases in BOLD fMRI signal in anterior brain regions during 

spike-wave discharges that correspond to a frontal EEG predominance (Nersesyan et al, 

2002). 

 Further, it seems that absence seizures occur along the same thalamocortical 

network as do normal sleep spindle oscillations.  Depth recordings in humans revealed 

highly synchronized oscillations within the thalamocortical network (Williams, 1953).  

Figure 4 shows the classical view of how absence seizures are generated, where the 

discharges originate from thalamocortical neurons (TC) and quickly generalize to the 

cortex.  As is discussed below, it is now believed that (at least in some types of absence 

epilepsy) the seizures originate in the cortex and spread to the thalamus from there.     
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Figure 4:  The classic view of absence seizure pathophysiology from Manning et 
al (2003).  Activation of low-voltage Ca2+ (1) current in the thalamocortical (TC) 
neurons potentiates a burst of action potentials (2) in the reticular thalamic nuclei 
(RTN), leading to a high-frequency spontaneous burst of action potentials.  
Consequently, GABA is released (3) on TC neurons, (4) leading to further 
excitation via glutamate of RTN as well as the peri-oral region of the 
somatosensory cortex (S1po), as well as the forelimb (S1fl) and hindlimb (S1hl) 
regions of the somatosensory cortex.  New evidence by Meeren et. al (2002) 
suggests that the initial discharge potentiating the SWD occurs in the cortex at the 
somatosensory cortex, leading to a spread to the thalamus and other regions of the 
cortex.         
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In vitro work on ferret lateral geniculate nuclei slices were performed to show 

how spindle waves and spike-wave discharges are generated (Blumenfeld and 

McCormick, 2000).  If a single shock was given to simulate normal cortical firing, the 

result was 6-10 Hz spindle wave oscillations seen during normal sleep.  However if a 

burst of shocks were applied to simulate increased cortical firing, the result was slower 3-

4 Hz absence-like oscillations in this thalamocortical network.  Therefore a laboratory 

induced over-excitation of this network produced the electrophysiologic equivalent of an 

absence seizure.  It seems then that an in vivo overexcitation of the same network could 

produce spontaneous absence seizures.  As discussed in the previous section, a 

dysregulation or dysfunction of ion channels can predispose an individual to increased 

burst firing in the cortex or thalamus, leading to 3-4 Hz spike-wave discharges.   

  In addition to the finding that absence seizures spare certain areas of the brain, 

recent evidence demonstrates that absence seizures may in addition have a focus that 

secondarily generalizes (Meeren et al, 2002).  In the WAG/Rij rat, one rodent model of 

absence epilepsy, a consistent cortical focus was found within the peri-oral region of the 

somatosensory cortex.  This cortical focus consistently preceded the thalamus and other 

cortical areas during the first 500 milliseconds of each spike-wave discharge.  As 

illustrated in Figure 5, this initial SWD was then found to rapidly generalize to both 

hemispheres.   
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Figure 5:  A. WAG/Rij animals found to have a  cortical focus to  their absence seizures, located in peri-
oral region of somatosensory cortex.  Arrows point to lagging sites.  Thickness of arrow represents 
strength of association.  B.  Association between SWDs in cortex and thalamus during first 500 msec. of 
absence seizures in WAG/Rij animals.  Arrows point to lagging sites.  SmI = Somatosensory cortex;  
Thalamic nuclei:   VPL = Ventroposterior lateral nucleus, VPM = Ventroposterior medial nucleus, LD = 
Laterodorsal nucleus (Figures from:  Meeren et al, 2002)    

 
A.     B. 

             
 
 

 

 

 

Animal Models of Absence Epilepsy 

Table 5 lists many of the rodent models of absence epilepsy.  Other models of 

absence epilepsy exist involving other species, as well as models in which absence 

epilepsy is induced by pharmacologic or other means (Danober, 1998).  All of these 

animal models have both similarities and differences with human absence epilepsy.  Our 

study will look at the mechanisms underlying the generation of absence seizures in the 

WAG/Rij rat model.  WAG/Rij animals were derived by breeding a subset of normal 

Wistar rats that had been incidentally found to have SWDs on EEG. 

WAG/Rij animals and humans with absence epilepsy share many things in 

common.  WAG/Rij rats have “staring spells” and minor oro-facial movements during 

spontaneous SWDs on EEG.  During these subtle motor events, the animals are otherwise 

immobile.  Similar to humans, approximately 80% of the WAG/Rij SWDs occur during 
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quiet wakefulness or during slow-wave sleep (Drinkenberg et al, 1991).  During the other 

20% of seizures, the rats are usually actively awake or in deep slow-wave sleep.  

WAG/Rij animals have no other obvious clinical abnormalities in contrast to some of the 

other rodent models (e.g. ataxia in some of the mouse models) listed in Table 5.  The 

SWDs in WAG/Rij animals are effectively treated with ethosuximide and other absence 

drugs commonly used in humans (Coenen and van Luijtelaar, 2003).  As with humans, 

WAG/Rij animals have a circadian pattern to their absence seizures and the SWDs are 

also aggravated by sleep deprivation (Burr et al, 1991; Drinkenburg et al, 1995).  

There are also differences between the WAG/Rij model and human absence 

epilepsy.  In human absence, SWDs are 3-4 Hz, while in WAG/Rij animals the SWDs are 

faster at 7-11 Hz.  In humans, absence epilepsy most often begins and remits before 

puberty.  This compares to the WAG/Rij model, where SWDs most commonly begin 

after puberty and increase in both duration and frequency until the rat dies (Coenen and 

van Luijtelaar, 2003).  The absence epilepsies that do persistent into adulthood – JAE, 

JME, and MAE – often have other seizures along with SWDs, which is not completely 

consistent with the WAG/Rij model either.  Perhaps there is no fully analogous animal 

model to typical absence epilepsy, the most common being CAE.     

 More is known about animal SWDs versus human SWDs, as depth EEG 

recordings cannot be warranted in young children with benign absence seizures.  In the 

WAG/Rij rat model, SWDs are bilaterally symmetric and generalize over the entire 

cortex, albeit with a frontal predominance (Coenen and van Luijtelaar, 2003).  WAG/Rij 

seizures have recently been found to originate from a focus in the peri-oral region of the 

somatosensory cortex as depicted in Figure 5 (Meeren et al, 2002).    
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Although some of the mice models listed in Table 5 have SWDs more similar to 

the 3-4 Hz of humans, most of these mice have other behavioral abnormalities not seen in 

the human form.  Therefore the WAG/Rij and GAERS rat models are perhaps the best 

clinico-EEG correlates to human absence epilepsy. 

Table 5:  Rat and mouse models of absence epilepsy (Table from:  Crunelli and 
Leresche, 2002)  

Model
SWD 

frequency and 
duration

Age at onset of 
seizures

Neuropathological 
and behavioral 
abnormalities

Chromosome and 
gene/protein

GAERS rat 7-11 Hz; 0.5-
75 sec 

>30 days (100% at 
4 months) Astrocytic alterations  

WAG/Rij rat 7-11 Hz; 1-45 
sec >75 days   

HVS rat 
Fisher 344 

Brown Norway 

 
7 Hz 

8 Hz (not 
females) 

 
 

Myoclonic 
movements 

  

Tottering mouse 6-7 Hz; 0.3-10 
sec >30 days 

Increased 
noradrenergic 
innervation; 
cerebellar 

degeneration; 
moderate/severe 

ataxia; dystonia; rare 
tonic-clonic 
movements 

Chromosome 9; 
P/Q Ca2+ channel 

α1 subunit 

Lethargic mouse 5-6 Hz; 0.6-5 
sec >3 weeks 

Ataxia and loss of 
motor coordination; 

focal myoclonus 

Chromosome 2; 
Ca2+ channel β4 

subunit 

Stargazer mouse 

6 Hz; longer 
than in 

tottering and 
lethargic 

>2 weeks Ataxia; impaired 
vestibular function 

Chromosome 15; 
Ca2+ channel g2 

subunit (stargazin) 

Mocha2j mouse 6 Hz  Hyperactivity 
Chromosome 10; 

adaptor-like protein 
complex (AP-3) 

Slow-wave-
epilepsy mouse 3-4.5 Hz Depends on genetic 

background 

Ataxia; tonic-clonic 
seizures; 

neurodegeneration 

Chromosome 4; 
Na+/H+ exchanger 

(Nhe1) 

Ducky mouse 6 Hz  Ataxia; paroxysmal 
dyskinesia Chromosome 9 
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Ethosuximide and Absence Epilepsy

Both ethosuximide and valproate stop SWDs in human absence epilepsy as well 

as in the WAG/Rij and GAERS rat models of absence epilepsy (Manning et al, 2003).  

The mechanisms of action of anti-absence drugs ethosuximide and valproate have been 

elucidated for the most part.  An understanding of these drugs’ mechanisms helps us 

better understand the pathogenesis of absence epilepsy.   

The anti-absence drug valproate has been shown to increase levels of GABA in 

specific regions of the brain.  However it is unlikely that this is the mechanism by which 

valproate suppresses absence seizures, as GABA agonists more often exacerbate absence 

epilepsy.  Instead, valproate’s main effect is probably in its ability to inhibit voltage-

gated sodium channels (Manning et. al 2003).  In contrast to ethosuximide, valproate has 

been shown to have no effect on calcium currents in thalamic neurons (Coulter et al, 

1989). 

It has been postulated that ethosuximide controls absence seizures by reducing 

calcium currents via T-type calcium channels in the thalamus (Coulter DA et al., 1989).  

Ethosuximide has also been shown to suppress the persistent sodium current (INaP) and 

sustained Ca2+-activated potassium currents (IK(Ca)) which may also contribute to 

ethosuximide’s anti-absence properties (Crunelli and Leresche, 2002;  Leresche et al., 

1998).     

Although it was once thought that ethosuximide’s main action was suppression of 

the aforementioned T-type calcium channels in the thalamus, recent evidence suggests 

that ethosuximide’s main action is in the cortex.  As mentioned earlier, Meeren et al. 

(2002) identified a seizure focus in the WAG/Rij animal corresponding to this 
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somatosensory cortex.  Further, ethosuxmide infused into thalamic nuclei of WAG/Rij 

rats did not fully suppress absence seizures (Richards et al, 2003), whereas bilateral 

infusion of ethosuximide in the somatosensory cortices fully suppressed seizure 

generation in GAERS animals (Manning et al., 2003).   

Some have suggested that ethosuximide and valproate suppress absence seizures 

by blunting the persistent Na+ current (INaP).  INaP is a slowly inactivating and 

depolarizing current.  Since INaP activates near firing threshold, increased activation of 

this channel can lead to neuronal hyper-excitability and thus seizure activity.  However in 

vitro experiments of whole-cell patch-clamp recordings on thin rat hippocampal slices (in 

CA1 pyramidal neurons) have shown that ethosuximide only mildy reduces INaP while 

valproate has no effect at all (Niespodziany et al., 2004).  This study only looked at INaP 

in hippocampal neurons, while it seems the region of interest is in the cortex, and further 

investigations at the persistent current in this region are warranted (Sue, 2001).   

Now that we know that the WAG/Rij animals’ seizures originate from the peri-

oral region of the somatosensory cortex, the next question is:  Why does ethosuximide 

infused into the cortex prevent SWDs?  Is there a specific channelopathy in the WAG/Rij 

rat that is to blame for this animal’s pathology?    

  

II. Hypothesis 

In the human brain, ion channels are responsible for both normal and abnormal 

electrical activity.  Several single-channel defects have been identified as the likely cause 

of absence epilepsy, and many other ion channel defects have been linked to either 

individuals or families with absence seizures (Crunelli and Leresche, 2002).  It seems 
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plausible that multiple defects of multiple ion channels can cause the many 

manifestations of absence epilepsy, and although some individuals may have a single 

channelopathy leading to epilepsy, it is more likely that individuals will have multiple 

“hits” that result in their epilepsy.  Perhaps someday, individuals with absence epilepsy 

will be identified by their specific ion channelopathies and/or channel dysregulation and 

will be treated with targeted agents.   

Recent evidence in the WAG/Rij rat – one rodent model of absence epilepsy – 

reveals that spike-wave discharges (SWDs) consistently begin in the peri-oral region of 

the somatosensory cortex and rapidly generalize to involve both hemispheres as well as 

subcortical structures.  Our hypothesis is that either defective or abnormally regulated ion 

channels in the somatosensory cortex are the cause of SWDs in the WAG/Rij rat.  

Because one of the major central nervous system ion channels is the sodium channel, we 

will look at 3 subunits of sodium channels that are plentiful in the CNS of both humans 

and rats – Nav1.1, Nav1.2, and Nav1.6 – to see if their expression is altered in the cortices 

of WAG/Rij versus control animals.      

 

III. Methods 

Animals 

The epileptic WAG/Rij rats were compared to the age-matched Wistar control 

animals.  The details of the WAG/Rij animals are included in the Introduction.  The 

WAG/Rij animals were originally bred at the Radiobiological Institute, TNO in Rijswijk 

(Reinhold, 1966) and a colony of WAG/Rij rats has been maintained at Yale University 

for the past 40 years.  The Wistar rats were obtained from the Charles River Laboratories 
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in Wilmington, MA.  The animals were housed in an animal facility, kept on a 12 hour 

light/dark cycle with unlimited access to food and water in accordance with the NIH 

guidelines for the care and use of laboratory animals.  Animal protocols were approved 

by the Yale University Institutional Animal Care and Use Committee.     

In all, 25 animals were used in this study.  As shown in Table 6, 18 of the animals 

were used for quantitative PCR of sodium channel subunits and 7 were used for 

immunocytochemistry.  In addition to these 25 animals, two 18-month old WAG/Rij 

animals had EEG data recorded, but because no age-matched controls were available, no 

PCR or immunocytochemistry was performed on these animals.  

 
Table 6:  Animals used in this study 

  # of animals # of animals 
Animal Age for PCR for immunocytochemistry 
WAG/Rij 2 month 2  
(epileptic) 4 month 3 4 

 6 month 4  
    

Wistar 2 month 2  
(control) 4 month 3 3 

 6 month 4  
    
 Total 18 7 

 
 

Electrode Placement 

 I performed all of the following electrode placements and subsequent EEG 

recordings, as well as the data analysis. 

Fully awake animals were weighed and then anaesthetized with 4 MAC halothane 

for ~4 minutes until the animal became unresponsive to footpinch.  The animal was then 

deeply anaesthetized with an intramuscular cocktail of ketamine (100 mg/kg), xylazine 

(5.2 mg/kg), and acepromazine (1.0 mg/kg) and placed in a stereotactic frame (David 
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Kopf Instruments, Tujunga, CA).  During the procedure, the level of anesthesia was 

monitored by respirations, heart rate, skin perfusion, and response to foot pinch.  If the rat 

began responding to foot-pinch, 0.02 cc’s of IM anesthetic cocktail was administered.   

 Once placed in the stereotactic frame, the scalp was shaved and a mid-line 

incision was made over the skull.  Bleeding was controlled with electrocautery.   Burr 

holes were made in 3 locations as shown in Figure 6, with care taken not to disturb the 

dura.  1.60-mm stainless steel screws (Plastics One) were partly screwed into these burr 

holes, a tripolar electrode was attached to the three screws, and then the screws were 

completely fastened to the skull.  Dental acrylic (Lang Dental Mfg, Wheeling, IL) was 

used to secure the electrode apparatus.   

 
  

Figure 6:  Looking from above at rat head.  Incision made at midline in anterior to 
posterior direction.  Screws were placed relative to bregma at: (1) AP +2.0 mm, 
ML +2.0 mm, (2) AP -6.0 mm, ML +2.0 mm, and (3) a ground screw was placed  
behind lambda.  

Anterior 

Posterior 

Bregma 

Lambda 

3 burr 
holes 
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EEG Recording 

After a one-week recovery period, EEG recordings were performed on awake-

behaving rats, 2 hours/day over a 3-day period.  Recordings took place between 10am-

4pm each day.  EEG signals were amplified with a Grass CP 511 unit (Grass-Telefactor, 

Astro Med) with band pass filter settings of 1-100 Hz.  A CED Power 1401 digitized the 

EEG signals, and EEG was stored and analyzed using Spike 2 software (Cambridge 

Electronic Design, Cambridge, UK).           

 SWDs were defined as large-amplitude (>400µV peak-to-peak) rhythmic 7-11 Hz 

discharges with spike-wave morphology lasting >0.5 seconds.  After recording, each 

WAG/Rij and Wistar animal’s 3 recordings were analyzed for # of SWDs and % time in 

SWD.   

RNA extraction and cDNA synthesis 
 

The following methods for RNA extraction and cDNA synthesis, quantitative 

real-time PCR, immunocytochemistry, and data analysis are from Klein et al (2004). 

Rats were deeply anaesthetized with CO2, decapitated, and brains were quickly 

removed.  Twelve plugs of tissue, each measuring approximately 1 mm3 were dissected 

from the left and right cortex of each rat using iridectomy scissors.  For each hemisphere, 

three plugs at AP +3, 0, −6 and ML +6 mm, and three plugs at AP +3, 0, −6 and ML +2 

mm were taken (see Figure 9 inset).  Tissue plugs included all six layers of cortex but did 

not extend into subcortical tissue.  Tissue was immediately frozen in dry ice and stored at 

−80 °C until use. 
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Total RNA from brain tissue was extracted using RNeasy mini-columns (Qiagen).  

The purified RNA was treated with RNase-free DNase-I (Roche) and re-purified using an 

RNeasy mini-column (Qiagen). RNA was then eluted in 50 μl of water.  First-strand 

cDNA was reverse transcribed in a final volume of 50 μl using 5 μl purified total RNA, 1 

mM random hexamer primer (Roche), 40 U SuperScript II reverse transcriptase (Life 

Technologies), and 40 U of RNase inhibitor (Roche).  The buffer consisted of (in mM): 

50 Tris–HCl (pH 8.3), 75 KCl, 3 MgCl2, 10 DTT, and 5 dNTP.  The reaction proceeded 

at 37 °C for 90 min and 42 °C for 30 min, and was then terminated by heating to 95 °C 

for 5 min.  A parallel reaction was performed as a negative control to demonstrate the 

absence of contaminating genomic DNA (data not shown) by using all identical reagents 

except for the reverse transcriptase enzyme. 

Quantitative real-time PCR 
 

The relative standard curve method was used to quantify and compare RNA 

extracted from different regions of cortex in epileptic (WAG/Rij) and control (Wistar) 

rats.  An 18S rRNA primer-probe set (Applied Biosystems) was used as an endogenous 

control to normalize the expression level of the sodium channels.  Standard curves for 

18S rRNA and each sodium channel primer/probe set were constructed using serial 

dilutions of control brain cDNA.  Standards and unknowns were amplified in 

quadruplets.  Standard curves for the sodium channel primer/probe sets and endogenous 

control (rRNA) were constructed from respective mean critical threshold (CT) values; the 

equation describing the curve was derived using Sequence Detector software v1.6.3 

(Applied Biosystems). 
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Primers and probes for the sodium channel targets were designed using Primer 

Express software (Applied Biosystems) according to the specifications of the TaqMan 

protocol (Winer et al, 1999).  Sequences are as follows: Nav1.1 forward 5′-

TCCTGGAGGGTGTTTTAGATGC-3′, reverse 5′-

AAAGATTTTCCCAGAAGTCCTGAG-3′, probe FAM-

CTGGGCATTTCTGTCCCTGTTTCGACT-TAMRA; Nav1.2 forward 5′-

CATCAAGTCCCTCCGAACGTTA-3′, reverse 5′-

GGCAGACCAGAAGTACGTTCATT-3′, probe FAM-

CCTTATCCCGATTTGAAGGAATGAGGGTTG-TAMRA; Nav1.6 forward 5′-

AGTAACCCTCCAGAATGGTCCAA-3′, reverse 5′-

GTCTAACCAGTTCCACGGGTCT-3′, probe FAM-

AATCATCGCAAGAGGTTTCTGCATAGACGG-TAMRA.  Target specificity was 

confirmed by nucleotide BLAST search.  Primers and probes for sodium channels were 

synthesized and purified by Applied Biosystems.  Primers for the sodium channels and 

18S rRNA were used at a final concentration of 900 and 50 nM, respectively, whereas the 

probes were used at a final concentration of 200 nM.  The primer-probe combinations 

were not limiting at these concentrations.  Amplification was done in a 25-μl final 

volume, under the following cycling conditions: 10 min at 50 °C and then 40 cycles of 95 

°C, 15 s, followed by 60 °C, 1 min.  An ABI Prism 7700 (Applied Biosystems) was used 

to run the PCR reaction and data was recorded using Sequence Detector v1.6.3.  Sodium 

channels and 18S rRNA templates were amplified in separate wells.  The amount of 

mRNA in different regions of cortex was reported as the ratio of mRNA in the epileptic 

rats divided by mRNA in the control rats. 
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Immunocytochemistry 

Rats were anesthetized with ketamine/xylazine (80/5 mg/kg i.p.) and then 

underwent intracardiac perfusion with 0.01 M PBS followed by a 4% solution of cold 

buffered paraformaldehyde.  Brains from 4-month WAG/Rij and Wistar rats were 

postfixed and cryoprotected in 30% sucrose in 1 M phosphate buffer solution (PBS), and 

coronal sections (10 μm) of the cerebral hemispheres, including all regions studied by 

quantitative PCR, were cut.  Slices were mounted onto slides and incubated in blocking 

solution (5% normal goat serum and 1% BSA in PBS) containing 0.1% Triton X-100 and 

0.02% sodium azide at room temperature for 30 min, then incubated with subtype-

specific antibodies to sodium channel α-subunits Nav1.1 (residues 465–481, 1:100 

dilution, Alomone, Jerusalem), Nav1.2 (residues 467–485, 1:100 dilution, Alomone), 

Nav1.6 (residues 1042–1061, 1:100, Alomone), and a phospho-CREB antibody (1:50, 

Cell Signaling Technology, Beverly, MA) overnight at 4 °C.  Slides were washed in PBS 

and incubated with biotinylated goat anti-rabbit serum (1:1000, Sigma) in blocking 

solution for 3 h, then washed in PBS and incubated in avidin–HRP (1:1000, Sigma) in 

blocking solution for 3 h.  Slides were washed in PBS and exposed to heavy metal 

enhanced 3,3′-diaminobenzidine·4HCl in 1× peroxide substrate buffer (Pierce, Rockford, 

IL) for 7 min. 

Data analysis 

A Nikon Eclipse E800 light microscope was used for sample observation, and 

quantitative microdensitometry of immunostaining signals was obtained using IPLab v3.0 

Image Processing software (Scanalytics., Fairfax, VA).  Signal intensities were 

determined by outlining individual cortical neurons, and IPLab integrated densitometry 
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functions were used to calculate mean signal intensities for the selected areas.  Results 

from identical regions and layers of cortex in WAG/Rij (epileptic) rats were compared to 

Wistar (control) rats processed in parallel and differences were assessed by non-paired t-

tests.  Immunopositivity was quantified by averaging multiple counts within a defined 

area (1.9×104 μm2) within layers II–IV.  For counts of immunopositive neurons, cells that 

displayed a signal of >50% above background were scored as positive. 

For the EEG data in Figure 7 and the quantitative PCR data in Figure 9, 

differences were analyzed using ANOVA with post hoc Fisher's least significant 

difference analysis with Bonferroni adjustment. An alpha level of 0.05 was used as a 

threshold for statistical significance.  

 
IV. Results 

 WAG/Rij vs. control EEG data 

Figure 7, A-D, shows typical 60-second recordings from a Wistar control, 

and two-, four-, and six-month old WAG/Rij animals.  Figure 7-E shows a typical 7-11 

Hz SWD on an expanded timescale.   

In this study, WAG/Rij rats had recordable seizures as early as 2-months of life, 

and the percent time spent in SWD increased with increasing age as shown in Figure 7-F.  

Percent time spent in SWD depends on both the duration of each SWD and the frequency 

of SWDs (number SWDs per minute).  A certain percentage (~15%) of Wistar control 

rats also had seizures.  These epileptic Wistar rats were not used either in EEG recordings 

or in RNA/immunocytochemistry data.  Only those Wistar rats that exhibited no seizures 

clinically and had no SWD on EEG were used as control animals.  
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Age of rat and severity of epilepsy  

Figure 7:  Typical 60-second EEG recordings from (A) a Wistar control, and  (B) 2-month, (C) 4-
month, and (D) 6-month old WAG/Rij animals.  (E) is the magnified spike-wave discharge  shown in 
(D).  (F) shows the Wistar control animals (n=10)  with 0% time in SWD, and  the increase in % time 
in SWD as the WAG/Rij animals increase in age [WAG/Rij at 2 (n=2), 4 (n=6), and 6(n=5) months].  
Data is plotted as mean SWD±S.E, *=p<0.05 where 4 and 6 months were each compared to 2 month 
old animals.

As noted previously, all WAG/Rij rats in this study had more than one seizure 

during the total six hours of recording.  In addition, the percent time spent in SWD 

increased with increasing age as shown in both Figure 7-F (excluding 18-month data) 

and Figure 8. 

 

As shown in Figure 8, the WAG/Rij animals spent 0.11 ± 0.070% (mean ± S.E.) 

of the time in SWDs at 2 months of age, 0.51 ± 0.141% at 4 months, 0.74 ± 0.188% at 6 

months, and 8.1 ± 3.01% at 18 months.  As shown in Figure 7-F, the difference of 

percent time in SWDs between 2- and 4-month, as well as between 2- and 6-month 

WAG/Rij rats, was statistically significant (p<0.05).  The difference between the 4- and 

6-month animals was not statistically significant.       

 

   29



     

Avg. Percent Time Per Sz.

0

2

4

6

8

10

12

Wistar
Control

WAG/Rij 2
mo.

WAG/Rij 4
mo.

WAG/Rij 6
mo.

WAG/Rij
18 mo.

pe
rc

en
t t

im
e 

in
 S

W
D

 
Figure 8:  Percent time spent in SWDs for Wistar control (n=10)  and 2 month 
(n=2), 4 month (n=6), 6 month (n=5) and 18month (n=2) WAG/Rij animals. 

 

 

 
 

With increasing age, both seizure frequency and seizure duration rose.  WAG/Rij 

rats had a seizure frequency of 0.023 ± 0.017 seizures/minute at 2 months of age, 0.19 ± 

0.08 sz/min. at 4 months, 0.14 ± 0.06 sz/min. at 6 months, and 0.68 ± 0.26 sz/min at 18 

months.  Average seizure durations for these WAG/Rij rats were 2.79 ± 1.17 s. at 2 

months of age, 2.61 ± 1.67 s at 4 months, 3.14 ± 1.83 s at 6 months, and 7.30 ± 4.15 s at 

18 months old.   

                

 Sodium Channel mRNA in WAG/Rij rats and Controls 

 Sodium channels Nav1.1, Nav1.2, and Nav1.6 were all found to be present in the 

cortices of both control and epileptic animals.  Nav1.3 was expressed at very low levels in 

both animals while Nav1.8 was not detected in either epileptic or control animals.   
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Figure 9:  Ratio of sodium channel mRNA expression of 6-month old WAG/Rij rats 
compared to control rats.  Figure above graph shows where tissue plugs (A-F) were taken 
for mRNA analysis. Bregma = 0,0 (coronal, transverse).  Statistically significant increases 
(* = p<0.05) of Nav1.1 ( ) and Nav1.6 mRNA ( ), but not Nav1.2 mRNA ( ), at tissue 
plug E (0 in the coronal plane and +6 in the transverse plane).   

  

 
 
 
 

As shown in Figure 9, six tissue plugs labeled A-F were taken from both left and 

right hemispheres of each control and epileptic rat.  Figure 9 demonstrates that both 

Nav1.1 and Nav 1.6 are significantly up-regulated at AP +6 and ML 0 (bregma), roughly 

corresponding to the region of seizure onset in WAG/Rij animals found by Meeren et al 

(2002). 

As WAG/Rij animals age, their levels of Nav 1.1 and Nav 1.6 (at tissue plug E in 

Figure 9) increased as shown in Figure 10.  Nav 1.2 remained stable over the three age 

groups.   
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Figure 10:  Increase in Nav1.1 ( ) and Nav1.6 mRNA ( ), but not Nav1.2 mRNA ( ), 
with increasing age.  Data is plotted as mean ± S.E 

 
 
 
 
  
Sodium Channel Expression in WAG/Rij and Controls 

Figure 11 shows representative cortical slices of both control and WAG/Rij 

animals, immunostained for Nav1.1, Nav1.2, Nav1.6, and phospho-CREB, a marker of 

transcription activation.  Qualitatively, there is an upregulation of both Nav1.1 and 

Nav1.6 in layers II-IV of the cortex at bregma in the coronal plane and +6 in the 

transverse plane.  Other parts of cortex, and other layers within the cortex did not exhibit 

any marked difference in the expression of these sodium channels between control and 

WAG/Rij animals (data not shown).  Also, there was no difference between control and 

WAG/Rij animals in Nav1.2 expression at any location within the cortex sampled.        
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Figure 11:  Coronal sections of cortex at bregma and +6 in the transverse plane.  Sodium channel 
protein Nav1.1, Nav1.2, and Nav1.6 exhibited by immunocytochemistry in different layers of cortex, II-VI, 
for control Wistar and WAG/Rij (*) animals.   Phospho-CREB = a marker of transcription activation.  
wm = white matter.  scale bar = 100µm. 

Figure 12:  Increase in Nav1.1 and Nav1.6 expression in layers II-IV of cortex at ML=0, AP=+6.  E, 
Optical intensity quantification shows increased (* = p<0.05) Nav1.1 and Nav1.6 in epileptic animals 
( ) compared to controls ( ).  F, Quantification of immunopositive neurons in epileptic ( ) and 
control ( ) animals shows a significant increase (* = p<0.05) in the number of neurons/area positive 
for Nav1.1 and Nav1.6. 

This qualitative data demonstrates that Nav1.1 and Nav1.6 are increased in 

epileptic animals.  This data was quantified by optical intensity quantification and 

quantification of immunopositive neurons, shown in Figure 12, E and F.   The increase 
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in Nav1.1 and Nav1.6 in epileptic rats vs. controls was statistically significant both in 

optical intensity and immunopositive staining per unit area.  

 

V. Discussion 

The recent evidence that spike-wave discharges in the WAG/Rij rat model of  

absence epilepsy originate from a single cortical focus (Meeren et al., 2002) suggest that 

a focal cortical defect may be the cause of SWDs in this particular rodent model.  Our 

findings suggest that two voltage-gated sodium channel subunits, Nav1.1 and Nav1.6, are 

upregulated in the WAG/Rij animal vs. control at this cortical electrographic focus.  

Furthermore, immunocytochemistry of the cortex shows an increase in Nav1.1 and Nav1.6 

in cortical layers II-IV.   

 What does the upregulation of Nav1.1 and Nav1.6 imply?  From our study, it is 

unclear whether the increase in Nav1.1 and Nav1.6 in epileptic rats is the cause or effect 

of the WAG/Rij SWDs.  Although it seems plausible that an increase in sodium channels 

in a focal area of the brain could lead to spontaneous SWDs, it is also possible that the 

seizures themselves cause an increase in sodium channels in the peri-oral region of the 

somatosensory cortex.  Further studies of other ion channels in the cortex, as well as 

sodium and other ion channels in subcortical structures, is needed for further insight into 

this question. 

 The next question is:  Does an increase in sodium channels make an animal (or 

human) more susceptible to seizures?  We do know that sodium channels are responsible 

for the initiation and spread of action potentials along a neuron.  Presumably an increased 
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amount of sodium channels could lower the seizure threshold by bringing the membrane 

potential of neurons closer to depolarization.     

 As discussed in the Introduction, many sodium channel mutations have been 

linked with epilepsy syndromes.  In fact, more than 150 mutations in the sodium channel 

gene SCN1A, coding for the protein Nav1.1, have been found in various human epilepsy 

syndromes as of August 2005.  Variants of another sodium channel gene SCN2A, coding 

for the protein Nav1.6, have been linked to human patients with seizures (Meisler and 

Kearney 2005).   

 As noted earlier, the WAG/Rij model does not perfectly mirror human absence 

epilepsy.  Whereas approximately 70% of human absence remits by puberty, SWDs 

persist in WAG/Rij animals.  In fact, as WAG/Rij animals age, the severity of their 

epilepsy worsens.  In our study, older WAG/Rij animals spent a larger percentage of time 

in SWD versus younger animals.  In parallel with this, the older WAG/Rij animals also 

had an increased amount of Nav1.1 and Nav1.6 mRNA at the presumed seizure focus 

versus their younger counterparts (see Figure 10).  This result indicates that increasing 

amounts of Nav1.1 and Nav1.6  in the peri-oral region of the somatosensory cortex 

portend worsening epilepsy, whether because more of these channels lower the seizure 

threshold or because more seizures cause more sodium channels to be present in this area 

of cortex.  

 Immunocytochemistry of cortical slices revealed an upregulation of Nav1.1 and 

Nav1.6 in cortical layers II-IV.  Cortical layers II and III involve mainly cortical-cortical 

connections; layer IV receives inputs from the thalamus (Kandel, Schwartz, and Jessell, 

2000).      

   35



If the dysregulation of sodium channels in the somatosensory cortex is in fact the 

cause of seizure genesis in WAG/Rij rats, it is somewhat surprising that there was no 

dysregulation of Nav1.1 or Nav1.6 in layer VI of the cortex, as it is this layer that sends 

outputs from the cortex to thalamic structures.  This is perhaps evidence against the fact 

that increased Nav1.1 and Nav1.6 are the primary defect leading to SWDs in the WAG/Rij 

rat.  Again, further studies are required to elucidate this, and to see if other ion 

channelopathies are present as well. 

Our lab is currently looking at the effects of ethosuximide on sodium channel 

composition in the cortex.  In this as yet unpublished experiment, there were 15 epileptic 

and 16 control rats.  One-half of the epileptic group were placed on water, while the other 

were given an ethosuximide solution at 300 mg/kg/d starting shortly after birth.  

WAG/Rij animals on ethosuximide had a very low seizure frequency comparable to the 

control animals, while those on water had a much higher seizure frequency.  The results 

show the epileptic animals on ethosuximide shortly after birth had a normalization of 

sodium channel expression comparable to that of the control rats, while the epileptic rats 

on water alone continued to have an increased expression of Nav1.1 and Nav1.6.  This 

data suggests that ethosuximide alters the sodium channel composition when 

administered early in the life of the epileptic animal.               

It may turn out that many different channel defects and many different ion  

channels can cause the different forms of absence epilepsy.  This and other studies of its 

kind could, in the end, lead to ion channel subunit-specific therapies.  This is of course 

enticing, as a targeted therapy could hypothetically control seizure activity without the 

untoward side effects.  In addition, someday it may be possible to do a thorough genetic 
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analysis of an individual to see if they have a channelopathy.  If a channelopathy were 

found, prophylactic therapy could be initiated to both prevent seizures as well as the 

behavioral and intellectual consequences of a seizure disorder.   
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