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MEGAKARYOCYTE-BONE CELL INTERACTIONS:  THE ROLE OF GAP JUNCTIONS, 

MATURATION, AND LONGEVITY. Wendy A. Ciovacco, Carolyn G. Goldberg, Amanda F. Taylor, 

Justin M. Lemieux, Henry J. Donahue, Ying-Hua Cheng, Mark C. Horowitz, and Melissa A. Kacena. 

Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN. 

Research shows that megakaryocytes (MKs) can enhance bone volume by increasing osteoblast 

(OB) proliferation and inhibiting osteoclast (OC) formation. This cumulative work first explores the role of 

gap junction intercellular communication (GJIC) in MK-OB interactions, and secondly examines the effect 

of MK maturation state and MK number on skeletal homeostasis. In both studies, cell lineages were 

cultured as described below. In the gap junction (GJ) study, we used real-time PCR to test for MK 

expression of connexin 43 (Cx43), the predominant GJ protein found in bone cells. A dual-label parachute 

assay and FACS analysis assessed GJIC between MKs and OBs. Proliferation and differentiation assays of 

OBs cultured with and without MKs were performed. Here we demonstrate that: 1) MKs express Cx43, 2) 

MKs can functionally communicate with OBs via GJIC, 3) the addition of two distinct GJ uncouplers 

inhibits this communication, 4) inhibiting MK-mediated GJIC further enhances the ability of MKs to 

stimulate OB proliferation and, 5) blocking GJIC does not result in MK-induced reduction of OB 

differentiation. In the second study, increasing numbers of MKs were co-cultured with bone cells to see if 

increased MK number correlated with increased OB proliferation and decreased OC formation. In addition, 

MKs were separated using flow cytometry into 3 subpopulations based on maturation and effects on OB 

proliferation and OC formation were assessed.  Finally, longevity studies on wild-type and mutant MKs 

were also conducted. In the second study we show that: 1) increased MK number corresponds with 

increased OB proliferation and decreased OC formation, 2) MK maturation stage does not alter the effect of 

MKs on bone cell lineages beyond the megakaryoblast stage, and, 3) GATA-1 deficient MKs survive 

longer than wild-type controls. Thus we demonstrate a novel interaction between two cell lineages only 

recently shown to be functionally connected, and make steps towards understanding how MKs exert their 

osteogenic effects. 
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1. INTRODUCTION 

 While cells of the hematopoietic and mesenchymal lineage both originate in the bone 

marrow (BM) and are thus intimately related in space, only in the last few decades have 

functional links between the two lineages been sought.  Hematopoietic and mesenchymal cells 

replicate in juxtaposition to each other, suggesting that local secretion of growth factors or 

cytokines by either lineage, or juxtacrine communication by cell contact, may have a direct or 

indirect effect on neighboring cells.  In fact research now shows that these two systems originally 

studied in isolation are in fact functionally connected, with the skeletal system not just housing 

hematopoietic progenitors, but interacting with these cells in a variety of ways.  

MKs are platelet progenitor cells which primarily reside in the BM, and their reciprocal 

relationship with bone cells is one of the burgeoning areas of research just described.  Multiple 

studies have now provided ample in vivo and in vitro evidence showing that MKs affect the 

development and differentiation of both OCs and OBs.  This cumulative work presents two 

independent studies that further the understanding of the MK-bone cell interaction. The first study 

explores GJIC between MKs and OBs, while the second looks at the effect of MK-maturation 

stage and increasing MK number on the ability of the lineage to affect skeletal homeostasis. The 

Methods, Results, and Discussion section are thus divided into two sections labeled GJIC, and 

MK Maturation and Longevity.  

This Introduction begins with a general background discussion of MK-bone cell 

interactions, and then provides a brief, focused opening for both studies. 

 

1. A. Background Information:  

This opening review summarizes the current research on MK-bone cell interactions. It begins 

by describing several mouse models with dysregulated megakaryopoiesis and resultant skeletal 

pathology, then looks at MK-OC interactions in vitro, and finally at the in vitro effect of MKs on 

OBs. 
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1.A.1. In Vivo Evidence: Mouse Models  

 There are currently four known mouse models with dysregulated megakaryopoiesis and 

resultant significant increases in bone volume.  Mice that overexpress thrombopoietin (TPO), the 

main MK growth factor, have an approximate 4-fold increase in BM MK number, and develop a 

concurrent osteosclerotic bone phenotype with increased bone mineral density (BMD) (1-5).  

Mice with a deficiency in the transcription factors GATA-1 or NF-E2, necessary for normal MK 

differentiation, develop marked increases in MK number with a concomitant reduction of platelet 

number, and a tremendous increase in trabecular bone (6-8).  Most recently a novel mouse model 

of platelet-type von Willenbrand disease (Pt-vWD), with a platelet phenotype identical to the 

human form of the disease, showed a marked increase in splenic MK with splenomegaly, and a 

high bone mass phenotype with decreased serum measures of bone resorption (9). 

 

1.A.1.a. TPO Overexpressing Mice 

 Given that TPO is the major MK growth factor, and is essential for lineage proliferation 

and differentiation, it is expected that a mouse model overexpressing TPO show dysregulated MK 

reproduction and maturation.  Perhaps most surprising is the dramatic phenotype manifested in 

these mice, as a myelofibrotic syndrome with osteosclerosis develops by nine months of age in 

mice repeatedly injected with TPO or infected with a viral vector harboring the TPO gene (1-5).  

Mice overexpressing TPO show a marked 4-fold increase in absolute MK number versus 

wild-type controls affecting all stages of differentiation (1, 2).  Additionally, levels of 

transforming growth factor- (TGF-) and platelet-derived growth factor (PDGF) are elevated 2-

fold and 5-fold respectively versus controls (1-5).  TGF- and PDGF are both growth factors 

expressed by MK with proven marked effects on bone cells (10, 11).  This observed increase in 

MK expression of two growth factors, previously identified to stimulate OBs, raised the 

possibility that in this model MK secretion of TGF- and PDGF resulted in the myelofibrotic, 
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osteosclerotic phenotype seen in TPO overexpressing mice.  This hypothesis was supported by 

studies illustrating that in the absence of TGF-, TPO overexpressing mice failed to exhibit the 

characteristic myelofibrotic, osteosclerotic syndrome.  Irradiated, wild-type mice were engrafted 

with TGF--1-/- BM stem cells infected with a retrovirus encoding murine TPO protein to induce 

TPO overexpression, but no myelofibrosis or osteosclerosis developed.  Furthermore, when 

irradiated, wild-type mice were repopulated with wild-type TPO overexpressing stem cells, the 

femurs now showed significant myelofibrosis and osteosclerosis 16-weeks post-transplantation 

(12), clear evidence that the MK secreted growth factor TFG- plays a critical role in the final 

bone phenotype of TPO overexpressing mouse models. 

Another study using transgenic mice constitutively expressing TPO showed predictably 

elevated numbers of MKs, with associated significant increases in plasma levels of both TGF--1 

and osteoprotegerin (OPG) (13).  OPG inhibits osteoclastogenesis and is expressed by MKs (14-

19).  This study implies that along with TGF-, increased secretion of OPG by MKs contributes 

to the myelofibrotic, osteosclerotic phenotype of TPO overexpressing mice.  Similarly, a study by 

Chagraoui et al. (20) implicates the upregulation of OPG and associated inhibition of 

osteoclastogenesis in the pathogenesis of osteosclerosis.  Here, irradiated wild-type or OPG -/- 

mice were repopulated with either wild-type or OPG -/- BM stem cells infected with a retrovirus 

encoding murine TPO protein.  While all mice showed subsequent increases in TGF-1 with 

associated myelofibrosis, only the wild-type recipients (engrafted with wild-type or OPG -/- stem 

cells) showed increased OPG plasma levels with associated osteosclerosis.  As opposed to this 

bone dense phenotype, the OPG -/- recipients (engrafted with wild-type or OPG -/- stem cells) 

instead developed an osteroporotic phenotype (20).  These results suggest that the OPG secreted 

by the transplanted BM stromal cells and OB caused the osteosclerosis seen in the wild-type 

hosts.  
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Yet another investigation studied the direct effects of TPO on OC formation in vitro and 

demonstrated a TPO dose-dependent decrease in OC number (21).  This effect was most likely 

mediated by increased MK number in response to increased TPO stimulation. Thus it appears that 

TPO plays an indirect role in bone turnover by its proliferative effect on MK. 

In summation, TPO overexpressing mice exhibit marked increases in MK number with 

simultaneous increases in BMD mediated by various MK secreted cytokines, specifically TFG- 

and OPG. 

 

1.A.1.b. GATA-1 and NF-E2 Deficient Mice 

 Pluripotential hematopoietic stem cells give rise to MKs through a stepwise 

differentiation process, with progression through each phase mediated by specific transcription 

factors, ultimately resulting in terminally differentiated MKs capable of releasing platelets. See 

Figure 1 below.  The selective loss of any of the transcription factors regulating MK 

differentiation results in arrested development and accumulation of cells at the latest stage of 

maturation.  Specifically, the loss of either GATA-1 or NF-E2 transcription factors produces 

dysregulated megakaryopoiesis, with GATA-1 knock-down and NF-E2 knock-out mice both 

displaying marked megakaryocytosis and a paradoxical thrombocytopenia (6, 7).  

 

 

Figure 1: Stages of MK development and required transcription factors 
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GATA-1 transcription factor is one of the six members of the GATA family of zinc-

finger transcription factors (GATA-1 through GATA-6 in vertebrates), with DNA binding 

activity in the C-terminal zinc finger of the single polypeptide chain.  GATA-1, previously 

thought to be necessary exclusively for erythroid lineage development, is now known to play a 

critical role in MK differentiation.  Its expression is restricted to the hematopoietic lineage almost 

entirely, with known expression by multi-potential hematopoietic progenitors, mast cells, and 

MKs (22).  In GATA-1 knock-down models, MK number in the BM and spleen increases 

approximately 10-fold, while the peripheral platelet count is decreased to 15% of wild-type 

controls (23).  We have demonstrated that GATA-1 deficient mice have a higher bone mass than 

controls, displaying more than a 3-fold increase in bone volume and bone formation detectable 

after approximately 4 months of age (8).  At ages over a year, these animals ultimately develop a 

myelofibrotic phenotype (24).  MKs from GATA-1 deficient mice are also less differentiated than 

wild-type MKs.  Compared to normal controls, these MKs are morphologically smaller, they 

show evidence of retarded nuclear and cytoplasmic develoment, and GATA-1 deficient MKs 

express reduced levels of mRNA encoding markers of cellular maturity (23).  

NF-E2 transcription factor is a heterodimeric nuclear protein comprised of two 

polypeptide chains, both belonging to the basic leucine zipper family of transcription factors.  The 

p18 subunit is ubiquitously expressed (25, 26), while the expression of hematopoietic-specific 45-

kDa subunit is restricted to erythroid precursors, MKs, mast cells, and multipotential progenitors, 

similar to GATA-1.  Like the GATA-1 knock-down model, MK number in the BM and spleen of 

adult mice lacking p45 NF-E2 is increased, though not as profoundly (2-5 fold), and a severe 

thrombocytopenia develops due to maturational arrest of MK development, with essentially no 

detectable platelets in the peripheral blood (less than 5% of control levels) (6).  Interestingly, we 

have shown that NF-E2 deficient mice also develop a high bone mass phenotype, with up to a 5-

fold increase in bone volume and bone formation parameters (8, 27).  NF-E2 deficient mice 

respond to exogenous TPO with marked proliferation, but there is no detectable increase in 
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platelet production in vivo; and although MK number is markedly elevated, TPO levels are 

normal in NF-E2 deficient mice (6, 28). 

Mice deficient in GATA-1 and NF-E2 transcription factors necessary for proper MK 

differentiation have strikingly similar phenotypes characterized by marked megakaryocytosis, 

thrombocytopenia, and significantly increased BMD. 

 

1.A.1.c Murine Model of Pt-vWD  

 Suva et al. (9) recently developed a mouse model of Pt-vWD by creation of a transgenic 

cassette containing the human Pt-vWD point mutation (G233V) capable of expression in a 

murine colony.  This gain of function mutation affects the GP-Ib subunit of the platelet 

glycoprotein Ib-IX receptor complex which normally binds von Willebrand factor and promotes 

platelet adhesion during vascular damage.  A limited number of mutations such as G233V are 

known that alter the glycoprotein receptor complex configuration while still allowing interaction 

with soluble von Willebrand factor, and this is the pathogenesis behind Pt-vWD (9).  

 The Pt-vWD mutation causes a phenotype in mice that mirrors the human disorder, with 

platelet dysfunction and resultant impaired hemostasis.  The G233V mutant mice have a modest 

thrombocytopenia, with platelet counts reduced by 20%, and significantly increased bleeding 

time versus wild-type mice expressing the normal human GP-Ib subunit.  Mutant mice were 

also found to have spleens that were 2.5 times as large as wild-type controls, leading investigators 

to histological evaluation and discovery of a tissue-specific megakaryocytosis with marked 

increase in splenic MK number. The observation of MK dense spleens prompted an evaluation of 

the mouse BM to determine if MK dysregulation was affecting skeletal homeostasis. While there 

was no increase in the number of MKs in the BM of the mutant mice, histological examination 

revealed a high bone mass phenotype detectable as early as 2 months, and bone mass 
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progressively increased with age.  Mutant bones also exhibited increased biomechanical strength 

versus wild-type controls (9).  

Further BM analysis revealed a decrease in OC number, with no matched decrease in 

OBs, suggesting the high bone mass phenotype was attributable to decreased OC number and 

resultant decreased bone breakdown.  Additionally, ex vivo cultures further demonstrated that 

BM cultures from the Pt-vDW mice had a significant decrease in the number of tartrate resistant 

acid phosphatase (TRAP)-positive OC-like cells versus wild-type controls (TRAP is a biomarker 

of OC number).  Ex vivo cultures failed to show a difference in OB number or differentiation 

versus wild-type controls (9). 

The investigators attempted to identify expression of the GP Ib-IX receptor complex on 

OC to determine if the Pt-vWD mutation was having a direct effect on OC proliferation, but 

transcript profiling and immunofluoresence failed to find GP-Ib-IX expression by OCs.  This 

supports prior evidence that the receptor complex is expressed exclusively on platelets as an MK 

lineage specific gene product (9).  

 The Pt-vWD murine model displays a phenotype similar to the human disease it was 

designed to mimic.  In addition to disrupted hemostasis, these mice have increases in splenic MK 

number, increased BMD, and a decreased number of OCs.  Although the exact mechanism by 

which this tissue-specific megakaryocytosis contributes to decreased OC population and 

decreased osteoclastogenesis remains to be elucidated, this study further confirms the specific 

links between MK function, platelet development, and OC proliferation and differentiation (9).   

 Taken collectively, the four mouse models detailed above illustrate the complex role of 

MK in regulating skeletal mass, and show that disruptions in various points of MK differentiation 

and development consistently lead to an osteosclerotic phenotype. 
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1.A.2. MK-OC Interactions 

 MKs have the ability to directly and indirectly affect osteoclastogenesis, as evidenced by 

recent studies.  The direct effects of MKs on OC differentiation are complex because MKs 

express proteins that both enhance and inhibit osteoclastogenesis.  RANKL is critical for OC 

development, and while it is thought that OBs and OB precursors account for the majority of 

RANKL found within the BM, MKs have also been shown to express RANKL (14, 19, 29, 30).  

However MKs can also inhibit osteoclastogenesis as studies have demonstrated that MK express 

or secrete several factors known to downregulate OC terminal differentiation, specifically OPG 

(an antagonist of RANK signaling), interleukin (IL)-10, IL-13, TGF- and 

granulocyte/macrophage colony-stimulating factor (GM-CSF) (11, 14-18, 31-34).  Thus, MKs 

have the potential to significantly affect OC number through their expression of factors that both 

promote and retard osteoclastogenesis.  Of importance, our group as well as others, have 

demonstrated that when OC progenitors are cultured with MKs or in MK-conditioned medium, in 

vitro OC development is significantly inhibited by up to 10-fold (21, 31, 35).  We also 

demonstrated that OPG expression alone is not responsible for this inhibition, as MKs derived 

from OPG deficient mice also inhibit OC formation in vitro (31).  As a result, we are currently 

working to isolate and identify the MK-secreted OC inhibitory factor using biochemical 

separation techniques including HPLC.  We have identified a single fraction with strong 

inhibitory activity containing less than 30 proteins.  Interestingly, none of the major factors 

known to inhibit osteoclastogenesis, namely OPG, IL-4, IL-10, IL-12, IL-13, IL-18, interferon 

gamma (IFN-), TGF, GM-CSF, OC inhibitory lectin (OCIL), calcitonin, amylin, and calcitonin 

gene-related peptide, are present in the isolated fraction (31).  Therefore while direct, in vitro 

evidence of MK-induced inhibition of OC development exists, the factor(s) or mechanism 

responsible remains unknown. 
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 MK can also indirectly influence osteoclastogenesis.  MKs increase OB and fibroblast 

proliferation by direct cell-to-cell contact (8, 36-40).  OBs and fibroblasts are cells with known 

effects on osteoclastogenesis, including the expression of RANKL and OPG (41-48).  In addition 

to increasing OB proliferation, MKs increase OB expression of OPG when co-cultured (14).  As 

described previously, OPG inhibits osteoclastogenesis, so a potential indirect path for MK 

inhibition of OC formation exists. 

 In conclusion most direct and indirect evidence suggests that MK act to inhibit the 

differentiation of cells of the OC lineage.  MK express numerous proteins known to inhibit OC 

formation, co-culturing MK with OC progenitors results in significant inhibition of OC 

formation, and MK indirectly increase OPG secretion by both OBs and fibroblasts.  However, 

under certain physiological circumstances MK expression of RANKL may be an important 

stimulator of osteoclastogenesis, particularly during inflammatory responses such as rheumatoid 

arthritis (49). 

 

1.A.3. MK-OB Interactions 

 Studies have shown that MKs affect OB development by the secretion of bone matrix 

proteins and growth factors, and by directly increasing OB proliferation.  

MKs or their platelet products secrete multiple bone matrix proteins, namely: osteocalcin, 

osteonectin, bone sialoprotein, and osteopontin (50-54).  MKs also secrete multiple growth 

factors crucial for bone remodeling, including: TGF-1, PDGF, VEGF, and bone morphogenetic 

protein (BMP)-2, -4, and -6 (10, 11, 55).  Therefore MKs could impact bone formation and bone 

remodeling, especially in the setting of elevated local concentrations. 

 Our in vitro evidence demonstrates that MKs enhance OB proliferation 3-6 fold by a 

direct cell-to-cell contact mechanism (8).  Additionally, co-cultures of MKs with BM stromal 

cells also enhances osteoblastogenesis, again by a mechanism requiring direct cell-to-cell contact 
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(36).  Although these data demonstrate that MKs mediate OB proliferation by a juxtacrine 

signaling mechanism, the exact method remains to be identified.   

 

1.B. GJIC and MK Maturation and Longevity 

 As the above review shows, it is now imminently clear that the hematopoietic and bone 

lineages are connected not just by proximity, but by functionality, and that MK induced effects on 

OB and OC are multiple and complex.  Several mouse models demonstrate that alterations and 

increases in cells of the MK lineage can lead to increases in bone volume in vivo; and, in vitro 

data shows a primarily inhibitory effect of MKs on OCs, and substantial pleiotropic effects on 

OBs.  However, the exact mechanisms of inhibition and induction need to be further elucidated.  

 

1.B.1. GJIC  

Our previous studies showed that not only does MK conditioned medium fail to enhance 

OB proliferation (8), but that when separated from OBs by a 0.1m membrane in a transwell co-

culture system, MKs again do not increase OB proliferation (8) .  These data suggest that MK 

secreted factors such as cytokines or growth factors are not responsible for the induction in OB 

proliferation, but rather MKs stimulate OB proliferation through some sort of direct cell-cell 

contact, or juxtacrine, mechanism.  There are 3 basic juxtacrine mechanisms: 1) a protein on one 

cell binds its receptor on another cell, 2) a receptor on one cell binds to its ligand on the 

extracellular matrix secreted by another cell and, 3) cytoplasm from one cell is directly to the 

cytoplasm of a second cell.  GJIC is an example of the latter mechanism.  Because GJIC can also 

be blocked with 0.4 m membranes (unpublished observation, H.J.D. and A.F.T.) and because 

Cx43, the predominant GJ protein expressed by bone cells, has been immunolocalized in MKs 

(56), GJIC could also be responsible for the MK-induced enhancement in OB proliferation.  

Therefore, in this study we wanted to determine whether MKs are capable of communicating with 
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OBs through GJs, and whether MK-mediated GJIC is responsible for the MK-induced 

enhancement in OB proliferation.   

 

1.B.2. MK Maturation and Longevity 

As detailed above, there are several well-studied mouse models with dysregulated 

megakaryopoiesis and resultant high bone mass phenotypes. Until now, most theories attempting 

to explain the high bone mass phenotype in the aforementioned mouse models focused on the 

increase in MK number, with the logical assumption that if MKs favor bone deposition, more 

MKs equates to a higher bone mass. Here we test this hypothesis, but also probe further and 

examine MKs cultured from GATA-1 deficient mice to see if there is an inherent quality about 

the mutant cell lineage itself, such as stage of maturation or increased viability, that favors net 

bone formation more than wild-type MKs.  
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2. STATEMENT OF PURPOSE 

Hypothesis: 1) That MKs can communicate with OBs by gap junction intercellular 

communication and that this communication influences OB proliferation; 2) the state of MK 

maturation affects bone homeostasis, with immature MKs favoring bone deposition more than 

well-differentiated states; 3) GATA-1 deficient MKs live longer than wild-type counterparts, 

contributing to increased bone deposition 

Aims: 

1) Determine if MKs express Cx43 

2) Determine if MKs and OBs communicate by GJIC 

3) Determine the effect of MK-mediated GJIC on OBs 

4) Determine if MKs sorted by maturation state have different effects on the OB and OC 

lineages 

5) Determine if increasing MK number in co-culture with bone cells further increases OB 

proliferation and or decreases OC development 

6) Determine if there is a difference in longevity between wild-type MKs and GATA-1 

deficient MKs 
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3. METHODS 

Please note that an * next to the name of a procedure indicates that this was not performed by the 

student. 

 

3.A. GJIC 

3.A.1. Preparation of Fetal Liver Derived MKs: 

Murine MKs were prepared as previously described (8, 31).  In brief, fetuses were 

dissected from pregnant mice at E13-15.  The livers were removed and single cell suspensions 

made by forcing cells thru sequentially smaller gauge needles (18G, 20G, 23G).  Cells were 

washed 2x with DMEM + 10% FCS and then seeded (5 fetal livers/100 mm dish) in 100 ml 

culture dishes, in DMEM + 10% FCS + 1% murine TPO (5).  After 3-5 days, when the cells 

become confluent, MK were obtained by separating them from the lymphocytes and other cells 

using a one-step albumin gradient to obtain a 95% pure MK population (57). The bottom layer 

was 3% albumin in PBS (Bovine Albumin, protease free, fatty acid poor, Serologicals Proteins 

Inc., Kankakee, IL), the middle layer was 1.5% albumin in PBS, and the top layer was media 

containing the cells to be separated.  All of the cells sedimented through the layers at 1g for 

approximately 40 minutes at room temperature.  The MK fraction was collected from the bottom 

of the tube. 

 

3.A.2. Preparation of neonatal calvarial cells (OB):  

Murine calvarial cells were prepared as previously described (58,59).  Briefly, calvaria 

from mice less than 48 hours old were pre-treated with EDTA in PBS for 30 min.  The calvaria 

were then subjected to sequential collagenase digestions.  Cells were collected following 

incubation in collagenase.  Fractions 3-5 were used as the starting population.  These cells were > 

95% OB or OB precursors by a variety of criteria (58, 60, 61). Freshly prepared OBs were used 

for all studies.   
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3.A.3. MEG-01 Cell line: 

MEG-01 cells (ATCC, Rockville, MD) are a human megakaryoblastic cell line which 

was established from the BM of a patient with chronic myelogenous leukemia.  MEG-01 cells 

express the MK marker platelet glycoprotein (GP) IIB/IIIa on their cell surface and possess no 

markers for B or T lymphocytes or for myeloid cells (62). MEG-01 cells were grown in RPMI 

1640 supplemented with 10% FCS.  MEG-01 cells were collected from maintenance culture, 

washed, and used in the parachute assay as described below (MEG-01 cells as well as primary 

MKs were utilized). 

 

3.A.4. RNA Extraction and Real-Time PCR:     

Cells were washed 2-4 times with PBS prior to RNA isolation.  RNA was isolated from 

the cells using trizol (Invitrogen Corporation, Carlsbad, CA) or a NucleoSpin II RNA Purification 

kit (BD Biosciences, San Jose, CA) incorporating an on-column DNase treatment to remove 

contaminating genomic DNA.  For real-time PCR, cDNA was prepared from 5g of total RNA 

using Sprint PowerScript Reverse Transcriptase (BD Biosciences) and oligo(dT)12-18 primers.  

The cDNA was purified using an Amicon YM30 filter device (Millipore, Danvers, MA).  

Alternatively, cDNA was prepared from 2g of total RNA using High-Capacity cDNA Reverse 

Transcription Kits (Applied Biosystems, Foster City, CA).  Quantitative real-time PCR was 

performed on a Cepheid Smart Cycler or on a 7500 Fast Real-Time PCR System (Applied 

Biosystems) using Platinum Taq polymerase (Invitrogen Corporation) and Sybr Green I 

(Invitrogen Corporation) incorporation or using the Power Sybr Green PCR Master Mix (Applied 

Biosystems), respectively. 

The quantitative comparison between samples was calculated using comparative CT.  The 

data are normalized by subtracting the difference of the threshold cycles (CT) between the gene of 

interest (e.g. Cx43) and the CT of the housekeeping gene glyceraldehyde 3-phosphate 
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dehydrogenase (GAPDH).  This value is defined as the CT.  To compare the relative expression of 

Cx43 in two types of cells (e.g. primary C57BL/6 MKs vs. primary C57BL/6 OBs) the CT must 

be calculated.  CT for this example is the absolute value of the difference between the CT for the 

MK and the OB or CT MK - CT OB.  The relative difference (fold increase or decrease) in 

expression is calculated as 2-CT.  The following primer sequences were used: 

Cx43 forward primer:                 5’ CCTTTGACTTCAGCCTCCAA  

Cx43 reverse primer:     5’ CATGTCTGGGCACCTCTCTT  

Osteocalcin forward primer:    5’ AAGCAGGAGGGCAATAAGGT 

Osteocalcin reverse primer:    5’ TTTGTAGGCGGTCTTCAAGC 

Alkaline phosphatase forward primer:              5’ GCTGATCATTCCCACGTTTT 

Alkaline phosphatase reverse primer:               5’ CTGGGCCTGGTAGTTGTTGT  

Type I collagen forward primer:   5’ CAGGGAAGCCTCTTTCTCCT 

Type I collagen reverse primer:                5’ ACGTCCTGGTGAAGTTGGTC 

GAPDH forward primer:    5’ CGTGGGGCTGCCCAGAACAT  

GAPDH reverse primer:    5’ TCTCCAGGCGGCACGTCAGA 

 

3.A.5. Dual-Label Parachute Technique and FACS Analysis: 

 To assess GJIC in co-cultures containing MKs (or MEG-01 cells) and OBs, we utilized a 

dual-label parachute technique which has previously been described (63).  Our protocol was 

adapted from Ziambaras et al (64).  In brief, donor cells (MKs) were simultaneously labeled with 

10 M calcein-AM (Invitrogen Corporation) and 10 M  1,1’-dioctadecyl-3,3,3’,3’-

tetramethylindocarbocyanine perchlorate (DiI, Invitrogen Corporation) for 25 minutes at 37C.  

Cells were washed once in HBSS and once in PBS prior to dropping onto receiving cells (OBs 

were ~90-95% confluent).  Cultures were incubated for 75 minutes at 37C.  It should be noted 

that the number of donor cells (MKs) was titrated in initial experiments from 2,000-200,000 

cells/well.  This titration demonstrated that 20,000 cells/well was in the dynamic range and was 
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used for subsequent parachute assays.  

 Prior to conducting FACS studies, the parachute assay was examined microscopically to 

confirm transfer of dye from MKs to OBs.  Visual inspection confirmed the viability of both the 

donor and receptor cells and demonstrated that the dye-transfer was specific.  The double labeling 

of the MKs with DiI is a secondary confirmation that the donor cells are viable and that dye is not 

permeating from the cells.  As a result of these initial demonstrations (data not shown) we then 

proceeded to conduct FACS analysis. 

For FACS analysis studies, cells were trypsinized to release OBs (during washes most of 

the MKs were removed, remaining MKs were gated out) and cells were fixed in 4% 

paraformaldehyde, resuspended in FACS buffer, and FACS analyzed on a Facstar Plus Flow 

Cytometer (Becton Dickinson, Franklin Lakes, NJ).  Because the calcein is able to permeate gap 

junctions, any OBs which fluoresce green have had calcein transferred to them through GJs.  

Because DiI can not permeate, cells which fluoresce red are the originally labeled donor cells 

(MKs).    In all FACS studies strict threshold controls were employed, according to the method 

previously published (65), to insure that only specific dye transfer was detected.  First, although 

MKs are nonadherent and were washed from the OBs prior to FACS, as a precaution we did have 

a donor control (positive control) containing double labeled MKs.  We set the thresholds so that 

any DiI (red) labeled cells were excluded.  Second, OBs cultured alone served as our negative 

control to which we applied a second threshold to exclude 99.5% of unlabeled OBs.  Cells that 

fell in to the gate set between these 2 thresholds were deemed to be calcein positive OBs that had 

communicated with MKs.  

 In some experiments, cells were treated with increasing concentrations of 18-

glycyrrhetinic acid (GA, Sigma, St. Louis, MO) or oleamide (Sigma) to assess the ability of a 

GJ uncoupler to inhibit MK-OB GJIC.  Here, GA or oleamide was added to the receiving OBs 

30 minutes prior to dropping donor cells (MKs also pretreated with inhibitors) into cultures. 
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3.A.6 Proliferation Analysis: 

    To examine the proliferative capacity of OBs (2500 OBs/well, optimal, pretested) 

cultured with and without MKs (5000 MKs/well, optimal, pretested) that were exposed to GA 

(50 M, optimal, pretested) or vehicle control (DMSO), cells were seeded in triplicate into 96-

well tissue culture plates and incubated for up to 6 days at 37C in -MEM supplemented with 2% 

FCS.  In all of the proliferation studies, as in the parachute assay studies, both MKs and OBs 

were pre-incubated with inhibitors (or vehicle control) for 30-60 minutes prior to seeding.  As has 

been described by Davidson et al (66), our preliminary studies demonstrated that the inhibitory 

response of GA was reduced in 10% FCS as compared to 2% FCS (data not shown); therefore, 

for these studies 2% FCS was utilized.  Proliferation was measured every 2-3 days by the 

incorporation of 3H-thymidine (1 Ci/well; 5-8 Ci/mmol) added during the last 16 hours of 

culture (67).  To assess OB proliferation alone, MK were removed from wells (4 washes) prior to 

measuring incorporation of 3H-thymidine (8).  

 

3.A.7. Differentiation Studies *: 

To examine the differentiation of OBs (20,000 OBs/ml, optimal, pretested) cultured with 

and without MKs (25,000 MKs/ml, optimal, pretested) that were exposed to GA (40-50 M, 

optimal, pretested) or vehicle control (DMSO), cells were seeded in triplicate into either 6-well or 

24-well tissue culture plates and incubated for up to 14 days at 37C in -MEM supplemented 

with 2% FCS and 50 g/ml ascorbic acid on day 0.  It should be noted that cells were only fed 

only 1X/week (day 7) and at this time point fresh MKs were added as non-adherent MKs were 

removed with feeding.  On the day 7 feed, fresh ascorbic acid and αGA/vehicle were added to 

cultures and they were additionally supplemented with 5mM -glycerophosphate to induce 

mineralization.  Differentiation experiments ended on day 14 when mineralized nodules were 

evident in control OB cultures. 
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To assess the effects of MKs on OB differentiation, gene expression levels of alkaline 

phosphatase, type I collagen, and osteocalcin were measured in OBs using real-time PCR.  In 

addition, functional assays for alkaline phosphatase enzyme activity and mineralization were also 

performed.  With regard to real-time PCR, studies were conducted as outline above with the 

following alterations.  Cultures were washed with PBS 4x to remove MKs and these real-time 

PCR experiments were performed using the Applied Biosystems platform. 

 

3.A.8. Alkaline Phosphatase Activity*: 

Alkaline phosphatase activity was determined by the colorimetric conversion of p-

nitrophenol phosphate to p-nitrophenol (Sigma) and normalized to total protein (BCA, Pierce, 

Rockford, IL) (68).  Briefly, cells were washed 2x with PBS, subsequently lysed with 0.1% 

(vol/vol) Triton X-100 supplemented with a cocktail of broad-range protease inhibitors (Pierce), 

subjected to two freeze-thaw cycles, and cleared via centrifugation.  Lysates were incubated with 

3 mg/ml p-nitrophenol phosphate in an alkaline buffer (pH 8.0) (Sigma) for 30 min at 37°C, the 

reaction was stopped by the addition of 20 mM NaOH and read at 405 nM (GENios Plus, Tecan, 

San Jose, CA).  The enzymatic activity of alkaline phosphatase was determined by comparison 

with known p-nitrophenol standards (Sigma). 

 

3.A.9. Quantative Analysis of Calcium Deposition *:  

Calcium deposition was assessed by eluting Alizarin Red S from cell monolayers as 

previously described by Stanford et al (69).  Briefly, monolayers were washed 2x with PBS, 

subsequently fixed in ice cold 70% (v/v) ethanol for 1 hr, and then washed 2x with water.  

Monolayers were stained with 40mM Alizarin Red S (pH 4.2) for 10 min (room temperature, 

shaking), unbound alizarin red was removed by washing with water (5x) and with PBS (1x for 15 

minutes, room temperature, shaking).  Bound Alizarin Red was eluted by incubating monolayers 

with 1% (v/v) cetylpyridinium chloride in 10mM sodium phosphate (pH 7.0) for 15 min (room 
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temperature, shaking).  From aliquots, absorbance was measured at 562 nm (GENios Plus, 

Tecan), and Alizarin Red concentrations were calculated from measured standards (Ca/mol of 

dye in solution). 

 

3.A.10. Statistical Analysis:  

 Two-way factorial analyses of variances were used to compare groups, with MKs and 

αGA being the independent variables.  In the event of a significant interaction, pair-wise 

Bonferroni comparisons were made to explore individual group differences while controlling for 

the elevated family-wise error associated with performing multiple comparisons. All analyses 

were performed with the Statistical Package for Social Sciences (SPSS 6.1.1; Norusis/SPSS Inc., 

Chicago, IL) software and were two tailed with a level of significance set at 0.05. 

 

3.B. MK Maturation and Longevity 

3.B.1.Mice: 

For these studies GATA-1 deficient and C57BL/6 mice were used. Generation and 

breeding of mutant mice with selective loss of GATA-1 was described previously (7, 70).  In 

brief, a DNAse I-hypersensitive region (HS) was identified upstream of the GATA-1 promoter 

and was subsequently knocked-out by insertion of a neomycin-resistant cassette. This resulted in 

mice with reduced levels of GATA-1 mRNA and protein (3-5 fold reduction in protein), a 

functional knock-down (7, 70) GATA-1 deficient mice are maintained on the C57BL/6 

background.   

 

 

3.B.2. Preparation of Fetal Liver Derived MKs: 

Murine MKs were prepared as previously described in the above section (8, 31). 
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3.B.3. Preparation of MK CM 

To generate MK CM, 1X106 MKs/ml were cultured in -media containing no serum for 

3 days. After 3 days CM was collected, sterile filtered, and stored at -80 C until use. For the 

studies here CM was used at 3%, 10%, and 30% (vol:vol). 

 

3.B.4. Preparation of neonatal calvarial cells (OB):  

Murine calvarial cells were prepared as previously described in the above section. (58-

61). Freshly prepared OBs were used for all studies.   

 

3.B.5. Proliferation Analysis: 

    The proliferative capacity of OBs was examined as previously described in the above 

section (66, 67, 8) 

 

3.B.6. In Vitro OC-like Cell Formation Models *: 

OC-like cells were generated by three previously described methods (71-74). First, co-

cultures containing 2x106 BM cells/ml and 20,000 primary calvarial OB/ml were grown in -

MEM supplemented with 10% FCS and 10-8 M 1,25(OH)2D3.  The media was changed every 

other day for 6-8 days.  Second, 2x106 BM cells/ml were cultured in -MEM supplemented with 

10% FCS and 30 ng/ml of recombinant murine M-CSF (Research Diagnostics Inc., Flanders, NJ) 

and 50 ng/ml of recombinant human RANKL (Research Diagnostics Inc.). Media was changed 

every third day for 6-9 days (until OC were visible).  Third, a new OC generation model, using a 

Pax5-/- spleen cell line (SCL) as the source of OC precursors, was used as has been previously 

described (73).  In brief, the Pax5-/- SCL is highly enriched in OC precursors and when cultured 

with M-CSF and RANKL, OC develop in a shorter time (3-4 days) than C57BL/6 BM cell 

cultures (6-8 days).  As detailed by Horowitz et al. (73) the Pax5-/- SCL is 97% CD11b+ (Mac-1), 
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96% CD16/32+ (FcR), and >90% CD115+ (c-fms) as demonstrated by FACS analysis.  In 

addition, the Pax5-/- SCL does not express CD19, CD45R (B220), CD117 (c-kit), Ly-6A/E, Ly-

6C, Ly-6G (Gr-1), NK1.1, or TCR (TCR).  These data indicate that the Pax5-/- SCL expresses 

a monocyte/macrophage-like phenotype with no T or B cells present (73).  For experiments using 

the Pax5-/- SCL, 100,000 cells/ml were cultured with M-CSF and RANKL (as above) and if 

necessary the media was changed on the third day.  Cells were usually fixed at day 4 or 5, stained, 

and counted as described below.     

 

3.B.7. Flow Cytometry *:    

Fetal liver cells were removed from dishes prior to BSA gradient separation as described 

above and washed with PBS containing 2% FCS.  Staining was performed in PBS with 2% 

serum.  Anti-CD41, CD61, CD49b, and CD49d, were purchased from PharMingen.  Anti- CD42d 

was purchased from RDI.  Light scatter and fluorescence of individual cells was measured by a 

Facstar Plus flow cytometer, and cells were sorted base on their antigen expression as described 

here.  Cells were sorted into 3 separate subpopulations (in order of increasing maturity): 

megakaryoblast, MK immature, and MK mature.   

Megakaryoblasts are CD61+ CD41-cells (75, 76).  Anti-mouse CD41 and CD61 

antibodies were obtained from PharMingen. 

Immature MKs are CD41+ CD49d+ cell (77).  Anti-mouse CD49d were also obtained 

from PharMingen. 

Mature MKs are CD41+ CD49b+ (77) or CD41+ CD42d+ (77) cells.  Anti-mouse CD49b 

and CD42d antibodies were purchased from PharMingen and Research Diagnostics, Inc (RDI, 

Flanders, NJ), respectively. 

These 3 subpopulations of cells were then analyzed for their ability to induce OB 

proliferation or inhibit OC formation as described above.  
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3.B.8. Longevity Studies *:   

 C57BL/6 and GATA-1 deficient MKs (40,000 cells/ml) were cultured in the presence or 

absence of TPO (100 ng/ml) and with or without OBs (20,000 cells/ml).  In other words, there 

were 4 groups examined for each type of MK:  1) MK alone; 2) MK+TPO; 3) MK+OB; and 4) 

MK+OB+TPO.  Cells were cultured in 24-well culture plates and the media used in these studies 

was -MEM supplemented with 10% FCS.  As MKs can be removed with normal feedings, 

media was replenished 1/week (if counts were performed, feeding followed counting).  

Specifically, for the first feeding, an additional 1 ml of medium was added to cultures.  On the 

second feeding 1 ml of medium was carefully removed from the top on the well using a pipet and 

an additional 1 ml of fresh medium was added to the cultures.  All subsequent feedings were done 

as described for the second feeding.  Fresh TPO was added to the cultures indicated (100 ng).  

Number of viable MKs present in these cultures was recorded.   

 

3.B.9. Statistics 

Unless otherwise stated, all data are presented as the Mean  1 SD.  Student’s t-test was 

used to determine significant differences, with p<0.05 (Systat 6.0 for Microsoft Windows, SPSS 

Inc., Chicago).  Experiments are always repeated, in some cases multiple times. Within individual 

experiments, data points are based on a minimum of triplicate samples. 
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4. RESULTS 

4.A. GJIC 

4.A.1. MKs Express Cx43: 

To determine whether MKs express Cx43, real-time PCR analysis was completed.  As 

described above, the comparative CT method was used to compare Cx43 expression in different 

types of cells.  GAPDH mRNA served as an internal control for the Cx43 mRNA.  mRNA was 

extracted separately from 3 different cultures of fetal liver derived MKs and primary calvarial 

OBs (both from C57BL/6 mice), and the real-time PCR was performed in duplicate.  The results 

shown below in Figure 2 revealed the presence of mRNA for Cx43 in C57BL/6 MKs, although 

the expression of Cx43 in the MKs was less than that observed in C57BL/6 OB specimens. 

 

 

 

 

 

 

 

 
Figure 2.  Real- time quantitative PCR analyses show the expression of Cx43 in C57BL/6 MK and OB 
(n=3).  Results are reported as fold change or relative quantitation of target mRNA expression (2-Ct

 

method), normalized to an endogenous control (GAPDH) and relative to a calibrator (OB RNA sample).  
Error bars represent the standard error of the mean associated with the ∆∆Ct value. 
 

4.A.2. MKs Form Functional GJs which can be used to Communicate to OBs: 

To determine whether MKs communicate with OBs via GJIC, MKs and OBs were set-up 

in the “parachute assay”, and FACS analysis was performed.  FACS analysis was used to show 

the transfer of calcein to OBs (Figure 3A), demonstrating that MK-OB GJIC occurs.  It should be 

noted that these experiments were also conducted by replacing MKs with the MEG-01 cell line 



24 

and similar data were obtained (data not shown). 

 

4.A.3. GA and Oleamide Significantly Inhibit MK-OB GJIC: 

Because our data showed that MK-OB GJIC occurs, we wanted to confirm that MK-OB 

GJIC was specific.  This was accomplished by using two GJ uncoupling agents, GA and 

oleamide (66, 78).  GA or oleamide were titrated into OB cultures (added to OBs 30 minutes 

prior to dropping MKs onto OBs) and then the cultures were analyzed by FACS analysis as 

above.  Figure 3B shows that GJIC remained unchanged with 10 M of GA.  However, with 20 

- 50 M of GA, MK-OB GJIC was reduced (Figures 3C-3E), and with 100 M of GA, 

significant inhibition of MK-OB GJIC was observed (Figure 3F).  We also performed these 

experiments with MEG-01 cells replacing MKs and similar results were observed (data not 

shown).  In studies where we utilized a different GJ uncoupler we found that both 75 and 90 µM 

of oleamide resulted in a significant reduction in GJIC, 25% and 30% respectively (data not 

shown). 
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Figure 3.  Histograms from FACS analysis of OBs after dual-labeled MKs were dropped onto OBs in 
parachute assay and GJ were allowed to form.  3A shows the percentage of OBs in which calcein-Am was 
transferred from MKs.  3B-2F shows the percentage of OBs in which calcein-AM was transferred from 
MKs when cultures were treated with various concentrations of GA (10-100 M).  The filled profile is 
that of the negative control samples.  The open profile is that of the experimental cells.  In the experimental 
cell population there are many cells which do not uptake dye (overlap with the negative control population) 
and those cells shifted to the right of the negative control population are the cells which have taken up the 
dye. 
 

A  B 

   C        D 

E    F 
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4.A.4. Inhibiting MK-OB GJIC Enhances OB Proliferation In Vitro: 

Next we wanted to determine whether MK-mediated GJIC affected OB proliferation.  

OBs were cultured alone, or were co-cultured with MK and grown for 3 days (similar data were 

obtained when cultures were grown for 4, 5, or 6 days, data not shown).  To examine whether 

GJIC altered OB proliferation, some wells were treated with 50 M of GA (OBs alone and OBs 

co-cultured with MKs).  N=9 for each of the 4 groups.  As we have previously reported and as is 

shown below in Figure 4, addition of MKs to OB cultures significantly enhances OB proliferation 

by greater than 50% over a 3 day period of time (8).  Next, we show that OB proliferation was 

significantly reduced when OBs were cultured with GA in the absence of MKs.  There was 

approximately a 50% reduction in OB proliferation when OB were cultured with GA.  This 

suggests that OBs communicate with each other via GJIC to increase their own proliferation, and 

that GA inhibits this communication, leading to a reduction in proliferation.  Importantly we 

show that when GJIC between MKs and OBs is inhibited by treating co-cultures with GA, OB 

proliferation is enhanced even further than when MKs alone are added to OBs (compared to the 

appropriate control, OB treated with GA, there was approximately a 250% increase in OB 

proliferation).  Although MK-mediated proliferation was increased only a modest 14% in cultures 

containing GA as compared to those without GA, the difference was found to be significant 

(p=0.048).  These data suggest that under normal conditions GJIC between MKs and OBs 

decreases the degree by which MKs enhance OB proliferation, and that blocking GJIC with an 

inhibitor such as GA allows MKs to exert signals for proliferation unopposed by the inhibitory 

GJ signals. 
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Figure 4. Proliferation of OBs was assessed by tritium incorporation.  Proliferation of OBs alone in the 
following culture conditions was assessed: OB, OB+MK, OB+GA, and OB+MK+GA (n=9).  MKs were 
removed via washing prior to analysis and MK cultures alone served as a background control (<200 counts 
were observed, data not shown). Error bars represent standard deviations associated with the mean tritium 
level.  All pair-wise comparisons between groups were statistically significantly different from each other 
(p<0.05).  a=significant difference from OB, b=significant difference from OB+MK, c=significant 
difference from OB+GA. 
 

4.A.5. Effects of MKs and GJIC on OB Differentiation In Vitro: 

To further examine the effects of MKs on OB differentiation and the role of GJIC in 

mediating these effects we cultured 4 groups of cells: OB, OB+MK, OB+GA, and 

OB+MK+GA, and examined the following OB differentiation markers: type I collagen, 

osteocalcin, and alkaline phosphatase mRNA expression, alkaline phosphatase activity, and 

calcium deposition as a marker for mineralization.  For all differentiation studies n=8-9.  It should 

be noted that the OB and OB+MK groups also contained DMSO (vehicle control). 

As illustrated below in Figure 5, a greater than 50% reduction in type I collagen, 

osteocalcin, and alkaline phosphatase gene expression was observed in OB cells when MKs were 

cultured with them (in mineralizing culture medium) for 14 days.  Also shown in Figure 4 was the 

even greater reduction in expression of all 3 genes when cells were cultured with GA.  This 

suggests that GJIC is critical for proper expression of several OB genes.  Interestingly, in contrast 

 a,b 

        a 

     
       a,b,c 
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to the proliferation data, when MKs were added to OB cultures containing GA, expression of 

the genes examined was unaltered in OBs. 
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Alkaline Phosphatase

Osteocalcin

Type I Collagen

 

Figure 5.  Real- time quantitative PCR analyses show the osteoblastic expression of alkaline phosphatase, 
osteocalcin, and type I collagen in OB, OB+MK, OB+GA, and OB+MK+GA cultures (n=8-9).  MKs 
were removed via washing prior isolation of OB RNA.  Results are reported as fold change or relative 
quantitation of target mRNA expression (2-Ct

 method), normalized to an endogenous control (GAPDH) and 
relative to a calibrator (OB RNA sample).  Error bars represent the standard deviation associated with the 
mean ∆∆Ct value.  With regard to mRNA expression of a single gene of interest, no significant difference 
was detected when comparing OB+GA vs. OB+MK+GA.  All other pair-wise comparisons between 
groups (single gene of interest) were significantly different from each other (p<0.05). a=significant 
difference from OB (gene of interest only), b=significant difference from OB+MK (gene of interest only).  
 

In addition to mRNA expression of several important OB genes, functional data was 

collected with regard to alkaline phosphatase activity and mineralization.  As seen in Figure 6 

below, alkaline phosphatase activity mirrored gene expression data.  Specifically, OB alkaline 

phosphatase activity was significantly reduced in OBs co-cultured with MKs.  When OBs were 

cultured with GA, alkaline phosphatase activity was further reduced.  Like gene expression, 

when MKs were added to OB cultures with GA, alkaline phosphatase activity was unaltered. 

 

a 

 a 

a 

 
      a,b      a,b  
           a,b          
                         

 a,b  a,b

  a,b
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Figure 6.  Alkaline phosphatase activity in OB cells from OB, OB+MK, OB+GA, and OB+MK+GA 
cultures (n=8-9).  MKs were removed via washing prior to alkaline phosphatase determinations.  Results 
are reported as a percentage of OB control cultures (OB).  Error bars represent the standard deviation 
associated with the mean.  With regard to alkaline phosphatase activity, no significant difference was 
detected when comparing OB+GA vs. OB+MK+GA.  All other pair-wise comparisons between groups 
were significantly different from each other (p<0.05).  a=significant difference from OB, b=significant 
difference from OB+MK.  

 

Finally, bound calcium was assessed as a functional measure of mineralization.  As with 

the other measures of OB differentiation, OBs co-cultured with MKs exhibited reduced levels of 

calcium deposition (Figure 7).  When OBs were cultured with GA calcium deposition was 

further reduced.  However, unlike the other measures of differentiation, when MKs were added to 

OB cultures containing GA, calcium deposition significantly increased.  This latter trend is 

similar to what was observed in OB proliferation studies. 
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Figure 7.  Calcium deposition in OB cells from OB, OB+MK, OB+GA, and OB+MK+GA cultures 
(n=8-9).  MKs were removed via washing prior to calcium determinations.  Results are reported as a 
percentage of OB control cultures (OB).  Error bars represent the standard deviation associated with the 
mean.  All pair-wise comparisons between groups were statistically significantly different from each other 
(p<0.05). a=significant difference from OB, b=significant difference from OB+MK, c=significant 
difference from OB+GA. 
 

 

4.B. MK Maturation and Longevity 

4.B.1. Effect on MK Number on OB Proliferation 

 To determine if MK number affected the degree of OB proliferation we cultured 

increasing numbers of C57BL/6 and GATA-1 deficient MKs (0, 2500 and 5000) with 2500 OBs, 

and OB proliferation was determined by relative tritium incorporation as outlined above (n=9). 

The results at day 3 are shown in Figure 8 below.  When OBs were co-cultured with 2500 MKs, 

derived from either C57BL/6 or GATA-1 deficient mice, OB proliferation was similarly elevated 

by 92% and 91%, respectively.  When OBs were co-cultured with 5000 MKs, derived from either 

C57BL/6 or GATA-1 deficient mice, OB proliferation was enhanced by 127% and 171%, 

respectively.  It should be noted that OB proliferation was significantly increased when co-

cultured with either C57BL/6 or GATA-1 deficient MKs (as compared to OBs cultured alone) at 

both concentrations.  Importantly, although it appears that OB proliferation is further elevated 

  a

  a,b    a,b,c
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when co-cultured with 5000 GATA-1 deficient MKs as compared to 5000 C57BL/6 MKs, no 

significant difference was detected (p=0.11).  Thus, these results show that as MK number 

increases, OB proliferation increases regardless of whether C57BL/6 or GATA-1 deficient MKs 

are used. 

  

 

Figure 8.  Affect of MK number on OB proliferation. Increasing numbers of GATA-1 deficient and 
C57BL/6 MKs similarly enhanced OB proliferation. A significant, greater than 90% increase in OB 
proliferation was observed when OBs were cultured with either 2500 C57BL/6 or GATA-1 deficient MKs. 
Culturing OBs with 5000 MKs further enhanced OB proliferation. * Denotes a significant difference in 
proliferation compared to the OB alone control group, as assessed by the Student’s t-test, where p<0.05. 
 

4.B.2. Effect on MK Number on OC Inhibition 

To determine if MK number affected the degree of OC inhibition we cultured 100,000 

OC progenitor cells/ml with increasing concentrations of C57BL/6 and GATA-1 deficient MK 

CM (0%, 3%, 10%, and 30%, vol:vol), and mature multi-nucleated OC number was determined 

(n=9).  The results are shown in Figure 9 below.  Of note, the OC data presented here utilize the 

Pax5-/- spleen cell line model system as OCs develop in the shortest time with this system and for 

the flow cytometry, we required a model system where OCs were generated in the shortest 
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amount of time (fewer media changes mean fewer sorted MKs required to generated enough 

CM).  We did however demonstrate that in all the OC generation models described, GATA-1 

deficient and C57BL/6 MK CM similarly inhibited OC formation (data not shown and (31)).  

When Pax5-/- OC progenitors were cultured with 3% C57BL/6 MK CM or 3% GATA-1 deficient 

MK CM, there was a 66% and 80% reduction, respectively, in OC formation as compared to OC 

progenitors cultured without CM.  Like with OB proliferation, no significant difference was 

detected between the ability of 3% GATA-1 deficient MK CM and 3% C57BL/6 CM to inhibit 

OC formation (p=0.14).  With 30% MK CM no OCs were detectable in cultures containing 

C57BL/6 or GATA-1 CM.  These results show that just as with OB proliferation, MK number 

plays a critical role in the inhibition of OC formation. 
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Figure 9. Affect of MK CM concentration on osteoclastogenesis. Increasing concentrations of GATA-1 
deficient and C57BL/6 MK CM similarly inhibited OC development. A significant, greater than 65% 
reduction in the number of OCs formed was observed with just 3% CM. With 30% CM from either 
C57BL/6 or GATA-1 deficient MKs, complete inhibition in OC formation was seen.  * Denotes a 
significant difference in OC number compared to control groups cultured without CM (0%), as assessed by 
the Student’s t-test, where p<0.05. 
 

4.B.3 Effect on MK Maturation Stage on OB Proliferation 

To determine whether the stage of MK maturation influenced OB proliferation, C57BL/6 

MKs were sorted into 3 subpopulations (megakaryoblasts, immature MKs and mature MKs) 

based on antibody binding to cell surface markers characteristic of each subpopulation (flow 

cytometry). 2500 MKs from each individual population, as well as 2500 MKs from a mixed MK 

population (~90-95% pure, BSA separated MK population harvested from fetal livers as outlined 

above (40)), were added to cultures containing 2500 OBs, and OB proliferation was determined 

(n=6). The results are shown in Figure 10 below. Like before, we examined OB proliferation on 

day 3.  Interestingly, the megakaryoblasts had no significant effect on OB proliferation.  

However, the BSA separated MK population, the immature MK population, and the mature MK 

population all had a similar effect on OB proliferation (no significant differences were detected 

between these groups).  Importantly these results show that while megarkaryoblasts have no 
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effect on OB proliferation, immature and mature MKs have virtually the same proliferative effect 

on OBs. 

 

 
Figure 10: Affect of MK maturation stage on OB proliferation. 2500 BSA separated C57BL/6 MKs or 
flow cytometry separated immature and mature MKs all similarly enhanced OB proliferation, while 2500 
megarkaryoblasts did not alter OB proliferation. * Denotes a significant difference in proliferation 
compared to the OB control group, as assessed by the Student’s t-test, where p<0.05. 
 

4.B.4. Effect of MK Maturation Stage on OC Inhibition 

To determine whether the stage of MK maturation influenced OC formation, we again 

sorted C57BL/6 MKs into 3 subpopulations (megakaryoblasts, immature MKs and mature MKs). 

These individual subpopulations, as well as the BSA separated MKs, were cultured for 3 days 

(1x106 cells/ml), their CM was collected, sterile filtered, and 3% CM (vol:vol) was added to OC 

generating cultures as before (n=6).  The results are shown below in Figure 11.  To better 

compare to our previous data (Figure 9) all OC results were normalized (control cultures were set 

to 100).  Interestingly, similar to the OB proliferation data, 3% megakaryoblast CM did not alter 

OC formation.  Also like OB proliferation data, 3% CM from BSA separated C57BL/6 MKs, 
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immature MKs, and mature MKs all similarly inhibited OC formation by 63%, 69%, and 65% 

respectively (no significant differences were detected between these groups).  Thus, these results 

show that similar to the OB data, megakaryoblasts have no effect on OC development, but 

immature and mature MKs have virtually the same inhibitory effect on OC development. 

 

 

Figure 11. Affect of MK maturation stage on OC inhibition. 3% C57BL/6 MK CM from BSA separated or 
flow cytometry separated immature and mature MKs similarly inhibited OC development, while 3% CM 
from megakaryoblasts did not inhibit OC development. * Denotes a significant difference in OC number 
compared to OC control group, as assessed by the Student’s t-test, where p<0.05. 
 

4.B.5. Distribution of MK Subpopulations in C57BL/6 and GATA-1 Deficient Fetal Livers 

C57BL/6 and GATA-1 deficient fetal liver cultures stimulated with TPO appear similar 

in their relative distribution of megakaryoblasts and immature MK if they are collected on day 3, 

but on day 4 the distribution is starting to change with an increase in mature MK in C57BL/6 

cultures.  Our flow cytometry data indicated day 4 fetal liver C57BL/6 cultures  (total cells prior 

to BSA gradient separation to enrich for MKs) contained 1.83% of megakaryoblasts, 3.22% of 

immature MKs, and 4.95% of mature MKs, while GATA-1 deficient cultures contained 3.41% of 

megakaryoblasts, 4.58% of immature MKs, and 2.01% of mature MKs (based on equivalent cell 
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numbers).  As would be expected, this data indicates that the C57BL/6 MKs are more 

differentiated than GATA-1 MKs.   

 

4.B.6. MK Longevity: 

 To formally quantify if GATA-1 deficient MKs outlive their C57BL/6 counterparts we 

cultured C57BL/6 or GATA-1 deficient MKs alone, with TPO, with OBs, or with TPO and OBs.  

Viable MK number was recorded until no viable MKs were detected (n=4).  The data from this 

study is presented in Figure 12 below. Virtually all of the C57BL/6 and GATA-1 deficient MKs 

cultured alone died by day 9 in culture (data not shown). The cultures of MKs with TPO added 

fared only slightly better, perhaps extending their lifespan by 2+ days (data not shown). Thus 

without the addition of OBs, viable MKs from both populations were not detected by 

approximately day 9. Interestingly, when MKs were co-cultured with OBs, MK survival was 

increased, but by day 15 virtually no viable MKs were detected (data not shown). However, the 

addition of both TPO and OBs significantly prolonged the lifespan of both C57BL/6 and GATA-

1 deficient MKs. On day 15 when viable MKs were not detected in the other cultures, viable 

C57BL/6 MKs and  GATA-1 deficient MKs were seen in culture containing both TPO and OBs.  

Both MK lineages peaked at day 20 with C57BL/6 MKs averaging 169±55 and GATA-1 

deficient cultures averaging 450±100. After that, C57BL/6 MK number precipitously declined 

and by day 34 no viable MKs were detected. However, while the number of viable GATA-1 

deficient MKs also declined, they significantly outlived their wild-type counterparts.  It was not 

until day 69 that no viable GATA-1 deficient MKs were detected.  It is important to remember 

that in these studies we cultured cells in OB media, not in MK media, which may negatively 

impact MK survival.  That being said, overall these data show that the combination of TPO and 

OBs enhances MK survival, and that GATA-1 deficient MKs survive longer than C57BL/6 MKs 

when co-cultured with TPO and OBs. 
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Figure 12. Viable MK number over time. C57BL/6 and GATA-1 deficient MKs were cultured alone, with 
TPO, with OBs, or with TPO and OBs, and viable cell number recorded. The combination of OBs and TPO 
increased MK survival. GATA-1 deficient MKs survived for longer than did C57BL/6 MK 
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5. DISCUSSION 
 

5.A. GJIC 

GJs are pores or channels that span the cellular membrane and allow molecules less than 

1kD to pass from one cell to another, providing bilateral communication between the cells’ 

cytoplasm. GJs are formed by two hexameric hemichannels, or connexons, composed of six 

protein subunits, termed connexins (Cxs).  There are more than 20 identified mammalian Cxs 

(79), each with a different molecular permeability and a unique capability to interact with specific 

other connexins (80).  Different tissue types express different Cxs, with Cx43 being the 

predominant GJ protein expressed by bone cells. OBs, OCs and osteocytes have all been shown 

to express Cx43, and Cx45 and Cx46 have also been detected (81).  Importantly, one study also 

found MK expression of Cx43 during immunostaining of human and mouse BM biopsies. (56).  

This suggests that MKs may be able to communicate through GJs. Our previous studies have 

shown that MKs can enhance OB proliferation by up to 6-fold in vitro, that MK secreted growth 

factors or cytokines are not responsible for the enhancement in OB proliferation, and that the 

proliferative influence is blocked when the lineages are separated by a 0.1 m membrane. Since 

MKs stained positively for Cx43, and because GJIC can be blocked by 0.4 m transwell 

membranes (unpublished observation, H.J.D and A.F.T.), we investigated whether MKs can 

communicate with OBs through GJs, and whether MK-mediated GJIC was responsible for the 

MK-induced enhancement in OB proliferation we previously reported (8).   

In this study we demonstrated that MKs expressed Cx43 (Figure 2), that functional GJs 

formed between MKs and OBs (Figure 3), and that GJIC between MKs and OBs could be 

significantly inhibited with exposure to a GJ uncoupler, GA (Figure 3).  To our knowledge, with 

the exception of the immunostaining data by Krenacs and Rosendaal (56), this is the first report 

that MKs can form functional GJs, and that GJIC between MKs and OBs occurs and allows for 

the transfer of small molecules from MKs to OBs as demonstrated by the transfer of calcein-AM 
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(Figure 3). 

Interestingly, our data also demonstrated that MK-OB GJIC does not enhance OB 

proliferation, but in fact inhibits it.  As shown in Figure 4, the relative increase in OB 

proliferation when MKs were added was greater in the presence of GA than in the presence of 

vehicle control (250% vs. 53%, respectively) suggesting that using GJ uncoupling agents 

enhances MK-induced OB proliferation.  In these studies 2 separate GJ uncoupling agents were 

used, GA and oleamide.  The mode of action of αGA is complex but is primarily thought to act 

indirectly on the GJ through a series of phosphorylation changes in Cx43.  Oleamide, on the other 

hand, is thought to act by dissolving membrane lipids, changing membrane fluidity, and 

contracting the channel (82, 83). Although 2 separate GJ uncoupling agents were used in this 

study and their modes of action vary, both inhibitors have also been implicated in non-GJ 

signaling pathways as well as in inhibiting GJIC.  Importantly, the fact that our previous studies 

demonstrate that MK conditioned medium is unable to elicit an increase in OB proliferation (8) 

indicates that several of the non-GJ related signaling pathways can be ruled out (e.g. ATP release 

through hemichannels).  Therefore, while not definitive, the combination of the data presented 

here using two separate agents known to strongly inhibit GJIC, as well as the previously 

published data with MK conditioned medium and transwell membrane studies, strongly suggests 

that the inhibitor data is reflective of blocking MK-OB GJIC. 

While our initial goal in this study was to determine whether GJIC was responsible for 

the MK-mediated increase in OB proliferation, to conduct a more rigorous study we also 

examined the influence of MK-mediated GJIC on OB differentiation.  Specifically we examined 

OB expression of type I collagen, osteocalcin, and alkaline phosphatase.  In addition we 

performed 2 functional in vitro assays of alkaline phosphatase activity and mineralization 

(calcium deposition).  Surprisingly, we found that MKs inhibited all markers of OB 

differentiation.  These data were unexpected as Bord et al (14) had previously published findings 
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demonstrating that MKs enhanced OB expression of collagen (COL1 A1) and osteoprotegerin 

(OPG).  These apparent contradictory findings may be explained by experimental differences, 

specifically the duration of the cultures studied.  In their study, OB mRNA was examined 1 day 

following co-culture (14).  In the studies presented here, MKs have been cultured with OBs for 14 

days.  Our cultures had a confluent monolayer with mineralizing nodules present in the OB 

control cultures.  In the study by Bord et al (14), the cultures are much less mature and this 

difference alone could easily account for the apparent discrepancy.  Alternatively, with longer 

culture durations, it is possible that MKs could be causing OBs to undergo apoptosis.  While 

specific apoptosis experiments, such as tunnel staining, were not conducted, three lines of 

evidence suggest that apoptosis is not responsible for the MK-mediated reduction in OB 

differentiation measures.  First, we have previously published that co-culture of OB with MKs for 

6 days resulted in increased numbers of proliferating OB (8).  Second, visual observation of the 

OBs would not suggest an apoptotic or even necrotic action. There was an intact monolayer, there 

were no floating cells to speak of, and cells were piling up and forming normal nodules, just not 

to the extent observed in cultures not containing MKs.  Finally, we had comparable levels of 

soluble protein in OBs from control cultures or cultures containing MKs (data not shown).   

With regard to the influence of GJ uncoupling agents on OB differentiation, when OBs 

were cultured with GA, all of the OB differentiation markers examined were markedly reduced 

(the effect was more pronounced than the MK-mediated reduction).  Thus, in order to ascertain 

the effects of GJIC on MK-mediated alterations in OB differentiation we used the cultures of OB 

treated with GA (OB+GA) as a control for the OB+MK+GA cultures.  When making this 

comparison, MKs did not alter OB mRNA expression of alkaline phosphatase, type I collagen, or 

osteocalcin.  Nor did MKs alter alkaline phosphatase activity in these cultures.  However, there 

was a significant increase in calcium deposition.  It is important to note that although bound 

calcium levels were elevated, microscopic observation demonstrated that while both OB cultures 
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and OB+MK cultures showed typical nodule formation (albeit at lower levels), none of the 

cultures treated with GA (OB+GA and the OB+MK+GA) exhibited typical nodule formation 

(data not shown).  Visually no matrix was observed in the cultures treated with GA.  Therefore 

it is thought that the increase in bound calcium measured in OB+MK+GA cultures as compared 

to OB+GA cultures may be reflective of higher background levels as opposed to actual calcium 

deposition into the matrix.  As indicated in Figure 4, there were significantly more proliferating 

OBs in OB+MK+GA as compared to OB+GA cultures, which could account for the higher 

background levels.  In addition, the measured calcium levels were negligible in cultures treated 

with GA as compared to untreated cultures.  Further, the observation that typical nodule 

formation is reduced in GA treated cultures is consistent with the gene expression and alkaline 

phosphatase activity, suggesting that GA treatment itself inhibits OB differentiation.  Thus, with 

the possible exception of the bound calcium, the OB differentiation parameters evaluated in this 

study were unaltered by GJIC, suggesting that future studies will need to explore alternative 

signaling mechanisms. 

As with most in vitro model systems, there are limitations which must be addressed.  

First, we have taken 2 separate cell types which are present in the BM cavity and cultured them 

together to assess regulatory mechanisms.  Clearly within the marrow cavity there are many other 

cells, most of which can also form GJs (84-87) and the GJ-mediated interactions of these cells 

may also be important in skeletal regulation.  As mentioned earlier, although our data implicates a 

role for GJ in MK-mediated changes in OB proliferation, the GJ uncouplers used here have also 

been implicated in non-GJ signaling pathways.  Finally, although our data clearly demonstrate 

that the relative increase in OB proliferation as stimulated by MKs is higher in cultures treated 

with αGA as compared to those without αGA (250% vs. 53%, respectively), this may reflect that 

MKs can increase OB proliferation by a mechanism independent of GJIC.  Indeed, examination 

of the data contained in Figure 4 demonstrates that OB proliferation is only 14% higher in 
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OB+MK+αGA cultures as compared to OB+MK cultures.  Thus, this data may suggest that MK-

induced OB proliferation can reach a maximum level and that this maximum level is independent 

of GJIC.  However, our statistical analyses indicate that OB proliferation in OB+MK+αGA 

cultures is significantly different from that observed in the OB+MK cultures (p=0.048).  

Specifically, our 2-way factorial ANOVA demonstrates that there is an interaction between MKs 

and αGA indicating that the response to MKs is influenced by the presence of αGA, and vice 

versa.  As described previously, we performed pair-wise Bonferroni comparisons after finding a 

significant statistical interaction to control for the elevated family-wise error associated with 

performing multiple comparisons.  This revealed a p-value of 0.048 and so, although we cannot 

rule out non-GJ signaling pathways, treatment of OB+MK cultures with αGA significantly 

enhances OB proliferation in vitro. 

In conclusion, the data present here demonstrate 4 critical findings.  First, MKs and OBs 

can communicate via GJIC.  Second, both proliferation and differentiation of OBs is inhibited 

when cells are treated with GA.  This finding is consistent with the reports of other investigators 

(88-90). Third, MKs inhibit OB differentiation in vitro when cultured for extended durations.  

Fourth, GJIC inhibits MK-mediated enhancement of OB proliferation but does not appear to alter 

MK-mediated reductions in OB differentiation.  Importantly, these data suggest that specific 

inhibition of MK-OB GJIC may increase OB proliferation.  

 

5.B. MK Maturity and Longevity 

Here we compare characteristics of GATA-1 deficient MKs to wild-type C57BL/6 MKs 

in an attempt to isolate the characteristic(s) of these mutant cells that contributes to the high bone 

mass phenotype seen in GATA-1 deficient mice (8). As much attention has been given to the fact 

that GATA-1 deficient mice have increased MK number, we first cultured increasing number of 

MKs, or increasing concentrations of MK CM, with OBs and OC precursors respectively, to 

study the effect of increased MK number or increased MK CM concentration on bone cells. We 
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then looked at the effect of MK stage of maturation on the same populations, and finally looked at 

MK life span.  

As Figure 8 demonstrates, 2500 MKs cause an approximate doubling of the OB 

population, with MKs cultured from GATA-1 deficient and wild-type MK having almost the 

exact same effect. When the number of MKs in co-culture was doubled (5000 MKs), OB 

proliferation increased further, and no significant differences were detected between the ability of 

C57BL/6 or GATA-1 deficient MKs to enhance OB proliferation. Similarly, as Figure 9 shows, 

both C57BL/6 and GATA-1 deficient MK CM were equally able to inhibit OC formation. These 

data, on first glance, appear to support the idea that MK number alone can elicit a response in 

bone cells. 

The next parameter we studied was MK maturation stage. In our previous studies of MK 

effect on OBs and OCs, no attempt was made to separate out MKs based on stage of maturity, yet 

2 of the 4 aforementioned mouse models with high bone mass phenotypes have documented 

defects in MK maturation. Mice deficient in NF-E2 and GATA-1 transcription factors have a 

developmental arrest in MK differentiation, resulting in the accumulation of immature MKs (8).  

Further, immature MKs from NF-E2 deficient mice have significantly reduced numbers of 

granules (6), while the MKs from GATA-1 deficient mice are so immature as to have few if any 

specific granules, inhibiting if not precluding their ability to hold and later secrete proteins like 

wild-type MKs (7). However, in the TPO overexpressing mice, there are increased numbers of 

MKs at all stages of differentiation, and these mice have increased bone mass (3-5).  As the 

former mouse models imply that increases in the number of immature MKs may be a requisite for 

increases in bone mass; perhaps the TPO overexpressing mice have sufficient numbers of 

immature MKs to produce this high bone mass phenotype. MK maturation stage is also an 

important parameter to consider because when we culture fetal livers in vitro for MK isolation, 

C57BL/6 cultures resemble cultures from GATA-1 deficient fetal livers. Our FACS analysis of 

these cultures in vitro demonstrated that at day 3 they were virtually identical (data not shown), 
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and at day 4 some slight differences were seen. Therefore if our in vitro C57BL/6 and GATA-1 

deficient MK cultures are virtually identical in subpopulation distribution, it would not be 

unreasonable for these MKs to elicit a similar response. Thus like our prior assumption with 

GATA-1 deficient and NF-E2 deficient mice, perhaps the reason C57BL/6 MKs induce OB 

proliferation in vitro is because they are a more immature cell population. Here we directly 

address this issue by sorting MKs from C57BL/6 wild-type animals into populations based on 

stage of differentiation, and co-culture these subpopulations with OBs and OCs to study the effect 

of MK maturation on these separated cells. For these studies we examined BSA separated MKs, 

as well as flow cytometry separated megakaryoblasts, immature MKs, and mature MKs. Figures 

10 and 11, respectively show that the degree of OB proliferation induced, or OC formation 

inhibited, was not significantly different if immature MKs, mature MKs, or BSA separated MKs 

were used. Megakaryoblasts, however, had no proliferative effect on OBs nor inhibitory effect on 

OCs.  It should be noted that for these maturation studies we chose to analyze only one time point 

for OB proliferation (day 3), and used only the lower cell number (2500). Similarly, we only used 

the lower concentration of MK CM (3% vol:vol). This was done because recovery of sorted 

subpopulations of MKs was low.  In general it is difficult to sort large cells such as MKs, and 

sorting is done more slowly. Added to this we only obtained approximately 1x106 BSA separated 

MKs per pregnant mouse. These BSA separated MKs are approximately 90-95% immature and 

mature MKs and the contaminating cells are megakaryoblasts and other fetal liver cells (57). 

Thus, many mice and long sorting times are required to obtain sufficient numbers of cells in each 

subpopulation. To further enhance our ability to obtain sufficient numbers of cells in each 

subpopulation we did the following.  We extended our fetal liver culture duration (stimulated 

with TPO) from 3-4 days to 5 days to enhance the number of mature MKs obtained.  On the other 

hand, to enhance megakaryoblasts we cultured fetal liver cells for 3 days without TPO.  This is 

important, as both C57BL/6 and GATA-1 deficient fetal liver cultures stimulated with TPO 

appear similar in their relative distribution of megakaryoblasts and immature MK if they are 
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collected on day 3, but on day 4 the distribution is starting to change with an increase in mature 

MK in C57BL/6 cultures (data not shown). These technical issues aside, it appears that in vitro 

mature and immature MKs equivalently influence OBs and OCs while megakaryoblasts do not 

exert an influence. 

We now turn to our data on MK longevity. Of note, we chose to culture MKs alone, with 

TPO, with OBs, and with TPO and OBs (Figure 12). We thought it vital to co-culture MKs with 

OBs, for just as MKs have a positive proliferative effect on OBs, OBs similarly stimulate 

megakaryopoiesis (8, 36). Since our focus is on the interaction of the hematopoietic and bone cell 

systems, we wanted to create an in vitro environment that more closely resembled the natural in 

vivo BM environment. To our knowledge this is the first formal attempt to quantify MK lifespan 

in vitro when cultured with TPO and OBs. In reference to longevity the most striking data was 

seen when MKs were cultured in the presence of OBs and TPO. In the presence of both OBs and 

TPO, viable C57BL/6 MK number peaked at day 20 and declined precipitously after that, with 

only a few viable MKs present at day 28, and none detected at day 34. This result is in agreement 

with work done by one group who studied MK lifespan in vitro, and found when cultured with 

TPO the number of mature MKs peaked at days 12-15, with the majority of MKs beginning to 

show markers of apoptosis at days 18-21 (23). We found similar results when MKs were co-

cultured with OBs in the presence of TPO, but in the absence of OBs our wild-type MKs did not 

survive as long as the above group reports. This may be explained by the fact that we cultured our 

cells in osteogenic media as opposed to MK culture media. The GATA-1 deficient MK 

population co-cultured with OBs under the influence of TPO also peaks around day 20. Of note, 

the peak observed in both populations is due to the impurity of the population. For approximately 

5-10% of the sample is megakaryoblasts and as they proliferate in response to TPO the 

populations of both wild-type and GATA-1 deficient MKs initially increases, and only begins to 

decline after these cells have presumably finished responding. However, at day 34 when no 

mature C57BL/6 MKs were detected, there were more than 200 viable GATA-1 deficient MKs 
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still present. It was not until day 69 that there were no viable GATA-1 deficient MKs detected. 

Our results are broadly consistent with previous work done by Vyas et al. (23) showing that 

GATA-1 deficient MKs outlive wild-type MKs. Of note, the GATA-1 deficient MKs cultured 

with TPO alone in the study by Vyas et al. (23) lived up to 4-weeks, while our GATA-1 deficient 

MK population cultured with TPO alone did not survive as long, again likely owing to our use of 

osteogenic culture media. However, in the presence of OBs and TPO we saw a marked increase 

in longevity of 103% which was similar to the 100-133% increase in longevity reported by Vyas 

et al. (23) with TPO alone. Thus GATA-1 deficient MKs live significantly longer than their wild-

type counterparts when both are cultured with OBs in the presence of TPO. Interestingly, we 

show here that culturing MKs with TPO and OBs has a synergistic effect on both GATA-1 

deficient and wild-type MK lifespan. For when MKs of either type are cultured with TPO alone, 

there are no viable MK cells by approximately day 9, and with OBs alone there are no viable MK 

cells by day 15. However, when C56BL/6 MKs are cultured with TPO and OB they live up to 34 

days, and GATA-1 deficient MKs survive up to 69 days, highlighting the significant synergistic 

effect of TPO and OBs together on MK survivability. 

Here we confirm prior in vivo observation of mouse models that increased MK number 

corresponds to a high bone mass phenotype by showing that, to an extent, increasing MK number 

further increases OB proliferation and inhibits OC formation. However, here we looked closer at 

the MKs themselves, wondering if in addition to increased number, there was something 

inherently different about GATA-1 deficient MKs that favored net bone deposition more than 

wild-type MKs. We looked at stage of maturation and showed that immature and mature MKs 

have similar effects on osteoblastogenesis and osteoclastogenesis. Finally, we tried to better 

simulate the in vivo BM environment by co-culturing MKs with OBs in the presence of TPO and 

demonstrated that GATA-1 deficient MKs significantly outlive C57BL/6 MKs by up 35 days. 

Thus, in addition to increased MK number, we propose that increased longevity contributes to the 

increased influence of GATA-1 deficient MKs on skeletal homeostasis. If viable MKs are around 
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for a longer duration in the BM cavity, there is more opportunity to stimulate OB proliferation 

and likewise inhibit OC development. Therefore, the increased longevity of GATA-1 deficient 

MKs may partially explain the high bone mass phenotype seen in GATA-1 deficient mice. 

 

5.C. Conclusions 

It is now imminently clear that the hematopoietic and bone lineages are connected not 

just by proximity, but by functionality, and that MK induced effects on OBs and OCs are multiple 

and complex. While the exact mechanisms of inhibition in osteoclastogenesis and induction in 

osteoblastogenesis still need to be further elucidated, here we make important strides toward that 

goal.  

Our first work focused on MK-OB communication, finding that the two lineages are 

capable of interacting by GJIC. While the net overall effect of MKs on OBs is to increase OB 

proliferation, here we found a novel inhibitory reaction. We postulate that GJIC between MKs 

and OBs partially counteracts another juxtacrine mechanism, and showed that when GJIC was 

inhibited, OB proliferation was enhanced even further. In the second study we focused on MKs in 

an attempt to uncover what inherent quality contributes to their osteoblastogenic effect. We 

discovered that mutant GATA-1 MKs significantly outlive wildtype MKs, and that this may 

contribute to the bone mass phenotype observed in the mutant mice.  

By discovering details in the complex interplay of these cells, we take steps towards 

clinical significance with the distant possibility of therapeutic intervention if we could harness the 

osteoblastogenic effect of  MKs. Specifically, in the GJIC study we found a method of increasing 

OB proliferation without altering differentiation, which may provide a potential novel anabolic 

therapeutic treatment approach for bone loss diseases such as osteoporosis.   

 As we continue to unravel the complexities behind the hematopoietic-bone cell interplay, 

pharmacologic and even genetic therapies for important public health problems may be 

discovered. 
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